March 2011
Revision: EB30_01.5
LatticeXP2 Advanced Evaluation Board
User’s Guide
2
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Introduction
The LatticeXP2™ Advanced Evaluation Board provides a convenient platform to evaluate, test and debug user
designs and IP cores targeted for the LatticeXP2-17 FPGA. The board features of a LatticeXP2-17 FPGA in a 484
fpBGA package. The LatticeXP2 I/Os are connected to a rich variety of both generic and application-specific inter-
faces described later in this document.
Important: This document (including the schematics in the appendix) describes LatticeXP2 Advanced Evaluation
Boards marked as Rev B. This marking can be seen on the silkscreen of the printed circuit board, under the Lattice
Semiconductor logo.
The LatticeXP2 is a second-generation non-volatile FPGA device. It combines a Look-up Table (LUT) based FPGA
fabric with Flash non-volatile cells in a flexiFLASH™ architecture. The flexiFLASH approach provides benefits such
as instant-on, small footprint, on chip storage with FlashBAK™ embedded block memories and Serial TAG memory
and design security. The LatticeXP2 also support live updates with TransFR™, 128-bit AES encryption and dual-
boot technologies. The LatticeXP2 devices include LUT-based logic, distributed and embedded memory, Phase
Locked Loops (PLLs), pre-engineered source synchronous I/O and enhanced sysDSP™ blocks.
For a full description of the LatticeXP2 FPGA, see the Lattice website for data sheets, technical notes, technology
summaries and more: www.latticesemi.com.
Some common uses for the LatticeXP2 Advanced Evaluation Board include:
Video and other DSP processing
An analog-to-digital, and digital-to-analog mixed signal source/sink
A single-board computer system
A platform for evaluating the Input/Output (I/O) characteristics of the FPGA
A platform for evaluation and development with Lattice IP cores
Features
Key features of the LatticeXP2 Advanced Evaluation Board include:
SPI Serial Flash device included for low-cost, non-volatile configuration storage
One 32-bit DDR2 SO-DIMM module connector
32-bit PCI connector
Both a Tri-speed (10/100/1000 Mbit) Ethernet PHY that includes RJ-45, magnetics and spark gap, as well as a
directly wired RJ-45 connector
RS-232 interface chip and 9-pin D-sub connector
PS/2 Mouse connector
USB 1.1 transceiver and USB type-A and type-B connectors
USB download of LatticeXP2 and power manager bitstreams
Video TX and RX MDR connectors
Quad 12-bit ADC and Quad 12-bit DAC
Two 8-pin DIP switches
Discrete LEDs and 7-segment LED
CompactFlash connector for type I and type II CompactFlash cards
LCD module connector
3
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Prototyping areas with access to 14 I/O pins
Selectable I/O bank voltages
Four pairs of SMA connectors for high speed differential signals
Oscillator socket for both half-size and full-size oscillators
3.3V, 2.5V, 1.8V, 1.2V and ADJ (adjustable voltage) powers generated from a single 5V to 28V power source
•ispPAC
®-POWR1220AT8 Power Manager II device for monitoring the 3.3V, 2.5V, 1.8V, 1.2V, ADJ voltages and
DDR Vref, Vtt voltages
•ispVM
® System programming support
General Description
The heart of the board is the LatticeXP2 non-volatile FPGA. The board also provides several different interconnec-
tions and support devices that permit it to be used for a variety of purposes. The PCI connector, DDR2 socket, and
Tri-speed Ethernet PHY are useful for applications using Lattice IP cores.
A number of connectors are useful for general purpose of the LatticeXP2 I/O capability. These include the SMA
connectors, RS-232, Video Tx/Rx MDR connectors, and the various generic prototype access points.
The CompactFlash connector is also useful for expansion purposes. It provides the ability to add storage, or com-
munication capabilities to the board.
Other features on the board help in evaluating the capabilities and performance of the LatticeXP2. The A/D, D/A,
and digital potentiometer are helpful for some basic mixed signal applications. The SMA connectors permit the
evaluation of high-speed differential signals, and protocols. The SPI memory showcases the failsafe capabilities of
the LatticeXP2.
The board also acts as a showcase for the ispPAC-POWR1220 power manager. The ispPAC-POWR1220 is a pro-
grammable device useful for safely managing the power supply system on the board. While the LatticeXP2 device
has no specific power-sequencing requirements, the ispPAC-POWR1220 device can be used to sequence and
monitor voltages.
Additional Resources
Additional resources for the LatticeXP2 Advanced Evaluation Board, such as updates to this document, sample
programs and links to demos can be found on the Lattice web site. Go to www.latticesemi.com/boards, and navi-
gate to the appropriate page for this board.
Initial Setup and Handling
The following is recommended reading prior to removing the evaluation board from the static shielding bag and
may or may not apply to your particular use of the board.
CAUTION: The devices on the board can be damaged by improper handling.
The devices on the evaluation board contain fairly robust ESD (Electro Static Discharge) protection structures
within them, able to withstand typical static discharges (see the “Human Body Model” specification for an example
of ESD characterization requirements). Even so, the devices are static sensitive to conditions that exceed their
designed in protection. For example: higher static voltages, as well as lower voltages with lower series resistance
or larger capacitance than the respective ESD specifications require can potentially damage or degrade the
devices on the evaluation board.
As such, it is recommended that you wear an approved and functioning grounded wrist strap at all times while han-
dling the evaluation board when it is removed from the static shielding bag. If you will not be using the board for a
4
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
while, it’s best to put it back in the static shielding bag. Please save the static shielding bag and packing box for
future storage of the board when it is not in use.
When reaching for the board, it is recommended that you first touch the outside threaded portion of one of the gold
SMA connectors. This will neutralize any static voltage difference between your body and the board prior to any
contact with signal I/O.
CAUTION: to minimize the possibility of ESD damage, the first and last electrical connection to the board, should
always be from test equipment chassis ground to GND on the board (black banana jack).
Before connecting signals or power to the board, attach a cable from chassis ground on grounded test equipment
to the GND on the board. Connecting the board ground to test equipment chassis ground will decrease the risk of
ESD damage to the I/O on the board as the initial connections to the board are made. Likewise, when unplugging
cables from the evaluation board, the last connection unplugged, should be the chassis GND connection to eval
board GND. If you have signal sources that are floating with respect to chassis GND, attempt to neutralize any
static charge on that signal source prior to attaching it to the evaluation board.
If you are holding or carrying the board while it’s not in a static shielding bag, please keep one finger on the
threaded portion of one of the gold SMA connectors. This will keep the board at the same voltage potential as your
body until you can pick up the static shielding bag and put the board back in it.
Electrical, Mechanical, and Environmental Specifications
The nominal board dimensions are 12 inches by 6 inches. The environmental specifications are as follows:
Operating temperature: 0°C to 55°C
Storage temperature: -40°C to 75°C
Humidity: <95% without condensation
5V to 28V DC (20 watts max.)
Functional Description
Figure 1. LatticeXP2 Advanced Evaluation Board
8-Position
Switch
CompactFlash
DDR2 SO-DIMM
LatticeXP2
FPGA
MachXO2280
32-Bit PCI Edge
Video MDR
Tx/Rx
USB
Programming
9-Pin D-Sub
RS-232
USB Device/
Host
Generic RJ-45
PS/2 Mouse
8-Position
Switch
On/Off
Switch
ispPAC-POWR
1220AT8
5
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
LatticeXP2 Device
This board features a LatticeXP2 FPGA with a 1.2V DC core in a 484-ball fpBGA package. The default device is
the LatticeXP2-17. Any other LatticeXP2 density in this package can be accommodated. A complete description of
this device can be found on the Lattice web site at www.latticesemi.com.
Power Setup
The board is supplied by a single 5.0V to 28.0V DC power supply. On-board regulators will provide the necessary
supply voltages. The on-board regulators supply 3.3V, 2.5V, 1.8V, 1.2V, and an adjustable voltage (VCC_ADJ). The
adjustable voltage is set by the potentiometer VR1 and can be set to a value between 1.22V and 3.25V. The DC
power may be applied through the power jack at J54 using an AC adapter with a 5.0V to 28.0V DC output range.
Requirements for the power jack are listed in Ta bl e 1. The on/off switch (SW9) can be used as a convenience to
disable power jack J54. Be sure that SW9 is in the “on” position for normal operation.
The DC power may also be applied using a workbench power supply through the banana jacks at J53 (VCC_IN)
and J51 (GND). The workbench power supply voltage has to be between 5.0V and 28.0V.
Table 1. Power Jack J54 Specifications
Polarity Positive Center
Inside Diameter 0.1” (2.5mm)
Outside Diameter 0.218” (5.5mm)
Current Capacity Up to 4A
Power may also be supplied directly for each individual supply rail using banana jack connectors. To enable this
mode of operation, the appropriate fuses must be removed. All power sources must be regulated to the specifica-
tions in Ta b l e 2. No special power sequencing is required for the evaluation board.
Table 2. Individual Control of Supplies
Supply Jack Fuse Requirement
3.3V J50 F5 (3.0A) +/- 5%
2.5V J41 F1 (3.0A) +/- 5%
1.8V J47 F3 (10.0A) +/- 5%
1.2V J48 F4 (3.0A) +/- 5%
VCC_ADJ J46 F2 (1.5A) User-defined
Power Voltage Monitoring
A Lattice’s ispPAC Power Manager II device, ispPAC-POWR1220AT8, is used for monitoring various voltages on
the board. There are six LEDs used to indicate the status of the monitoring voltages. If the monitoring voltage is not
in the +/- 5% voltage window, the corresponding LED will be flashing, otherwise the LED will stay ON. Ta bl e 3
shows these six voltages and the corresponding LEDs.
Table 3. Individual Monitoring of Six Power Voltages
Voltage LED Monitoring Voltage Range
3.3V D5 3.3V +/- 5%
2.5V D6 2.5V +/- 5%
1.8V D7 1.8V +/- 5%
1.2V D8 1.2V +/- 5%
Vref D9 0.9V +/- 5%
Vtt D10 0.9V +/- 5%
6
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
For the VCC_ADJ adjustable voltage, the ispPAC-POWR1220AT8 will detect the voltage rail and show the status
using five LEDs. Each of these five LEDs indicates a particular voltage range. If the VCC_ADJ is in one of the volt-
age ranges, the corresponding LED will be turned ON and the other LEDs will be turned OFF, otherwise these five
LEDs will be turned ON and then OFF sequentially so that you will see a light keep moving between the LEDs. The
five LEDs and corresponding voltages are listed in Ta b l e 4.
Table 4. Monitoring of VCC_ADJ Power Voltages
LED Indicating Voltage Range
D11 3.3V +/- 5%
D12 2.5V +/- 5%
D13 1.8V +/- 5%
D14 1.5V +/- 5%
D15 1.2V +/- 5%
LatticeXP2 I/O Bank Voltage Setting
The jumpers listed in Ta bl e 5 allow the user to select the voltage (VCCIO) applied to each of the eight I/O banks of
the LatticeXP2 device. Certain restrictions apply depending on which features of the board are being used.
Table 5. VCCIO Selection Jumper
sysIO™ Bank Jumper Jumper on Pins
0J34 1-3 -> VCC_3.3V
2-4 -> VCC_2.5V
3-5 -> VCC_1.8V
4-6 -> VCC_ADJ
6J37
1VCC_2.5V
2VCC_1.8V
3VCC_1.8V
4VCC_3.3V
5VCC_3.3V
7VCC_3.3V
Depending on the optional devices installed, some sysIO banks may have restrictions. For each of J34 and J37
only select one bank voltage position at that jumper. For example, attaching more than one jumper to J34’s 6
square pins will short supplies.
Table 6. sysIO Bank Considerations
Bank Setting
0Selectable. CompactFlash requires 3.3V.
1Cannot be changed
2
3
4
5
6Selectable. Video TX/RX requires 2.5V.
7Cannot be changed
The following tables detail the various I/O standards supported by the LatticeXP2 sysIO structures. More informa-
tion can be found in technical note TN1136, LatticeXP2 sysIO Usage Guide.
7
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Table 7. Mixed Voltage I/O Support
VCCIO
Input sysIO Standards Output sysIO Standards
1.2V 1.5V 1.8V 2.5V 3.3V 1.2V 1.5V 1.8V 2.5V 3.3V
1.2V Ye s Ye s Ye s Ye s
1.5V Ye s Ye s Ye s Ye s Ye s
1.8V Ye s Ye s Ye s Ye s Ye s
2.5V Ye s Ye s Ye s Ye s
3.3V Ye s Ye s Ye s Ye s
For example, if VCCIO is 3.3V then signals from devices powered by 1.2V, 2.5V, or 3.3V can be input and the thresh-
olds will be correct, assuming the user has selected the desired input level using ispLEVER® software. Output lev-
els are tied directly to VCCIO.
Table 8. sysIO Standards Supported per Bank
Description Top Side, Banks 0-1 Right Side, Banks 2-3 Bottom Side, Banks 4-5 Left Side, Banks 6-7
Types of I/O Buffers Single-ended Single-ended and
Differential
Single-ended Single-ended and
Differential
Output standards
supported
LVTT L
LVCM OS33
LVCM OS25
LVCM OS18
LVCM OS15
LVCM OS12
SSTL18 Class I, II
SSTL25 Class I, II
SSTL33 Class I, II
HSTL15 Class I
HSTL18_I, II
SSTL18D Class I, II
SSTL25D Class I, II
SSTL33D Class I, II
HSTL15D Class I
HSTL18D Class I, II
PCI33
LVDS 25E1
LVPECL1
BLVDS1
RSDS1
LVTT L
LVCM OS33
LVCM OS25
LVCM OS18
LVCM OS15
LVCM OS12
SSTL18 Class I, II
SSTL25 Class I, II
SSTL33 Class I, II
HSTL15 Class I
HSTL18 Class I, II
SSTL18D Class I, II
SSTL25D Class I, II
SSTL33D Class I, II
HSTL15D Class I, II
HSTL18D Class I, II
PCI33
LVDS
LVDS 25E1
LVPECL1
BLVDS1
RSDS1
LVTT L
LVCM OS33
LVCM OS25
LVCM OS18
LVCM OS15
LVCM OS12
SSTL18 Class I
SSTL2 Class I, II
SSTL3 Class I, II
HSTL15 Class I
HSTL18 Class I, II
SSTL18D Class I, II
SSTL25D Class I, II,
SSTL33D Class I, II
HSTL15D Class I
HSTL18D Class I, II
PCI33
LVDS 25E1
LVPECL1
BLVDS1
RSDS1
LVTT L
LVCM OS33
LVCM OS25
LVCM OS18
LVCM OS15
LVCM OS12
SSTL18 Class I
SSTL2 Class I, II
SSTL3 Class I, II
HSTL15 Class I, III
HSTL18 Class I, II, III
SSTL18D Class I,
SSTL25D Class I, II,
SSTL33D_I, II
HSTL15D Class I
HSTL18D Class I, II
PCI33
LVDS
LVDS 25E1
LVPECL1
BLVDS1
RSDS1
Inputs All Single-ended,
Differential
All Single-ended,
Differential
All Single-ended,
Differential
All Single-ended,
Differential
Clock Inputs All Single-ended,
Differential
All Single-ended,
Differential
All Single-ended,
Differential
All Single-ended,
Differential
PCI Support PCI33 no clamp PCI33 no clamp PCI33 with clamp PCI33 no clamp
LVDS Output Buffers LVDS (3.5mA) Buffers2LVDS (3.5mA) Buffers2
1. These differential standards are implemented by using complementary LVCMOS drivers and external resistors.
2. Available on 50% of the I/Os in the bank.
8
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Prototype Areas
For general purpose I/O testing or monitoring, numerous test points are provided for direct access. Some test
points are grouped together and arranged in a grid pattern according to their associated I/O bank and are labeled
with the pin locations on the silkscreen of the board. Other test point I/Os are brought out to IDC connectors J1 and
J10 with both source and end termination resistors available for high speed parallel signal transmission over ribbon
cable.
Differential Signal Connections
There are four pairs of SMA connectors and one RJ-45 connector connected directly to the LatticeXP2 differential
I/O pairs.
The eight SMA connectors are provided for clocks or general purpose, user-definable signals. The center pin is
wired to an I/O pin and the outer case is soldered to ground. Ta b l e 9 details to which I/O pin each SMA connector
is wired.
Table 9. SMA Connectors
Location LatticeXP2 I/O Polarity sysIO Bank Description
J121A2* Pair#0 P 0PT4A/ULC_GPLLT_IN_A
J6 B3 Pair#0 N 0PT4B/ULC_GPLLC_IN_A
J13 F7 Pair#1 P 0PT5A/ULC_GPLLT_FB_A
J7 G7 Pair#1 N 0PT5B/ULC_GPLLC_FB_A
J14 P4 Pair#2 P 6PL37A
J8 P5 Pair#2 N 6PL37B
J15 Y1 Pair#3 P 6PL35A
J9 AA1 Pair#3 N 6PL35B
1. The SMA connector on J12 is shared with the on-board oscillator. When this SMA connector is used, the jumper on
J17 needs to be removed.
RJ-45 Connectors
There are two RJ-45 connectors, J5 and J43, on the evaluation board. J5 is a simple RJ-45 female connector pro-
vided for general-purpose differential interfacing to the LatticeXP2 device, while J43 is a full featured Ethernet PHY
connection with internal magnetics and spark gap. The connections for J5 are listed in Ta b le 10. J43 is described in
more detail in the Ethernet section later in this user guide.
Table 10. J5 RJ-45 Connections
J1 Pin LatticeXP2 I/O Polarity SysIO Bank Description
1P2 Pair#0 P 6PL32A
2P3 Pair#0 N 6PL32B
3T1 Pair#1 P 6PL30A/LDQS30
6U1 Pair#1 N 6PL30B
4M4 Pair#2 P 6PL28A
5M5 Pair#2 N 6PL28B
7R5 Pair#3 P 6PL40A
8P6 Pair#3 N 6PL40B
Oscillator
The 3.3V oscillator socket (Y1) accepts both full-size and half-size oscillators and can route to different clock
inputs, depending on its position within the socket (see Figure 2). The board is shipped with an EPSON program-
mable oscillator programmed to 33.33MHz.
9
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
The 16-pin socket will allow connection to PLL clock pin A2 when the top of the oscillator is aligned to socket pins 1
and 16. Note that the SMA connector J12 is shared with the on-board oscillator. When installing the oscillator to
connect the clock to PLL clock pin A2, the SMA connector J12 cannot be used and the jumper on J17 needs to be
installed.
When the bottom of the oscillator is aligned to socket pins 8 and 9, the clock is provided to primary clock pin L4.
Figure 2. On-board Oscillator
SPI Serial Flash
SPI Serial Flash are available in three package styles. The device used this board is an 8-pin, 16-Mbit, sufficient to
store two bitstreams simultaneously in order to support SPIm mode.
Configuration/Programming Headers
Four programming headers are provided on the evaluation board, providing access to the LatticeXP2, MachXO™,
and ispPAC-POWR1220AT8 and LatticeXP2 SPI Slave JTAG ports. The JTAG connectors J25, J32, J39 and J40
are 1x10 headers. The JTAG ports for the LatticeXP2 and ispPAC-POWR1220AT8 devices can be configured as
loop-through connectors to allow for easy daisy chaining of multiple boards. With proper jumper selection (see the
next section) standard IDC ribbon cable can be used without the need to swap any wires on the cable.
The pinouts for these headers are provided in the following tables.
A USB ispDOWNLOAD® cable is included with each LatticeXP2 Advanced Evaluation Board. When using the 1x8
cable adapter, connect pin 1 of the cable to pin 1 of the 1x10 JTAG header.
Important Note: The board must be un-powered when connecting, disconnecting, or reconnecting the ispDOWN-
LOAD Cable or USB cable. Always connect an ispDOWNLOAD Cable’s GND pin (black wire), before connecting
any other JTAG pins. Failure to follow these procedures can in result in damage to the LatticeXP2 FPGA and ren-
der the board inoperable.
LatticeXP2 Configuration
Two programming headers, J39 and J40, are provided on the evaluation board, providing access to the LatticeXP2
JTAG port and the ispPAC-POWR1220AT8 JTAG port. The pinouts for the headers are provided in Ta bl e 11.
10
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Table 11. JTAG Programming Headers
Pin
Separate Programming Chained Programming
Jumper on J49 (None on J45) Jumper on J45 (None on J49)
J39 Function J40 Function J39 Function J40 Function
1Vcc (3.3V) Vcc (3.3V) Vcc (3.3V) Not used
2TDO of ispPAC-POWR1220AT8 TDO of LatticeXP2 TDO of ispPAC-POWR1220AT8 Not used
3TDI of ispPAC-POWR1220AT8 TDI of LatticeXP2 TDI of LatticeXP2 Not used
4NC NC NC Not used
5NC NC NC Not used
6TMS of both chips TMS of both chips TMS of both chips Not used
7GND GND GND Not used
8TCK of ispPAC-POWR1220AT8 TCK of LatticeXP2 TCK of both chips Not used
9NC DONE of LatticeXP2 NC Not used
10 NC INITN of LatticeXP2 NC Not used
J49 and J45 control the functions of the two programming headers. When a jumper is installed on J49, the pro-
gramming header J39 is connected to the JTAG port of ispPAC-POWR1220AT8 and is used for programming the
ispP
AC-POWR1220AT8 only; the programming header J40 is connected to the JTAG port of LatticeXP2 and is
used for programming the LatticeXP2 only.
When the jumper is moved from J49 to J45, the JTAG ports of the LatticeXP2 and ispPAC-POWR1220AT8 are
chained together. In this case, the programming header J40 is connected to the JTAG port of the LatticeXP2 first
and then chained with the JTAG port of ispPAC-POWR1220AT8. The programming header J39 should not be used
when the JTAG ports are chained together. During chained programming, the ispPAC-POWR1220AT8 device will
set the HVOUT1 signal (pin 86 of U17) tri-state until programming completes, so the enable for the 3.3V power for
the LatticeXP2 device will be interrupted during programming unless a jumper is installed at J52. After chained pro-
gramming of the ispPAC-POWR1220AT8, the jumper at J52 can be removed.
Additional instructions and recommendations for programming this board are provided in the Configuring/Program-
ming the Board section of this document.
Switches
There are two 8-position switches and six push-button switches for implementing basic static input functions.
Switches SW3, SW4, SW5, SW6, SW7 and SW10 are momentary switches. The pull-up resistors associated with
these switches are wired to 3.3V. Pushing the switches down produces a low (0), otherwise it produces a high (1).
The signals controlled by SW4, SW5, SW6, SW7 and SW10 are debounced by an MC14490 (U15) before connect-
ing to an LatticeXP2 I/O pin. Ta b l e 12 shows the control relationship between the switches, LatticeXP2 and ispPAC-
POWR1220AT8 I/O pins.
Table 12. Momentary Switches
Switch Connection User-Definable Debounced
SW3 Pin 97 of ispPAC-POWR1220AT8* Ye s 1No
SW4 J6 of LatticeXP2 (PROGRAMN) No Ye s
SW5 E12 of LatticeXP2 (GSRN) Ye s Ye s
SW6 W18 of LatticeXP2 Ye s Ye s
SW7 W17 of LatticeXP2 Ye s Ye s
SW10 U7 of LatticeXP2 Ye s Ye s
1. SW3 signal is also connected (wire-AND) to position#1 of SW2. Therefore, when position#1 of SW2 is in the down position,
SW3 signal (POWR1220AT8 pin 97) will be low even when SW3 is not being pushed.
11
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
SW2 and SW8 on the right side and the upper side of the board are 8-pin DIP switches. The pull-up resistors asso-
ciated with these switches are wired to 3.3V. A switch in the down position produces a low (0), the up position pro-
duces a high (1). All signals of SW8 are debounced before connecting to LatticeXP2 I/O pins. Ta b l e 13 shows the
SW8 connections to the LatticeXP2 and Ta b l e 14 shows the SW2 connections to ispPAC-POWR1220AT8 I/O pins.
Table 13. 8-Position Switch SW8
Switch (Position#) LatticeXP2 I/O sysIO Bank
SW8 (position #1) W15 4
SW8 (position #2) U16 4
SW8 (position #3) T16 4
SW8 (position #4) Y15 4
SW8 (position #5) Y16 4
SW8 (position #6) Y18 4
SW8 (position #7) Y17 4
SW8 (position #8) W18 4
Table 14. 8-Position Switch SW2
Switch (Position#)
POWR1220AT8
I/O Pin Pin Name
SW2 (position #1) 97 IN1
SW2 (position #2) 1IN2
SW2 (position #3) 2IN3
SW2 (position #4) 4IN4
SW2 (position #5) 6IN5
SW2 (position #6) 7IN6
SW2 (position #7) 89 VPS0
SW2 (position #8) 90 VPS1
LEDs
The eight user-definable LEDs are provided on the lower right side of the board. These LEDs are each wired to a
separate general purpose I/O as defined in the Ta bl e 15. The current limiting resistors associated with these LEDs
are wired to 3.3V but it is safe to use any FPGA I/O voltage. The LED will light when its associated I/O pin is driven
low.
Table 15. Connection between LEDs and LatticeXP2
LED LatticeXP2 I/O Bank LED LatticeXP2 I/O Bank
D17 AB18 4D21 Y14 4
D18 AB19 4D22 AA13 4
D19 V12 4D24 AB16 4
D20 U12 4D25 AB17 4
Ta bl e 16 describes the three LEDs associated with the dedicated programming pins.
Table 16. Programming LEDs
LED Pin Color Function
D27 PROGRAMN Yellow On when signal is low
D29 INIT Red On when initializing
D28 DONE Green On when config is complete
12
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Seven Segment Display
The 7-segment LED located near the eight LEDs is controlled by LatticeXP2 Bank 4 I/O pins. The connections of
the segments are shown in Figure 3.
Figure 3. 7-Segment Display
LCD
The LCD module connector (J55) is a 2x9 header. This 18-pin header is compatible with quite a few character LCD
modules. Ta bl e 17 shows the pin function of the header and the connections to the bank 0 of the LatticeXP2 FPGA.
Table 17. LCD Header Connection
Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O
1Anode 2 Cathode (GND)
3VSS(GND) 4 VDD (5V)
5VO 6 RS U14
7 R/W AA20 8 E AA21
9DB0 AB20 10 DB1 AA22
11 DB2 V14 12 DB3 Y21
13 DB4 W14 14 DB5 Y22
15 DB6 U15 16 DB7 V15
17 Anode 18 Cathode (GND)
The VR4 potentiometer is used to limit the current that flows through the backlight LED on the LCD module. The
VR5 potentiometer is used to adjust the VO voltage that controls the LCD contrast.
When the following LCD modules are used, connect pin 1 to 16 to the backlight LCD module or connect pin 1 to 14
to the non-backlight LCD module:
Optrex:
C-51505 Series: 20 characters x 2 lines
When the following LCD modules are used, connect pin 3 to 18 to the backlight LCD module or connect pin 3 to 16
to the non-backlight LCD module.
13
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Lumex:
LCM-S01601 Series: 16 characters x 1 line
LCM-S00802 Series: 8 characters x 2 lines
LCM-S01602 Series: 16 characters x 2 lines
LCM-S02002 Series: 20 characters x 2 lines
LCM-S02402 Series: 24 characters x 2 lines
LCM-S04002 Series: 40 characters x 2 lines
LCM-S02004 Series: 20 characters x 4 lines
LCM-S02404 Series: 24 characters x 4 lines
Varitronix:
MDLS-20189 Series: 20 characters x 1 line
MDLS-20265 Series: 20 characters x 2 lines
MDLS-24265 Series: 24 characters x 2 lines
MDLS-40266 Series: 40 characters x 2 lines
Video TX and RX MDR Connectors
The video TX (J2) and RX (J3) MDR connectors accept 7:1 LVDS 2.5v differential video signals. The connections
between the connector pins and LatticeXP2 I/O are shown in Tables 18 and 19. All the pins are connected to Bank
6 I/Os. The Bank 6 supply voltage (VCCIO_6) must be set to select 2.5V for proper LVDS 2.5V signal levels.
Table 18. Video TX MDR Connections
Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O
1 14 TX_OUT0_N Y4
2 GND 15 TX_OUT0_P AA3
3 16
4TX_OUT1_N U5 17 GND
5TX_OUT1_P U4 18
6TX_OUT2_N V3 19 GND
7TX_OUT2_P U2 20
8 21
9 22 TX_CLKOUT_N T2
10 GND 23 TX_CLKOUT_P R2
11 24
12 TX_OUT3_N R4 25 GND
13 TX_OUT3_P R3 26
14
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Table 19. Video RX MDR Connections
Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O
1 14 RX_IN3_P Y3
2 GND 15 RX_IN3_N W3
3 16
4RX_CLKIN_P P1 17 GND
5RX_CLKIN_N R1 18
6 19
7 20 RX_IN2_P R7
8 GND 21 RX_IN2_N R6
9 22 RX_IN1_P T3
10 GND 23 RX_IN1_N U3
11 24
12 RX_IN0_P T6 25 GND
13 RX_IN0_N T7 26
CompactFlash
The CompactFlash connector (J38) on the board accepts both type-I and type-II CompactFlash cards. The connec-
tions between the connector pins and LatticeXP2 balls are shown in Table 20. All the pins are connected to Bank 1
I/Os.
Table 20. CompactFlash Connection
Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O
1GND 26 CD1 A8
2D3 A14 27 D11 B8
3D4 B13 28 D12 A7
4D5 F12 29 D13 F9
5D6 F11 30 D14 E9
6D7 C12 31 D15 C8
7CE1/CS0 E11 32 CE2/CS1 D8
8A10 A13 33 VS1 B7
9OE/ATASEL B12 34 IORD B6
10 A9 A12 35 IOWR A6
11 A8 B11 36 WE A5
12 A7 G9 37 READY/IREQ/INTRQ J7
13 VCC 38 VCC
14 A6 G8 39 CSEL H7
15 A5 C11 40 VS2 C7
16 A4 D11 41 RESET C6
17 A3 A11 42 WAIT/IORDY A4
18 A2 A10 43 INPACK/DMARQ A3
19 A1 B10 44 REG/DMACK C4
20 A0 B9 45 BVD2/SPKR/DASP C5
21 D0 E10 46 BVD1/STSCHG/PDIAG E8
22 D1 F10 47 D8 F8
23 D2 C9 48 D9 D5
15
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
USB 1.1
For implementing the USB interface, the LatticeXP2 board contains a USB 1.1 transceiver MAX3454EETE (or
NCN2500MNR2 from On Semiconductor), a type-A connector and a type-B USB connector. Note there is a third
USB connector, which is used for the built-in USB download cable, described later in this document.
Table 21. Header Settings for Configuring USB Interface as USB Host
Header/Connector Jumper Position Description
J21 Pin 1 and 2 Drive USB transceiver ENUM pin to GND to disconnect the internal 1.5K
resistor between Vtrm and D+ or D-.
J22 (D+) Pin 1 and 2 Pull D+ signal low through an external 15K resistor.
J23 (D-) Pin 1 and 2 Pull D- signal low through an external 15K resistor.
J24 Pin 1 and 2 Provide 5V power to the external USB device.
J16 (USB type A) Type A is used while implementing USB host.
J20 (USB type B) This connector is not used in this configuration.
Table 22. Header Settings for Configuring USB Interface as USB Device
Header/Connector Jumper Position Description
J21 Pin 2 and 3 Drive USB transceiver ENUM pin to 3.3V to connect the internal 1.5K
resistor between Vtrm and D+ or D-.
J22 (D+) Pin 2 and 3 Disconnect D+ signal from the external 15K pull-down.
J23 (D-) Pin 2 and 3 Disconnect D- signal from the external 15K pull-down.
J24 Pin 2 and 3 No 5V power is provided when implementing USB device.
J16 (USB type A) This connector is not used in this configuration.
J20 (USB type B) Type A is used while implementing USB host.
The connections between the USB 1.1 transceiver MAX3454EETE (or NCN2500MNR2 from On Semiconductor)
and the LatticeXP2 FPGA are shown in Ta bl e .
24 WP/IOIS16/IOCS16 D9 49 D10 D6
25 CD2 A9 50 GND
Table 23. Connections Between USB 1.1 Transceiver and LatticeXP2
Pin # MAX3454EETE NCN2500MNR2 LatticeXP2 I/O Description
1SPD DSPD D4 Connect to LatticeXP2 bank 7 I/O
2RCV RCV E3 Connect to LatticeXP2 bank 7 I/O
3VP VP C1 Connect to LatticeXP2 bank 7 I/O
4VM VM D1 Connect to LatticeXP2 bank 7 I/O
5NC EN_Vobus# Connect to 3.3V
6GND GND Connect to GND
7SUS SPND E1 Connect to LatticeXP2 bank 7 I/O
8NC NC No connect
9OE# OE# D3 Connect to LatticeXP2 bank 7 I/O
10 D- D- Connect to USB connectors through 33 Ohm resistor
11 D+ D+ Connect to USB connectors through 33 Ohm resistor
12 Vtrm Vreg Connect to GND though a capacitor
Table 20. CompactFlash Connection (Continued)
Pin # Function LatticeXP2 I/O Pin # Function LatticeXP2 I/O
16
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
PS/2 Mouse
The PS/2 mouse connector (JP1) on this board connects the clock and data through the PCA9306 level translator
to the LatticeXP2. The clock and data are connected as described in Ta bl e 24.
Table 24. Connections Between PS/2 Mouse Connector and LatticeXP2
JP1 Pin # Signal LatticeXP2 I/O Description
1DATA V5 PS/2 data signal, open drain
5CLOCK V4 PS/2 clock signal, open drain
RS-232
The RS-232 interface on this board includes a RS-232 interface chip (MAX3232), a 9-pin D-sub female connector
and four headers. This RS-232 interface can be configured to DCE or DTE by changing the jumper settings of J27,
J28, J29 and J30 headers. These headers are used to connect the MAX3232 to the D-sub connector. Installing
jumpers on Pin 1 and Pin 2 of these headers configures the RS-232 to DCE. Installing jumpers on Pin 2 and Pin 3
of these headers configures the RS-232 to DTE. The connections and functions of the signals between MAX3232
and LatticeXP2 stay the same for DCE and DTE configurations. These are listed in Ta bl e 25.
Table 25.
Signal Name MAX3232 Pin LatticeXP2 I/O LatticeXP2 Bank LatticeXP2 I/O Type
/CTS 9 (R2OUT) C3 7Input
RXD 12 (R1OUT) B2 7Input
TXD 11 (T1IN) B1 7Output
/RTS 10 (T2IN) C2 7Output
Connections Between MAX3232 and LatticeXP2
DDR2
The 200-pin SODIMM socket provides a built-in 32-bit interface to standard 1.8V DDR2 SDRAM memory modules
(PC2-5300). Lattice recommends the Kingston KVR533D284/512. However, other memories conforming to this
standard will also work. The required VREF and VTT voltages, as well as termination of each signal to VTT are pro-
vided. Performance has been verified at above the 533Mbps data rate. Write mode dynamic ODT at the memory
modules is fully supported, while read mode ODT at the controller (FPGA) is approximated with external termina-
tions optimized for best performance. The connections between the connector pins and LatticeXP2 balls are shown
in Ta b l e 26.
13 ENUM Vobus Connect to J21 pin 2
14 Vbus Vusb Connect to USB connectors
15 VL Vcc Connect to 3.3V
16 NC EN_RPU Connect to J21 pin 2
Table 26. DDR2 Interface to SODIMM Socket
Description LatticeXP2 I/O sysIO Bank J36
DDR2_DQ0 R21 3 5
DDR2_DQ1 R20 3 7
DDR2_DQ2 N17 317
DDR2_DQ3 N16 319
DDR2_DQ4 P19 3 4
DDR2_DQ5 R19 3 6
Table 23. Connections Between USB 1.1 Transceiver and LatticeXP2 (Continued)
Pin # MAX3454EETE NCN2500MNR2 LatticeXP2 I/O Description
17
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
DDR2_DQ6 T21 314
DDR2_DQ7 T20 316
DDR2_DM0 P16 310
DDR2_DQS0_P T22 313
DDR2_DQS0_N U22 311
DDR2_DQ8 K21 323
DDR2_DQ9 L21 325
DDR2_DQ10 M19 335
DDR2_DQ11 M20 337
DDR2_DQ12 M17 320
DDR2_DQ13 M16 322
DDR2_DQ14 M21 336
DDR2_DQ15 N21 338
DDR2_DM1 P21 326
DDR2_DQS1_P M22 331
DDR2_DQS1_N N22 329
DDR2_DQ16 G21 243
DDR2_DQ17 F22 245
DDR2_DQ18 J17 255
DDR2_DQ19 K17 257
DDR2_DQ20 K18 244
DDR2_DQ21 L17 246
DDR2_DQ22 H22 256
DDR2_DQ23 G22 258
DDR2_DM2 J16 252
DDR2_DQS2_P H21 251
DDR2_DQS2_N J21 249
DDR2_DQ24 H20 261
DDR2_DQ25 G20 263
DDR2_DQ26 E19 273
DDR2_DQ27 F19 275
DDR2_DQ28 J20 262
DDR2_DQ29 H19 264
DDR2_DQ30 C22 274
DDR2_DQ31 B22 276
DDR2_DM3 H17 267
DDR2_DQS3_P D22 270
DDR2_DQS3_N E22 268
DDR2_A0 R18 3102
DDR2_A1 R17 3101
DDR2_A2 U21 3100
DDR2_A3 V22 399
DDR2_A4 U20 398
DDR2_A5 V20 397
Table 26. DDR2 Interface to SODIMM Socket (Continued)
Description LatticeXP2 I/O sysIO Bank J36
18
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Ethernet PHY
In the upper middle portion of the board is U11, a National Semiconductor Gigabit Ethernet PHY (DP83865). The
LatticeXP2 FPGA interacts with the PHY over a Media Independent Interface (MII). The PHY is connected to an
RJ45 connector J43 on the Media Dependent Interface (MDI). The RJ45 connector J43 has built in magnetics and
spark-gap capacitor.
The PHY is available on the board in order to demonstrate the Lattice Ethernet Media Access (MAC) IP core. How-
ever, it is also possible to use the PHY to evaluate a custom MAC solution.
Refer to the schematic and the National Semiconductor DP83865 Data Sheet for detailed information about the
operation of the Ethernet PHY interface on this device. Refer to Ta bl e 27 for a description of the Ethernet PHY con-
nections.
DDR2_A6 R16 394
DDR2_A7 T17 392
DDR2_A8 Y20 393
DDR2_A9 Y19 391
DDR2_A10 W22 3105
DDR2_A11 G15 290
DDR2_A12 G16 289
DDR2_A13 F17 2116
DDR_BA0 P20 3107
DDR_BA1 P22 3106
DDR_BA2 F18 285
DDR2_CK0_P G17 230
DDR2_CK0_N H18 232
DDR2_CK1_P B21 2164
DDR2_CK1_N C21 2166
DDR2_CKE0 J19 279
DDR2_CKE1 C20 280
DDR2_S0_N J18 2110
DDR2_S1_N H16 2115
DDR2_RAS_N K16 2108
DDR2_CAS_N L18 2113
DDR2_WE_N L19 2109
DDR2_ODT0 P18 3114
DDR2_ODT1 N18 3119
DDR2_SDA AA2 0195
DDR2_SCL Y2 0197
Table 26. DDR2 Interface to SODIMM Socket (Continued)
Description LatticeXP2 I/O sysIO Bank J36
19
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Table 27. 10/100/1000 Ethernet PHY Connection Summary
Description LatticeXP2 I/O sysIO Bank
ETH_CLK_TO_MAC G11 1
ETH_COL A17 1
ETH_CRS B16 1
ETH_EGP0 (low, install R91 to pull high) --
ETH_EGP2 G13 1
ETH_EGP4 G14 1
ETH_EGP5 D12 1
ETH_EGP6 B14 1
ETH_EGP7 A15 1
ETH_GTX_CLK D15 1
ETH_MAC_CLK_EN G10 1
ETH_MDC E15 1
ETH_MDIO E14 1
ETH_RESET_N A16 1
ETH_RX_CLK B15 1
ETH_RX_D0 F14 1
ETH_RX_D1 D14 1
ETH_RX_D2 C16 1
ETH_RX_D3 C17 1
ETH_RX_D4 B17 1
ETH_RX_D5 A18 1
ETH_RX_D6 F13 1
ETH_RX_D7 G12 1
ETH_RX_DV C14 1
ETH_RX_ER E13 1
ETH_TX_CLK C15 1
ETH_TX_D0 D17 1
ETH_TX_D1 E18 1
ETH_TX_D2 C18 1
ETH_TX_D3 C19 1
ETH_TX_D4 A20 1
ETH_TX_D5 D19 1
ETH_TX_D6 D17 1
ETH_TX_D7 D18 1
ETH_TX_EN A19 1
ETH_TX_ER A21 1
PCI Connection
The 124-pin PCI connector installed at the bottom-left corner of the board is used for 32-bit PCI. With this PCI con-
nector, PCI IP and proper LatticeXP2 FPGA design, the LatticeXP2 Advanced Evaluation board can be used in a
PCI slot on a PC motherboard. There are two sides to the PCI connector, component side (J11) and solder side
(J56). Refer to Tables 28 and 29 for a description of the PCI connections where the I/O direction is referenced to
the LatticeXP2 Advanced Evaluation Board.
20
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Table 28. PCI Connector Component Side
J11 Pin# Signal I/O Description LatticeXP2 Connection
112V Vcc 12V voltage supply pin
2TCK -PCI JTAG TCK signal
3GND Vss System ground GND
4TDO -JTAG TDO signal
55V Vcc 5V voltage supply pin
65V Vcc 5V voltage supply pin
7 INTB# O PCI INTB# signal
8 INTD# O PCI INTD# signal
9PRSNT1# OPCI PRSNT1# signal
10 Reserved -Reserved
11 PRSNT2# OPCI PRSNT2# signal
14 Reserved -Reserved
15 GND Vss System ground GND
16 CLK IPCI system clock AB14
17 GND Vss System ground GND
18 REQ# OPCI arbitration request signal W5
19 +VIO Vio VIO voltage supply pin
20 AD[31] I/O PCI address and bit 31 Y5
21 AD[29] I/O PCI address and data bit 29 Y6
22 GND Vss System ground GND
23 AD[27] I/O PCI address and data bit 27 AB6
24 AD[25] I/O PCI address and data bit 25 AA7
25 +3.3V Vcc 3.3V voltage supply pin +3.3V
26 C/BE#[3] I/O PCI bus command, byte enable, bit 3 Y8
27 AD[23] I/O PCI address and data bit 23 W4
28 GND Vss System ground GND
29 AD[21] I/O PCI address and data bit 21 W6
30 AD[19] I/O PCI address and data bit 19 U8
31 +3.3V Vcc 3.3V voltage supply pin +3.3V
32 AD[17] I/O PCI address and data bit 17 W8
33 C/BE#[2] I/O PCI bus command, byte enable, bit 2 V9
34 GND Vss System ground GND
35 IRDY# I/O PCI initiator ready signal T10
36 +3.3V Vcc 3.3V voltage supply pin +3.3V
37 DEVSEL# I/O PCI device select T9
38 GND Vss System ground GND
39 LOCK# I/O PCI lock signal -
40 PERR# I/O PCI parity error signal V10
41 +3.3V Vcc 3.3V voltage supply pin +3.3V
42 SERR# I/O PCI system error signal V11
43 +3.3V Vcc 3.3V voltage supply pin +3.3V
44 C/BE#[1] I/O PCI bus command, byte enable, bit 1 T12
45 AD[14] I/O PCI address and data bit 14 T13
46 GND Vss System ground GND
21
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
47 AD[12] I/O PCI address and data bit 12 AA9
48 AD[10] I/O PCI address and data bit 10 Y9
49 M66EN OPCI 66 MHz enable
52 AD[8] I/O PCI address and data bit 8 AB11
53 AD[7] I/O PCI address and data bit 7 AA11
54 +3.3V Vcc 3.3V voltage supply pin +3.3V
55 AD[5] I/O PCI address and data bit 5 AB12
56 AD[3] I/O PCI address and data bit 3 AB13
57 GND Vss System ground GND
58 AD[1] I/O PCI address and data bit 1 Y12
59 +VIO Vio VIO voltage supply pin
60 ACK64# I/O PCI 64-bit acknowledge pin
61 +5V Vcc 5V voltage supply pin
62 +5V Vcc 5V voltage supply pin
Table 29. PCI Connector Solder Side
J56 Pin# Signal I/O Description LatticeXP2 Connection
1TRST# IPCI JTAG TRST# signal
2+12V Vcc 12V voltage supply pin
3TMS IPCI JTAG TMS signal
4TDI IJTAG TDI signal
5+5V Vcc 5V voltage supply pin
6INTA# OPCI INTA# signal AB2
7INTC# OPCI INTC# signal
8+5V Vcc 5V voltage supply pin
9Reserved Reserved
10 VIO Vio VIO voltage supply pin
11 Reserved Reserved
14 +3.3V AUX Vcca 3.3V auxiliary voltage supply
15 RST# IPCI system reset AB3
16 VIO Vio VIO voltage supply pin
17 GNT# I PCI arbitration grant AB4
18 GND Vss System ground GND
19 PME#
20 AD[30] I/O PCI address and data bit 30 AB5
21 +3.3V Vcc 3.3V voltage supply +3.3V
22 AD[28] I/O PCI address and data bit 28 AA6
23 AD[26] I/O PCI address and data bit 26 Y7
24 GND Vss System ground GND
25 AD[24] I/O PCI address and data bit 24 AB7
26 IDSEL IPCI interface control, ID select AA8
27 +3.3V Vcc 3.3V voltage supply pin +3.3V
28 AD[22] I/O PCI address and data bit 22 V6
29 AD[20] I/O PCI address and data bit 20 U6
Table 28. PCI Connector Component Side (Continued)
J11 Pin# Signal I/O Description LatticeXP2 Connection
22
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
4-Input ADC
U3 is the quad ADC (Analog to Digital Converter) ADS7842 IC. The four analog inputs AIN0 to AIN3 are RC filtered
versions of the external analog signals applied at J10. The full scale values for the ADC inputs will match that of the
AREF signal described below. AIN3 is also tied to VR1 to allow user adjustment of a set DC value based on the
AREF signal described below. The connections between the ADC pins and LatticeXP2 balls are shown in Ta bl e 30.
30 GND Vss System ground GND
31 AD[18] I/O PCI address and data bit 18 V8
32 AD[16] I/O PCI address and data bit 16 U9
33 +3.3V Vcc 3.3V voltage supply pin +3.3V
34 FRAME# I/O PCI interface control FRAME# signal W9
35 GND Vss System ground GND
36 TRDY# I/O PCI interface control TRDY# signal T8
37 GND Vss System ground GND
38 STOP# I/O PCI interface control STOP# signal T11
39 +3.3V Vcc 3.3V voltage supply pin +3.3V
40 Reserved Reserved
41 Reserved Reserved
42 GND Vss System ground GND
43 PA R I/O PCI address and data PAR signal U10
44 AD[15] I/O PCI address and data bit 15 U11
45 +3.3V Vcc 3.3V voltage supply pin +3.3V
46 AD[13] I/O PCI address and data bit 13 AB8
47 AD[11] I/O PCI address and data bit 11 AB9
48 GND Vss System ground GND
49 AD[9] I/O PCI address and data bit 9 AB10
52 C/BE#[0] I/O PCI bus command, byte enable, bit 0 AA10
53 +3.3V Vcc 3.3V voltage supply pin +3.3V
54 AD[6] I/O PCI address and data bit 6 Y11
55 AD[4] I/O PCI address and data bit 4 W11
56 GND Vss System ground GND
57 AD[2] I/O PCI address and data bit 2 AB15
58 AD[0] I/O PCI address and data bit 0 AA12
59 +VIO Vio VIO voltage supply pin
60 REQ64# I/O PCI 64-bit request transfer pin
61 +5V Vcc 5V voltage supply pin
62 +5V Vcc 5V voltage supply pin
Table 29. PCI Connector Solder Side (Continued)
J56 Pin# Signal I/O Description LatticeXP2 Connection
23
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Table 30. ADC Connections
Description LatticeXP2 I/O sysIO Bank
D0 H3 7
D1 H4 7
D2 G3 7
D3 G2 7
D4 H1 7
D5 H2 7
D6 G6 7
D7 H6 7
D8 H5 7
D9 J5 7
D10 J1 7
D11 J2 7
A0 F3 7
A1 E5 7
CLK F2 7
BUSYN F1 7
WRN G1 7
CSN F5 7
RDN F4 7
4-Output DAC
U5 is the quad DAC (Digital to Analog Converter) DAC7617 IC. The four analog outputs, AOUT0 to AOUT3, are
available at connector J10. The full scale values for the DAC outputs will match that of the AREF signal described
below. The connections between the DAC pins and LatticeXP2 balls are shown in Ta b l e 31.
Table 31. DAC Connections
Description LatticeXP2 I/O sysIO Bank
RSTN K1 7
LOADREGN K2 7
LDACN J4 7
CSN M1 7
CLK M2 7
SDI L3 7
The AREF signal is used by both the ADC and DAC as the full scale voltage reference. The AREF signal can be
selected from three different sources: a low drift band gap voltage provided at U2, the power supply voltage
VCC_3.3v, or an externally applied voltage at jumper J4 pin 2. J4 allows selection of which voltage will be the
source of the AREF signal as shown in Ta b l e 32.
Table 32. DAC and ADC Full Scale Reference Selection (AREF)
J4 Jumper Position AREF Source ADC and DAC Usage
1-2 VCC_3.3v Full scale values track 3.3v power
2-3 Band gap reference Full scale values track low drift reference
open J4 pin 2 Full scale values track external voltage
24
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
USB Download
The evaluation board has a USB download cable built in. The built-in cable consists of a USB Type-B connector
(J33), a USB microcontroller, and a MachXO device.
To use the built-in download cable, simply connect a standard USB cable from J33 to your PC (with ispVM System
software installed). The USB hub on the PC will detect the addition of the USB function making the built-in cable
available for use with Lattice’s ispVM System software. J35 must have a jumper shunted from pins 2-3 to enable
the built-in download cable.
The built-in USB cable is connected in parallel to J39 and J40. J39 and J40 are 1x10 100mil headers that are pro-
vided for use with an external Lattice download cable. A Lattice parallel port or USB download cable can be
attached to the board using J39 or J40.
Use of the built-in cable must be mutually exclusive to the use of an external download cable. When using an exter-
nal download cable, the jumper on J35 must be moved to shunt pins 1 and 2. This tri-states the MachXO device,
preventing it from interfering with the external download cable.
Important Note: The board must be un-powered when connecting, disconnecting, or reconnecting the ispDOWN-
LOAD Cable or USB cable. Always connect an ispDOWNLOAD Cable’s GND pin (black wire), before connecting
any other JTAG pins. Failure to follow these procedures can in result in damage to the LatticeXP2 FPGA and ren-
der the board inoperable.
Default Jumper Settings
The evaluation board is shipped with default jumper positions as shown in Figure 4. Some jumper settings are
required for bitstream downloading and display functionality.
Figure 4. Default Jumper Settings
Configuring/Programming the Board
Requirements:
PC with Lattices ispVM System version 17.0 (or later) programming software, installed with appropriate drivers
(USB driver for USB Cable, Windows NT/2000/XP parallel port driver for ispDOWNLOAD Cable). Note: An option
to install these drivers is included as part of the ispVM System setup.
Standard USB cable, or any ispDOWNLOAD or Lattice USB Cable (pDS4102-DL2x, HW7265-DL3x, HW-USB-
2x, etc.).
25
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
The following device programming sections provide procedures for programming the on-board SPI Flash using
either a standard USB cable, or an ispDOWNLOAD cable (parallel or USB). If you would like to program the
LatticeXP2 SRAM or Flash directly instead, then the procedures are slightly different in that you will select those
rather than SPI Flash programming at Step 7, Figure 6 in the first procedure below, and much the same for the sec-
ond configuration procedure.
For a complete discussion of the LatticeXP2’s configuration and programming options, refer to technical note
TN1141, LatticeXP2 sysCONFIG Usage Guide.
LatticeXP2 SRAM Configuration Using SPI Flash and a Standard USB Cable at J33
The LatticeXP2 SRAM can be configured easily via the on-board SPI Flash using the USB Download port at J33
and ispVM. The LatticeXP2 device is SRAM-based, so it must remain powered on to retain its configuration when
programming the SRAM. The on-board SPI Flash retains its programmed bitstreams when power is off, and can
quickly load programmed bitstreams into the LatticeXP2 device when power is applied.
1. Attach a ground connection from the test equipment chassis ground to the black GND terminal J51.
2. Check that the jumpers are installed as shown in Figure 4. Now move the J35 jumper from the left-side two
pins to be on the right-side two pins.
3. Connect the LatticeXP2 Evaluation Board to an external 5V supply.
4. Push the SW1 USB Download reset button located just above the MachXO device (U9). Connect a standard
USB cable from your PC’s USB connector to the USB download connector J33 on the LatticeXP2 Advanced
Evaluation Board.
5. Start the ispVM System software, then select Options > Cable and I/O Port Setup..., then check that the
Cable Type is set to USB.
Note: If you receive a Windows notification about installing a USB driver, then in ispVM System select ISPTOOLS
and INSTALL/UNINSTALL LSC USB/PARALLEL PORT DRIVER..., then select the LSC WINDOWS USB
DRIVER, and push the INSTALL button. Now push the SW1 USB Download reset button located just above the
MachXO device (U9). Windows should recognize the USB cable to the LatticeXP2 Advanced Evaluation Board.
6. Press the SCAN button located in the toolbar. The LatticeXP2 device will be automatically detected. The result-
ing screen will be similar to Figure 5. If offered multiple LatticeXP2 device types, select the LFXP2-17E.
Figure 5. ispVM System Interface
7. Left-click on the LFXP2-17E device line and if offered other selections, select the LFXP2-17E, and leave that
line selected. Now, in the ispVM main menu select Edit > EDIT_DEVICE and a Device Information window will
26
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
open as shown in Figure 6. Select Device Access Options and SPI Flash Programming as shown in
Figure 7.
Figure 6. Device Information Dialog
Figure 7. SPI Serial Flash Device Dialog
8. Select Browse and point to the location of the bitstream file. Note that if you have a “.JED” file output from isp-
LEVER, you can convert it to a “.BIT” file using ispVM and selecting the UFW (Universal File Writer) icon with
the input file being the “.JED” file from ispLEVER and the output file being a “.BIT” file.
9. Select Flash Device and in the Select Device window, change the selections as shown in Figure 8. Press OK
to close the Select Device window.
27
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 8. Select Device Dialog
10. Check that the SPI Serial Flash Device window now appears as shown in Figure 9, then press OK to close
the SPI Serial Flash Device window.
Figure 9. SPI Serial Flash Device Dialog
11. Check that the Device Information window appears as shown in Figure 10, then press OK to close the Device
Information window.
28
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 10. Device Information Dialog
12. Check that the LSC ispVM System window appears as it does in Figure 11.
Figure 11. ispVM System Interface
13. To begin the download of the bitstream into the SPI Flash, press the GO menu button. You will see a small
counter display window start up and then that window will change to a Processing address window. A blue
section of that processing window will start to fill in from the left side until it reaches the right side of the win-
dow. When downloading to SPI Flash is complete, ispVM will then begin to verify the downloaded bitstream
loaded into the SPI Flash with another small processing window and blue bar moving across it.
14. Upon successful verification of the downloaded bitstream to SPI Flash, the LatticeXP2 device can then be pro-
grammed by powering down the evaluation board and re-applying power.
15. You should now see the LatticeXP2 evaluation board’s LED digit display incrementing from 0 to 9 and a to f, the
digit decimal point should be blinking, and the LEDs to the left of the digit should show the internal counter
state while the digit count is incrementing.
29
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
LatticeXP2 SRAM Configuration Using SPI Flash and a Lattice ispDOWNLOAD Cable at
J40
The LatticeXP2 SRAM can be configured easily via the on board SPI Flash using the JTAG port and ispVM. The
LatticeXP2 device is SRAM-based, so it must remain powered on to retain its configuration when programming the
SRAM. The on-board SPI Flash retains its programmed bitstreams when power is off, and can quickly load pro-
grammed bitstreams into the LatticeXP2 device when power is applied.
1. Attach a ground connection from the test equipment chassis ground to the black GND terminal J51.
2. Check that the jumpers are installed as shown in Figure 4.
3. Connect the LatticeXP2 Evaluation Board to an external 5V supply.
4. Connect the Lattice ispDOWNLOAD cable to the header at J40 labeled “XP2”.
Note: When using a 1x8 download cable, connect to the 1x10 header by justifying the alignment to pin 1 (VCC).
The board must be un-powered when connecting, disconnecting, or reconnecting the ispDOWNLOAD Cable or
USB cable. Always connect an ispDOWNLOAD Cable’s GND pin (black wire), before connecting any other
JTAG pins. Failure to follow these procedures can in result in damage to the LatticeXP2 FPGA and render the
board inoperable.
5. Start the ispVM System software, then select Options > Cable and I/O Port Setup... For the Cable Type,
select either Lattice for parallel port or USB for the type of ispDOWNLOAD cable you are using.
6. Press the SCAN button located in the toolbar. The LatticeXP2 device will be automatically detected. The result-
ing screen will be similar to Figure 5.
Figure 12. ispVM System Interface
7. Left-click on the LFXP2-17E device line and if offered other selections, select the LFXP2-17E and leave that
line selected. Now in the ispVM main menu select Edit > EDIT_DEVICE and a Device Information window will
open as shown in Figure 13. Select Device Access Options and SPI Flash Programming as shown in
Figure 14.
30
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 13. Device Information Dialog
Figure 14. SPI Serial Flash Device Dialog
8. Select Browse and point to the location of the bitstream file. Note that if you have a “.JED” file output from isp-
LEVER, you can convert it to a “.BIT” file using ispVM and selecting the UFW (Universal File Writer) icon with
the input file being the “.JED” file from ispLEVER and the output file being a “.BIT” file.
9. Select Flash Device and in the Select Device window, change the selections as shown in Figure 15. Press
OK to close the Select Device window.
31
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 15. Select Device Dialog
10. Check that the SPI Serial Flash Device window now appears as shown in Figure 16, then press OK to close
the SPI Serial Flash Device window.
Figure 16. SPI Serial Flash Device Dialog
11. Check that the Device Information window appears as shown in Figure 17, then press OK to close the Device
Information window.
32
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 17. Device Information Dialog
12. Check that the LSC ispVM System window appears as it does in Figure 18.
Figure 18. ispVM System Interface
13. To begin the download of the bitstream into the SPI Flash, press the GO menu button. You will see a small
counter display window start up and then that window will change to a Processing address window. A blue
section of that processing window will start to fill in from the left side until it reaches the right side of the win-
dow. When downloading to SPI Flash is complete, ispVM will then begin to verify the downloaded bitstream
loaded into the SPI Flash with another small processing window and blue bar moving across it.
14. Upon successful verification of the downloaded bitstream to SPI Flash, the LatticeXP2 device can then be pro-
grammed by powering down the evaluation board and re-applying power.
15. You should now see the LatticeXP2 evaluation board’s LED digit display incrementing from 0 to 9 and a to f, the
digit decimal point should be blinking, and the LEDs to the left of the digit should show the internal counter
state while the digit count is incrementing.
33
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Ordering Information
Description Ordering Part Number
China RoHS Environment-Friendly
Use Period (EFUP)
LatticeXP2 Advanced Evaluation Board
(RoHS Compliant) LFXP2-17E-H-EVN
LatticeXP2 Advanced Evaluation Board
(non-RoHS, Obsolete) LFXP2-17E-H-EV
10
Technical Support Assistance
Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com
Revision History
Date Version Change Summary
June 2007 01.0 Initial release.
March 2008 01.1 Updated LatticeXP2 Advanced Evaluation Board User’s Guide photo.
Updated Power Setup text section.
Updated USB Download text section.
May 2008 01.2 Corrected ball assignment for ETH_MDC in 10/100/1000 Ethernet PHY
Connection Summary table.
January 2009 01.3 Updated ordering information.
January 2011 01.4 Updated the DDR2 text section.
March 2011 01.5 Added “LatticeXP2 SRAM Configuration Using a Standard USB Cable
at J33” and “LatticeXP2 SRAM Configuration Using a Lattice ispDOWN-
LOAD Cable at J40” text sections.
© 2011 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as
listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of
their respective holders. The specifications and information herein are subject to change without notice.
34
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Appendix A. Schematic
Figure 19.
5
5
4
4
3
3
2
2
1
1
D D
C C
BB
A A
Title
Size Document Number Rev
Date: Sheet of
B
Lattice XP2 Advanced Engineering Board 484 fpBGA
A
114
Title
Size Document Number Rev
Date: Sheet of
B
Lattice XP2 Advanced Engineering Board 484 fpBGA
A
114
Title
Size Document Number Rev
Date: Sheet of
B
Lattice XP2 Advanced Engineering Board 484 fpBGA
A
114
Bank 0
Bank 3
FPGA
Bank 6
PCI 32 BIT
Bank 5
Bank 7
Bank 1
Bank 2
Bank 4
Compact Flash,
PLL SMA I/O
Lattice Semiconductor Corporation
(Sheet 2)
Bank
8
XP2 (Sheet 10)
Programming, USB DL
(Sheets 4, 9)
Switches, LEDs
LCD Display
(Sheet 6)
Power
(Sheet 12,13)
FPGA
Power
Pins
(Sheet 5)
DDR2
SDRAM
32 BIT
Video I/O,
Signal SMA I/O,
RJ-45 & PS/2
(Sheets 2, 3)
(Sheet 11)
(Sheet 8)
Ethernet PHY
ADCs, DACs,
USB, RS-232,
Clock Osc
(Sheet 7)
A
AB
221
LatticeXP2 Advanced Evaluation Board
35
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 20.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
VCC_3.3V
RX_IN0_N
RX_IN0_P
RX_IN3_N
RX_IN1_N
RX_IN3_P
RX_IN1_P
RX_IN2_N
RX_IN2_P
RX_CLKIN_N
RX_CLKIN_P
TX_OUT1_N
TX_OUT1_P
TX_OUT2_N
TX_OUT2_P
TX_OUT3_N
TX_OUT3_P
TX_OUT0_N
TX_OUT0_P
TX_CLKOUT_N
TX_CLKOUT_P
RJ45_P3
RJ45_P2
RJ45_P7
RJ45_P6 RJ45_P4
RJ45_P5
RJ45_P1
RJ45_P8
CSSPISN
CSSPIN
CFG1
XP2_C CLK
SO
SI
OSC_PCLK
TX_OUT0_P
TX_OUT0_N
TX_OUT1_P
TX_OUT1_N
TX_OUT2_P
TX_OUT2_N
TX_OUT3_P
TX_OUT3_N
TX_CLKOUT_P
TX_CLKOUT_N
RX_IN0_P
RX_IN0_N
RX_IN1_P
RX_IN1_N
RX_IN2_P
RX_IN2_N
RX_IN3_P
RX_IN3_N
D/A_CSn
D/A_CLK
D/A_SDI
A/D_A1
A/D_CLK
A/D_BUSYn
A/D_W Rn
A/D_CSn
A/D_RDn
AREF
A/D_D0
A/D_D1
VCC_3. 3V
A/D_D2
A/D_D3
A/D_D4
A/D_D5
A/D_D6
A/D_D7
A/D_D8
A/D_D9
A/D_D10
A/D_D11
A_3.3V
D/A_RSTn
D/A_LOADREGn
D/A_LDACn
A/D_A0
VCC_3. 3V
D/A_CSn
D/A_CLK
D/A_SDI
D/A_RSTn
D/A_LOADREGn
D/A_LDACn
A/D_D5
A/D_D6
A/D_D7
A/D_D8
A/D_D9
A/D_D10
A/D_D11
A/D_D0
A/D_D1
A/D_D2
A/D_D3
A/D_D4
XP2_P7 I DC 2
XP2_V1 I DC 3
XP2_W 1 ID C4
XP2_N5 I DC 5
XP2_N6 I DC 6
XP2_N2 I DC 8
XP2_M 3 ID C7
XP2_M 7 ID C10
XP2_M 6 ID C9
I2C_SCL
I2C_SDA
USB4 USB_SPD
USB0 USB_VP
USB2 USB_RCV
USB5 USB_OE_N
USB1 USB_VM
USB3 USB_SUS
RS232_CTS_NRS232_0
RS232_RXDRS232_1
RS232_TXDRS232_2
RS232_RTS_NRS232_3
A/D_A1
A/D_BUSYn
A/D_W Rn
A/D_CSn
A/D_RDn
A/D_A0
A/D_CLK
XP2_N7 I DC 1
ADJ_REF
VCC_3. 3V
AREF
AREF
AIN2 IDC14
AIN1 IDC13
AIN0 IDC12
AIN3 IDC15
IDC[1..10]
XP2_E4IDC0
VCC_5. 0V
VCC_5. 0V
PS2_DIN_C
PS2_DIN_D
PS2_CLK
PS2_DATA
VCC_3. 3V
VCC_3. 3V
VCC_5. 0V
AREF
A_3.3V
A_3.3V
RX_CLKIN_P
RX_CLKIN_N
RJ45_P7
RJ45_P8
RJ45_P1
RJ45_P2
RJ45_P3
RJ45_P4
RJ45_P5
RJ45_P6
AOUT0 IDC19
AOUT1 IDC18
AOUT2 IDC17
AOUT3 IDC16
VCC_3. 3V
XP2_INITN
XP2_D ONE
XP2_PR OGR AMN
VCC_3. 3V
OSC_PCLK
XP2_PR OGR AMN
I2C_SDA
I2C_SCL
USB[0. .5]
RS232_[0..3]
VCC_5. 0V
IDC[1..10]
IDC0
IDC[12..15]
CFG1
IDC[16..19]
XP2_C CLK
XP2_C SSPI N
XP2_SO
XP2_SI
XP2_I NITN
XP2_D ONE
XP2_C SSPI SN
VCCIO_ 6
Title
Size Document Number Rev
Date: Sheet of
B
Video I/O
C
214
Title
Size Document Number Rev
Date: Sheet of
B
Video I/O
C
214
Title
Size Document Number Rev
Date: Sheet of
B
Video I/O
C
214
[12]
P(P4)
N(P5)
LVDS pairs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Lattice Semiconductor Corporation
RJ-45 Connector for signal quality
measurement across CAT-5 cable
(Not an Ethernet Port)
Pair#2_P(M4)Pair#1_P(T1)
Pair#0_P(P2)
Pair#1_N(U1)
Pair#0_N(P3)
)6P(N_3#riaP)5R(P_3#riaP
Pair#2_N(M5)
RJ-45 Connector
Differential Pair Traces
Category-5 Cable
Pairing Information:
(1,2), (3,6), (4,5), (7,8)
[3]
SMA Connector AEP 9650-1113-005
Diff pair
50 ohm traces
P(Y1)
N(AA1)
Place resistors next to FPGA
arrange them to fit on 4 pads
Place resistors next to FPGA
Place smaller value caps directly under FPGA
[4,7]
[4,7]
[4,7]
[10,12]
[10,12]
[3]
[3]
ADC and DAC have an analog
voltage range of 0 to AREF
ADJ_REF range is
1.24v to 3.15v
[3]
[3]
[3]
Connector
side view
PS/2 Mouse
4 Input ADC
4 Output DAC
Video RX
Video TX
High Speed Signal I/O
[4]
[3]
[4]
[4]
[4]
[4]
[4]
[13]
[11]
C10
0.01uF
C10
0.01uF
U1
PCA9306
U1
PCA9306
REF1
2
SCL1
3
SDA1
4
EN 8
SCL2 6
SDA2 5
REF2 7
GND
1
R62DNL R62DNL
C60
0.01uF
0402
C60
0.01uF
0402
12
R67
100
0603
R67
100
0603
C2
47uF Ceramic X5R
1206
C2
47uF Ceramic X5R
1206
J3
3M_Rx_10226-1210VE
J3
3M_Rx_10226-1210VE
DDC_Gnd_1 1
RxIn3+ 14
RxIn3Gnd 2
RxIn3- 15
DDC_+5VDC 3
USB_+5VDC 16
RxClkIn+ 4
RxClkInGnd 17
RxClkIn- 5
DDC/SCL 18
USB- 6
USB_Shield 19
USB+ 7
RxIn2+ 20
RxIn2Gnd 8
RxIn2- 21
DDC/SDA 9
RxIn1+ 22
RxIn1Gnd 10
RxIn1- 23
USB/DDC_Gnd 11
Sense 24
RxIn0+ 12
RxIn0Gnd 25
RxIn0- 13
DDC_Gnd_26 26
Mounting_R 27
Mounting_L 28
C66
0.001uF
C66
0.001uF
J4
HEADER 3
J4
HEADER 3
1
2
3
C5
10uF X7R
C5
10uF X7R
C81
0.001uF
0402
C81
0.001uF
0402
12
C8
0.01uF
C8
0.01uF
D1
B320A Diodes Inc.
SMA_PKG D1
B320A Diodes Inc.
SMA_PKG
R147
10K
R147
10K
R128
10K
R128
10K
VR1
50K POT Murata PV36Y503C01
PV37W
VR1
50K POT Murata PV36Y503C01
PV37W
1 3
2
C3
0.1uF
C3
0.1uF
C63
0.1uF
C63
0.1uF
U2
LM385/SO
U2
LM385/SO
C73
0.001uF
0402
C73
0.001uF
0402
12
C85
0.1uF
0402
C85
0.1uF
0402
12
R7100 R7100
J15
SMA Connector
J15
SMA Connector
GND 2
GND 3
GND 4
GND 5
S
1
R10100 R10100
VR2
50K POT Murata PV36Y503C01
PV37W
VR2
50K POT Murata PV36Y503C01
PV37W
1 3
2
R48
100
0603
R48
100
0603
R58DNL R58DNL
R129
10K
R129
10K
R45DNL R45DNL
R47DNL R47DNL
C62
0.1uF
C62
0.1uF
C82
0.01uF
0402
C82
0.01uF
0402
12
R40 DNLR40 DNL
R32 DNLR32 DNL
R29 DNLR29 DNL
R41 0R41 0
R63DNL R63DNL
R146 33R146 33
C65
0.001uF
C65
0.001uF
C80
0.1uF
0402
C80
0.1uF
0402
12
R33 0R33 0
R31 0R31 0
R9100 R9100
J8
SMA Connector
J8
SMA Connector
GND 2
GND 3
GND 4
GND 5
S
1
ADS7842
U3
ADS7842
U3
AIN0
1
AIN1
2
AIN2
3
AIN3
4
VREF
5
AGND
6
DB11
7
DB10
8
DB9
9
DB8
10
DB7
11
DB6
12
DB5
13
DGND
14 DB4 15
DB3 16
DB2 17
DB1 18
DB0 19
RDN 20
CSN 21
WRN 22
BUSYN 23
CLK 24
A0 25
A1 26
VDIG 27
VANA 28
R53DNL R53DNL
R42 0R42 0
R61 0R61 0
BANK 7
BANK 6
LFXP217-fpBGA484
U8A
BANK 7
BANK 6
LFXP217-fpBGA484
U8A
PL2A/VREF1_7
C3
PL2B/VREF2_7
B2
PL3A*
B1
PL3B*
C2
PL4A
C1
PL4B
D1
PL5A*
E3
PL6A
D4
PL5B*
E1
PL6B
D3
PL7A*
E4
PL7B*
E5
PL8A
F3
PL8B
F2
PL9A*
F1
PL10A
F5
PL9B*
G1
PL10B
F4
PL11A*
H3
PL11B*
H4
PL12A
G3
PL12B
G2
PL13A*/LDQS13
H1
PL14A
G6
PL13B*
H2
PL14B
H6
PL15A*
H5
PL15B*
J5
PL16A
J1
PL16B
J2
PL17A*
K1
PL18A/PROGRAMN
J6
PL17B*
K2
PL18B/DONE
K5
PL19A*/CFG1
J3
PL19B*
J4
PL20A/CSSPISN
L1
PL20B/CSSPIN
L2
PL21A*/LDQS21
M1
PL22A/CCLK
K6
PL21B*
M2
PL22B/SO
K7
PL23A*/SI
L5
PL23B*/INITN
L6
PL24A/PCLKT7_0
L3
PL24B/PCLKC7_0
L4
VCCIO7
E2
VCCIO7
G5
VCCIO7
J8
VCCIO7
K4
PL26A*/PCLKT6_0 P1
PL27A M6
PL26B*/PCLKC6_0 R1
PL27B M7
PL28A* M4
PL28B* M5
PL29A M3
PL29B N2
PL30A*/LDQS30 T1
PL31A N5
PL30B* U1
PL31B N6
PL32A* P2
PL32B* P3
PL33A V1
PL33B W1
PL35A* Y1
PL36A N7
PL35B* AA1
PL36B P7
PL37A* P4
PL37B* P5
PL38A AA2
PL38B Y2
PL39A*/LDQS39 R2
PL40A R5
PL39B* T2
PL40B P6
PL41A* R3
PL41B* R4
PL42A Y3
PL42B W3
PL43A* U2
PL44A R7
PL43B* V3
PL44B R6
PL45A* U4
PL45B* U5
PL46A T3
PL46B U3
PL47A* AA3
PL48A T6
PL47B* Y4
PL48B T7
PL49A/VREF1_6 V4
PL49B/VREF2_6 V5
VCCIO6 N4
VCCIO6 P8
VCCIO6 T5
VCCIO6 V2
J2
3M_Tx_10226-1210VE
J2
3M_Tx_10226-1210VE
DDC_Gnd_1
1
TxOut0-
14
TxOut0Gnd
2
TxOut0+
15
Sense
3
USB/DDC_Gnd
16
TxOut1-
4
TxOut1Gnd
17
TxOut1+
5
DDC/SDA
18
TxOut2-
6
TxOut2Gnd
19
TxOut2+
7
USB+
20
USB_Shield
8
USB-
21
DDC/SCL
9
TxClkO ut -
22
TxClkO ut Gnd
10
TxClkO ut +
23
USB_+5VDC
11
DDC_+5VDC
24
TxOut3-
12
TxOut3Gnd
25
TxOut3+
13
DDC_Gnd_26
26
Mounting_R
27
Mounting_L
28
C72
10uF Ceramic X5R
0805
C72
10uF Ceramic X5R
0805
12
R4
5K
R4
5K
R132
10K
R132
10K
R6
32.4K 1%
R6
32.4K 1%
R34 0R34 0
R30 0R30 0
R1
2.7K
R1
2.7K
R65
100
0603
R65
100
0603
R37 DNLR37 DNL
R44 DNLR44 DNL
C111
0.01uF
0402
C111
0.01uF
0402
12
L1
BEAD / 0805
L1
BEAD / 0805
C67
0.001uF
C67
0.001uF
R141K R141K
R5
2.7K
R5
2.7K
R43 DNLR43 DNL
R49 0R49 0
C7
0.1uF
C7
0.1uF
R131K R131K
J14
SMA Connector
J14
SMA Connector
GND 2
GND 3
GND 4
GND 5
S
1
DAC7617
U5
DAC7617
U5
VDD
1
VOUTD
2
VOUTC
3
VREFL
4
VREFH
5
VOUTB
6
VOUTA
7
AGND
8
RESETSEL 16
RSTn 15
LOADREGn 14
LDACn 13
CSn 12
CLK 11
SDI 10
GND 9
R59 0R59 0
R2
100K
R2
100K
R50 0R50 0
R64 0R64 0
JP1
PS2
JP1
PS2
6
4
2 1
3
5
7
8
9
C9
0.1uF
C9
0.1uF
R46
100
0603
R46
100
0603
R121K R121K
C64
0.001uF
C64
0.001uF
C11
10uF Ceramic X5R
0805
C11
10uF Ceramic X5R
0805
1 2
C4
0.01uF
C4
0.01uF
R60 0R60 0
R8100 R8100
R151K R151K
C1
0.1uF
C1
0.1uF
R66
100
0603
R66
100
0603
C61
0.1uF
0402
C61
0.1uF
0402
12
J5
RJ-45
J5
RJ-45
1 2
3 4
5 6
78
11
11
12
12
J9
SMA Connector
J9
SMA Connector
GND 2
GND 3
GND 4
GND 5
S
1
R3
5K
R3
5K
Video I/O
36
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 21.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
VCC_3. 3V
LV_CTS_N
LV_RTS_N
LV_TXD
LV_RXD
HV_RXDHV_TXD
HV_RTS_N
HV_CTS_N
RS232_CTS_NRS232_0
RS232_RXDRS232_1
RS232_TXDRS232_2
RS232_RTS_NRS232_3
USB0 USB_VP
USB2 USB_R CV
USB5 USB_OE_N
USB1 USB_VM
USB3 USB_SUS
USB4 USB_SPD
VCC_3. 3V
OSC_PCLK
VCC_3. 3V
OSC_PLLCLK
A_IN1IDC13
A_IN0IDC12
A_OUT0IDC16
A_OUT1IDC17
A_OUT3IDC19
A_OUT2IDC18
A_IN2IDC14
A_IN3IDC15
IDC[0..10]
XP2_N5 I DC 5
XP2_N6 I DC 6
XP2_N2 I DC 8
XP2_M 3 ID C7
XP2_M 7 ID C10
XP2_M 6 ID C9
XP2_P7 I DC 2
XP2_N7 I DC 1
XP2_V1 I DC 3
XP2_W 1 ID C4
XP2_E4 IDC0
IDC11XP2_F 6
VCC_3. 3V
VCC_3.3V
IDC20XO_K5
IDC21XO_K4
IDC22XO_M 5
IDC23XO_M 4
IDC[12..23]
TP_XO_K5
TP_XO_K4
TP_XO_M5
TP_XO_M4
TP_XP2_E4
TP_XP2_N7
TP_XP2_P7
TP_XP2_V1
TP_XP2_W1
TP_XP2_N5
TP_XP2_N6
TP_XP2_M3
TP_XP2_N2
TP_XP2_M6
TP_XP2_M7
TP_XP2_F6
RS232_[0..3]
USB[0. .5]
VCC_3. 3V
VCC_5. 0V
OSC_PLLCLK
OSC_PCLK
IDC[0..10]
IDC[12..23]
XP2_F 6
Title
Size Document Number Rev
Date: Sheet of
B
OSC, USB & RS-232
C
314
Title
Size Document Number Rev
Date: Sheet of
B
OSC, USB & RS-232
C
314
Title
Size Document Number Rev
Date: Sheet of
B
OSC, USB & RS-232
C
314
Used when the FPGA is
configured as USB host.
Used when the FPGA is
configured as USB device.
Wired as USB Host ->
installed Jumpers on pin 1-2 of all headers
Wired as USB Device ->
installed Jumpers on pin 2-3 of all headers
TXD Selection RXD Selection
/CTS Selection /RTS Selection
Wired as DCE (default) ->
installed Jumpers on pin 1-2 of all headers
Wired as DTE ->
installed Jumpers on pin 2-3 of all headers
Lattice Semiconductor Corporation
[2]
[2]
[12]
RS-232
USB(Type B)
USB(Type A)
(Female)
[13]
OSC1(L4)
OSC2(A2)
Oscillator Socket
(33.33 MHz OSC Installed)
[6]
[2]
[2]
[8]
Place these resistors near the FPGA
Place these resistors near the FPGA
[2]
ADCs, DACs, XO Test Points
XP2 Test Points
Place these resistors
near the IDC connector
Place these resistors
near the IDC connector
For high speed signals over ribbon cable:
TX - install series resistors of 33 ohms near the FPGA and
70 ohms near the IDC connector. Do not install resistors
tied to VCC_3.3v or GND.
RX - series resistors remain 0 ohm. Resistors tied to
VCC_3.3v and GND should be 240 ohms each.
[8]
R21
DNL
R21
DNL
J1
IDC24
J1
IDC24
1 2
3 4
5 6
7 8
910
11 12
13 14
15 16
17 18
19 20
21 22
23 24
J22
HEADER 3
J22
HEADER 3
1
2
3
J27
HEADER 3
J27
HEADER 3
1
2
3
R165 33R165 33
C100
0.1uF
0402
C100
0.1uF
0402
R174 0R174 0
C68
4.7uF Ceramic X5R
0603
C68
4.7uF Ceramic X5R
0603
12
R150 0R150 0
R162
DNL
R162
DNL
R36
15K
R36
15K
R175 0R175 0
R153
DNL
R153
DNL
12
43
J20
USB Series-B Receptacle Molex 67068-8000
12
43
J20
USB Series-B Receptacle Molex 67068-8000
VBUS
1
D-
2D+ 3
GND 4
5
MH1
6
MH2
R177 0R177 0
R160
DNL
R160
DNL
R35
15K
R35
15K
R79 0R79 0
R179 0R179 0
R149 0R149 0
R152
DNL
R152
DNL
C69
1uF Ceramic X5R
0402
C69
1uF Ceramic X5R
0402
12
R73 0R73 0
J30
HEADER 3
J30
HEADER 3
1
2
3
R145 0R145 0
R154
DNL
R154
DNL
Y1
DIPSOC-8x2
Y1
DIPSOC-8x2
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
R171 0R171 0
R80 0R80 0
R74 0R74 0
R144 0R144 0
R155
DNL
R155
DNL
R27
DNL
R27
DNL
R69
DNL
R69
DNL
R141 0R141 0
C101
0.1uF
0402
C101
0.1uF
0402
R172 0R172 0
J21
HEADER 3
J21
HEADER 3
1
2
3
R75 0R75 0
R148 0R148 0
R143 0R143 0
R161
DNL
R161
DNL
R18
DNL
R18
DNL
R71
DNL
R71
DNL
C97
0.1uF
0402
C97
0.1uF
0402
R140 0R140 0
R170 0R170 0
R137 0R137 0
R76 0R76 0
J23
HEADER 3
J23
HEADER 3
1
2
3
R20
DNL
R20
DNL
R142 0R142 0
R163
DNL
R163
DNL
R25
DNL
R25
DNL
C99
0.1uF
0402
C99
0.1uF
0402
R139 0R139 0
R164 33R164 33
R70
DNL
R70
DNL
R169 0R169 0
R180
DNL
R180
DNL
R136 0R136 0
U7
MAX3232
TSSOP16
U7
MAX3232
TSSOP16
GND 15
VCC
16
R1IN
13
R2IN
8
T2IN
10 T1IN
11
C1+
1
C1-
3
C2+
4
C2-
5
R1OUT 12
R2OUT 9
T1OUT 14
T2OUT 7
V+
2
V-
6
R26
DNL
R26
DNL
J29
HEADER 3
J29
HEADER 3
1
2
3
C98
0.1uF
0402
C98
0.1uF
0402
R159
DNL
R159
DNL
R17
DNL
R17
DNL
R138 0R138 0
R168 0R168 0
C70
1uF Ceramic X5R
0402
C70
1uF Ceramic X5R
0402
12
R135 0R135 0
R181
DNL
R181
DNL
J28
HEADER 3
J28
HEADER 3
1
2
3
MAX3454EETE (or NCN2500MNR2)
U4
MAX3454EETE
QFN16
MAX3454EETE (or NCN2500MNR2)
U4
MAX3454EETE
QFN16
NC (EN_RPU)
16 NC (EN_Vobus#) 5
VL (Vcc) 15
NC 8
VTRM (Vreg) 12
VBUS (Vusb) 14
D+ 11
D- 10
GND 6
VP
3
VM
4
RCV
2
SUS (SPND)
7
SPD (DSPD)
1
OE#
9
ENUM (VObus)
13
R28
DNL
R28
DNL
J10
IDC24
J10
IDC24
1 2
3 4
5 6
78
910
11 12
13 14
15 16
17 18
19 20
21 22
23 24
R19
DNL
R19
DNL
R158
DNL
R158
DNL
R178 0R178 0
R68
DNL
R68
DNL
R183
DNL
R183
DNL
R134 0R134 0
R72 0R72 0
R24
DNL
R24
DNL
R78 0R78 0
R151 0R151 0
1234
J16
USB Series-A Receptacle Molex 67643-2910
1234
J16
USB Series-A Receptacle Molex 67643-2910
VBUS 1
D- 2
D+ 3
GND 4
MH1 5
MH2 6
R157
DNL
R157
DNL
R176 0R176 0
J26
CONNECTOR DB9 Norcomp 182-009-212-161
J26
CONNECTOR DB9 Norcomp 182-009-212-161
5
9
4
8
3
7
2
6
1
10
11
R23
DNL
R23
DNL
R182
DNL
R182
DNL
R156
DNL
R156
DNL
R22
DNL
R22
DNL
J24
HEADER 3
J24
HEADER 3
1
2
3
R167 0R167 0
OSC, LSB and RS-232
37
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 22.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
VCC_3. 3V
XP2_TC K
XP2_TD I
PW R_A TDI
PW R_T MS
VCC_3. 3V
XP2_TD O
PW R_T DO
XP2_TM S
PW R_T CK
XP2_D ONE
XP2_INITN
VCC_3. 3V
CFG1
VCC_3. 3V
CFG0
XP2_C CLK
XP2_C SSPI N
XP2_SO
XP2_SI
XP2_C CLK
XP2_SI
XP2_SO
VCC_3. 3V
XP2_PR OGR AMN
XP2_D ONE
XP2_I NITN
XP2_C SSPI SN
PW R_T CK
PWR_3.3V_10A
PW R_T DI
PW R_T DO
PWR_ATDI
PW R_T MS
TDISEL
XP2_TM S
XP2_TC K
XP2_INITN
CFG1 CFG0
XP2_SI
XP2_C SSPI N
XP2_C CLK
XP2_D ONE
XP2_TD O
XP2_TD I
XP2_SO
VCC_3. 3V
XP2_C SSPI SN
XP2_PR OGR AMN
XP2_D ONE
XP2_INITN
Title
Size Document Number Rev
Date: Sheet of
B
Programming
C
414
Title
Size Document Number Rev
Date: Sheet of
B
Programming
C
414
Title
Size Document Number Rev
Date: Sheet of
B
Programming
C
414
Lattice Semiconductor Corporation
(16Mbit)
[12]
JTAG header
for ispPAC
JTAG header
for XP2
[12]
[12]
[12]
[12]
[12]
[12]
SPI Serial Flash
HVOUT
Power Supplies
TDI
TCK
TCK
TDI
TMS
TDO
J45
TDI
TMS
XP2
FPGA
TDO
When TDISEL=0 (J49 short),
ATDI is selected.
When TDISEL=1 (J49 open),
TDI is selected.
ispPAC
J49
CONFIGURATION (1): J49 short and J45 open (default setting)
J39 => for ispPAC programming only
J40 => for XP2 programming only
CONFIGURATION (2): J49 open, with J45 and J52 short
J39 => for programming both XP2 and ispPAC (JTAG chained together)
J40 => not used
For chaining XP2 and
ispPAC together:
(1) Remove the jumper on J49
and install it on J45.
(2) Connect the download
cable to J39.
TDI
TCK TMS
J39:
JTAG header
for ispPAC
TDO
VCC
ATDI TCK TMS
TDO
TDISEL
J40:
JTAG header
for XP2
VCC
[2,7]
[2,7]
[9]
[9]
[9]
[9]
J52
]11[]2[
[2]
[2]
[2]
[2]
[12]
XP2 SPI
Slave header
[2]
[2]
[2]
[2]
(nc)
CSSPIN is the master chip select
CSSPISN is the slave chip select
C185
0.1uF
0402
C185
0.1uF
0402
J49
HEADER 2
J49
HEADER 2
1
2
J45
HEADER 2
J45
HEADER 2
1
2
U6
SST25VF016B-50-4C-S2AF
U6
SST25VF016B-50-4C-S2AF
/S
1
Q
2
/W
3
VSS
4
VCC 8
/HOLD 7
C6
D5
R227
10K
R227
10K
C184
0.1uF
0402
C184
0.1uF
0402
J42
HEADER 3
J42
HEADER 3
1
2
3
J25
CON10
J25
CON10
1
2
3
4
5
6
7
8
9
10
TP6TP6
J40
CON10
J40
CON10
1
2
3
4
5
6
7
8
9
10
J44
HEADER 3
J44
HEADER 3
1
2
3
R243
10K
R243
10K
R233
10K
R233
10K
J39
CON10
J39
CON10
1
2
3
4
5
6
7
8
9
10
R166 4.7KR166 4.7K
R173 10KR173 10K
TP3TP3
TP4TP4
R242
10K
R242
10K
R272
4.7K
R272
4.7K
C71
0.1uF
0402
C71
0.1uF
0402
Programming
38
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 23.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
PCI_AD 30
PCI_AD 16
PCI_IRDY_N
PCI_AD 8
PCI_AD26
PCI_AD28
PCI_AD30
PCI_M66EN
PCI_AD16
PCI_VIO
PCI_AD15
PCI_AD1
PCI_AD3
PCI_CLK
PCI_VIO
PCI_TRDY_N
PCI_AD5
PCI_AD7
PCI_AD8
PCI_AD10
PCI_AD12
PCI_AD14
PCI_AD17
PCI_AD19
PCI_AD21
PCI_AD23
PCI_AD25
PCI_AD 15
PCI_AD27
PCI_AD29
PCI_AD31
PCI_AD 12
PCI_3. 3V
PCI_STOP_N
PCI_CBE0_N
PCI_CBE1_N
PCI_CBE2_N
PCI_CBE3_N
PCI_AD 6
PCI_AD 23
PCI_FRAME_N
PCI_IRDY_N
PCI_REQ_N
PCI_IDSEL
PCI_SERR_N
PCI_PERR_N
PCI_PAR
PCI_GNT_N
PCI_TRDY_N
PCI_DEVSEL_N
PCI_AD0
PCI_ACK64_N
PCI_AD2
PCI_REQ64_N
PCI_AD4
PCI_AD6
PCI_AD9
PCI_AD11
PCI_AD13
PCI_INTB_N
PCI_INTD_N
PCI_INTA_N
PCI_RE Q_N
PCI_INTC_N
PCI_PRSNT1_N
PCI_PRSNT2_N
PCI_RST_N
PCI_AD18
PCI_AD20
PCI_AD 13
PCI_AD22
PCI_AD24
PCI_AD 25
PCI_AD 17
PCI_IDSEL
PCI_AD 22
PCI_STO P_N
PCI_AD 28
PCI_CB E3_N
PCI_AD 11
PCI_AD 0
PCI_AD 18
VCC_3. 3V
PCI_AD 4
PCI_FR AME_N
PCI_AD 10
PCI_CB E0_N
PCI_AD 24
PCI_AD 19
PCI_AD 31
PCI_AD 14
VCC_3. 3V
PCI_CB E1_N
PCI_SERR_N
PCI_AD 7
PCI_AD 26
PCI_AD 20
PCI_CB E2_N
PCI_AD 27
PCI_GNT_N
PCI_AD 5
PCI_RS T_N
PCI_AD 9
PCI_PAR
PCI_PER R_N
PCI_AD 29
PCI_AD 1
PCI_AD 3
PCI_INTA_N
PCI_DE VSEL_N
PCI_AD 21
SEVEN_SEG7
SEVEN_SEG2
SEVEN_SEG6
SEVEN_SEG1
SEVEN_SEG0
SEVEN_SEG5
SEVEN_SEG4
SEVEN_SEG3
LED0
LED3
LED2
LED1
LED6
LED7
LED4
LED5
LCD[0..10]
LCD3
LCD2
LCD1
LCD0
LCD7
LCD6
LCD5
LCD4
LCD10
LCD9
LCD8
SWITCH7 PB1
SWITCH4
SWITCH5
SWITCH6
SWITCH1
SWITCH0
SWITCH3
SWITCH2
SWITCH8 PB2
SWITCH9 PB3
PCI_AD 2
PCI_CL K
VCC_3. 3V
PCI_GND
PCI_3. 3V
VCC_3. 3V
SEVEN_SEG[0..7]
LED[0..7]
LCD[0..10]
SWITCH[0..9]
Title
Size Document Number Rev
Date: Sheet of
B
PCI
C
514
Title
Size Document Number Rev
Date: Sheet of
B
PCI
C
514
Title
Size Document Number Rev
Date: Sheet of
B
PCI
C
514
Lattice Semiconductor Corporation
[12]
[12]
[12]
[7]
[7]
[7]
[7]
[12]
C37 must be placed within 0.25" of the PCI connector
J34 should be placed next to C37
Maximum trace length for 32 bit interface signals is 1.5"
Maximum trace length for PCI_CLK signal is 2.5"
J11
PCI EDGE CONN Component Side
J11
PCI EDGE CONN Component Side
-12V 1
TCK 2
Ground_3 3
TDO 4
+5V_5 5
+5V_7 6
INTB# 7
INTD# 8
PRSNT1# 9
Reserved_10 10
PRSNT2# 11
Reserved_14 14
Ground_15 15
CLK 16
Ground_17 17
REQ# 18
+VIO_19 19
AD[31] 20
AD[29] 21
Ground_22 22
AD[27] 23
AD[25] 24
+3.3V_25 25
C/BE#[3] 26
AD[23] 27
Ground_28 28
AD[21] 29
AD[19] 30
+3.3V_31 31
AD[17] 32
C/BE#[2] 33
Ground_34 34
IRDY# 35
+3.3V_36 36
DEVSEL# 37
Ground_38 38
LOCK# 39
PERR# 40
+3.3V_41 41
SERR# 42
+3.3V_43 43
C/BE#[1] 44
AD[14] 45
Ground_46 46
AD[12] 47
AD[10] 48
M66EN 49
AD[08] 52
AD[07] 53
+3.3V_54 54
AD[05] 55
AD[03] 56
Ground_57 57
AD[01] 58
+VIO_59 59
ACK64# 60
+5V_61 61
+5V_62 62
C118
0.001uF
0402
C118
0.001uF
0402
R11
0
R11
0
C144
0.001uF
0402
C144
0.001uF
0402
12
C84
0.01uF
0402
C84
0.01uF
0402
12
C94
0.01uF
0402
C94
0.01uF
0402
C6
10uF Ceramic X5R
0805
C6
10uF Ceramic X5R
0805
J56
PCI EDGE CONN Solder Side
J56
PCI EDGE CONN Solder Side
TRST# 1
+12V 2
TMS 3
TDI 4
+5V_5 5
INTA# 6
INTC# 7
+5V_8 8
Reserved_9 9
+VIO_10 10
Reserved_11 11
3.3VAUX 14
RST# 15
+VIO_16 16
GNT# 17
Ground_18 18
PME# 19
AD[30] 20
+3.3V_21 21
AD[28] 22
AD[26] 23
Ground_24 24
AD[24] 25
IDSEL 26
+3.3V_27 27
AD[22] 28
AD[20] 29
Ground_30 30
AD[18] 31
AD[16] 32
+3.3V_33 33
FRAME# 34
Ground_35 35
TRDY# 36
Ground_37 37
STOP# 38
+3.3V_39 39
Reserved_40 40
Reserved_41 41
Ground_42 42
PAR 43
AD[15] 44
+3.3V_45 45
AD[13] 46
AD[11] 47
Ground_48 48
AD[09] 49
C/BE#[0] 52
+3.3V_53 53
AD[06] 54
AD[04] 55
Ground_56 56
AD[02] 57
AD[00] 58
+VIO_59 59
REQ64# 60
+5V_61 61
+5V_62 62
J18
HEADER 2
J18
HEADER 2
1
2
C146
0.1uF
0402
C146
0.1uF
0402
12
J19
HEADER 2
J19
HEADER 2
1
2
C117
0.001uF
0402
C117
0.001uF
0402
R82
5K
R82
5K
TP52TP52
C147
0.1uF
0402
C147
0.1uF
0402
12
C88
0.001uF
0402
C88
0.001uF
0402
12
C75
0.01uF
0402
C75
0.01uF
0402
C159
0.01u
C159
0.01u
12
C76
0.1uF
0402
C76
0.1uF
0402
12
C95
0.01uF
0402
C95
0.01uF
0402
12
BANK 5
BANK 4
LFXP217-fpBGA484
U8B
BANK 5
BANK 4
LFXP217-fpBGA484
U8B
PB3A/VREF1_5
U7
PB4A/LLC_GPLLT_IN_A
W4
PB3B/VREF2_5
U8
PB4B/LLC_GPLLC_IN_A
Y5
PB5A/LLC_GPLLT_FB_A
V6
PB5B/LLC_GPLLC_FB_A
U6
PB6A/BDQS6
V8
PB6B
W8
PB7A
T8
PB8A
W5
PB7B
T9
PB8B
W6
PB9A
Y6
PB9B
Y7
PB10A
Y9
PB10B
Y8
PB11A
U9
PB12A
V9
PB11B
U10
PB12B
W9
PB13A
AA6
PB13B
AA7
PB14A
T10
PB14B
V10
PB15A/BDQS15
V11
PB16A
AA8
PB15B
W11
PB16B
AA9
PB17A
AB2
PB17B
AB3
PB18A
AA11
PB18B
AA10
PB19A
T11
PB20A
AB4
PB19B
U11
PB20B
AB5
PB21A
AB6
PB21B
AB7
PB22A
AA12
PB22B
Y11
PB23A
T12
PB24A/BDQS24
AB8
PB23B
T13
PB24B
AB9
PB25A
AB11
PB25B
AB10
PB26A
AB13
PB26B
AB12
PB27A
Y12
PB28A/PCLKT5_0
AB14
PB27B
W12
PB28B/PCLKC5_0
AB15
VCCIO5
AA5
VCCIO5
R9
VCCIO5
V7
VCCIO5
W10
PB29A/PCLKT4_0 AB16
PB29B/PCLKC4_0 AB17
PB30A Y14
PB30B AA13
PB31A V12
PB32A AB18
PB31B U12
PB32B AB19
PB33A/BDQS33 AA14
PB33B AA15
PB34A T14
PB34B T15
PB35A V13
PB36A AA16
PB35B U13
PB36B AA17
PB37A AB20
PB37B AA20
PB38A W14
PB38B V14
PB39A U14
PB40A AA22
PB39B U15
PB40B AA21
PB41A Y22
PB41B Y21
PB42A/BDQS42 W15
PB42B V15
PB43A T16
PB44A/LRC_GPLLT_IN_A Y16
PB43B U16
PB44B/LRC_GPLLC_IN_A Y1 5
PB45A/LRC_GPLLT_FB_A Y17
PB45B/LRC_GPLLC_FB_A Y18
PB46A/VREF1_4 W17
PB46B/VREF2_4 W18
VCCIO4 AA18
VCCIO4 R14
VCCIO4 V16
VCCIO4 W13
TP43TP43
C77
10uF Ceramic X5R
0805
C77
10uF Ceramic X5R
0805
C74
0.1uF
0402
C74
0.1uF
0402
12
J31
CON3
J31
CON3
1
2
3
PCI
39
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 24.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
CF_IORD CF31
CF_VS1 CF30
CF_CE2 CF29
CF_CD1 CF23
CF_D03CF0
CF_D04CF1
CF_D05CF2
CF[0..45]
CF_D06CF3
CF_D07CF4
CF_D00CF18
CF_D01CF19
CF_D02CF20 CF_D09 CF44
CF_CD2CF22
CF_INPACKCF39
CF_D08 CF43
CF_D10 CF45
CF_CD1CF23
CF_D15 CF28
CF_D14 CF27
CF_D13 CF26
CF_D12 CF25
CF_D11 CF24
CF_A10CF6
CF_A09CF8
CF_A08CF9
CF_A07CF10
CF_A06CF11
CF_A05CF12
CF_A04CF13
CF_A03CF14
CF_A02CF15
CF_A01CF16
CF_A00CF17
CF_WAITCF38
CF_CE1CF5
CF_READYCF34
CF_VS2CF36
CF_WPCF21
CF_OECF7
CF_WPCF21
CF_VS1CF30
CF_CD2CF22
CF_BVD1 CF42
CF_BVD2 CF41
CF_BVD2CF41
CF_REG CF40
CF_INPACK CF39
CF_WAIT CF38
CF_RESET CF37
CF_VS2 CF36
VCC_3. 3V
CF_BVD1CF42
CF_CSEL CF35
CF_READY CF34
CF_WE CF33
CF[0..45] CF[0..45]
CF_IOWR CF32
OSC_PLLCLK
VCC_3. 3V
CF[0..45]
PLL_IN_P
PLL_IN_N
PLL_FB_ P
PLL_FB_ N
Title
Size Document Number Rev
Date: Sheet of
B
Compact Flash, PLL SMA I/O
C
614
Title
Size Document Number Rev
Date: Sheet of
B
Compact Flash, PLL SMA I/O
C
614
Title
Size Document Number Rev
Date: Sheet of
B
Compact Flash, PLL SMA I/O
C
614
Lattice Semiconductor Corporation
Compact Flash
Connector
The pad of Pin 2 is directly
put on the trace of the differential
pair to minimize the trace stub.
No extra trace stub is created on
the differential pair trace.
[3]
Installing jumper on pin 1 and 2
will connect the on-board
oscillator clock output to the PLL
clock input on the XP2 ball A2.
Traces from the ECP2 to
the CF connector must
be less than 6 inches
Ultra DMA is not supported
Compact Flash Connector
[12]
[8]
SMA Connector AEP 9650-1113-005
P(A2)
N(B3)
Diff pair
50 ohm traces
P(F7)
N(G7)
[8]
[8]
[8]
[8]
Place resistors next to FPGA
arrange them to fit on 4 pads
J6
SMA Connector
J6
SMA Connector
GND 2
GND 3
GND 4
GND 5
S
1
R56 0R56 0
R54DNL R54DNL
R216
47K
R216
47K
C180
0.1uF
0402
C180
0.1uF
0402
R38 DNLR38 DNL
J7
SMA Connector
J7
SMA Connector
GND 2
GND 3
GND 4
GND 5
S
1
C183
0.1uF
0402
C183
0.1uF
0402
R210
100K
R210
100K
R52 0R52 0
R209
47K
R209
47K
R213
47K
R213
47K
PC Card Memory Mode/
PC Card I/O Mode/
True IDE Mode
J38
Hirose MI20-50PD-SF
PC Card Memory Mode/
PC Card I/O Mode/
True IDE Mode
J38
Hirose MI20-50PD-SF
D03
2
D04
3
D05
4
D06
5
D07
6
OE/OE/ATASEL
9
D00
21
D01
22
D02
23
CE2/CE2/CS1 32
READY/IREQ/INTRQ 37
GND 50
BVD1/STSCHG/PDIAG 46
BVD2/SPKR/DASP 45
D08 47
D09 48
D10 49
D11 27
D12 28
D13 29
D14 30
D15 31
A00
20 A01
19 A02
18 A03
17 A04
16 A05
15 A06
14
A07
12 A08
11 A09
10
GND
1
CE1/CE1/CS0
7
A10
8
VCC
13
WP/IOIS16/IOCS16
24
CD1 26
CD2
25
VS1 33
VS2 40
IORD 34
IOWR 35
WE 36
VCC 38
CSEL 39
RESET 41
WAIT/WAIT/IORDY 42
INPACK/INPACK/DMARQ 43
REG/REG/DMACK 44
R51 0R51 0
R215
100K
R215
100K
J17
HEADER 2
J17
HEADER 2
1
2
J13
SMA Connector
J13
SMA Connector
GND 2
GND 3
GND 4
GND 5
S
1
R55DNL R55DNL
R217
100K
R217
100K
R57 0R57 0
R212
100K
R212
100K
R218
100K
R218
100K
R39 DNLR39 DNL
R211
100K
R211
100K
R214
47K
R214
47K
J12
SMA Connector
J12
SMA Connector
GND 2
GND 3
GND 4
GND 5
S
1
CompactFlash, PLL, SMA I/O
40
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 25.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
LCD_RS LCD5
LCD_E LCD6
LCD_DB1 LCD7
LCD_DB3 LCD8
LCD_DB5 LCD9
LCD_DB7 LCD10
LCD_R/WLCD0
LCD_DB0LCD1
LCD_DB2LCD2
LCD_DB4LCD3
LCD_DB6LCD4
ANODE
LCD[0..10]
VCC_5. 0V
SEVEN_SEG7
SEVEN_SEG2
SEVEN_SEG6
SEVEN_SEG1
SEVEN_SEG0
SEVEN_SEG5
VCC_3. 3V
SSEG_B
SSEG_G
SSEG_C
SSEG_DP
SSEG_D
SSEG_E
SSEG_F
SSEG_A
SEVEN_SEG4
SEVEN_SEG3
LED0
LED3
LED2
LED1
LED6
LED7
LED4
LED5
VCC_3. 3V
SWITCH0
XP2_PR OGR AMN
SWITCH1
VCC_3. 3V
VCC_3. 3V
SWITCH2
DIP_SWITCH0
DIP_SWITCH1
DIP_SWITCH2 XP2_DONE
SWITCH3
VCC_3. 3V
DIP_SWITCH4
DIP_SWITCH5
DIP_SWITCH6
DIP_SWITCH7
VCC_3. 3V
SWITCH4
SWITCH5
VCC_3. 3V
VCC_3. 3V
SWITCH6
XP2_PR OGR AMN
DIP_SWITCH3
XP2_I NITN
GSRN
SWITCH7PB1
VCC_3. 3V
SWITCH9PB3
SWITCH8PB2
VCC_5. 0V
SEVEN_SEG[0..7]
LED[0..7]
VCC_3. 3V
LCD[0..10]
GSRN
SWITCH[0..9]
XP2_PR OGR AMN
XP2_D ONE
XP2_I NITN
Title
Size Document Number Rev
Date: Sheet of
B
Switches, LEDs, LCD Display
C
714
Title
Size Document Number Rev
Date: Sheet of
B
Switches, LEDs, LCD Display
C
714
Title
Size Document Number Rev
Date: Sheet of
B
Switches, LEDs, LCD Display
C
714
LUMEX or Equiv. use pins 3-18
OPTREX 51505 or Equiv. use pins 1-16
Backlight
Adjustment
Contrast
Adjustment
LCD Connector
Lattice Semiconductor Corporation
[13]
[5]
7 Segment Display
A(Pin 1)
D(Pin 8)
F(Pin 2)
B(Pin 13)
E(Pin 7)
C(Pin 10)
G(Pin 11)
(AA16)
(U13)
(AA14)
(V13) (T15)
(T14)
(AA15)
(AA17)
DP(Pin 9)
LED(U12)
LED(V12)
LED(AB19)
LED(AB18)
[5]
LED(AA13)
LED(AB16)
LED(AB17)
LED(Y14)
[12]
Source
Drain
On when INITN low
On when DONE high
On when PROGRAMN low
[4]
PROGRAM
DONE
INIT
Gate Source
Drain
SOT-23
Gate
[8]
1
(W15)
2
(U16)
3
(T16)
4
(Y15)
5
(Y16)
6
(Y18)
7
(Y17)
8
(W18)
(E12)
GSRN
PROGRAMN
ON
PB2
PB1
PB3
[2]
[2]
[2]
[5]
[5]
(U7)
(W17)
(W18)
TP109TP109
D19
LED 0603 Green
D19
LED 0603 Green
TP107TP107
R286 470R286 470
R303
10K
R303
10K
D20
LED 0603 Green
D20
LED 0603 Green
SW6
SW PUSHBUTTON Panasonic EVQP2H02B
SW6
SW PUSHBUTTON Panasonic EVQP2H02B
Debouncer
U18
MC14490
Debouncer
U18
MC14490
Ain
1Aout 15
Bin
14
Cin
3
Din
12
Ein
5
Fin
10
Bout 2
Cout 13
Dout 4
Eout 11
Fout 6
OSCin
7
OSCout
9
VDD 16
GND 8
R248
10K
R248
10K
VR4
100 POT Murata PV36Y101C01
PV37W
VR4
100 POT Murata PV36Y101C01
PV37W
13
2
R302
10K
R302
10K Q10
BSS138LT1
SOT-23
Q10
BSS138LT1
SOT-23
R247
10K
R247
10K
D21
LED 0603 Green
D21
LED 0603 Green
R246
10K
R246
10K
R301
10K
R301
10K
SW5
SW PUSHBUTTON Panasonic EVQP2H02B
SW5
SW PUSHBUTTON Panasonic EVQP2H02B
D28
LED 0603 Green
D28
LED 0603 Green
D18
LED 0603 Green
D18
LED 0603 Green
J55
LCD_Connector
J55
LCD_Connector
ANODE
1CATHODE 2
VSS
3
RS 6
VO
5VDD 4
R/W
7E8
DB0
9DB1 10
DB2
11 DB3 12
DB4
13 DB5 14
DB6
15 DB7 16
ANODE
17 CATHODE 18
SW7
SW PUSHBUTTON Panasonic EVQP2H02B
SW7
SW PUSHBUTTON Panasonic EVQP2H02B
R285 220R285 220
R300
10K
R300
10K
D22
LED 0603 Green
D22
LED 0603 Green
D17
LED 0603 Green
D17
LED 0603 Green
U20
Seven Segment Display Fairchild MAN4710A
738milX386mil
U20
Seven Segment Display Fairchild MAN4710A
738milX386mil
cathode A 1
cathode F 2
annode1 3
NC1 4
NC2 5
NC3 6
cathode E 7
cathode D 8
cathode DP 9
cathode C 10
cathode G 11
NC4 12
cathode B 13
annode2 14
R245
10K
R245
10K
Debouncer
U15
MC14490
Debouncer
U15
MC14490
Ain
1Aout 15
Bin
14
Cin
3
Din
12
Ein
5
Fin
10
Bout 2
Cout 13
Dout 4
Eout 11
Fout 6
OSCin
7
OSCout
9
VDD 16
GND 8
C214
0.01uF
0402
C214
0.01uF
0402
R289 470 0402R289 470 0402
R292 470R292 470
D24
LED 0603 Green
D24
LED 0603 Green
R299
10K
R299
10K
R298 470 0402R298 470 0402
R278 220R278 220
D25
LED 0603 Green
D25
LED 0603 Green
R297 470 0402R297 470 0402
TP108TP108
R293 470R293 470
VR5
20K POT Murata PV36Y203C01
PV37W
VR5
20K POT Murata PV36Y203C01
PV37W
13
2
R282 220R282 220
R275 220R275 220
R296 470 0402R296 470 0402
SW8
SW DIP-8 CTS 194-8MST
SW8
SW DIP-8 CTS 194-8MST
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
R283 220R283 220
D27
LED 0603 Yellow
D27
LED 0603 Yellow
R276 220R276 220
R306
10K
R306
10K
R284 220R284 220
C57
0.1uF
0402
C57
0.1uF
0402
R295 470 0402R295 470 0402
R287 470 0402R287 470 0402
R277 220R277 220
R305
10K
R305
10K
SW10
SW PUSHBUTTON Panasonic EVQP2H02B
SW10
SW PUSHBUTTON Panasonic EVQP2H02B
C219
0.01uF
0402
C219
0.01uF
0402 D29
LED 0603 Red
D29
LED 0603 Red
R294 470 0402R294 470 0402
SW4
SW PUSHBUTTON Panasonic EVQP2H02B
SW4
SW PUSHBUTTON Panasonic EVQP2H02B
R304
10K
R304
10K
R288 470 0402R288 470 0402
Switches, LEDs, LCD Display
41
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 26.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
PHY_RX_D4
PHY_RX_D5
ETH_RX_D4
PHY_RX_D7
PHY_RX_D6
ETH_RX_D7
ETH_RX_D5
ETH_RX_D6
PHY_C RS
PHY_C OL
MDI_P3 MDIA_BUS4
MDI_P2 MDIA_BUS2
MDI_P1 MDIA_BUS0
PHY_G TX_C LK
ETH_EGP5
ETH_MAC_CLK_EN
ETH_COL
ETH_EGP6
ETH_EGP7
ETH_EGP4
MDI_N2 MDIA_BUS3
VCC_2. 5V
MDI_N3 MDIA_BUS5
MDI_N4 MDIA_BUS7
MDI_P4 MDIA_BUS6
ETH_EGP2
X0
PULL_UPX1
ETH_EGP0
PHY_RX_D0
PHY_RX_D1
VCC_2. 5V
ETH_CRS
PHY_RX_D2
PHY_RX_D3
PHY_R X_ER
VCC_2.5V
MDI_N1 MDIA_BUS1
ETH_MDC
ETH_RX_D2
ETH_RX_D0
ETH_RX_D3
ETH_RX_D1
ETH_RX_ER
ETH_RX_DV
ETH_RX_CLK
ETH_MDIO
PHY_TX_D0
PHY_TX_D1
PHY_TX_D2
PHY_TX_D3
PHY_TX_D4
PHY_TX_D5
PHY_TX_D6
PHY_TX_D7
PHY_RX_DV
PHY_RX_CLK
PHY_TX_ER
PHY_TX_EN
PHY_TX_CLK
ETH_EGP[0..7]
ETH_EGP[0..7]
ETH_EGP7
MDIA_BUS0
MDIA_BUS5
MDIA_BUS3
MDIA_BUS4
MDIA_BUS2
MDIA_BUS7
MDIA_BUS6
MDIA_BUS1
MDIA_BUS[0..7]
ETH_TX_EN
ETH_TX_ER
ETH_TX_D4
ETH_TX_D6
ETH_TX_D5
ETH_TX_D7
ETH_TX_D0
ETH_TX_D1
ETH_TX_D2
ETH_TX_D3
ETH_TX_CLK
ETH_GTX_CLK
PHY_TX_ER
PHY_TX_D3
PHY_TX_D4
PHY_TX_D5
PHY_TX_D6
PHY_TX_D7
PHY_TX_D0
PHY_TX_D1
PHY_TX_D2
PHY_TX_EN
PHY_TX_D[0..7]
ETH_COL
ETH_CRS
ETH_EGP[0..7]
ETH_EGP5
ETH_EGP6
ETH_EGP7
ETH_EGP4
ETH_EGP2
ETH_CLK_TO_MAC
ETH_MAC_CLK_EN
ETH_RESET_N
ETH_RX_CLK
ETH_RX_ER
ETH_RX_DV
ETH_RX_D2
ETH_RX_D0
ETH_RX_D3
ETH_RX_D1
ETH_RX_D4
ETH_RX_D7
ETH_RX_D5
ETH_RX_D6
PHY_GTX_CLK
ETH_EGP0
VCC_2.5V
ETH_RESET_N
ETH_MAC_CLK_EN
ETH_RESET_N
ETH_CLK_TO_MAC
ETH_EGP4
VCC_2.5V
ETH_EGP7
VCC_2. 5V
VCC_2.5V
VCC_2. 5V
ETH_EGP5
ETH_EGP6
VCC_2. 5V
VCC_1. 8V
ETH_MDIO
ETH_MDC
ETH_TX_CLK
ETH_GTX_CLK
ETH_TX_EN
ETH_TX_ER
ETH_TX_D4
ETH_TX_D6
ETH_TX_D5
ETH_TX_D7
ETH_TX_D0
ETH_TX_D1
ETH_TX_D2
ETH_TX_D3
PLL_IN_P
PLL_IN_N
PLL_FB_ P
PLL_FB_ N
CF0
CF1
CF2
CF3
CF5
CF6
CF7
CF4
CF9
CF10
CF11
CF13
CF14
CF15
CF12
CF8
CF19
CF18
CF16
CF17
CF20
CF21
CF23
CF24
CF25
CF22
CF29
CF28
CF26
CF27
CF30
CF31
CF33
CF34
CF35
CF32
CF39
CF38
CF36
CF37
CF40
CF41
CF43
CF44
CF42
CF45
XP2_E6
XP2_F 6
ETH_TCK
ETH_TRST
ETH_TDI
ETH_TDO
ETH_TMS
GSRN
VCC_2. 5V
VCC_1. 8V
VCC_2. 5V VCC IO _0
PLL_IN_P
PLL_IN_N
PLL_FB_ P
PLL_FB_ N
CF[0..45]
XP2_F 6
ETH_TMS
ETH_TDO
ETH_TDI
ETH_TRST
ETH_TCK
GSRN
Title
Size Document Number Rev
Date: Sheet of
B
Ethernet
C
814
Title
Size Document Number Rev
Date: Sheet of
B
Ethernet
C
814
Title
Size Document Number Rev
Date: Sheet of
B
Ethernet
C
814
Bypass for IO_VDD pins. Bypass every other
IO_VDD pair, alternating 0.1 and 0.01uF caps.
Place termination
resistors TX_D0-7,
TX_ER, TX_EN,
GTX_CLK as close to
FPGA as possible
using 50 ohm
impedence traces.
MDI IO traces must be 50 ohm impedence.
10/100/1000
Giga Phyter V
Place termination
resistors RX_D0-7,
RX_ER, RX_DV, RX_CLK,
TX_CLK, CRS, COL
as close to the
G-PHY as possible
using 50 ohm impedence
traces.
Giga Phyter
Decoupling Caps
Place 49 ohm termination resistors as
close as possible to G-PHY.
The associated 0.01uF capacitor should
be placed close to the 49 ohm resistors.
Place caps close to GPHY
Place these close to G-PHY
Giga Phyter address = 01h
(Hard Reset)
Place xtal
close to
G-PHY
Place R close to CLOCK_IN
Bypass for BG_VDD
Ethernet RJ45 Connector
Place caps close to RJ45 jack TX1
MH1 and MH2
are 0.100"
diameter plated
through holes
Lattice Semiconductor Corporation
[13]
[13]
[13]
(Do not
populate)
(Do not
populate)
Place 9.76K resistor as close
to G-PHY as possible
[11]
[6]
[6]
[6]
[6]
[6]
[3]
[9]
[9]
[9]
[9]
[9]
[7]
C139
0.1uF
0402
C139
0.1uF
0402
12
C110
0.01uF
0402
C110
0.01uF
0402
12
R195 33R195 33
R96 33R96 33
R230
49_9
0402
R230
49_9
0402
C193
0.1uF
0402
C193
0.1uF
0402
12
R102 33R102 33
R189 33R189 33
C202
0.01uF
0402
C202
0.01uF
0402
12
R92
2K
0402
R92
2K
0402
R109 33R109 33
TP50TP50
R244 2KR244 2K
R241
33
R241
33
C79
0.01uF
0402
C79
0.01uF
0402
12
C140
0.001uF
0402
C140
0.001uF
0402
12
R100 33R100 33
R186 33R186 33
R196 33R196 33
R94
2K
0402
R94
2K
0402
1 2
R231
49_9
0402
R231
49_9
0402
R184 33R184 33
R228
49_9
0402
R228
49_9
0402
C200
0.01uF
0402
C200
0.01uF
0402
C203
0.1uF
0402
C203
0.1uF
0402
12
R185 33R185 33
C210 22uF
SizeB
C210 22uF
SizeB
12
R105 33R105 33
C189
0.01uF
0402
C189
0.01uF
0402
12
R108 33R108 33
C28 0.01uF
0402
C28 0.01uF
0402
12
C195
0.01uF
0402
C195
0.01uF
0402
12
C192
1uF Ceramic X5R
0402
C192
1uF Ceramic X5R
0402
12
R188 33R188 33
MH1
MHOLE_1
0.100_PTH
MH1
MHOLE_1
0.100_PTH
1
R113
1M
0402
R113
1M
0402
R190 33R190 33
C138
0.1uF
0402
C138
0.1uF
0402
12
R234
2K
0402
R234
2K
0402
1 2
C156
10uF Ceramic X5R
0805
C156
10uF Ceramic X5R
0805
12
R236
49_9
0402
R236
49_9
0402
R222
2K
0402
R222
2K
0402
1 2
R229
49_9
0402
R229
49_9
0402
R226 2K
0402
R226 2K
0402
R106 10
0402
R106 10
0402
R103 33R103 33
C194
0.01uF
0402
C194
0.01uF
0402
12
R219
2K
0402
R219
2K
0402
1 2
1
2
3
6
4
5
7
8
RJ45
J43
RJ-45 Belfuse 0826-1A1T-23
1
2
3
6
4
5
7
8
RJ45
J43
RJ-45 Belfuse 0826-1A1T-23
MDIA-
10 MDACT
12 MDIA+
11
SHLD1 19
MDIB+
4
MDIB-
5MDBCT
6
MDIC+
3
MDCCT
1
MDIC-
2
MDID+
8
MDDCT
7
MDID-
9SHLD2 20
LED1- 13
LED1+ 14
LED2- 15
LED2+ 16
R99 33R99 33
RX_VDD
U11
DP83865
RX_VDD
U11
DP83865
TMS
27
TDO
28
TDI
31
TRST
32
VDD25_0 96
VDD0 100
IO_VDD2 15
IO_VDD1 4
PGM_VDD0 98
CORE_VDD1 11
CORE_VDD2 19
CORE_VDD3 25
TCK
24
IO_VDD3 21
CORE_VDD4 35
IO_VDD4 29
IO_VDD5 37
CORE_VDD5 48
IO_VDD6 42
IO_VDD7 53
CORE_VDD6 63
IO_VDD8 58
CORE_VDD7 73
IO_VDD9 69
O_VDD0 83
IO_VDD10 77
CORE_VDD8 92
IO_VDD11 90
RX_DVDD0 103
VDD1 105
VDD2 111
VDD3 117
VDD4 123
VSS0
99
PGM_VSS0
97
IO_VSS1
5
CORE_VSS1
12
CORE_VSS2
20
IO_VSS2
16
CORE_VSS3
26
IO_VSS3
22
CORE_VSS4
36
IO_VSS4
30
IO_VSS5
38
CORE_VSS5
49
IO_VSS6
43
IO_VSS7
54
CORE_VSS6
64
IO_VSS8
59
CORE_VSS7
74
IO_VSS9
70
O_VSS0
82
IO_VSS10
78
CORE_VSS8
93
IO_VSS11
91
RX_DVSS0
104
VSS1
106
CD_VSS1
107
CD_VSS2
110
VSS2
112
CD2_VSS1
113
CD2_VSS2
116
VSS3
118
CD3_VSS2
122 CD3_VSS1
119
VSS4
124
CD4_VSS1
125
CD4_VSS2
128
EGP0 (NC_MODE) 1
EGP1 2
EGP2 (Interrupt) 3
EGP3 (TX_TCLK) 6
EGP4 (SPEED0 / ACT_LED) 7
EGP5 (SPEED1 / LINK10) 8
EGP6 (DUPLEX_EN / LINK100) 9
EGP7 (AN_EN / LINK1000) 10
GP0 (PHYAD0 / DUPLEX_LED) 13
GP1 (PHYAD1) 14
GP2 (PHYAD2) 17
GP3 (PHYAD3) 18
GP4 (PHYAD4) 95
GP5 (MULTI_EN) 94
GP6 (MDIX_EN) 89
GP7 (MAC_CLK_EN) 88
RXD0 / RGMII_RXD0
56
RXD1 / RGMII_RXD1
55
RXD2 / RGMII_RXD2
52
RXD3 / RGMII_RXD3
51
RXD4
50
RXD5
47
RXD6
46
RXD7
45
TXD0 / RGMII_TXD0
76
TXD1 / RGMII_TXD1
75
TXD2 / RGMII_TXD2
72
TXD3 / RGMII_TXD3
71
TXD4
68
TXD5
67
TXD6
66
TXD7
65
MDIA_P 108
MDIA_N 109
MDIB_P 114
MDIB_N 115
MDIC_P 120
MDIC_N 121
MDID_P 126
MDID_N 127
BG_REF 102
TM0
23
RESET_N 33
VDD_SEL 34
COL
39 CRS / RGMII_SEL1
40
RX_ER / RGMII_RX_CTL
41
RX_DV / RGMII_RXC
44
RX_CLK
57
TX_CLK / RGMII_SEL0
60
TX_ER
61
TX_EN / RGM II_ TX_ CTL
62
GTX_CLK / RGMII_TXC
79
MDIO
80
MDC
81
REF_SEL 84
CLK_TO_MAC 85
CLOCK_IN
86 CLOCK_OUT
87
BG_VDD 101
Y3
25MHz
HC-49/ U
Y3
25MHz
HC-49/ U
TP89TP89
C209 22uF
SizeB
C209 22uF
SizeB
12
MH2
MHOLE_1
0.100_PTH
MH2
MHOLE_1
0.100_PTH
1
R187 33R187 33
R97 33R97 33
C199
0.01uF
0402
C199
0.01uF
0402
12
C204
0.01uF
0402
C204
0.01uF
0402
12
R93
324
0402
R93
324
0402
1 2
R221
324
0402
R221
324
0402
1 2
R223
49_9
0402
R223
49_9
0402
R220
324
0402
R220
324
0402
1 2
R112 18
0402
R112 18
0402
C107
0.001uF
0402
C107
0.001uF
0402
12
R240
2K
0402
R240
2K
0402
R104 33R104 33
BANK 1
BANK 0
LFXP217-fpBGA484
U8D
BANK 1
BANK 0
LFXP217-fpBGA484
U8D
PT46B/VREF2_1
E18 PT46A/VREF1_1
E17
PT45B/URC_GPLLC_FB_A
C19 PT45A/URC_GPLLT_FB_A
C18
PT44B/URC_GPLLC_IN_A
D19
PT43B
D18
PT44A/URC_GPLLT_IN_A
A20
PT43A
D17
PT42B
A19 PT42A/TDQS42
A21
PT41B
D15 PT41A
C15
PT40B
E15
PT39B
G14
PT40A
E14
PT39A
G13
PT38B
D14 PT38A
F14
PT37B
C17 PT37A
C16
PT36B
A18
PT35B
G12
PT36A
B17
PT35A
F13
PT34B
C14 PT34A
E13
PT33B
A17 PT33A/TDQS33
B16
PT32B
A16
PT31B
G11
PT32A
B15
PT31A
G10
PT30B
D12 PT30A
E12
PT29B/PCLKC1_0
A15 PT29A/PCLKT1_0
B14
VCCIO1
B18
VCCIO1
D13
VCCIO1
E16
VCCIO1
H14
PT28B/PCLKC0_0 A14
PT27B F12
PT28A/PCLKT0_0 B13
PT27A F11
PT26B C12
PT26A E11
PT25B A13
PT25A B12
PT24B A12
PT23B G9
PT24A/TDQS24 B11
PT23A G8
PT22B C11
PT22A D11
PT21B A11
PT21A A10
PT20B B10
PT19B E10
PT20A B9
PT19A F10
PT18B C9
PT18A D9
PT17B A9
PT17A A8
PT16B B8
PT15B F9
PT16A A7
PT15A/TDQS15 E9
PT14B C8
PT14A D8
PT13B B7
PT13A B6
PT12B A6
PT11B J7
PT12A A5
PT11A H7
PT10B C7
PT10A C6
PT9B A4
PT9A A3
PT8B C4
PT7B E8
PT8A C5
PT7A F8
PT6B D5
PT6A/TDQS6 D6
PT5B/ULC_GPLLC_FB_A G7
PT5A/ULC_GPLLT_FB_A F7
PT4B/ULC_GPLLC_IN_A B3
PT3B/VREF2_0 E6
PT4A/ULC_GPLLT_IN_A A2
PT3A/VREF1_0 F6
VCCIO0 B5
VCCIO0 D10
VCCIO0 E7
VCCIO0 H9
C187
0.01uF
0402
C187
0.01uF
0402
R91
2K
0402
R91
2K
0402
R191 33R191 33
C190
0.1uF
0402
C190
0.1uF
0402
12
R107 33R107 33
C191
0.01uF
0402
C191
0.01uF
0402
12
R235
324
0402
R235
324
0402
1 2
C197
10uF Ceramic X5R
0805
C197
10uF Ceramic X5R
0805
12
C186
0.01uF
0402
C186
0.01uF
0402
12
C205
10pF
0402
C205
10pF
0402
12
C155
0.01uF
0402
C155
0.01uF
0402
12
C86
10uF Ceramic X5R
0805
C86
10uF Ceramic X5R
0805
1 2
R237 9.76K 1%
0402
R237 9.76K 1%
0402
1 2
R101 33R101 33
R194 33R194 33
R232
49_9
0402
R232
49_9
0402
R225 470
0402
R225 470
0402
1 2
D2
LED 0603 Green
D2
LED 0603 Green
R95 33R95 33
C201
0.1uF
0402
C201
0.1uF
0402
12
C108
0.1uF
0402
C108
0.1uF
0402
12
C109
0.001uF
0402
C109
0.001uF
0402
12
R239 2K
0402
R239 2K
0402
R98 33R98 33
R238 470
0402
R238 470
0402
1 2
C206
10pF
0402
C206
10pF
0402
12
C188
0.01uF
0402
C188
0.01uF
0402
12
D3
LED 0603 Green
D3
LED 0603 Green
R224
49_9
0402
R224
49_9
0402
Ethernet
42
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 27.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
USB_PA5
USB_PA4
USB_PA3
USB_PA2
USB_PA1
USB_PA0
USB_PA7
USB_PA6
USB_PA5
USB_PA4
USB_PA3
USB_PA2
USB_PA1
USB_PA0
USB_PD7
USB+
USB- USB_PD6
USB_PD7
USB_PD3
USB_PD2
USB_PD1
USB_PD5
USB_PD0
USB_PB7
USB_PB6
USB_PB5
USB_PB4
USB_PB3
USB_PB2
USB_PB1
USB_PB0
USB_PD4
USB_PD3
USB_PD2
USB_PD1
USB_PD0
USB_PB7
USB_PB6
USB_PB5
USB_IFCLK
USB_PB4
24MHz
USB_CLKO
USB_PB3
USB_PB2
USB_PB1
USB_CTL0
USB_CTL1
USB_CTL2
USB_RDY1
USB_SDA
USB_SCL
USB_WAKEUP
USB_PB0USB_CTL0
USB_CTL1
USB_CTL2
USB_RDY1
USB_RDY0
USB_SDA
USB_IFCLK
USB_SCL
USB_RESET
USB_RESET
USB_WAKEUP
PW R_3 .3V_ 10A
XO_GPIO4 5
XO_GPIO4 4
XO_GPIO4 3
XO_TD I
XO_TD O
XO_TC K
XO_TM S
XO_GPIO4 2
XO_GPIO4 1
XO_TD I
XO_TD O
XO_TM S
XO_GPIO4 0
XO_TC K
XO_GPIO3 9
XO_GPIO3 8
XO_GPIO3 7
XO_GPIO2
XO_GPIO3 6
XO_GPIO3 XO_GPI O24
XO_GPIO4
XO_GPIO5
XO_GPIO25
XO_GPIO6
XO_GPIO26
XO_GPIO7
XO_GPIO27
XO_GPIO8
XO_GPIO28
XO_GPIO9
XO_GPIO10
XO_GPIO29
XO_GPIO11
XO_GPIO30
XO_GPIO12
XO_GPIO31
XO_GPIO13
XO_GPIO3 2
XO_GPIO14
XO_GPIO33
XO_GPIO1 5
XO_GPIO34
XO_GPIO1 6
XO_GPIO35
XO_GPIO1 7
XO_GPIO1 8
XO_GPIO1 9
XO_GPIO4 7
XO_GPIO2 0
XO_GPIO4 6
PW R_3 .3V_ 10A
AVCC_3.3V
PW R_3 .3V_ 10A
PW R_3 .3V_ 10A
AVCC_3.3V
PWR_3.3V_10A
PWR_3.3V_10A
USB_PA7
USB_PA6
IDC[20..23]
XO_K4 IDC21
XO_K5 IDC20
XO_M 4 ID C23
XO_M 5 ID C22
USB_RDY0
PW R_3 .3V_ 10A
USB_CLKO
PWR_3.3V_10A
USB_PD6
USB_PD5
USB_PD4
USB_RESET
PWR_3.3V_10A
XP2_TD O_p
XP2_TC K_p
XP2_TD I_ p
XP2_TM S_p
XP2_TD O
XP2_TM S
XP2_TC K
XP2_TD I
PW R_T DI_ p
PW R_T MS_ p
PW R_T DO_ p
PW R_T CK_ p
PW R_T DO
PW R_T MS
PW R_T CK
PW R_T DI
ETH_TDI_p
ETH_TMS_p
ETH_TDO_p
ETH_TCK_p
ETH_TDO
ETH_TMS
ETH_TCK
ETH_TDI
ETH_TRST_p
PWR_ATDI_p
ETH_TRST
PW R_A TDI
XP2_I NITN_p
XP2_D ONE_p XP2_D ONE
XP2_INITN
USB_CLKO
USB- USB+ IDC[20..23] PW R_3.3V_10A
XP2_TC K
XP2_TM S
XP2_TD I
PW R_T CK
PW R_T MS
PW R_T DI
ETH_TCK
ETH_TMS
ETH_TDI
ETH_TRST
PWR_ATDI
XP2_D ONE
XP2_INITN
PW R_T DO
ETH_TDO
XP2_TD O
Title
Size Document Number Rev
Date: Sheet of
B
USB Download
C
914
Title
Size Document Number Rev
Date: Sheet of
B
USB Download
C
914
Title
Size Document Number Rev
Date: Sheet of
B
USB Download
C
914
Lattice Semiconductor Corporation
JB
[3]
XO Tristate
Mach XO needs to be a "D" device
[12]
[4]
[4]
[4]
[4]
[12]
[8]
[8]
[12]
[12]
[12]
[12]
[8]
[8]
[8]
[2]
[2]
FX2
JTAG header
for MachXO
USB(Type B)
C106
0.01uF
0402
C106
0.01uF
0402
12
SW1
SW PUSHBUTTON Panasonic EVQP2H02B
SW1
SW PUSHBUTTON Panasonic EVQP2H02B
R208 0 0603R208 0 0603
TP38TP38
C102
0.1uF
C102
0.1uF
TP14TP14
C135
0.01uF
0402
C135
0.01uF
0402
12
C15
DNI
C15
DNI
TP67TP67TP53TP53 TP56TP56
TP51TP51
R202 0 0603R202 0 0603
C127
0.1uF
C127
0.1uF
TP61TP61
TP24TP24
C126
0.1uF
C126
0.1uF
C16
DNI
C16
DNI
TP2TP2
R207 0 0603R207 0 0603
TP68TP68
TP54TP54
R201 4.7KR201 4.7K
TP32TP32
C105
0.1uF
C105
0.1uF
R90 0 0603R90 0 0603
1OICCV0OICCV
I/Os in Bank 0
for XO1200
I/Os in Bank 1
for XO2280
Pin name sequence
PT(640,1200,2280)
U10A MachXO_2280_fpBGA256
1OICCV0OICCV
I/Os in Bank 0
for XO1200
I/Os in Bank 1
for XO2280
Pin name sequence
PT(640,1200,2280)
U10A MachXO_2280_fpBGA256
NC/PT2A/PT2C
B2
NC/PT2B/PT2D
B3
PT2A/PT3A/PT3A
A2
PT2B/PT3B/PT3B
A3
NC/PT2C/PT3C
D3
NC/PT2D/PT3D
D4
PT2F/PT4B/PT4B
C5 PT2E/PT4A/PT4A
C4
PT2C/PT3C/PT5A
D6
PT2D/PT3D/PT5B
D5
PT3A/PT3E/PT5C
B4
PT3B/PT3F/PT5D
B5
NC/PT4D/PT6F
E6 NC/PT4C/PT6E
E7
PT3F/PT5B/PT6D
A4 PT3E/PT5A/PT6C
A5
PT3C/PT5C/PT6A
C6
PT3D/PT5D/PT6B
C7
PT4A/PT5E/PT7A
B6
PT4B/PT5F/PT7B
B7
PT4C/PT6A/PT7C
A6
PT4D/PT6B/PT7D
A7
PT4E/PT6C/PT8C
B8
PT4F/PT6D/PT8D
C8
PT5B/PT6F/PT9B/CLK0
D7 PT5A/PT6E/PT9A
D8
PT9A/PT7A/PT9C E8
PT9B/PT7B/PT9D E9
PT6B/PT7D/PT10B/CLK1 A9
PT6A/PT7C/PT10A A10
PT6C/PT7E/PT10C C9
PT6D/PT7F/PT10D C10
PT8C/PT8A/PT10E D9
PT8D/PT8B/PT10F D10
PT5C/PT8C/PT11A B9
PT5D/PT8D/PT11B B10
PT7C/PT8E/PT12A A11
PT7D/PT8F/PT12B A12
PT7A/PT9A/PT12C B11
PT7B/PT9B/PT12D B12
PT8A/PT9C/PT13C C11
PT8B/PT9D/PT13D C12
PT7F/PT9F/PT14B A14
PT7E/PT9E/PT14A A13
PT9C/PT10A/PT14C D11
PT9D/PT10B/PT14D D12
NC/PT10C/PT15A E10
NC/PT10D/PT15B E11
PT9E/PT10E/PT15C B13
PT9F/PT10F/PT15D C13
NC/PT11A/PT1 6A B14
NC/PT11B/PT1 6B C14
NC/PT11C/PT16C A15
NC/PT11D/PT16D B15
TP55TP55
TP11TP11
R81 0 0603R81 0 0603
TP44TP44
C150
0.1uF
C150
0.1uF
C103
0.01uF
C103
0.01uF
TP60TP60
TP1TP1
TP63TP63
R89 0 0603R89 0 0603
C169
DNI
C169
DNI
TP76TP76
C128
0.1uF
0402
C128
0.1uF
0402
12
TP17TP17
TP66TP66
L7
BEAD / 0805
L7
BEAD / 0805
TP26TP26
C163
DNI
C163
DNI
TP71TP71
J32
CON10
J32
CON10
1
2
3
4
5
6
7
8
9
10
TP13TP13
C131
0.001uF
0402
C131
0.001uF
0402
12
R193
4.7K
R193
4.7K
TP48TP48
C22
DNI
C22
DNI
TP40TP40
R205 0 0603R205 0 0603
12
43
J33
USB Series-B Receptacle Molex 67068-8000
12
43
J33
USB Series-B Receptacle Molex 67068-8000
VBUS
1
D-
2D+ 3
GND 4
5
MH1
6
MH2
TP58TP58
C168
DNI
C168
DNI
C136
0.1uF
0402
C136
0.1uF
0402
12
C125
0.01uF
C125
0.01uF
C154
DNI
C154
DNI
TP65TP65
TP75TP75
TP25TP25
R85 0 0603R85 0 0603
C21
DNI
C21
DNI
C153
0.1uF
0402
C153
0.1uF
0402
12
TP37TP37
J35
HEADER 3
J35
HEADER 3
1
2
3
TP46TP46
C134
0.1uF
0402
C134
0.1uF
0402
12
TP28TP28
TP49TP49
TP23TP23
TP7TP7
TP57TP57
R204 0 0603R204 0 0603
C152
0.01uF
0402
C152
0.01uF
0402
12
TP47TP47
TP42TP42
U9
CY7C68013A-56SSOP
U9
CY7C68013A-56SSOP
PD5/FD13 1
PD6/FD14 2
PD7/FD15 3
GND
4
CLKOUT/T1OUT
5
VCC 6
GND
7
RDY0/SLRD
8
RDY1/SLWR
9
AVCC 10
XTALOUT
11
XTALIN
12
AGND
13
DPLUS
15
AVCC 14
DMINUS
16
AGND
17
VCC 18
GND
19
IFCLK/T0OUT
20
RESERVED
21
SCL
22
SDA
23
VCC 24
PB0/FD0 25
PB1/FD1 26
PB2/FD2 27
PB3/FD3 28
PB4/FD4 29
PB5/FD5 30
PB6/FD6 31
PB7/FD7 32
GND
33 VCC 34
GND
35
CTL0/FLAGA
36 CTL1/FLAGB
37 CTL2/FLAGC
38
VCC 39
PA0/INT0# 40
PA1/INT1# 41
PA2/SLOE 42
PA3/WU2 43
PA4/FIFOADR0 44
PA5/FIFOADR1 45
PA6/PKTEND 46
PA7/FLAGD/SLCS# 47
GND
48
RESET#
49
VCC 50
WAKEUP
51
PD0/FD8 52
PD1/FD9 53
PD2/FD10 54
PD3/FD11 55
PD4/FD12 56
C130
0.001uF
0402
C130
0.001uF
0402
12
TP31TP31
TP8TP8
6OICCV7OICCV
Pin name sequence
PL(640,1200,2280)
U10B MachXO_2280_fpBGA256
6OICCV7OICCV
Pin name sequence
PL(640,1200,2280)
U10B MachXO_2280_fpBGA256
NC/PL2A/PL2A/PLL1T_FB
E4
NC/PL2B/PL2B/PLL1C_FB
E5
NC/PL3A/PL3A/LV_T
F5
NC/PL3B/PL3B/LV_C
F6
PL3A/PL3C/PL3C/PLL1T_IN
F3
PL3B/PL3D/PL3D/PLL1C_IN
F4
PL2C/PL4A/PL4A/LV_T
E3
PL2D/PL4B/PL4B/LV_C
E2
NC/PL4C/PL4C
C3
NC/PL4D/PL4D
C2
PL2A/PL5A/PL5A/LV_T
B1
PL2B/PL5B/PL5B/LV_C
C1
PL3C/PL5C/PL6C
D2
PL3D/PL5D/PL6D
D1
PL5A/PL6A/PL7A/LV_T
F2
PL5B/PL6B/PL7B/GSR/LV_C
G2
PL4A/PL6C/PL7C
E1
PL4B/PL6D/PL7D
F1
NC/PL7A/PL8A/LV_T
G4
NC/PL7B/PL8B/LV_C
G5
PL4C/PL7C/PL8C
G3
PL4D/PL7D/PL8D
H3
NC/PL8A/PL9A/LV_T
H4
NC/PL8B/PL9B/LV_C
H5
PL5C/PL8C/PL10C
G1
PL5D/PL8D/PL10D
H1
PL6A/PL9A/PL11A/LV_T H2
PL6B/PL9B/PL11B/LV_C J2
PL7C/PL9C/PL11C J3
PL7D/PL9D/PL11D K3
PL6C/PL10A/PL12A/LV_T J1
PL6D/PL10B/PL12B/LV_C K1
PL9A/PL10C/PL12C K2
PL9B/PL10D/PL12D L2
PL7A/PL11A/PL13A/LV_T L1
TSALL/PL8C/PL11C/PL14C N1
PL8D/PL11D/PL14D P1
PL10A/PL12A/PL15A/LV_T L3
PL10B/PL12B/PL15B/LV_C M3
PL9C/PL12C/PL15C M2
PL9D/PL12D/PL15D N2
PL8A/PL13A/PL16A/LV_T J4
PL8B/PL13B/PL16B/LV_C J5
PL11A/PL13C/PL16C R1
PL11B/PL13D/PL16D R2
NC/PL14A/PL17A/LV_T/PLL0_T_FB K5
NC/PL14B/PL17B/LV_C/PLL0_C_FB K4
PL10C/PL14C/PL17C L5
PL10D/PL14D/PL17D L4
NC/PL15A/PL18A/LV_T/PLL0_T_IN M5
NC/PL15B/PL18B/LV_C/PLL0_C_IN M4
PL11C/PL16A/PL19A N4
PL11D/PL16B/PL19B N3
PL7B/PL11B/PL13B/LV_C M1
R88 0 0603R88 0 0603
R86 0 0603R86 0 0603
TP73TP73
TP16TP16
TP62TP62
C133
0.001uF
0402
C133
0.001uF
0402
12
Y2
OSC4/SM
Y2
OSC4/SM
VCC 4
OUT 3
GND
2EN
1
C17
DNI
C17
DNI
TP10TP10
VCCIO2 VCCIO3
Pin name sequence
PR(640,1200,2280)
U10D MachXO_2280_fpBGA256
VCCIO2 VCCIO3
Pin name sequence
PR(640,1200,2280)
U10D MachXO_2280_fpBGA256
NC/PR2A/PR3A/LV_T
D14
NC/PR2B/PR3B/LV_C
D13
NC/PR3A/PR4A/LV_T
E13
NC/PR3B/PR4B/LV_C
E12
NC/PR3C/PR4C
F13
NC/PR3D/PR4D
F12
PR3C/PR4A/PR5A/LV_T
E14
PR3D/PR4B/PR5B/LV_C
F14
PR2A/PR4C/PR5C
B16
PR2B/PR4D/PR5D
C16
PR2C/PR5A/PR6A/LV_T
C15
PR2D/PR5B/PR6B/LV_C
D15
PR3A/PR5C/PR6C
D16
PR3B/PR5D/PR6D
E16
PR4A/PR6A/PR7A/LV_T
E15
PR4B/PR6B/PR7B/LV_C
F15
PR5A/PR6C/PR7C
F16
PR5B/PR6D/PR7D
G16
PR4C/PR7A/PR9A/LV_T
G12
PR4D/PR7B/PR9B/LV_C
G13
PR6C/PR7C/PR9C
H12
PR6D/PR7D/PR9D
H13
PR5C/PR8A/PR10A/LV_T
G14
PR5D/PR8B/PR10B/LV_C
H14
PR6A/PR8C/PR10C
G15
PR6B/PR8D/PR10D
H15
PR7A/PR9A/PR11A/LV_T H16
PR7B/PR9B/PR11B/LV_C J16
NC/PR9C/PR11C J12
NC/PR9D/PR11D K12
PR7C/PR10A/PR13A/LV_T J15
PR7D/PR10B/PR13B/LV_C K15
PR8A/PR10C/PR13C J14
PR8B/PR10D/PR13D K14
PR8C/PR11A/PR14A/LV_T J13
PR8D/PR11B/PR14B/LV_C K13
PR9A/PR11C/PR14C K16
PR9B/PR11D/PR14D L16
PR9C/PR12A/PR15A/LV_T L15
PR9D/PR12B/PR15B/LV_C M15
PR10C/PR12C/PR15C M16
PR10D/PR12D/PR15D N16
PR10A/PR13A/PR16A/LV_T L14
PR10B/PR13B/PR16B/LV_C M14
PR11B/PR13D/PR16D L13
PR11A/PR13C/PR16C L12
PR11C/PR14A/PR17A/LV_T N15
PR11D/PR14B/PR17B/LV_C N14
NC/PR14C/PR17C M12
NC/PR14D/PR17D M13
NC/PR15A/PR18A/LV_T N13
NC/PR15B/PR18B/LV_C N12
NC/PR16A/PR20A L11
NC/PR16B/PR20B M11
C151
0.1uF
C151
0.1uF
R87 0 0603R87 0 0603
C166
DNI
C166
DNI
TP18TP18
TP30TP30
TP70TP70
R83 0 0603R83 0 0603
C137
0.1uF
0402
C137
0.1uF
0402
12
C132
0.001uF
0402
C132
0.001uF
0402
12
C165
DNI
C165
DNI
C171
0.01uF
0402
C171
0.01uF
0402
12
TP77TP77
TP12TP12
VCCIO5 VCCIO4
I/Os in Bank 5
for XO1200
I/Os in Bank 4
for XO2280
Pin name sequence
PB(640,1200,2280)
U10C MachXO_2280_fpBGA256
VCCIO5 VCCIO4
I/Os in Bank 5
for XO1200
I/Os in Bank 4
for XO2280
Pin name sequence
PB(640,1200,2280)
U10C MachXO_2280_fpBGA256
NC/PB2B/PB2B
P3
NC/PB2D/PB2D
N6 NC/PB2C/PB2C
N5
PB2A/PB3A/PB3A
T2
PB2B/PB3B/PB3B
T3
PB2C/PB3C/PB3C
R4
PB3D/PB4D/PB4D
T4
PB3A/PB4A/PB4A
P5
PB3B/PB4B/PB4B
P6
PB3C/PB4C/PB4C
T5
PB4A/PB5A/PB5A
R6
PB2D/PB3D/PB3D
R5
PB4B/PB5B/PB5B
T6
PB4C/PB5C/PB6A
T8
PB4D/PB5D/PB6B
T7
NC/PB6A/PB7C
M7
NC/PB6B/PB7D
M8
PB4E/PB6C/PB8C
R7
PB4F/PB6D/PB8D
R8
PB5C/PB6E/PB9A
P7
PB5D/PB6F/PB9B
P8
PB5B/PB7B/PB10F/CLK2 N9
PB5A/PB7A/PB10E N8
PB7A/PB7C/PB10C P9
PB7B/PB7D/PB10D P10
PB6B/PB7F/PB10B/CLK3 M9
PB6A/PB7E/PB10A M10
PB6C/PB8A/PB11C R9
PB6D/PB8B/PB11D R10
PB7C/PB8C/PB12A T10
PB7D/PB8D/PB12B T11
NC/PB8E/PB12C N10
NC/PB8F/PB12D N11
PB7E/PB9A/PB13A R11
PB7F/PB9B/PB13B R12
PB8A/PB9C/PB13C P11
PB8B/PB9D/PB13D P12
PB8C/PB9E/PB14A T13
PB8D/PB9F/PB14B T12
PB9A/PB10A/PB14C R13
PB9B/PB10B/PB14D R14
PB9C/PB10C/PB15A T14
PB9D/PB10D/PB15B T15
NC/PB11A/PB16A R15
NC/PB11B/PB16B R16
SLEEPN P13
PB9F/PB10F/PB15D P14
NC/PB11C/PB16C P15
NC/PB11D/PB16D P16
TDI
N7
TDO
M6
TMS
P4
TCK
R3
NC/PB2A/PB2A
P2
R84 0 0603R84 0 0603
C19
DNI
C19
DNI
C20
DNI
C20
DNI
R206 0 0603R206 0 0603
C170
0.01uF
0402
C170
0.01uF
0402
12
TP64TP64
R77
4.7K
R77
4.7K
R203 0 0603R203 0 0603
XO_640 common VCCIO
VCCJ on VCCIO5
XO_640 common VCCIO
XO_640 common VCCIO
XO_640 common VCCIO
U10E MachXO_2280_fpBGA256
XO_640 common VCCIO
VCCJ on VCCIO5
XO_640 common VCCIO
XO_640 common VCCIO
XO_640 common VCCIO
U10E MachXO_2280_fpBGA256
VCCIO0_0
F7
VCCIO0_1
F8
VCCIO1_0
F9
VCCIO1_1
F10
VCCIO2_0
G11
VCCIO2_1
H11
VCCIO3_0
J11
VCCIO3_1
K11
VCCIO4_0
L9
VCCIO4_1
L10
VCCIO5_0
L7
VCCIO5_1
L8
VCCIO6_0
J6
VCCIO6_1
K6
VCCIO7_0
G6
VCCIO7_1
H6
GND_0 A16
GND_1 T16
GND_2 F11
GND_3 H10
GND_4 J10
GND_5 G9
GND_6 H9
GND_7 J9
GND_8 K9
GND_9 G8
GND_10 H8
GND_11 J8
GND_12 K8
GND_13 H7
GND_14 J7
GND_15 L6
GND_16 A1
GND_17 T1
VCC_3 K7
VCC_2 G7
VCC_1 K10
VCC_0 G10
VCCAUX_0
A8
VCCAUX_1
T9
C18
DNI
C18
DNI
TP39TP39
TP74TP74TP27TP27
C129
0.01uF
0402
C129
0.01uF
0402
12
TP9TP9
TP72TP72
C167
DNI
C167
DNI
TP15TP15
C172
0.01uF
0402
C172
0.01uF
0402
12
TP45TP45
TP41TP41
TP69TP69
C104
0.1uF
C104
0.1uF
TP33TP33
R192
10K
R192
10K
C164
DNI
C164
DNI
TP5TP5
TP59TP59
USB Download
43
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 28.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
VTT
VCC_1. 8V
DDR2_DM0
SODIMM_DQ8
DDR2_DQ6
DDR2_DQ7
DDR2_DQ2
DDR2_DQ3
DDR2_DM0
DDR2_DQS0_N
DDR2_DQS0_P
SODIMM_DQ31
SODIMM_DQ25
SODIMM_DM3
DDR2_A7
DDR2_DM3
SODIMM_DQ28
DDR2_DM2
DDR2_DQ16
DDR2_DQ17
DDR2_DQ18
DDR2_DQ19
DDR2_DQ23
DDR2_DQ22
DDR2_DQ20
DDR2_DQ21
VTT
DDR2_S1_N
DDR2_CKE0
DDR2_DQS3_P
SODIMM_DM1
DDR2_CK0_N
DDR2_A8
DDR2_DQ1
DDR2_DQ0
DDR2_DQ5
DDR2_DQ4
DDR2_DQ7
DDR2_DQ6
DDR2_DQ3
DDR2_DQ2
DDR2_DQS0_N
VTT
VTT
VTT
DDR2_RAS_N
DDR2_DM1
DDR2_DQS1_P
DDR2_DQ10
DDR2_DQ11
DDR2_DQ14
DDR2_DQ15
DDR2_DQ13
DDR2_DQ9
DDR2_DQ12
DDR2_DQ8
DDR2_DQS3_N
SODIMM_DQ2
SODIMM_DQ11
DDR2_DQS0_P
SODIMM_DQ20
DDR2_S0_N
DDR2_BA0
SODIMM_DQ12
SODIMM_DQS2_N
DDR2_CK0_P
DDR2_CK0_N
DDR2_CK1_P
SODIMM_DQ7
DDR2_WE_N
SODIMM_DQ24
SODIMM_DQ15
SODIMM_DQ13
SODIMM_DQ10
SODIMM_DQ3
SODIMM_DQ6
SODIMM_DQ9
DDR2_BA1
DDR2_CK1_N
DDR2_A10
SODIMM_DQ28
SODIMM_DQ29
SODIMM_DQ60
SODIMM_DQ61
SODIMM_DQ15
SODIMM_DQ63
SODIMM_DQ14
SODIMM_DQ46
SODIMM_DQ47
DDR2_A9
SODIMM_DQ26
SODIMM_DQ27
SODIMM_S1_N
SODIMM_CAS_N
SODIMM_A12
SODIMM_DQ20
SODIMM_DQ21
DDR2_DQ24
SODIMM_DQ16
SODIMM_DQ17
SODIMM_DQ12
SODIMM_DQ13
SODIMM_RAS_N
SODIMM_S0_N
SODIMM_DQ40
SODIMM_DQ41
SODIMM_DQ31
SODIMM_DQS4_N
SODIMM_DQS4_P
SODIMM_DQ30
SODIMM_A9
SODIMM_DQ4
SODIMM_DQ5
SODIMM_DQ38
SODIMM_DQ39
DDR2_CAS_N
SODIMM_CK1_N
SODIMM_DQ62
SODIMM_BA1
SODIMM_CK1_P
SODIMM_DQS1_N
SODIMM_DQS1_P
VREF
SODIMM_DQ48
SODIMM_DQ49
SODIMM_DQ50
SODIMM_DQ51
SODIMM_DQ25
SODIMM_A8
DDR2_DQ25
SODIMM_DQ24
SODIMM_DQ22
SODIMM_DQ23
SODIMM_ODT0
SODIMM_A13
SODIMM_DQ0
SODIMM_DQ1
SODIMM_A7
SODIMM_A6
SODIMM_A11
SODIMM_CK0_N
SODIMM_CK0_P
DDR2_DQ23
DDR2_DQ20
DDR2_DQ16
DDR2_DQ17
DDR2_DQ21
DDR2_DQS2_N
DDR2_DQS2_P
SODIMM_DQS5_N
DDR2_DQS3_P
DDR2_DQ25
DDR2_DM3
DDR2_DQ24
DDR2_DQ28
DDR2_DQ29
SODIMM_DQS5_P
SODIMM_CKE0
DDR2_DQS3_N
DDR2_DQ19
DDR2_DQ18
DDR2_DQ22
DDR2_DQ27
DDR2_DQ30
DDR2_DQ31
SODIMM_DQ58
SODIMM_DQ59
SODIMM_DQ3
SODIMM_ODT1
SODIMM_DQ2
SODIMM_DQS0_N
SODIMM_DQS0_P SODIMM_DQ6
SODIMM_DQ7
SODIMM_DQS2_N
SODIMM_DQS2_P
SODIMM_W E_N
SODIMM_BA0
SODIMM_A10
SODIMM_DQS3_P
SODIMM_DQS3_N
SODIMM_DQS7_N
SODIMM_DQS7_P
SODIMM_DQ55
SODIMM_DQ35
SODIMM_DQ54
SODIMM_DQ34
SODIMM_DQ52
SODIMM_DQ53
SODIMM_DQ10
SODIMM_DQ11
SODIMM_DQS6_P
SODIMM_DQ56
SODIMM_DQ57
SODIMM_DQS6_N
SODIMM_DM3
SODIMM_BA2
SODIMM_DM2
SODIMM_DQ32
SODIMM_DQ33
SODIMM_DQ45
SODIMM_DM1
SODIMM_DQ44
DDR2_A0
SODIMM_DQ8
SODIMM_DQ9
SODIMM_DQ36
SODIMM_DQ37
SODIMM_A5
SODIMM_DQ42
SODIMM_DQ43
SODIMM_A1 SODIMM_A0
SODIMM_A3
SODIMM_A4
SODIMM_A2
I2C_SDA
I2C_SCL
SODIMM_CKE1
SODIMM_DM0
SODIMM_DQ18
SODIMM_DQ19
DDR2_DQ5
DDR2_DQ0
DDR2_DQ1
DDR2_DQ4
DDR2_ODT0
DDR2_A1
DDR2_A2
DDR2_CK0_P
DDR2_DM1
DDR2_A3
DDR2_ODT1
DDR2_DQ9
DDR2_DQ8
DDR2_DQ13
DDR2_DQ12
DDR2_DQ11
DDR2_DQ10
DDR2_DQ15
DDR2_DQ14
DDR2_DQS2_P
DDR2_DQS2_N
DDR2_A4
VREF
DDR2_DQS1_N
DDR2_A5
DDR2_DQ26
SODIMM_DQS1_P
SODIMM_DQS3_P
DDR2_DQS1_P
DDR2_A6
DDR2_DQ27
DDR2_DQ28
DDR2_DQ29
DDR2_DQ31
DDR2_DQ30
SODIMM_DQ16
SODIMM_DQ29
SODIMM_DQ14
SODIMM_DQ30
SODIMM_DQS3_N
SODIMM_DQ17
DDR2_CK1_P
DDR2_CK1_N
SODIMM_DQ23
SODIMM_DQ18
SODIMM_DQ19
SODIMM_DQ27
SODIMM_DQ22
SODIMM_DQ21
SODIMM_DQS2_P
SODIMM_DM5
SODIMM_DM7
SODIMM_DM6
SODIMM_DM4
SODIMM_CKE0
DDR2_CKE1
DDR2_A4
VTT
DDR2_A6
DDR2_CKE0
SODIMM_A4
DDR2_S1_N
DDR2_CAS_N
DDR2_S0_N
DDR2_A1
DDR2_A10
DDR2_BA1
SODIMM_S0_N
VTT
SODIMM_A1
SODIMM_BA1
SODIMM_CAS_N
SODIMM_A10
SODIMM_S1_N
DDR2_A7
DDR2_A3
DDR2_A8
DDR2_A9
DDR2_A2
VTT
DDR2_A0
DDR2_A13
DDR2_ODT0
DDR2_WE_N
VTT
SODIMM_BA0
SODIMM_W E_N
SODIMM_RAS_N
DDR2_BA0
DDR2_RAS_N
DDR2_ODT1
VCC_1. 8V
VCC_1. 8V
VCC_1. 8V
DDR2_A13
DDR2_A12
DDR2_A11
VCC_1. 8V
VCC_3. 3V
DDR2_BA2
VCC_1. 8V
VCC_1. 8V
DDR2_CKE1
VCC_1. 8V
VCC_1. 8V
SODIMM_DQS1_N DDR2_DQS1_N
DDR2_DM2
DDR2_DQ26
DDR2_A5
SODIMM_A5
SODIMM_A6
SODIMM_CKE1
SODIMM_BA2
SODIMM_A12 DDR2_A12
DDR2_BA2
DDR2_A11
SODIMM_A3
SODIMM_A2
SODIMM_A0
SODIMM_A11
SODIMM_A9
SODIMM_A7
SODIMM_A8
SODIMM_DQ0
SODIMM_DQ1
SODIMM_DQ4
SODIMM_DQ5
SODIMM_DM0
SODIMM_DQS0_N
SODIMM_DQS0_P
SODIMM_ODT0
SODIMM_A13
SODIMM_ODT1
SODIMM_DM2
SODIMM_DQ26
SODIMM_CK0_P
SODIMM_CK0_N
SODIMM_CK1_P
SODIMM_CK1_N
VTT
VCC_1. 8V
VCC_1. 8V
VREF
XP2_TD I
VTT
VCC_3. 3V
I2C_SCL
I2C_SDA
Title
Size Document Number Rev
Date: Sheet of
B
DDR2 SDRAM SO-DIMM
C
10 14
Title
Size Document Number Rev
Date: Sheet of
B
DDR2 SDRAM SO-DIMM
C
10 14
Title
Size Document Number Rev
Date: Sheet of
B
DDR2 SDRAM SO-DIMM
C
10 14
Lattice Semiconductor Corporation
at modules
[13]
[13]
[13]
[9]
[#]
[#]
[#]
All the 741X083
devices on this
page with 100 ohm
value tied to VTT
should be placed
near the FPGA.
All the 741X083 devices
and discrete resistors on
this page with 33 ohm
value tied to FPGA, should
be placed physically near
the FPGA.
at
modules
???????
EEPROM SA = 000
[13]
(Left end of VTT island)
All the 741X083 devices
on this page with 22 ohm
value tied to FPGA, should
be placed physically near
the FPGA.
All the 741X083 devices
on this page with 33 ohm
value tied to VTT, should
be placed near the DDR2
SODIMM socket.
Smaller value caps should be placed
directly under the ECP2 device. Larger
value caps can be placed further out.
DQx: dataOn die
terms
SSTL_18 CKEx: clock enable
DMx: data mask
SA: address
VDDSPD: power
DQSx: data strobe diff pair
SDA: data
SCL: clock
ODTx: On die termination enable
WE: Write enable
RAS: Row select
BAx: bank address
External
terms Sx: SODIMM select
Ax: address
CAS: Column select
SODIMM
EEPROM
CKx: clock x diff pair
[12]
[2]
[2]
TP88TP88
RN35
33 741X083
RN35
33 741X083
1
2
3
4
8
7
6
5
C157
0.01uF
0402
C157
0.01uF
0402
12
RN23100 741X083RN23100 741X083
1
2
3
4
8
7
6
5
RN4 22 741X083RN4 22 741X083
1
2
3
4
8
7
6
5
RN13 33 741X083RN13 33 741X083
1
2
3
4
8
7
6
5
RN10 33 741X083RN10 33 741X083
1
2
3
4
8
7
6
5
C158
0.01uF
0402
C158
0.01uF
0402
12
BANK 3
BANK 2
LFXP217-fpBGA484
U8C
BANK 3
BANK 2
LFXP217-fpBGA484
U8C
PR48B/VREF2_3
V18 PR48A/VREF1_3
V17
PR47B*
V19 PR47A*
W19
PR46B
W20 PR46A
W22
PR45B*
Y19 PR45A*
Y20
PR44B
T17
PR43B*
V20
PR44A
R16
PR43A*
U20
PR42B
V22 PR42A
U21
PR41B*
R17 PR41A*
R18
PR40B
P17
PR39B*
U22
PR40A
P16
PR39A*/RDQS39
T22
PR38B
T20 PR38A
T21
PR37B*
R19 PR37A*
P19
PR36B
N16
PR35B*
R20
PR36A
N17
PR35A*
R21
PR33B
R22 PR33A
P22
PR32B*
P20 PR32A*
P21
PR31B
N18
PR30B*
N22
PR31A
P18
PR30A*/RDQS30
M22
PR29B
N21 PR29A
M21
PR28B*
M16 PR28A*
M17
PR27B
M20
PR26B*/PCLKC3_0
L21
PR27A
M19
PR26A*/PCLKT3_0
K21
TDI
L20
VCCIO3
N19
VCCIO3
P15
VCCIO3
T18
VCCIO3
V21
PR24B/PCLKC2_0 K22
PR24A/PCLKT2_0 J22
PR23B* L18
PR23A* L19
PR22B K16
PR21B* J21
PR22A J16
PR21A*/RDQS21 H21
PR20B H22
PR20A G22
PR19B* L17
PR19A* K18
PR18B K17
PR17B* F22
PR18A J17
PR17A* G21
PR16B F21
PR16A F20
PR15B* J18
PR15A* J19
PR14B H17
PR13B* E22
PR14A H16
PR13A*/RDQS13 D22
PR12B C22
PR12A B22
PR11B* H19
PR11A* J20
PR10B F19
PR9B* G20
PR10A E19
PR9A* H20
PR8B C21
PR8A B21
PR7B* H18
PR7A* G17
PR6B G16
PR5B* D20
PR6A G15
PR5A* E20
PR4B C20
PR4A B20
PR3B* F17
PR3A* F18
PR2B/VREF2_2 F16
PR2A/VREF1_2 F15
VCCIO2 E21
VCCIO2 G18
VCCIO2 J15
VCCIO2 K19
RN9 22 741X083RN9 22 741X083
1
2
3
4
8
7
6
5
C179
0.1uF
0402
C179
0.1uF
0402
12
RN11 33 741X083RN11 33 741X083
1
2
3
4
8
7
6
5
C181
0.1uF
0402
C181
0.1uF
0402
12
C96
0.01uF
0402
C96
0.01uF
0402
RN22100 741X083RN22100 741X083
1
2
3
4
8
7
6
5
TP85TP85
RN34
33 741X083
RN34
33 741X083
1
2
3
4
8
7
6
5
RN28100 741X083RN28100 741X083
1
2
3
4
8
7
6
5
RN15 33 741X083RN15 33 741X083
1
2
3
4
8
7
6
5
J36B
1.8V DDR2 200-pin SO-DIMM Standard
J36B
1.8V DDR2 200-pin SO-DIMM Standard
VSS
41 VSS 42
DQ16
43 DQ20 44
DQ17
45 DQ21 46
VSS
47 VSS 48
DQS2#
49 n.c. 50
DQS2
51 DM2 52
VSS
53 VSS 54
DQ18
55 DQ22 56
DQ19
57 DQ23 58
VSS
59 VSS 60
DQ24
61 DQ28 62
DQ25
63 DQ29 64
VSS
65 VSS 66
DM3
67 DQS3# 68
n.c.
69 DQS3 70
VSS
71 VSS 72
DQ26
73 DQ30 74
DQ27
75 DQ31 76
VSS
77 VSS 78
CKE0
79 CKE1 80
VDD
81 VDD 82
n.c.
83 n.c. 84
NC/BA2
85 n.c. 86
VDD
87 VDD 88
A12
89 A11 90
A9
91 A7 92
A8
93 A6 94
VDD
95 VDD 96
A5
97 A4 98
A3
99 A2 100
A1
101 A0 102
VDD
103 VDD 104
A10/AP
105 BA1 106
BA0
107 RAS# 108
WE#
109 S0# 110
VDD
111 VDD 112
CAS#
113 ODT0 114
S1#
115 NC/A13 116
VDD
117 VDD 118
ODT1
119 n.c. 120
VSS
121 VSS 122
DQ32
123 DQ36 124
DQ33
125 DQ37 126
VSS
127 VSS 128
DQS4#
129 DM4 130
DQS4
131 VSS 132
VSS
133 DQ38 134
DQ34
135 DQ39 136
DQ35
137 VSS 138
VSS
139 DQ44 140
DQ40
141 DQ45 142
DQ41
143 VSS 144
VSS
145 DQS5# 146
DM5
147 DQS5 148
VSS
149 VSS 150
DQ42
151 DQ46 152
DQ43
153 DQ47 154
VSS
155 VSS 156
DQ48
157 DQ52 158
DQ49
159 DQ53 160
VSS
161 VSS 162
n.c.
163 CK1 164
VSS
165 CK1# 166
DQS6#
167 VSS 168
DQS6
169 DM6 170
VSS
171 VSS 172
DQ50
173 DQ54 174
DQ51
175 DQ55 176
VSS
177 VSS 178
DQ56
179 DQ60 180
DQ57
181 DQ61 182
VSS
183 VSS 184
DM7
185 DQS7# 186
VSS
187 DQS7 188
DQ58
189 VSS 190
DQ59
191 DQ62 192
VSS
193 DQ63 194
SDA
195 VSS 196
SCL
197 SA0 198
VDDSPD
199 SA1 200
RN6 22 741X083RN6 22 741X083
1
2
3
4
8
7
6
5
R199
33
0402R199
33
0402
C149
0.1uF
0402
C149
0.1uF
0402
12
TP86TP86
C177
0.1uF
0402
C177
0.1uF
0402
12
RN12 33 741X083RN12 33 741X083
1
2
3
4
8
7
6
5
RN14 33 741X083RN14 33 741X083
1
2
3
4
8
7
6
5
C14
10uF Ceramic X5R
0805
C14
10uF Ceramic X5R
0805
RN17 33 741X083RN17 33 741X083
1
2
3
4
8
7
6
5
RN122741X083 RN122741X083
1
2
3
4
8
7
6
5
TP80TP80
TP78TP78
R200
33
0402R200
33
0402
R197
33
0402R197
33
0402
RN31100 741X083RN31100 741X083
1
2
3
4
8
7
6
5
TP83TP83
C141
0.001uF
0402
C141
0.001uF
0402
TP81TP81
C124
0.1uF
0402
C124
0.1uF
0402
12
J36A
1.8V DDR2 200-pin SO-DIMM Standard
J36A
1.8V DDR2 200-pin SO-DIMM Standard
VREF
1VSS 2
VSS
3DQ4 4
DQ0
5DQ5 6
DQ1
7VSS 8
VSS
9DM0 10
DQS0#
11 VSS 12
DQS0
13 DQ6 14
VSS
15 DQ7 16
DQ2
17 VSS 18
DQ3
19 DQ12 20
VSS
21 DQ13 22
DQ8
23 VSS 24
DQ9
25 DM1 26
VSS
27 VSS 28
DQS1#
29 CK0 30
DQS1
31 CK0# 32
VSS
33 VSS 34
DQ10
35 DQ14 36
DQ11
37 DQ15 38
VSS
39 VSS 40
RN24100 741X083RN24100 741X083
1
2
3
4
8
7
6
5
RN38
33 741X083
RN38
33 741X083
1
2
3
4
8
7
6
5
RN322741X083 RN322741X083
1
2
3
4
8
7
6
5
C142
0.001uF
0402
C142
0.001uF
0402
12
C25
47uF Ceramic X5R
1206
C25
47uF Ceramic X5R
1206
RN21
100 741X083RN21
100 741X083
1
2
3
4
8
7
6
5
C148
0.01uF
0402
C148
0.01uF
0402
12
RN25
100 741X083RN25
100 741X083
1
2
3
4
8
7
6
5
RN18 33 741X083RN18 33 741X083
1
2
3
4
8
7
6
5
C182
0.01uF
0402
C182
0.01uF
0402
12
RN27100 741X083RN27100 741X083
1
2
3
4
8
7
6
5
C174
0.01uF
0402
C174
0.01uF
0402
12
C145
0.1uF
0402
C145
0.1uF
0402
12
RN33
33 741X083
RN33
33 741X083
1
2
3
4
8
7
6
5
C160
220uF
SizeD
C160
220uF
SizeD
12
RN20 33 741X083RN20 33 741X083
1
2
3
4
8
7
6
5
RN32100 741X083RN32100 741X083
1
2
3
4
8
7
6
5
RN5 22 741X083RN5 22 741X083
1
2
3
4
8
7
6
5
R198
33
0402R198
33
0402
RN8 33 741X083RN8 33 741X083
1
2
3
4
8
7
6
5
C176
0.01uF
0402
C176
0.01uF
0402
12
C122
0.1uF
0402
C122
0.1uF
0402
12
RN722741X083 RN722741X083
1
2
3
4
8
7
6
5
C161
0.1uF
0402
C161
0.1uF
0402
12
TP84TP84
RN40
33 741X083
RN40
33 741X083
1
2
3
4
8
7
6
5
RN2 22 741X083RN2 22 741X083
1
2
3
4
8
7
6
5
RN37
33 741X083
RN37
33 741X083
1
2
3
4
8
7
6
5
TP79TP79
TP87TP87
RN29
100 741X083RN29
100 741X083
1
2
3
4
8
7
6
5
RN16 33 741X083RN16 33 741X083
1
2
3
4
8
7
6
5
RN39
33 741X083
RN39
33 741X083
1
2
3
4
8
7
6
5
RN30
100 741X083RN30
100 741X083
1
2
3
4
8
7
6
5
TP82TP82
C162
0.1uF
0402
C162
0.1uF
0402
12
RN19 33 741X083RN19 33 741X083
1
2
3
4
8
7
6
5
RN36
33 741X083
RN36
33 741X083
1
2
3
4
8
7
6
5
RN26100 741X083RN26100 741X083
1
2
3
4
8
7
6
5
C175
0.1uF
0402
C175
0.1uF
0402
12
DDR2 SDRAM SO-DIMM
44
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 29.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
VCC_3. 3V
VCC_2. 5V VCC _ADJ
VCC_1. 8V
VCC_3. 3V
VCC_1. 2V
VCC_1. 8V
VCC_2. 5V
VCC_AD J
VCC_1. 2V
VCC_3. 3V VCC _1.2V VCC_1. 8V
VCC_2. 5V VCC _ADJ
VCC_1. 2V
VCC_3. 3V
CFG0
XP2_TD O
XP2_TC K
XP2_TM S
VCC_3.3V
VCC_3. 3V
TOE
VCC_3. 3V
VCC_2. 5V VCC _ADJ
VCC_1. 8V
VCC_AD J
VCC_2. 5V
VCC_1. 8V
VCC_1. 2V
VCC_3. 3V
VCCIO_ 0
CFG0
XP2_TD O
XP2_TC K
XP2_TM S
VCCIO_ 6
Title
Size Document Number Rev
Date: Sheet of
B
FPGA Power Pins
C
11 14
Title
Size Document Number Rev
Date: Sheet of
B
FPGA Power Pins
C
11 14
Title
Size Document Number Rev
Date: Sheet of
B
FPGA Power Pins
C
11 14
Lattice Semiconductor Corporation
[12]
[13]
[13]
[13]
[13]
GND Pins for Signal Probing
Bulk Capacitors
[8]
Compact Flash, PLL SMA I/O
[4]
[4,9]
[4,9]
[4,9]
[2]
Video TX/RX LVDS, High Speed SMA, IDC
C143
0.1uF
0402
C143
0.1uF
0402
12
TP36TP36
C78
10uF Ceramic X5R
0805
C78
10uF Ceramic X5R
0805
12
C196
10uF Ceramic X5R
0805
C196
10uF Ceramic X5R
0805
12
GND3
CON1
GND3
CON1
1
GND10
CON1
GND10
CON1
1
C92
0.01uF
0402
C92
0.01uF
0402
12
TP35TP35
C89
0.001uF
0402
C89
0.001uF
0402
12
C198
10uF Ceramic X5R
0805
C198
10uF Ceramic X5R
0805
12
C112
0.01uF
0402
C112
0.01uF
0402
12
C120
0.1uF
0402
C120
0.1uF
0402
12
GND8
CON1
GND8
CON1
1
J34
HEADER 3X2
J34
HEADER 3X2
2
4
6
1
3
5
TP22TP22
GND7
CON1
GND7
CON1
1
C115
0.01uF
0402
C115
0.01uF
0402
12
C114
0.001uF
0402
C114
0.001uF
0402
12
C173
10uF Ceramic X5R
0805
C173
10uF Ceramic X5R
0805
12
C83
10uF Ceramic X5R
0805
C83
10uF Ceramic X5R
0805
12
GND6
CON1
GND6
CON1
1
TP19TP19
TP34TP34
LFXP217-fpBGA484
U8E
LFXP217-fpBGA484
U8E
-30 or -40 device
AB21
NC
H8
-30 or -40 device
R15
NC
R8
-30 or -40 device
U19
-30 or -40 device
U17
-30 or -40 device
U18
VCC
N9
VCC
P10
VCC
J10
VCC
J11
VCC
J12
VCC
P11
VCC
P12
VCC
J13
VCC
K14
VCC
P13
VCC
K9
VCC
L14
VCC
L9
VCC
M14
VCC
M9
VCC
N14
VCCAUX
H11
VCCAUX
H12
VCCAUX
L15
VCCAUX
L8
VCCAUX
M15
VCCAUX
M8
VCCAUX
R11
VCCAUX
R12
TOE
L7
CFG0
N1
TMS
L22 TCK
L16 TDO
M18
VCCJ
H15
GND A1
GND A22
GND AA19
GND AA4
GND AB1
GND AB22
GND B19
GND B4
GND C10
GND C13
GND D16
GND D2
GND D21
GND D7
GND G19
GND G4
GND H10
GND H13
GND J14
GND J9
GND K10
GND K11
GND K12
GND K13
GND K15
GND K20
GND K3
GND K8
GND L10
GND L11
GND L12
GND L13
GND M10
GND M11
GND M12
GND M13
GND N10
GND N11
GND N12
GND N13
GND N15
GND N20
GND N3
GND N8
GND P14
GND P9
GND R10
GND R13
GND T19
GND T4
GND W16
GND W2
GND W21
GND W7
GND Y10
GND Y13
C121
0.1uF
0402
C121
0.1uF
0402
12
GND1
CON1
GND1
CON1
1
C178
10uF Ceramic X5R
0805
C178
10uF Ceramic X5R
0805
12
R16
10K 1%
R16
10K 1%
TP21TP21
GND2
CON1
GND2
CON1
1
C116
0.001uF
0402
C116
0.001uF
0402
12
TP29TP29
TP20TP20
GND4
CON1
GND4
CON1
1
C90
0.01uF
0402
C90
0.01uF
0402
12
C93
0.1uF
0402
C93
0.1uF
0402
12
C24
10uF Ceramic X5R
0805
C24
10uF Ceramic X5R
0805
12
C123
0.1uF
0402
C123
0.1uF
0402
12
C87
0.001uF
0402
C87
0.001uF
0402
12
C23
10uF Ceramic X5R
0805
C23
10uF Ceramic X5R
0805
12
C91
0.01uF
0402
C91
0.01uF
0402
12
C13
10uF Ceramic X5R
0805
C13
10uF Ceramic X5R
0805
12
J37
HEADER 3X2
J37
HEADER 3X2
2
4
6
1
3
5
C113
0.01uF
0402
C113
0.01uF
0402
12
C119
0.1uF
0402
C119
0.1uF
0402
12
GND5
CON1
GND5
CON1
1
GND9
CON1
GND9
CON1
1
C12
10uF Ceramic X5R
0805
C12
10uF Ceramic X5R
0805
12
FPGA Power Pins
45
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 30.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
VCC_IN
VCC_IN
PWR_GOOD_3.3V
PWR_GOOD_2.5V
PWR_GOOD_1.8V
PWR_GOOD_1.2V
PWR_GOOD_VREF
PWR_GOOD_VTT
ADJ_3.3V
ADJ_2.5V
ADJ_1.8V
ADJ_1.5V
ADJ_1.2V
VCC_3. 3V
I2C_SCL
DIS_1.2V
DIS_2.5V
VCC _3. 3VPW R_3 .3V_ 3A
PWR_3.3V_10A
PWR_3.3V_10A
I2C_SDA
VCC_3. 3V
S3S5_1.8V
VCC_AD J
VCC_2. 5V
VCC_1. 8V
VCC_1. 2V
VREF
VTT
VCC_5. 0V
EN_5.0VEN_ADJ
DIS_2.5V
DIS_1.2V
TDISEL
PW R_T CK
PW R_T DO
PW R_T MS
PWR_ATDI
PW R_T DI
I2C_SDA
I2C_SCL
PWR_3.3V_10A
VCC_3. 3V
PCI_3.3V
PCI_GND
Title
Size Document Number Rev
Date: Sheet of
B
Power_1
C
12 14
Title
Size Document Number Rev
Date: Sheet of
B
Power_1
C
12 14
Title
Size Document Number Rev
Date: Sheet of
B
Power_1
C
12 14
Lattice Semiconductor Corporation
On Off
3.3V On/Off Switch
C2012X5ROJ475M
RAPC712
2.5mm Pin, (+)
5.5mm Barrel, (-)
DC-DC converter traces >= 10mil
+5 to +28VDC
Power Input
+3.3VDC
+5~28V +5.0V, 1A
+3.3V, 3A
+2.5V, 3A
+1.8V, 10A
+1.2V, 3A
ADJ, 1.5A
+3.3V
10A
Power
Input
ADJ Voltage Indicators
VTT Power Good
VREF Power Good
1.2V Power Good
1.8V Power Good
2.5V Power Good
3.3V Power Good
1.2V
1.5V
1.8V
2.5V
3.3V
ON
ispPAC
MOSFET
[13] [13] [13]
[13]
[13]
Gate Source
Drain
SOT-23
Source
Drain
Gate
[4]
[4]
[4]
[4]
[4]
[4]
[2]
[2]
[4,13]
[13]
[13]
[13]
[13]
[13]
[13]
[2,3,4,5,6,7,11]
[5]
[5]
[5]
HVOUT1 from ispPAC is disabled during programming so
jumper J52 must be added during chained programming
of the XP2 and ispPAC
R260 330R260 330
R268
10K
R268
10K
C218
0.1uF
0402
C218
0.1uF
0402
D5
LED 0603 Green
D5
LED 0603 Green
TP96TP96
C52
10uF Ceramic X5R
0805
C52
10uF Ceramic X5R
0805
12
D8
LED 0603 Green
D8
LED 0603 Green
C55
0.47uF Ceramic X5R
0603
C55
0.47uF Ceramic X5R
0603
D14
LED 0603 Green
D14
LED 0603 Green
C50
470uF KEMET T510X477K006AS
SizeD
C50
470uF KEMET T510X477K006AS
SizeD
12
R249
10K
R249
10K
R270
4.7K
R270
4.7K
D11
LED 0603 Green
D11
LED 0603 Green
SW9
EG1257
SW9
EG1257
2
1 3
Q12
MMBT2222ALT
SOT-23
Q12
MMBT2222ALT
SOT-23
R291 10
0402
R291 10
0402
J53
BANANA JAC K
J53
BANANA JAC K
S1
R130
10K
0402
R130
10K
0402
F5
3A FUSE Littelfuse 154003
383milX198mil
F5
3A FUSE Littelfuse 154003
383milX198mil
12
J52
HEADER 2
J52
HEADER 2
1
2
C59
2200pF
0402
C59
2200pF
0402
TP93TP93
R124
4.7K
R124
4.7K
Q8
Si4840DY
SO-8
Q8
Si4840DY
SO-8
5
4
1
6
23
7
8
R253 330R253 330
R251 330R251 330
TP90TP90
R263
10K
R263
10K
R258 330R258 330
D13
LED 0603 Green
D13
LED 0603 Green
TP92TP92
R255 330R255 330
SW3
SW PUSHBUTTON Panasonic EVQP2H02B
SW3
SW PUSHBUTTON Panasonic EVQP2H02B
R269
4.7K
R269
4.7K
C221
4.7uF Ceramic X5R
0603
C221
4.7uF Ceramic X5R
0603
12
D6
LED 0603 Green
D6
LED 0603 Green
R133
10K
0402
R133
10K
0402
C220
0.1uF
0402
C220
0.1uF
0402
R127
100
R127
100
TP91TP91
R131 10
0402
R131 10
0402
D30
1N5820
267-05
D30
1N5820
267-05
D9
LED 0603 Green
D9
LED 0603 Green
TP97TP97
D12
LED 0603 Green
D12
LED 0603 Green
Q9
Si4840DY
SO-8
Q9
Si4840DY
SO-8
5
4
1
6
23
7
8
J50
BANANA JAC K
J50
BANANA JAC K
S
1
R265
4.7K
R265
4.7K
TP98TP98
R274
4.7K
R274
4.7K
C217
10uF Ceramic X5R
0805
C217
10uF Ceramic X5R
0805
12
R257 330R257 330TP94TP94
TP101TP101
R259 330R259 330
C215
0.1uF
0402
C215
0.1uF
0402
Q13
MMBT2222ALT
SOT-23
Q13
MMBT2222ALT
SOT-23
J51
BANANA JAC K
J51
BANANA JAC K
S1
TP95TP95
J54
PW R JA CK
J54
PW R JA CK
3
2
1
R256 330R256 330TP106TP106
R252 330R252 330
R267
10K
R267
10K
D23
MBRS340
403-03
D23
MBRS340
403-03
TP100TP100
TP103TP103
R264
4.7K
R264
4.7K
D7
LED 0603 Green
D7
LED 0603 Green
R273
4.7K
R273
4.7K
D15
LED 0603 Green
D15
LED 0603 Green
D26
1N5819
59-10
D26
1N5819
59-10
U21
LTC1775CS
U21
LTC1775CS
SGND
6
Run/SS
3TG 13
SW 14
TK 15
EXTVcc
1
Vosence
7
Ith
5
Vprog
8
FCB
4
PGND
9
Boost 12
INTVcc 11
BG 10
Vin 16
R266
10K
R266
10K
TP102TP102
C216
0.1uF
0402
C216
0.1uF
0402
R254 330R254 330
R262
10K
R262
10K
Q11
MMBT2222ALT
SOT-23
Q11
MMBT2222ALT
SOT-23
D10
LED 0603 Green
D10
LED 0603 Green
TP99TP99
SW2
SW DIP-8 CTS 194-8MST
SW2
SW DIP-8 CTS 194-8MST
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
TP104TP104
C58
100uF AVX Tantalum TPSE107K020R0150
SizeE
C58
100uF AVX Tantalum TPSE107K020R0150
SizeE
12
R123
4.7K
R123
4.7K
TP105TP105
L6
10uH Coilcraft DO5010H-103ML
15.24mmX18.54mm
L6
10uH Coilcraft DO5010H-103ML
15.24mmX18.54mm
1 2
R261 330R261 330
ispPAC
Lattice
U17
POW R1 220 AT8
ispPAC
Lattice
U17
POW R1 220 AT8
OUT20 25
OUT19 24
OUT18 23
OUT17 21
OUT16 20
OUT15 19
OUT14 18
OUT13 17
OUT12 16
OUT11 15
OUT10 14
OUT9 12
OUT8 11
OUT7 10
OUT6 9
SMBA/OUT5 8
HVOUT4 40
HVOUT3 42
HVOUT2 85
HVOUT1 86
TRIM8 73
TRIM7 74
TRIM6 75
TRIM5 79
TRIM4 80
TRIM3 82
TRIM2 83
TRIM1 84
VMON1+
47
VMON2+
50
VMON3+
52
VMON4+
54
VMON5+
56
VMON6+
58
VMON7+
62
VMON8+
64
VMON9+
66
VMON10+
68
VMON11+
70
VMON12+
72
VMON1GS
46
VMON2GS
48
VMON3GS
51
VMON4GS
53
VMON5GS
55
VMON6GS
57
VMON7GS
61
VMON8GS
63
VMON9GS
65
VMON10GS
67
VMON11GS
69
VMON12GS
71
IN6 7
IN5 6
IN4 4
IN3 2
IN2 1
IN1 97
GNDD
3
GNDD
22
GNDD
36
GNDD
43
GNDD
88
GNDD
98
GNDA
87
GNDA
45
VCCD
94 VCCD
38 VCCD
13
VCCA
60
VCCPROG
39
VCCINP 5
VCCJ 33
TDO 34
TDI 31
ATDI 30
TMS 28
TCK 37
TDISEL 32
SCL 92
SDA 93
VPS0 89
VPS1 90
MCLK 96
PLDCLK 95
RESETb 91
R250
4.7K
R250
4.7K
R290
10K
0402
R290
10K
0402
C53
470uF KEMET T510X477K006AS
SizeD
C53
470uF KEMET T510X477K006AS
SizeD
12
R271
4.7K
R271
4.7K
C56
0.001uF
0402
C56
0.001uF
0402
Q7
NTR4501N 20V 3.2A
SOT-23
Q7
NTR4501N 20V 3.2A
SOT-23
Power 1
46
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 31.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
GATE_1.2
VCC_1. 2V
VCC_2. 5V
DRAIN_2.5
PW R_A DJ
PWR_3.3V_10A
GATE_2.5
DRAIN_2.5
PW R_3 .3V_ 10A
GATE_1.2
DRAIN_1.2
PW R_3 .3V_ 10A
GATE_2.5
VCC_AD J
VREF
GATE_1.8H
LL_1.8
GATE_1.8L
VBST
CS_1.8
VCC_5. 0V
VCC_1. 8V
PW R_1 .8V
PW R_3 .3V_ 10A
PW R_3 .3V_ 10A
PWR_3.3V_10A
VCC_5.0V
VTT
DRAIN_1.2 PWR _1. 2V
PGOOD
PW R_3 .3V_ 10A
PW R_2 .5V
VCC_1. 2V
VCC_2. 5V
PWR_3.3V_10A
VTT
VREF
VCC_1. 8V
S3S5_1.8V
DIS_2.5V
DIS_1.2V
EN_ADJ
VCC_AD J
EN_5.0V
VCC_5. 0V
Title
Size Document Number Rev
Date: Sheet of
B
Power_2
C
13 14
Title
Size Document Number Rev
Date: Sheet of
B
Power_2
C
13 14
Title
Size Document Number Rev
Date: Sheet of
B
Power_2
C
13 14
[12]
Lattice Semiconductor Corporation
Another P-Channel MOSFET option
in SOT23 package
Another P-Channel MOSFET option
in SOT23 package
+2.5VDC
+1.2VDC
S0
S3
S4/S5
HI HI
HILO
LO LO
On
Off(Hi-Z)
OnOn
On On
Off(Discharge) Off(Discharge) Off(Discharge)
S3 S5STATE VDDQ VTTREF VTT
+1.8VDC
VCC_ADJ
(Adjustable between 1.2V to +3.3V)
+5.0VDC
[7,12]
P-Channel
MOSFET
MOSFET
P-Channel
DRAIN
DRAIN
SOURCE
SOURCE
MOSFET
N-Channel
MOSFET
N-Channel
[12]
[12]
[12]
[12]
[12]
[11,12]
[2,5,6,9,11,12]
[2,8,10,11,12]
[8,9,10,11,12]
[10]
[10]
Q2
Si5447DC
1206-8
Q2
Si5447DC
1206-8
D1
D2
D3
G4
S
5
D
6
D
7
D
8
C33
10uF Ceramic X5R
0805
C33
10uF Ceramic X5R
0805
12
R116 10R116 10
J48
BANANA JAC K
J48
BANANA JAC K
S
1
C38
2.2uF Ceramic X5R
0603
C38
2.2uF Ceramic X5R
0603
C207
10uF Ceramic X5R
0805
C207
10uF Ceramic X5R
0805
12
C41
10uF Ceramic X5R
0805
C41
10uF Ceramic X5R
0805
12
D4
B320A Diodes Inc.
SMA_PKG
D4
B320A Diodes Inc.
SMA_PKG
F4
3A FUSE Littelfuse 154003
383milX198mil
F4
3A FUSE Littelfuse 154003
383milX198mil
1 2
C31
4.7pF
0402
C31
4.7pF
0402
12
U12
TPS64203DVB
U12
TPS64203DVB
/EN
1
GND
2
FB
3ISENSE 4
VIN 5
SW 6
R117
10K
R117
10K
C47
10uF Ceramic X5R
0805
C47
10uF Ceramic X5R
0805
12
D16
B320A Diodes Inc.
SMA_PKG
D16
B320A Diodes Inc.
SMA_PKG
R115 39K 1% YAGEO 0402R115 39K 1% YAGEO 0402
C208
0.1uF
0402
C208
0.1uF
0402
Q1
Si2323DS Vishay Siliconix SOT23
SOT-23
Q1
Si2323DS Vishay Siliconix SOT23
SOT-23
G
D S
F2
1.5A FUSE Littelfuse 15401.5
383milX198mil
F2
1.5A FUSE Littelfuse 15401.5
383milX198mil
1 2
R125 10R125 10
R118 5.1KR118 5.1K
C40 10uF Ceramic X5R
0805
C40 10uF Ceramic X5R
0805
C45
0.1uF
0402
C45
0.1uF
0402
12
J47 BANANA JACKJ47 BANANA JACK
S1
C36
10uF Ceramic X5R
0805
C36
10uF Ceramic X5R
0805
12
Q6
Si5447DC
1206-8
Q6
Si5447DC
1206-8
D1
D2
D3
G4
S
5
D
6
D
7
D
8
C32
10uF Ceramic X5R
0805
C32
10uF Ceramic X5R
0805
12
C44
0.01uF
0402
C44
0.01uF
0402
12
R111
42.2K 1% YAGEO 0402
R111
42.2K 1% YAGEO 0402
R279
2.0M 1% YAGEO 0603
R279
2.0M 1% YAGEO 0603
C43
1800p
0402
C43
1800p
0402
12
C29
1800p
0402
C29
1800p
0402
12
L2
6.2uH Sumida CDRH6D38-6R2
L2
6.2uH Sumida CDRH6D38-6R2
1 2
R281
10K
R281
10K
U14
TPS51116PWP
U14
TPS51116PWP
VTTGND
3
VTTSNS
4
GND
5
MODE
6
VTTREF
7
COMP
8
PGND 16
CS 15
V5IN 14
PGOOD 13
VTT
2VLDOIN
1VBST 20
DRVH 19
LL 18
DRVL 17
VDDQSSNS
9
VDDQSET
10 S3 11
S5 12
C211
150uF Panasonic SP-CAP EEF-HE0J151R
SizeD
C211
150uF Panasonic SP-CAP EEF-HE0J151R
SizeD
12
U13 TPS78601KTTU13 TPS78601KTT
VIN
2
EN
1
GND
3
VOUT 4
FB 5
R280
221K 1% YAGEO 0603
R280
221K 1% YAGEO 0603
Q4
IRF7821
SO-8
Q4
IRF7821
SO-8
5
4
1
6
23
7
8
C35
4.7uF Ceramic X5R
0603
C35
4.7uF Ceramic X5R
0603
C213 0.1uF
0402
C213 0.1uF
0402
C26
10uF Ceramic X5R
0805
C26
10uF Ceramic X5R
0805
12
R120
30.1K 1% YAGEO 0402
R120
30.1K 1% YAGEO 0402
Q3
IRF7832
SO-8
Q3
IRF7832
SO-8
5
4
1
6
2
3
78
C34
0.033uF Ceramic
0402
C34
0.033uF Ceramic
0402
C54
2.2uF Ceramic X5R
0603
C54
2.2uF Ceramic X5R
0603
C51 220uF AVX Tantalum TPSD227K010R0150
SizeD
C51 220uF AVX Tantalum TPSD227K010R0150
SizeD
1 2
J41
BANANA JACK
J41
BANANA JACK
S
1
C42
10uF Ceramic X5R
0805
C42
10uF Ceramic X5R
0805
12
C46 1uF Ceramic X5R
0402
C46 1uF Ceramic X5R
0402
1 2
F3
10A FUSE Littelfuse 154010
383milX198mil
F3
10A FUSE Littelfuse 154010
383milX198mil
12
R126
100
R126
100
Q5
Si2323DS Vishay Siliconix SOT23
SOT-23
Q5
Si2323DS Vishay Siliconix SOT23
SOT-23
G
D S
R122
10K
R122
10K
U16
TPS64203DVB
U16
TPS64203DVB
/EN
1
GND
2
FB
3ISENSE 4
VIN 5
SW 6
J46
BANANA JACK
J46
BANANA JACK
S
1
C30
100uF Parasonic SP-CAP EEF-HD0J101R
SizeD
C30
100uF Parasonic SP-CAP EEF-HD0J101R
SizeD
12
C39
4.7uF Ceramic X5R
0603
C39
4.7uF Ceramic X5R
0603
L4
6.2uH Sumida CDRH6D38-6R2
L4
6.2uH Sumida CDRH6D38-6R2
1 2
R114
10K
R114
10K
U19
TPS61030PWP
U19
TPS61030PWP
SW
1
SW
2
PGND
3
PGND
4
PGND
5
VBAT
6
LBI
7
SYNC
8EN 9
LBO 10
GND 11
FB 12
VOUT 13
VOUT 14
VOUT 15
NC 16
C212
150uF Panasonic SP-CAP EEF-HE0J151R
SizeD
C212
150uF Panasonic SP-CAP EEF-HE0J151R
SizeD
1 2
C27 1uF Ceramic X5R
0402
C27 1uF Ceramic X5R
0402
12
R121
10K
R121
10K
C37 10uF Ceramic X5R
0805
C37 10uF Ceramic X5R
0805
R110
100
R110
100
VR3
50K POT Murata PV36Y503C01
PV37W
VR3
50K POT Murata PV36Y503C01
PV37W
1 3
2
R119 100KR119 100K
F1
3A FUSE Littelfuse 154003
383milX198mil
F1
3A FUSE Littelfuse 154003
383milX198mil
1 2
L3
1.0uH Vishay IHLP-5050FD-ER-1R0-M-01
L3
1.0uH Vishay IHLP-5050FD-ER-1R0-M-01
12
C48
100uF Parasonic SP-CAP EEF-HD0J101R
SizeD
C48
100uF Parasonic SP-CAP EEF-HD0J101R
SizeD
12
L5
6.8uH Sumida CDRH124-6R8
L5
6.8uH Sumida CDRH124-6R8
1 2
C49
10uF Ceramic X5R
0805
C49
10uF Ceramic X5R
0805
12
Power 2
47
LatticeXP2 Advanced
Lattice Semiconductor Evaluation Board User’s Guide
Figure 32.
5
5
4
4
3
3
2
2
1
1
D D
C C
B B
A A
Title
Size Document Number Rev
Date: Sheet of
B
Placement & Dimension (6.0"x12.0")
C
14 14
Title
Size Document Number Rev
Date: Sheet of
B
Placement & Dimension (6.0"x12.0")
C
14 14
Title
Size Document Number Rev
Date: Sheet of
B
Placement & Dimension (6.0"x12.0")
C
14 14
Lattice Semiconductor Corporation
Placement and Dimension (6” x 12”)
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Lattice:
LFXP2-17E-H-EVN