DATA SHEET

 *

AC series
5\%, I\%
sizes 0402/0603/0805/I206/
|210/|2|8/20|0/25|2
RoHS compliant \& Halogen free

YACEO
Phicomp

SCOPE

This specification describes AC0402 to AC25I2 chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

- All general purpose applications
- Car electronics, industrial application

FEATURES

- Comply with AEC-Q200 standard
- Superior resistance against sulfur containing atmosphere
- MSL class: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
- Products with lead-free terminations meet RoHS requirements
- Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- Save PCB space
- The resistors are 100% performed by automatic optical inspection prior to taping.

ORDERNG INFORMAJION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AC XXXX X X XX XXXX L
(1) (2) (3) (4) (5) (6) (7)
(I) SIZE

0402 / 0603 / 0805 / /206/ $210 / 1218 / 2010 / 2512$
(2) TOLERANCE
$F= \pm 1 \%$
$\mathrm{J}= \pm 5 \%$ (for Jumper ordering, use code of J)
(3) PACKAGING TYPE
$R=$ Paper/PE taping reel
$\mathrm{K}=$ Embossed taping ree
(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
(5) TAPING REEL
$07=7$ inch dia. Reel $\quad 10=10$ inch dia. Reel
$13=13$ inch dia. Reel $\quad 7 \mathrm{D}=7$ inch dia. Reel with double quantity
(6) RESISTANCE VALUE
1Ω to $10 \mathrm{M} \Omega$
There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g.I K2, not IK20.
Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".
(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Resistance rule of global part number

Resistance coding rule	Example
$\begin{aligned} & \text { XRXX } \\ & (1 \text { to } 9.76 \Omega) \end{aligned}$	$\begin{array}{r} 1 \mathrm{R}=1 \Omega \\ 1 \mathrm{R} 5=1.5 \Omega \\ 9 \mathrm{R} 76=9.76 \Omega \end{array}$
$\begin{aligned} & \text { XXRX } \\ & (10 \text { to } 97.6 \Omega) \end{aligned}$	$\begin{array}{r} 10 R=10 \Omega \\ 97 R 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & (100 \text { to } 976 \Omega) \end{aligned}$	$\begin{aligned} & 100 R=100 \Omega \\ & 976 R=976 \Omega \end{aligned}$
$\begin{aligned} & \text { XKXX } \\ & \text { (I to } 9.76 \mathrm{~K} \Omega \text {) } \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \mathrm{~K}=1,000 \Omega \\ 9 \mathrm{~K} 76=9760 \Omega \end{array}$
XMXX (I to $9.76 \mathrm{M} \Omega$)	$\begin{array}{r} \text { IM }=1,000,000 \Omega \\ 9 \text { M76 }=9,760,000 \Omega \end{array}$
$\begin{aligned} & \text { XXMX } \\ & (10 \mathrm{M} \Omega) \\ & \hline \end{aligned}$	$10 M=10,000,000 \Omega$

Ordering example

The ordering code for an AC0402 chip resistor, value $100 \mathrm{~K} \Omega$ with $\pm \mathrm{I} \%$ tolerance, supplied in 7 -inch tape reel is: AC0402FR-07IO0KL.

NOTE
I. All our RSMD products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process".
2. On customized label, "LFP" or specific symbol can be printed.
3. AC series with $\pm 0.5 \%$ tolerance is also available. For further information, please contact sales.

Fig. 1

AC0603 / AC0805 / ACI206 / ACI2I0 / AC20I0 / AC25I2

$1 \mathrm{l} \exists$
 E-24 series: 3 digits, $\pm 5 \%$

First two digits for significant figure and 3 rd digit for number of zeros
Fig. 2 Value $=10 \mathrm{~K} \Omega$

AC0603

2님
Fig. 3
Value $=24 \Omega$
|[] E-96 series: 3 digits, $\pm 1 \%$
First two digits for E-96 marking rule and 3rd letter for number of zeros
Fig. 4 Value $=12.4 \mathrm{~K} \Omega$

AC0805 / ACI206 / ACI210 / AC2010 / AC25I2

102
Fig. 5 Value $=10 \mathrm{~K} \Omega$

E-24 series: 3 digits, $\pm 1 \%$
One short bar under marking letter

Both E-24 and E-96 series: 4 digits, $\pm 1 \%$
First three digits for significant figure and 4th digit for number of zeros

ACl 218

Fig. 6 Value $=10 \mathrm{~K} \Omega$

Fig. 7 Value $=10 \mathrm{~K} \Omega$

E-24 series: 3 digits, $\pm 5 \%$
First two digits for significant figure and 3rd digit for number of zeros

Both E-24 and E-96 series: 4 digits, $\pm 1 \%$
First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please refer to data sheet "Chip resistors marking". Marking of AC series is the same as RC series.

CONSTRUCTION

The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations ($\mathrm{Ni} /$ matte tin) are added, as shown in Fig.8.

OUTLINES

Fig. 8 Chip resistor outlines

DJMENSIONS

Table I For outlines, please refer to Fig. 9

TYPE	$\mathrm{L}(\mathrm{mm})$	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{l}_{1}(\mathrm{~mm})$	$\mathrm{I}_{2}(\mathrm{~mm})$
AC0402	1.00 ± 0.05	0.50 ± 0.05	0.32 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
AC0603	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
AC0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
ACI206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
ACI210	3.10 ± 0.10	2.60 ± 0.15	0.50 ± 0.10	0.45 ± 0.15	0.50 ± 0.20
ACI218	3.10 ± 0.10	4.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
AC2010	5.00 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.55 ± 0.15	0.50 ± 0.20
AC2512	6.35 ± 0.10	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.50 ± 0.20

For dimension, please refer to Table I

ELECTRJCAL CHARACTERISTJCS

-Table 2

TYPE	RESISTANCE RANGE	CHARACTERISTICS					
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance	Jumper Criteria
AC0402			50 V	100 V	100 V		Rated Current IA Max. Current 2A
AC0603			50 V	100 V	100 V		Rated Current IA Max. Current 2A
AC0805			150 V	300 V	300 V		$\begin{array}{ll} \text { Rated Current } & \text { 2A } \\ \text { Max. Current } & 5 A \end{array}$
ACI206	5\% (E24), I\% (E24/E96)	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	200 V	400 V	500 V	$\begin{array}{r} \text { I } \Omega \leq R \leq 10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current IOA
ACl2IO	Jumper $<0.05 \Omega$		200 V	500 V	500 V	$\begin{aligned} 10 \Omega & <R \leq 10 \mathrm{M} \Omega, \\ & \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	Rated Current 2A Max. Current IOA
ACl218			200 V	500 V	500 V		Rated Current 6A Max. Current IOA
AC20IO			200 V	500 V	500 V		Rated Current 2A Max. Current IOA
AC25I2			200 V	500 V	500 V		Rated Current 2A Max. Current IOA

FOOTPRNT AND SOLDERING PROPULES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING @UANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL	AC0402	AC0603	AC0805	ACI206	ACI2I0	ACI2I8	AC20I0	AC25I2
	DIMENSION								

NOTE

I. For paper/PE/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$:
AC0402=1/I6 W (0.0625W)
AC0603=1/10 W (0.1W)
AC0805=1/8 W (0.125W)
ACI206=I/4 W (0.25W)
ACI2 $10=1 / 2 \mathrm{~W}(0.5 \mathrm{~W})$
ACI218=1 W
AC2010=3/4 W (0.75W)
AC25I2=I W

Fig. I0 Maximum dissipation ($P_{\max }$) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

Rated voltage

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$
V=\sqrt{ }(P \times R)
$$

Or Maximum working voltage whichever is less
Where
$V=$ Continuous rated DC or AC (rms) working voltage (V)
P = Rated power (W)
$R=$ Resistance value (Ω)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature	AEC-Q200 Test 3	1,000 hours at $T_{A}=125^{\circ} \mathrm{C}$, unpowered	$\pm(1.0 \%+0.05 \Omega)$
Exposure	MIL-STD-202 Method 108		$<50 \mathrm{~m} \Omega$ for Jumper

Moisture	AEC-Q200 Test 6	Each temperature / humidity cycle is defined at	$\pm(0.5 \%+0.05 \Omega)$ for 1% tol.
Resistance	MIL-STD-202 Method I06	8 hours (method 106F), 3 cycles / 24 hours for	$\pm(2.0 \%+0.05 \Omega)$ for 5% tol.
		$7 \mathrm{a} \& 7 \mathrm{~b}$, unpowered	$<100 \mathrm{~m} \Omega$ for Jumper
		Parts mounted on test-boards, without condensation on parts	

Biased	AEC-Q200 Test 7	1,000 hours; $85{ }^{\circ} \mathrm{C} / 85 \%$ RH	$\pm(1.0 \%+0.05 \Omega)$
Humidity	MIL-STD-202 Method 103	10% of operating power	$<100 \mathrm{~m} \Omega$ for Jumper
		Measurement at 24 ± 4 hours after test conclusion.	

Operational Life	AEC-Q200 Test 8	1,000 hours at $125^{\circ} \mathrm{C}$, derated voltage applied for	$\pm(1.0 \%+0.05 \Omega)$
	MIL-STD-202 Method 108	1.5 hours on, 0.5 hour off, still-air required	$<100 \mathrm{~m} \Omega$ for Jumper

Resistance to	AEC-Q200 Test I5	Condition B, no pre-heat of samples	$\pm(0.5 \%+0.05 \Omega)$ for 1% tol.
Soldering Heat	MIL-STD-202 Method 210	Lead-free solder, $260 \pm 5^{\circ} \mathrm{C}, 10 \pm \mid$ seconds immersion time	$\pm(1.0 \%+0.05 \Omega)$ for 5% tol.
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	No visible damage

Thermal Shock	AEC-Q200 Test 16	$-55 /+125^{\circ} \mathrm{C}$	$\pm(1.0 \%+0.05 \Omega)$
	MIL-STD-202 Method 107	Number of cycles is 300. Devices mounted	$<50 \mathrm{~m} \Omega$ for Jumper
	Maximum transfer time is 20 seconds.		
	Dwell time is 15 minutes. Air - Air		

ESD	AEC-Q200 Test I7	Human Body Model,	$\pm(3.0 \%+0.05 \Omega)$
	AEC-Q200-002	I pos. + I neg. discharges 0402/0603: I KV,	$<50 \mathrm{~m} \Omega$ for Jumper
	0805 and above: 2 KV		

Solderability

- Wetting

AEC-Q200 Test I8
J-STD-002

Electrical Test not required Magnification 50X SMD conditions:
(a) Method B , aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat, dipping at $235 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds.
(b) Method B, steam aging 8 hours, dipping at $215 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds.
(c) Method D, steam aging 8 hours, dipping at $260 \pm 3^{\circ} \mathrm{C}$ for 7 ± 0.5 seconds.
$260 \pm 3^{\circ} \mathrm{C}$ for 7 ± 0.5 seconds.

Reliramis

Well tinned ($\geq 95 \%$ covered)
No visible damage

Board Flex	AEC-Q200 Test 21	Chips mounted on a 90 mm glass epoxy resin	$\pm(1.0 \%+0.05 \Omega)$
	AEC-Q200-005	PCB (FR4)	$<50 \mathrm{~m} \Omega$ for Jumper
		Bending for 0402: 5 mm	
		0603/0805: 3 mm	
		1206 and above: 2 mm	
		Holding time: minimum 60 seconds	

Temperature	IEC 60115-\| 4.8	At $+25 /-55^{\circ} \mathrm{C}$ and $+25 /+125^{\circ} \mathrm{C}$	Refer to table 2
Coefficient of Resistance (T.C.R.)			
		Formula:	
		$\mathrm{T} . \mathrm{C} . \mathrm{R}=\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{R_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	
		Where $\mathrm{t}_{1}=+25^{\circ} \mathrm{C}$ or specified room temperature	
		$t_{2}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$ test temperature	
		$\mathrm{R}_{1}=$ resistance at reference temperature in ohms	
		$\mathrm{R}_{2}=$ resistance at test temperature in ohms	

| Short Time | IEC60\||5-| 4.13 | 2.5 times of rated voltage or maximum
 overload voltage whichever is less for 5 sec
 at room temperature |
| :--- | :--- | :--- | | $\pm(1.0 \%+0.05 \Omega)$ |
| :--- |
| Overload |

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 2	Feb. 10, 2012		- Jumper criteria added
			- ACI218 marking and outline figure updated
Version I	Feb. 01, 2011	-	- Case size $1210,1218,2010,2512$ extended
			- Test method and procedure updated
			- Packing style of 7D added
Version 0	Nov. 10, 2010	-	- First issue of this specification

LEGAL DISCLAJMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Yageo:
AC0603FR-0733KL AC0603FR-0710RL AC0603FR-070RL AC0603FR-071KL AC0603FR-071K37L AC0603FR071K5L AC0603FR-071K8L AC0603FR-071ML AC0603FR-0710KL AC0603FR-07100KL AC0603FR-07120RL AC0603FR-07191KL AC0603FR-072K21L AC0603FR-0720KL AC0603FR-074K7L AC0603FR-074R75L AC0603FR07470RL AC1206FR-07150RL AC1206FR-0760R4L AC1206FR-0751KL AC1206FR-07100KL AC2010JK-070RL AC0402FR-07100KL AC0402FR-07100RL AC0402FR-0710KL AC0402FR-07110RL AC0402FR-07120RL AC0402FR-0712KL AC0402FR-0712RL AC0402FR-07130RL AC0402FR-07150RL AC0402FR-0715KL AC0402FR07180KL AC0402FR-0718KL AC0402FR-071K5L AC0402FR-071K8L AC0402FR-071KL AC0402FR-071ML AC0402FR-07200KL AC0402FR-0720KL AC0402FR-07220KL AC0402FR-07220RL AC0402FR-0722KL AC0402FR0722RL AC0402FR-07240KL AC0402FR-0724KL AC0402FR-07270KL AC0402FR-07270RL AC0402FR-072K2L AC0402FR-072K7L AC0402FR-072KL AC0402FR-07300KL AC0402FR-0730KL AC0402FR-07330KL AC0402FR0733RL AC0402FR-07360KL AC0402FR-073K3L AC0402FR-073KL AC0402FR-07430KL AC0402FR-0743RL AC0402FR-07470KL AC0402FR-07470RL AC0402FR-0747KL AC0402FR-0747RL AC0402FR-074K7L AC0402FR0751KL AC0402FR-0751RL AC0402FR-07560RL AC0402FR-075K6L AC0402FR-0762RL AC0402FR-07680RL AC0402FR-0768KL AC0402FR-0768RL AC0402FR-07750KL AC0402FR-0775RL AC0402FR-07820RL AC0402FR0782RL AC0402FR-07910KL AC0402FR-079K1L AC0603FR-07100RL AC0603FR-07110KL AC0603FR-07110RL AC0603FR-0711KL AC0603FR-0711RL AC0603FR-07120KL AC0603FR-0712KL AC0603FR-0712RL AC0603FR07130KL AC0603FR-0713KL AC0603FR-07150KL AC0603FR-07150RL AC0603FR-0715KL AC0603FR-0715RL AC0603FR-07160KL AC0603FR-0716KL AC0603FR-0716RL AC0603FR-07180KL AC0603FR-07180RL AC0603FR-0718KL AC0603FR-07200KL

