10/01/10
www.irf.com 1
IRLR2908PbF
IRLU2908PbF
HEXFET® Power MOSFET
Description
This HEXFET ® Power MOSFET utilizes the latest processing techniques
to achieve extremely low on-resistance per silicon area. Additional features
of this HEXFET power MOSFET are a 175°C junction operating temperature,
low RθJC, fast switching speed and improved repetitive avalanche rating.
These features combine to make this design an extremely efficient and
reliable device for use in a wide variety of applications.
The D-Pak is designed for surface mounting using vapor phase, infrared,
or wave soldering techniques. The straight lead version (IRFU series) is
for through-hole mounting applications. Power dissipation levels up to 1.5
watts are possible in typical surface mount applications.
S
D
G
VDSS = 80V
RDS(on) = 28m
ID = 30A
D-Pak
IRLR2908PbF
Features
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175°C Operating Temperature
l
Fast Switching
l
Repetitive Avalanche Allowed up to Tjmax
l
Lead-Free
I-Pak
IRLU2908PbF
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) A
ID @ TC = 10C Continuous Drain Current, VGS @ 10V (See Fig. 9)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
c
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS Single Pulse Avalanche Energy (Thermally Limited)
d
mJ
EAS (tested) Sin
g
le Pulse Avalanche Ener
gy
Tested Value
i
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Ener
gy
h
mJ
dv/dt Peak Diode Recovery dv/dt
e
V/ns
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 1.3 °C/W
RθJA Junction-to-Ambient (PCB Mount)
j
––– 40
RθJA Junction-to-Ambient ––– 110
120
0.77
± 16
180
250
See Fig.12a,12b,15,16
Max.
39
28
150
30
300 (1.6mm from case )
-55 to + 175
2.3
PD - 95552B
IRLR/U2908PbF
2www.irf.com
S
D
G
S
D
G
Notes through are on page 11
HEXFET® is a registered trademark of International Rectifier.
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 80 ––– ––– V
∆ΒVDSS
/
TJ Breakdown Voltage Temp. Coefficient ––– 0.085 ––– VC
RDS(on) Static Drain-to-Source On-Resistance –– 22.5 28 m
––– 25 30
VGS(th) Gate Threshold Voltage 1.0 –– 2.5 V
gfs Forward Transconductance 35 –– ––– S
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– –– 250
IGSS Gate-to-Source Forward Leakage ––– –– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
QgTotal Gate Charge ––– 22 33 nC
Qgs Gate-to-Source Charge ––– 6.0 9.1
Qgd Gate-to-Drain ("Miller") Charge ––– 11 17
td(on) Turn-On Delay Time ––– 12 –– ns
trRise Time –95–
td(off) Turn-Off Delay Time –– 36 ––
tfFall Time –55–
LDInternal Drain Inductance ––– 4.5 ––– nH Between lead,
6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 ––– from package
and center of die contact
Ciss Input Capacitance ––– 1890 –– pF
Coss Output Capacitance ––– 260 –––
Crss Reverse Transfer Capacitance ––– 35 –––
Coss Output Capacitance ––– 1920 –––
Coss Output Capacitance ––– 170 –––
Coss eff. Effective Output Capacitance ––– 310 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– –– 39
(Body Diode) A
ISM Pulsed Source Current ––– ––– 150
(Body Diode)
c
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 75 110 ns
Qrr Reverse Recovery Charge ––– 210 310 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VDS = 64V
VGS = 4.5V
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 4.5V
f
MOSFET symbol
VGS = 0V
VDS = 25V
VGS = 0V, VDS = 64V, ƒ = 1.0MHz
Conditions
VGS = 0V, VDS = 0V to 64V
TJ = 25°C, IF = 23A, VDD = 25V
di/dt = 100A/µs
f
TJ = 25°C, IS = 23A, VGS = 0V
f
showing the
integral reverse
p-n junction diode.
VDS = VGS, ID = 250µA
VDS = 80V, VGS = 0V
VDS = 80V, VGS = 0V, TJ = 12C
RG = 8.3
ID = 23A
VDS = 25V, ID = 23A
VDD = 40V
ID = 23A
VGS = 16V
VGS = -16V
VGS = 4.5V, ID = 20A
f
Conditions
VGS = 0V, ID = 25A
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 23A
f
IRLR/U2908PbF
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
vs. Drain Current
0.01 0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
4.5V
4.0V
3.5V
3.0V
2.7V
BOTTOM 2.5V
0.01 0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
20µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
4.5V
4.0V
3.5V
3.0V
2.7V
BOTTOM 2.5V
010 20 30 40 50 60
ID, Drain-to-Source Current (A)
0
10
20
30
40
50
60
GFS, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 10V
20µs PULSE WIDTH
2 3 4 5
VGS, Gate-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 25V
20µs PULSE WIDTH
IRLR/U2908PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 5 10 15 20 25
QG Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
VGS, Gate-to-Source Voltage (V)
VDS= 64V
VDS= 40V
VDS= 16V
ID= 23A
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
VSD, Source-to-Drain Voltage (V)
0.10
1.00
10.00
100.00
1000.00
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
IRLR/U2908PbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Normalized On-Resistance
vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
5
10
15
20
25
30
35
40
ID, Drain Current (A)
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 38A
VGS = 4.5V
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Note s:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
IRLR/U2908PbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 9.3A
16A
BOTTOM 23A
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
VGS(th) Gate threshold Voltage (V)
ID = 250µA
IRLR/U2908PbF
www.irf.com 7
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 23A
IRLR/U2908PbF
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRLR/U2908PbF
www.irf.com 9
D-Pak (TO-252AA) Part Marking Information
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
INTERNAT IONAL
AS S EMBL ED ON WW 16, 2001
IN THE AS SEMBLY LINE "A"
OR
Note: "P" in as s embly line pos ition
EXAMPLE:
LOT CODE 1234
THIS IS AN IRFR120
WIT H AS S EMB L Y
indi cates "L ead-F r ee"
PRODUCT (OPT IONAL)
P = DESIGNATES LEAD-FREE
A = AS S E MB LY S I T E CODE
PART NUMBER
WE E K 16
DAT E CODE
YEAR 1 = 2001
RECTIFIER
INTERNAT IONAL
LOGO
LOT CODE
AS S E MB L Y
3412
IRFR120
116A
LINE A
34
RECTIFIER
LOGO
IRFR120
12
AS S E MB L Y
LOT CODE
YEAR 1 = 2001
DAT E CODE
PART NUMBER
WE E K 16
"P" in as s embly line pos ition indicates
"L ead- F ree" qual i fi cation to the cons umer- l evel
P = DESIGNATES LEAD-FREE
PRODUCT QUALIFIED TO THE
CONSUMER LEVEL (OPTIONAL)
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRLR/U2908PbF
10 www.irf.com
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
78
LINE A
LOGO
INTERNATIONAL
RECT IFIER
OR
PRODUCT (OPT IONAL)
P = DESIGNATES LEAD-FREE
A = AS S E MB L Y S IT E CODE
IRF U120
PART NUMBER
WEEK 19
DAT E CODE
YEAR 1 = 2001
RECTIFIER
INTERNATIONAL
LOGO
ASSEMBLY
LOT CODE
IR F U120
56
DAT E CODE
PAR T NUMBER
LOT CODE
AS S E MB L Y
56 78
YEAR 1 = 2001
WEEK 19
119A
indicates Lead-Free"
ASS EMBLED ON WW 19, 2001
IN THE ASSEMBLY LINE "A"
Note: "P" in as s embly line pos ition
EXAMPLE:
WI T H AS S E MB L Y
THIS IS AN IRFU120
LOT CODE 5678
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRLR/U2908PbF
www.irf.com 11
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2010
Notes:
Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.71mH, RG = 25, IAS = 23A, VGS =10V. Part not recommended for use above
this value.
ISD 23A, di/dt 400A/µs, VDD V(BR)DSS, TJ 175°C.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
This value determined from sample failure population. 100% tested to this value in production.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer
to application note #AN-994.
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 ) FEED DIRECTION FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
TRR TRL
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.