COMPLEMENTARY SILICON HIGH-POWER TRANSISTORS

...FOR GENERAL-PURPOSE POWER AMPLIFIER AND SWITCHING APPLICATIONS

- 25 A Collector Current
- Low Leskage Current - ICEO = $1.0 \mathrm{~mA} @ 30$ and 60 V
- Excellent DC Gain - hfe = 40 Typ @ 15 A
- High Current Gain Bandwidth Product - \mid hfel $=3.0 \mathrm{~min} @ \mathrm{I}_{\mathrm{C}}=$ $1.0 \mathrm{~A}, \mathbf{f}=1.0 \mathrm{MHz}$
maximum ratings

Pating	Symbol	TIP35A TIP35A	T7P35B T1P3EB	nPISC Tipsec	Unit
Collector-Emitter Voltage	$V_{\text {CEO }}$	60 V	80 V	100 V	Vde
Collector-Base Voitage	$V_{C B}$	60 V	80 V	100 V	Vde
Emiter-Base Voltage	$V_{\text {EB }}$		5.0		Vde
Collector Current - Continuous Peak (1)	IC		$\begin{array}{r} 25 \\ 40 \\ \hline \end{array}$		Adc
Base Current - Continuous	18		5.0		Adc
Total Power Diasipation (3) $T_{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD		$\begin{aligned} & 125 \\ & 1.0 \end{aligned}$		Watts W/C
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathbf{J}, \mathrm{T}} \mathrm{stg}$		65 to +15		${ }^{\circ} \mathrm{C}$
Unclamped Inductive Load	EsB		90		mJ
THERMAL CHARACTERISTICS					
Chareeteristic		Symbol		Max	Unit
Thermal Resistance, Junction to Caso		$\mathrm{R}_{\text {AIC }}$		1.0	${ }^{\text {cow }}$
Junction-To-Freo-Air Thermal Resistance		$\mathrm{R}_{\text {OLA }}$		35.7	*WW

(1) Pulse Test: Puise Width $=10 \mathrm{~ms}$, Duty Cycle $\leqslant 10 \%$,

25 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS

MECHANICAL OUTLINE

ELECTRICAL CHARACTERISTICS (T $\mathbf{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
$\begin{array}{ll} \text { Collector-Emitter Sustaining Voltage (1) } \\ \left(\mathrm{IC}=30 \mathrm{~mA}, \mathrm{IB}_{\mathrm{B}}=0\right) & \text { TIP35A. TIP36A } \\ & \text { TIP35B, TIP36B } \\ & \text { TIP35C. TIP36C } \end{array}$	VCEO(sus)	$\begin{gathered} 60 \\ 80 \\ 100 \\ \hline \end{gathered}$	-	Vdc
$\begin{array}{ll} \hline \text { Collector-Emitter Cutoff Current } \\ \\ \left.V_{C E}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right) & \text { TIP35A, TIP36A } \\ \left(V_{C E}=60 \mathrm{~V}, I_{\mathrm{B}}=0\right) & \text { TIP35B. TIP35C. TIP36B. TIP36C } \\ \hline \end{array}$	'CEO	-	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$m \mathrm{~A}$
Collector-Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=\right.$ Rated $\left.\mathrm{V}_{\mathrm{CE}} . \mathrm{V}_{\mathrm{EB}}=0\right)$	ICES	-	0.7	mA
Emitter-Bess Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	lebo	-	1.0	mA

ON CHARACTERISTICS (1)

DC Current Gain $\begin{aligned} & \left({ }^{(} C=1.5 \mathrm{~A}, \mathrm{~V}_{C E}=4.0 \mathrm{~V}\right) \\ & \left(\mathrm{IC}=15 \mathrm{~A}, V_{C E}=4.0 \mathrm{~V}\right. \end{aligned}$	$h_{\text {FE }}$	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	$\overline{75}$	-
Collector-Emitter Saturation Voltage $\begin{aligned} & \left(I_{C}=15 \mathrm{~A}, I_{\mathrm{B}}=1.5 \mathrm{~A}\right) \\ & \left(I_{C}=25 \mathrm{~A}, I_{\mathrm{B}}=5.0 \mathrm{~A}\right) \end{aligned}$	VCE(sat)	-	$\begin{aligned} & 1.8 \\ & 4.0 \end{aligned}$	Vdc
Base-Emitter On Voltage $\begin{aligned} & \left(I_{C}=15 \mathrm{~A}, V_{C E}=4.0 \mathrm{~V}\right) \\ & \left(I_{C}=25 \mathrm{~A}, V_{C E}=4.0 \mathrm{~V}\right) \end{aligned}$	VBE(on)	-	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS				
Small-Signal Current Gain $\left(I_{C}=1.0 \mathrm{~A}, V_{C E}=10 \mathrm{~V}, f=1.0 \mathrm{kHz}\right)$	$h_{\text {fe }}$	25	-	-
Current-Gain-Bandwidth Product $\left.{ }^{(I)}=1.0 \mathrm{~A} \cdot \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, f=1.0 \mathrm{MHz}\right)$	$\mathrm{I}^{\text {T }}$	3.0	-	MHz

(1) Pulse Test: Pulse Wiath $=300 \mu \mathrm{~s}$, Duty Cycle $\leqslant 2.0 \%$.

FIGURE 2 - SWITCHING TIME EQUIVALENT
TEST CIRCUITS

NEW ENGLAND SEMICONDUCTOR

6 Lake Street	Lawrence, MA	01841
1-800-446-1158 $/$ (978) 794-1666 / FAX: (978) 689-0803		

T4-4.8-860-022 REV: --

