Products and specifications discussed herein are subject to change by Micron without notice.
1Gb: x8, x16 NAND Flash Memory
Features
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__1.fm - Rev. E 1/08 EN 1©2006 Micron Technology, Inc. All rights reserved.
1Gb NAND Flash Memory
MT29F1GxxABB
Features
Organization
Page size x8: 2,112 bytes (2,048 + 64 bytes)
Page size x16: 1,056 words (1,024 + 32 words)
Block size: 64 pages (128K + 4K bytes)
Device size: 1Gb: 1,024 blocks
•READ performance
Random READ: 25µs (MAX)
Sequential READ: 50ns (MIN)
•WRITE performance
PR OGRAM PAGE: 250µs (TYP)
BLOCK ERASE: 2.0ms (TYP)
Endurance: 100,000 PROGRAM/ERASE cycles
Data retention: 10 years
The first block (block address 00h) is guaranteed to
be valid without ECC (up to 1,000 PROGRAM/
ERASE cycles)
•V
CC: 1.65–1.95V
Automated PROGRAM and ERASE
Basic NAND Flash command set
PAGE READ, RANDOM DATA READ, READ ID,
READ STATUS, PROGRAM PAGE, RANDOM DATA
INPUT, PROGRAM PAGE CACHE MODE, INTER-
NAL DATA MOVE, INTERNAL DATA MOVE with
RANDOM DATA INPUT, BLOCK ERASE, RESET
New commands
PAGE READ CACHE MODE
READ ID2 (contact factory)
READ UNIQUE ID (contact factory)
Programmable I/O
OTP
BLOCK LOCK
Operation status byte: Provides a software method
for detecting:
Operation completion
Pass/fail condition
Write-protect status
Ready/busy# signal (R/B#): Provides a hardware
method of detecting operation completion
LOCK signal: Protects selectable ranges of bloc ks
Figure 1: 63-Ball VFBGA x8
WP# signal: Write-protects the entire device
Reset required after power-up
N otes: 1. For part numbers and device markings, see
Figure 2 on page 2.
Options1
Configuration
x8
x16
•Package
63-ball VFBGA
13mm x 10.5mm x 1.0mm
Operating temperature
Commercial temperature (0 to +70°C)
Extended temperature (–40°C to +85°C)
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__1.fm - Rev. E 1/08 EN 2©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Part Numbering Information
Part Numbering Information
Micron NAND Flash devices are available in several configurations and
densities.
Figure 2: Part Number Chart
Valid Part Number Combinations
After building the part number from the part numbering chart, verify that the part
number is offered and valid by using the Micron Param etric Part Search Web site at
www.micron.com/products/parametric. If the device required is not on this list, contact
the factory.
MT 29F 1G 08 A B B HC xx xx xx ES :B
Micron Technology
Product Family
29F = Single-Supply NAND Flash Memory
Density
1G = 1Gb
Device Width
08 = 8 bits
16 = 16 bits
Operating Voltage Range
B = 1.8V (1.65V–1.95V)
Feature Set
A = Feature set A
B = Feature set B
Die Revision
B = Second generation
Production Status
Blank = Production
ES = Engineering Sample
QS = Qualification Sample
Operating Temperature Range
Blank = Commercial (0°C to +70°C)
ET = Extended (–40° to +85°C)
Block Option
Reserved for Future Use
Flash Performance
Reserved for Future Use
Package Codes
HC = 63-pin VFBGA (lead-free)
Classification
# of die # of CE# # of R/B# I/O
A 1 1 1 Common
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48aTOC.fm - Rev. E 1/08 EN 3©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Table of Contents
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Part Numbering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Valid Part Number Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Memory Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Bus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Address Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
READY/BUSY# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
READ Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PAGE READ 00h-30h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
RANDOM READ 05h-E0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
PAGE READ CACHE MODE START 31h; PAGEREAD CACHE MODE START LAST 3Fh. . . . . . . . . . . . . . . 25
READ ID 90h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
ONFI READ ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
ONFI READ PARAMETER PAGE Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
READ STATUS 70h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
PROGRAM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
PROGRAM PAGE 80h-10h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
SERIAL DATA INPUT 80h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
RANDOM DATA INPUT 85h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
PROGRAM PAGE CACHE MODE 80h-15h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INTERNAL DATA MOVE Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
READ FOR INTERNAL DATA MOVE 00h-35h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INTERNAL DATA MOVE 85h-10h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
BLOCK ERASE 60h-D0h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
One-Time Programmable (OTP) Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
OTP DATA PROGRAM A0h-10h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
OTP DATA PROTECT A5h-10h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
OTP DATA READ AFh-30h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
BLOCK LOCK Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
WP# and BLOCK LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
UNLOCK 23h-24h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
LOCK 2Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
LOCK-TIGHT 2Ch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
BLOCK LOCK READ STATUS 7Ah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
RESET Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
RESET FFh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Programmable Drive Strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
PROGRAMMABLE I/O DRIVE STRENGTH B8h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
WRITE PROTECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Error Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
VCC Power Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48aLOF.fm - Rev. E 1/08 EN 4©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
List of Figur es
List of Figures
Figure 1: 63-Ball VFBGA x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2: Part Number Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3: Functional Block Diagram: 1Gb NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4: Ball Assignment (x8), 63-Ball VFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5: Ball Assignment (x16), 63-Ball VFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6: Array Organization for MT29F1G08 (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7: Array Organization for MT29F1G16 (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 8: Memory Map (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 9: Memory Map (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10: READY/BUSY# Open Drain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 11: tFall and tRise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12: Iol vs. Rp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 13: TC vs. Rp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 14: PAGE READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 15: RANDOM DATA READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 16: PAGE READ CACHE MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 17: READ ID Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 18: ONFI READ ID Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 19: ONFI READ PARAMETER PAGE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 20: Status Regist er Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 21: PROGRAM and READ STATUS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 22: RANDOM DATA INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 23: PROGRAM PAGE CACHE MODE Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 24: INTERNAL DATA MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 25: INTERNAL DATA MOVE with RANDOM DATA INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 26: BLOCK ERASE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 27: OTP DATA PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 28: OTP DATA PROTECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 29: OTP DATA READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 30: Flash Array Protected: Inverted Area Bit = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 31: Flash Array Protected: Invert Area Bit = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 32: UNLOCK Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 33: LOCK Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 34: LOCK-TIGHT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 35: PROGRAM/ERASE Issued to Locked or Locked-Tight Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 36: LOCKED-TIGHT BLOCKS to LOCKED BLOCKS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 37: BLOCK LOCK READ STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 38: BLOCK LOCK Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 39: RESET Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 40: Programmable I/O Drive Strength Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 41: ERASE Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 42: ERASE Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 43: PROGRAM Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 44: PROGRAM Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 45: AC Waveforms During Power Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 46: COMMAND LATCH Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 47: ADDRESS LATCH Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 48: INPUT DATA LATCH Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 49: SERIAL ACCESS Cycle after READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 50: READ STATUS Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 51: PAGE READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 52: READ Operation with CE# “Don’t Care” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 53: RANDOM DATA READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 54: PAGE READ CACHE MODE Operation, Part 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 55: PAGE READ CACHE MODE Operation, Part 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 56: PAGE READ CACHE MODE Operation without R/B#, Part 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48aLOF.fm - Rev. E 1/08 EN 5©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
List of Figur es
Figure 57: PAGE READ CACHE MODE Operation without R/B#, Part 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 58: READ ID Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 59: PROGRAM Operation with CE# “Don’t Care” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 60: PROGRAM PAGE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 61: PROGRAM PAGE Operation with RANDOM DATA INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 62: INTERNAL DATA MOVE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 63: PROGRAM PAGE CACHE MODE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 64: PROGRAM PAGE CACHE MODE Operation Ending on 15h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 65: BLOCK ERASE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 66: RESET Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 67: 63-Ball VFBGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48aLOT.fm - Rev. E 1/08 EN 6©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
List of Tables
List of Tables
Table 1: Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 2: Array Addressing: MT29F1G08 (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3: Array Addressing: MT29F1G16 (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4: Operational Example (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5: Operational Example (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 6: Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7: Command Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 8: Device ID and Configuration Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 9: Status Register Bit Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 10: BLOCK LOCK Address Cycle Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 11: BLOCK LOCK Status Register Bit Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 12: Status Register Contents After Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 13: I/O Drive Strength Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 14: Programmable I/O Drive Strength Register READ/WRITE Timing. . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 15: Absolute Maximum Ratings by Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 16: Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 17: DC and Operating Characteristics, VCC = 1.65–1.95V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 18: Valid Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 19: Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 20: Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 21: AC Characteristics – Command, Data, and Address Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 22: AC Characteristics – Normal Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 23: PROGRAM/ERASE Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 7©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
General Description
General Description
The MT29F1G08 and MT29F1G16 are both 1Gb NAND Flash memory devices. NAND
Flash technolog y provides a cost-effective solution for applications requiring high-de n -
sity, solid-state storage. The MT29F1Gxx devices include standard NAND Flash features
as well as new features designed to enhanc e system-level performance.
The M T29F1Gx x d evices u s e a m ult i p l e x e d 8- or 16-bit bus (I/O[7:0] or I/O[15:0]) to
transfer data, address, and instruction information. The five control signals (CLE, ALE,
CE#, RE#, WE#) control the NAND Flash command bus interface protocol. Additional
signals control hardware write protection (WP#), monitor the device ready/busy (R/B#)
state, and enable BLOCK LOCK functions (LOCK).
This hardware interface creates a low-ball-count device with a standard ball arrange-
ment that is the same from one density to another, enabling future upgrades to higher
densities with out any board redesign.
MT29F1Gxx devices contain 1,024 erasable blocks. Each block is subdivided into 64 pro-
grammable pages. Each page consists of 2,112 b ytes (x8), or 1,056 wor ds (x16). The pages
are further divided into a 2,048-byte data storage region with a separate 64-byte ar ea on
the x8 device; and on the x16 device, separate 1,024-word and 32-wor d areas. The 64-
byte and 32-word areas are typically used for error correction functions.
On-chip control logic automates PROGRAM and ERASE o per ations to maxim ize cycle
endu rance. PROGRAM/ERASE endurance is specified at 100,000 cycles when using
appropriate error correction code (ECC) and bad-bl ock-management softw are.
Figure 1: Functional Block Diagram: 1Gb NAND Flash
Address Register
Data Register
Cache Register
Status Register
Command Register
CE#
CLE
ALE
WE#
RE#
WP#
LOCK
R/B#
I/O [7:0]
I/O [15:0]
Control
Logic
I/O
Control
Row Decode
Column Decode
VCC VSS
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 8©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
General Description
Figure 2: Ball Assignment (x8), 63-Ball VFBGA
Notes: 1. For package dimensions, see Figure 65 on page 69.
NC
NC
NC
NC
A
B
C
D
E
F
G
H
I
J
K
L
NC
NC
NC
3
WP#
NC
NC
NC
NC
NC
NC
Vss
4
ALE
RE#
NC
NC
NC
I/O0
I/O1
I/O2
21 8
R/B#
NC
NC
NC
NC
Vcc
I/O7
Vss
NC
NC
NC
NC
NC
NC
NC
NC
5
Vss
CLE
NC
NC
LOCK
NC
NC
I/O3
7
WE#
NC
NC
NC
NC
NC
I/O5
I/O6
9106
CE#
NC
NC
NC
NC
NC
Vcc
I/O4
Top View, Ball Down
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 9©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
General Description
Figure 3: Ball Assignment (x16), 63-Ball VFBGA
Notes: 1. For package dimensions, see Figure 65 on page 69.
NC
NC
NC
NC
A
B
C
D
E
F
G
H
I
J
K
L
NC
NC
NC
3
WP#
NC
NC
NC
NC
I/O8
I/O0
Vss
4
ALE
RE#
NC
NC
NC
I/O1
I/O9
I/O2
21 8
R/B#
NC
NC
NC
NC
Vcc
I/O15
Vss
NC
NC
NC
NC
NC
NC
NC
NC
5
Vss
CLE
NC
NC
LOCK
I/O10
I/O3
I/O11
7
WE#
NC
NC
NC
I/O7
I/O14
I/O6
I/O13
9106
CE#
NC
NC
NC
I/O5
I/O12
Vcc
I/O4
Top View, Ball Down
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 10 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
General Description
Table 1: Ball Descriptions
Symbol Type Ball Function
ALE Input Address latch enable: During the time ALE is HIGH, address information is
transferred from I/O[7:0] into the on-chip addre ss register. Upon a LOW to HIGH
transition on WE#—when address information is not being loaded—t he ALE signals
should be driven LOW.
CE# Input Chip enable: Gates transfers between the host system and the NAND Flash device.
After the device becomes busy or starts a PROGRAM or ERASE operation, CE# can be
de-asserted. See “Bus Operation” on page 16 for additional operational details.
CLE Input Command latch enab le: When CLE is HIGH, inf ormation i s tr a ns ferred from
I/O [7:0] to the on-chip command register on the rising edge of WE#. When
command information is not being loaded, the CLE signals should be driven LOW.
LOCK Input When LOCK is HIGH during power-up, the BLOCK LOCK function is enabled.
To disable BLOCK LOCK, connect LOCK to VSS during power-up, or leave it
unconnected (in t ernal pull-down).
RE# Input Read enable: Gates transfers from the NAND Flash device to the host syst em.
WE# Input Write enable: Gates transfers from the host system to the NAND Flash device.
WP# Input W r it e pr ot e ct: Protects ag ainst inadvertent PROGRAM and ERASE operations. All
PROGRAM an d ERASE operat ions are disabled when WP# is LOW.
I/O[7:0]
(x8)
I/O[15:0]
(x16)
I/O Data inputs/outputs: Bidirectional I/O signals transfer address, data and instruction
information. Data is output only during READ operations; at other times the I/O
signals are inputs.
R/B# Output Ready/busy: The ready/busy signal is an open-drain, active-LOW output, that uses an
external pull-up resistor. The signal is used to indicate when the chip is processing a
PROGRAM or ERASE operation. The signal is also used during READ operations to
indicate when data is being transferred from the array into the serial data register.
When these operations have completed, the ready/ bu sy signal retur ns to th e high-
impedance state.
VCC Supply VCC: The VCC ball is the power supply.
VSS Supply VSS: The VSS ball is the ground connection.
NC No connect: NC balls are not internally connected. These balls can be driven or left
unconnected.
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 11 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Architecture
Architecture The MT29F1G08 and MT29F1G16 use NAND Flash electrical and command interfaces.
Data, commands, and addresses are multiplexed onto the same signals. This provides a
memory device with a low ball count.
The internal memory array is accessed on a page basis. When performing READs, a pag e
of data is copied from the memory array into the data register. Once copied to the data
register, data is output sequentially, byte by byte on the x8 device, or word by word on
the x16 device.
The memory array is programmed on a page basis. After the starting address is loaded
into the internal add r ess r egister, data is sequentially written to the internal data r egis ter
up to the end of a page. After all page data has been loaded into the data register, array
programm ing is started.
In order to increase programming bandwidth, this device incorporates a cache register.
In the cache programming mode, data is first copied into the cache register and then
into the data register. Once the data is copied into the data register, programming
begins . After the data register has been loaded and programming has started, the cache
register becomes available for loa ding a d di t io n a l da t a . L oa d i n g t h e n e xt p a g e of d a ta
into the cache register takes place while page programming is in process.
The INTERNAL DATA MOVE command also uses the internal cache register. Normally,
moving data from one area of external memory to another uses a large number of exter-
nal memory cy cles. By using th e internal cache r egister and data register, array data can
be copied from one page and then programmed into another without using external
memory cycles.
Addressing The MT29F1G08 and MT29F1G16 devices do not have dedicated address balls.
Addresses are loaded using a 4-cycle sequence as shown in Tables 2 and 3 on pages 12
and 13. Table 2 presents ad dress functions internal to the MT29F1G08 device; Table 3
presents address functions internal to the MT29F1G16. See Figures 6 and 7 on pages 14
and 15 for additional memory mapping and addressing details.
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 12 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Addressing
Figure 4: Array Organization for MT29F1G08 (x8)
Notes: 1. Block address concatenated with page address = actual page address. CAx = column
address; PAx = page address; BAx = block address.
2. Note that the 12-bit column address is capable of addressing from 0 to 4,095 bytes on a x8
device; however, only bytes 0 through 2,111 are valid. Bytes 2,112 through 4,095 of each
page are “out of bounds,” do not exist in the device, and cannot be addressed.
Table 2: Array Addressing: MT29F1G08 (x8)
Cycle I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0
First CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0
Second LOW LOW LOW LOW CA11 CA10 CA9 CA8
Third BA7 BA6 PA5 PA4 PA3 PA2 PA1 PA0
Fourth BA15 BA14 BA13 BA12 BA11 BA10 BA9 BA8
Cache register
Data register
1,024 blocks
per device 1 block
642,048
642,048
2,112 bytes
I/O 7
I/O 0
1 page = (2K + 64 bytes)
1 block = (2K + 64) bytes x 64 pages
= (128K + 4K) bytes
1 device = (2K + 64) bytes x 64 pages
x 1,024 blocks
= 1,056 Mbits
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 13 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Addressing
Figure 5: Array Organization for MT29F1G16 (x16)
Notes: 1. Block address concatenated with page address = actual page address. CAx = column
address; PAx = page address; BAx = block address.
2. I/O[15:8] are not used during addressing sequence and should be driven LOW.
3. Note that the 11-bit column address is capable of addressing from 0 to 2,047 words on a
x16 device; however, only words 0 through 1,055 are valid. Words 1,056 through 2,047 of
each page are “out of bounds,” do not exist in the device, and cannot be addressed .
Table 3: Array Addressing: MT29F1G16 (x16)
Cycle I/O[15:8] I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0
First LOW CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0
Second LOW LOW LOW LOW LOW LOW CA10 CA9 CA8
Third LOW BA7 BA6 PA5 PA4 PA3 PA2 PA1 PA0
Fourth LOW BA15 BA14 BA13 BA12 BA11 BA10 BA9 BA8
Cache register
Data register
1,024 blocks
per device 1 block
321,024
321,024
1,056 words
I/O 15
I/O 0
1 page = (1K + 32) words
1 block = (1K + 32) words x 64 pages
= (64K + 2K) words
1 device = (1K + 32) words x 64 pages
x 1,024 blocks
= 1,056 Mbits
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 14 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Addressing
Memory Mapping
Figure 6: Memory Map (x8)
Notes: 1. As shown in Table 2 on page 12, the high 4 bits of the second ADDRESS cycle have no
assigned address bits. However, these 4 bits must be held LOW during the ADDRESS cycle
to ensure that the address is interpreted correctly by the NAND Flash device. These extra
bits are accounted for in the second ADDRESS cycle even though they have no address bits
assigned to them.
2. Note that the 12-bit column address is capable of addressing from 0 to 4,095 bytes on a x8
device; however, only bytes 0 through 2,111 are valid. Bytes 2,112 through 4,095 of each
page are “out of bounds,” do not exist in the device, and cannot be addressed.
Table 4: Operational Example (x8)
Block Page Min Address in Page Max Address in Page Out of Bounds Addresses in Page
0 0 0x00000000 0x0000083F 0x00000840–0x00000FFF
0 1 0x00010000 0x0000183F 0x00010840–0x00010FFF
0 2 0x00020000 0x0000283F 0x00020840–0x00020FFF
……
1,023 62 0xFFFE0000 0xFFFE083F 0xFFFE0840–0xFFFE0FFF
1,023 63 0xFFFF0000 0xFFFF083F 0xFFFF0840–0xFFFF0FFF
• • • • • • • • • • • •
• • •
• • • • • • • • • • • • • • • • • • •
Blocks
BA[15:6]
Pages
PA[5:0]
Bytes
CA[11:0]
012
012 63
0 1 2 2,047 • • • 2,111
1,023
Spare area
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 15 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Addressing
Figure 7: Memory Map (x16)
Notes: 1. As shown in Table 3 on page 13, the high 5 bits of ADDRESS cycle 2 have no assigned
address bits. However, these 5 bits must be held LOW during the ADDRESS cycle to ensure
that the address is interpreted correct ly by the NAND Flash device. These extra bits are
accounted for in ADDRESS cycle 2 even though they have no address bits assigned to them.
2. Note that the 11-bit column address is capable of addressing from 0 to 2,047 words on a
x16 device; however, only words 0 through 1,055 are valid. Words 1,056 through 2,047 of
each page are “out of bounds,” do not exist in the device, and cannot be addressed .
Table 5: Operational Example (x16)
Block Page Min Address in Page Max Address in Page Out of Bounds Addresses in Page
0 0 0x00000000 0x0000041F 0x00000420–0x00000FFF
0 1 0x00010000 0x0001041F 0x00010420–0x00010FFF
0 2 0x00020000 0x0002041F 0x00020420–0x00020FFF
……
1,023 62 0xFFFE0000 0xFFFE041F 0xFFFE0420–0x00020FFF
1,023 63 0xFFFF0000 0xFFFF041F 0xFFFF0420–0xFFFF0FFF
• • • • • • • • • • • •
• • •
• • • • • • • • • • • • • • • • • • •
Blocks
BA[15:6]
Pages
PA[5:0]
Words
CA[10:0]
012
012 63
0 1 2 1,023 • • • 1,055
1,023
Spare area
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 16 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Bus Operation
Bus Operation The bus on the MT29F1Gxx devices is multiplexed. D a ta I/O, addre sses and commands
all share the same balls. I/O[15:8] are used only for data in the x16 configuration.
Addresses and commands are always supplied on I/O[7:0].
The command sequence normally consists of a COMMAND LATCH cycle, ADDRESS
LATCH cycle and a DATA cycle—either READ or WRITE.
Control Signals
CE#, WE#, RE#, CLE, ALE, LOCK, and WP control NAND Flash READ and WRITE opera-
tions.
CE# is used to enable the device. When CE# is LOW and the dev ice is not in the BUS Y
st a t e, th e N A N D Fl a s h m e m o ry will accept command, data, and address information.
When the device is not performing an operation, CE# is typically driven HIGH and the
device enters standby mode. The memory will enter standby if CE# goes HIGH while
data is being transferr ed and the de v i c e i s n o t b u s y. T h i s h elps red u c e p ower c o n s u m p t i o n
(see Figure 57 on page 64).
The CE# “Dont Care” operati on enables the NAND Flash to reside on the same asyn-
chronous memory bus as other Flash or SRAM devices. Other devices on the memory
bus can then be accessed while the NAND Flash is busy with internal operations. This
capability is important for designs that require multiple NAND Flash device s on the
same bus. One device ca n be programmed while another is being read.
A HIGH CLE signal indicates that a COMMAND cycle is taking place. A HIGH ALE signal
signifies that an ADDRESS INPUT cycle is occurring.
Commands
Commands are written to the command register on the rising edge of WE# when all of
these conditions are met:
CE# and ALE are LOW
•CLE is HIGH
the device is not busy
The READ STATUS and RESET commands are different because they can be written to
the device while it is busy. Commands are transferr ed to the command r egister on the
rising edge of WE# (see Figure 26 on page 37).
Commands ar e input on I/O[7:0] only. F or devices with a x16 interface, I/O[15:8] must be
written with zeros when issuing a command.
Address Input
Addresses are written to the address register on the rising edge of WE# when all of these
conditions are met:
CE# and CLE are LOW
•ALE is HIGH
Addresses are input on I/O[7:0] only. For devices with a x16 interface, I/O[15:8] must be
written with zeros when issuing an address.
Generally, all 4 address cycles are written to the device. An exception is the BLOCK
ERASE command, which requires only 2 address cycles (see “BLOCK ERASE Operation
on page 33 for details).
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 17 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Bus Operation
RANDOM DATA INPUT and OUTPUT commands need only column addr esses, s o only 2
address cycles are required. Refer to the command descriptions to determine the
addressing requirements for each command.
Data Input
Data is written to the data register on the rising edge of WE# when these conditions are
met:
CE#, CLE, and ALE are LOW
the device is not busy
Data is input on I/O[7:0] for x8 devices, and I/O[15:0] on x16 devices. See Figure46 on
page 57 for additional data input details.
READ
After a READ command is issued, data is transferred from the memory array to the data
register on the rising edge of WE#. R/B# goes LOW for tR and transitions HIGH after the
transfer is complete. When data is available in the data register, it is clocked out of the
part by RE# going LOW (see Figure 12 on page 21 for timing details).
The READ STATUS (70h) command or the READ Y/B USY signal can be used to determine
when the device is ready (see the READ STATUS command section starting on page 28
for details).
READY/BUSY#
The R/B# output provides a hardware method of indicating the completion of a PRO-
GRAM/ERASE/READ operation. The signal is typically HIGH, and transitions to LOW
after the appropriate command is written to the device. The signal’s open-drain driver
enables multiple R/B# outputs to be OR-tied. The signal requires a pull-up resi stor for
proper operation. The READ STATUS command can be used in place of R/B#. Typically,
R/B# would be connected to an interrupt ball on the system controller (see Figure8 on
page 18).
The combination of Rp and the capacitive loading of the R/B# circuit determine the
R/B# rise time. The actual value used for Rp depends on the system timing requi re-
ments. Large Rp values delay R/B# signifi cantly. At the 10 percent/90 percent points on
the R/B# waveform, rise time is approximately two time constants (TC).
The R/B# fall time is determined mainly by the output impedance of R/B# and the total
load capacitance. Refer to Figures 9 and 10 on page 18, which depict approximate Rp
values using a circuit load of 100pF.
The minimum valu e for Rp is determined b y the R/B# output drive capability, the output
voltage swing, and VCC.
TC R C×=
Where R = Rp (resistance of pull-up resistor), and C = total capacitive load.
Rp MIN, 1.8V part()
VCC MAX()VOL MAX()
IOL ΣIL+
---------------------------------------------------------------=1.85V
3mA ΣIL+
---------------------------=
Where ΣILis the sum of the input currents of all devices tied to the R/B# pin.
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 18 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Bus Operation
Figure 8: READY/BUSY# Open Drain
Figure 9: tFall and tRise
Notes: 1. tFall and tRise are calculated at 10 percent and 90 percent points.
2. tRise is primarily dependent on external pull-up resistor and external capacitive loading.
3. tFall 7ns at 1. 8V.
4. See TC values in Figure 11 on page 19 for approximate Rp value and TC.
Figure 10: IOL vs. Rp
Note: To calculate Rp value, see page 17.
Rp
R/B#
Open drain output
VCC
GND
Device
IOL
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00 -1 0 2 4 0 2 4 6
tFall tRise
VCC 1.8
TC
V
3.50mA
3.00mA
2.50mA
2.00mA
1.50mA
1.00mA
0.50mA
0.00mA0 2,000 4,000 6,000 8,000 10,000 12,000
IOL at 1.95V (MAX)
Rp
I
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 19 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Bus Operation
Figure 11: TC vs. Rp
Notes: 1. Mode selection settings for this table:
H = Logic level HIGH
L = Logic level LOW
X = VIH or VIL
2. WP# should be biased to CMOS HIGH or LOW for standby.
Table 6: Mode Selection
CLE ALE CE# WE# RE# WP# Mode
HLL HX
Read mode Command input
LHL HX Address input
HLL HH
Write mode Command input
LHL HH Addre s s input
LLL HH
Data input
LLLH X
Sequential read and data output
LLLHHX
During READ (busy)
XXXXXH
During PROGRAM (busy)
XXXXXH
During ERASE (busy)
XXXXXL
Write protect
XXHXX0V/V
CC2Standby
1.20µs
1.00µs
800ns
600ns
400ns
200ns
0ns 0 2kΩ 4kΩ 6kΩ 8kΩ 10kΩ 12kΩ
IOL at 1.95V (MAX)
RC = TC
C = 100pf
Rp
T
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 20 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Command Definitions
Notes: 1. RANDOM DATA INPUT command is limited to use within a single page.
2. RANDOM DATA READ command is limited to use within a single page.
Table 7 : Command Set
Command First Cycle Second Cycle Valid During Busy Notes
BLOCK ERASE 60h D0h No
BLOCK LOCK 2Ah No
BLOCK LOCK READ STATUS 7Ah No
BLOCK LOCK TIGHT 2Ch No
BLOCK UNLOCK 23h-24h No
OTP DATA PROGRAM A0h 10h No
OTP DATA PROTECT A5h 10h No
OTP DATA READ AFh 30h No
PAGE READ 00h 30h No
PAGE READ CACHE MODE START 31h No
PAGE READ CACHE MODE LAST 3Fh No
PROGRAM for INTERNAL DATA MOVE 85h 10h No
PROGRAM P AGE 80h 10h No
PROGRAM P AGE CACHE MODE 80h 15h No
PROGRAMMABLE DRIVE STRENGTH B8h No
RANDOM DATA INPUT 85h No 1
RANDOM DATA READ 05h E0h No 2
READ for INTERNAL DATA MOVE 00h 35h No
READ ID 90h No
READ ID (ONFI) 90h No
READ PARAMETER PAGE (ONFI) ECh No
READ STATUS 70h Yes
RESET FFh Yes
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 21 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
READ Operations
PAGE READ 00h-30h
To enter READ mode, write a 00h command to the device, then specify the starting
address via the ADDRESS cycles, and finally, issue the 30h command. At this point, the
device enters a busy state while it retrieves data from the NAND Flash array. During this
time, the ready/busy status of the device can be monitored using the R/B# or the READ
STATUS (70h) command.
The R/B# signal is LOW when the device is busy retrieving data from the NAND Flash
array. When R/B# re turns to HIGH, data is ready for output . Pulsing the RE# line results
in data output on the I/O lines. Note that the first byte or word of data output is that
which was specified in the ADDRESS cycle. Each pulse of the RE# signal increases the
address counter by one, so additional address cycles are not requir ed when reading
sequential data .
If the system does not have a R/B# signal, NAND Flash device status can be monitored
b y issuing a READ STATUS (70h) command, then reading bit 5 or 6 from the status regis-
ter (0 = busy; 1 = ready). If the READ STATUS command is used to monitor the data
transfer, the user must re-issue the READ (00h) command to initiate data output from
the data register. The user can issue 00h only after R/B# goes HIGH or the status register
value is E0h. See Figure 54 on page 62 and Figure55 on page 63 for examples.
Figure 12: PAGE READ Operation
RE#
CE#
ALE
CLE
I/Ox 00h Address (4 cycles) Data output
(Serial access)
30h
R/B#
WE#
tR
Don‘t Care
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 22 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
RANDOM READ 05h-E0h
The RANDOM READ command enables the user to specify a new column address so
data at single or multiple addresses can be read . The r andom read mode is e nabled after
a normal PAGE READ (00h-30h sequence).
Random data can be output after the initial PAGE READ by writing an 05h-E0h com-
mand sequence along wit h th e ne w colum n add ress (2 cycles).
The RANDOM READ command can be issued without limit within the page.
Only data on the curre nt page can be read. P ulsing RE# outputs data in the same manner
as a serial PAGE READ (see Figure13).
Figure 13: RANDOM DATA READ Operation
PAGE READ CACHE MODE START 31h; PAGE READ CACHE MODE START LAST 3Fh
Micron NAND Flash devices have a cache register that can be used to increase READ
operation speed when accessing sequential pages in a block.
A normal PAGE READ (00h-30h) command sequence is issued (see Figure 14 on page 23
for details). The R/B# signal goes LOW for tR during the time it takes to transfer the first
page of data from the memory to the data r egister. After R/B# r e turns to HIGH, the PAGE
READ CACHE MODE STAR T (31h) command is latched into the command register. R/B#
goes LOW for tDCBSYR1 while data is being transferred from the data register to the
cache register. Whe n the data register con t ents are transferred to the cache register,
another PAGE READ is automatically started as part of the 31h command. Data is trans-
ferred from the memory array to the data register at the same time data is being output
(pulsing of RE#) from the cache register. If the total time to output da ta exceeds tR, then
the PAGE READ is hidden.
The second and subsequent pages of data are transferr ed to the cache r egister b y issui ng
additional 31h commands. R/B# will stay LOW up to tDCBSYR2. This time can vary,
depending on whether the previous memory-to-data-register transfer was completed
before issuing the next 31h command. If the data transfer from memory to the data reg-
ister is not completed before the 31h command is issued, R/B# stays LOW until the
transfer is complete.
I t is not necessary to output a whole page of data before issuing another 31h command.
R/B# will stay LOW until the previous PAGE READ is complete and the data has been
transferred to the cache register.
To read out the last page of data, the P AGE READ CA CHE MODE START LAST (3Fh) com-
mand is issued. This command tr ansfe rs data fr om the data register to the ca che r e gister
without another PAGE READ (see Figure 14 on page 23 for details).
RE#
I/Ox 00h Address
(4 cycles) Data output Data output
30h 05h Address
(2 cycles) E0h
R/B#
tR
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifications without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 23 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 14: PAGE READ CACHE MODE
RE#
CE#
ALE
CLE
I/Ox Address (4 cycles) 31h
30h 31h 3fh
R/B#
WE#
tR tDCBSYR1 tDCBSYR2 tDCBSYR2
Don‘t Care
Data output
(Serial access)
Data output
(Serial access)
Data output
(Serial access)
00h
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 24 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
READ ID 90h
The READ ID command is used to read the identifier codes from the MT29F1G08 and
MT29F1G16 devices. The READ ID command r eads a 5-b yte table that includes the man-
ufacturer ID, device configuration, and part-specific information. Tab le 8 on page 25
shows a complete listing of configuration details.
Iss uing a 90h command to the command register and a 00h command to the address
register puts the device in read ID mode. The device will remain in this mode until
another valid command and address are issued (see Figure 15). If a 90h comma nd is
issued without an address, the device will remain in read ID mode.
Figure 15: READ ID Operation
Notes: 1. See Table 8 on page 25 for byte definitions.
Device ID1
WE#
CE#
ALE
CLE
RE#
I/Ox
Address, 1 cycle
90h 00h
Manufacturer ID1
Byte 21
Byte 0 Byte 1 Byte 31Byte 4
tAR
tREA
tWHR
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 25 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Notes: 1. b = binary; h = hex.
Table 8: Device ID and Configuration Codes
Options I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0 Value1Notes
Byte 0 Manufactur er ID
Micron 001011002Ch
Byte 1 Device ID
MT29F1G08ABB 1Gb, x8, 1.8V 10100001A1h
MT29F1G16ABB 1Gb, x16, 1.8V 10110001B1h
Byte 2
Number of die 1 0 000b
Cell type SLC 0000b
Number of simultaneously
programmed pages 10000b
Interleaved operations
between multiple die Not supported
(1Gb) 00b
Cache programming Supported 11b
Byte value MT29F1GxxABB 1000000080h
Byte 3
Page size 2KB 0101b
Spare area size (bytes) 64 101b
Block size (w/o spare) 128KB 0 1 01b
Organization x8 00b
x16 11b
Serial access (MIN) 50ns 00 0xxx0b
Byte value MT29F1G08ABB x8 1001010195h
MT29F1G16ABB x16 11010101D5h
Byte 4
Reserved 0000b
Planes per die 10000b
Plane size 1Gb 000 000b
Reserved 00b
Byte value MT29F1GxxABB 0000000000h
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 26 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
ONFI READ ID
The ONFI READ ID function identifies that the device supports the ONFI specification. If
the device supports the ONFI specification, then the ONFI signature will be returned .
The ONFI signature is the ASCII encoding of ONFI:
•O = 4Fh
•N = 4Eh
•F = 46h
I = 49h.
Re ading bey ond these four v alue s yiel ds indeterminate data. F igure 16 defines the ONFI
READ ID behavior and timings.
Iss uing a 90h command to the command register and a 20h command to the address
register puts the device into ONFI read ID mode. The device will remain in this mode
until another valid command and address are issued. If a 90h command is issued with-
out an address, the device will remain in the ONFI read ID mode.
Figure 16: ONFI READ ID Operation
WE#
ALE
CLE
RE#
I/O0-7 90h 20h 4Fh 4Eh 46h 49h
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 27 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
ONFI READ PARAMETER PAGE Operation
The READ PARAMETER PAGE function retrieves the data structure that describes the
device organization, features, timings, and other behavioral parameters. Figure17
defines the READ PARAMETER PAGE behavior.
Figure 17: ONFI READ PARAMETER PAGE Operation
Parameter Page Data Structure Definition
For parameters that span multiple bytes, the least significant byte of the parameter cor-
responds to the first b yte. For example, if bytes 89 contain a 16-bit parameter, then bits
7:0 are contained in byte 8.
WE#
ALE
CLE
RE#
R/B#
ECh 00h
tR
P0 P1 P1022 P1023
I/O0-7
I/O0-7
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 28 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
READ STATUS 70h
The MT29F1G08 and MT29F1G16 devices have an 8-bit status register the softwar e can
read during device operation. On the x16 devic e, I/O[15:8] are “0” when reading the sta-
tus register. Table 9 on page 29 describes the status registe r.
After a READ STATUS (70h) command, all READ cycles w ill be from the s tatus register
until a new command is issued. Changes in the status register will be seen on 1/O[7:0] as
long as CE# and RE# are LOW. It is not necessar y to st art a new READ cycle to see these
changes.
During monitoring of the status register to determine when the tR (transfer from NAND
Flash array to data register) is complete , th e READ (0 0h) command must be re-issued to
make the change from STATUS READs to DATA READs. After the READ command has
been re-issued, pulsing the RE# line will result in outputting data, starting from the spec-
ified column address.
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 29 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Notes: 1. Status register bit 5 is “0” during the actual programming operation. If cache mode is
used, this bit will be “1” when all internal operations are complete.
2. Status register bit 6 is “1” when the cache is ready to accept new data. R/B# follow s bit 6.
See Figure 19 on page 30, and Figure 25 on page 36.
3. Status register bit 7 typically mir rors the status of WP#. However, when BLOCK LOCK is
used, status register bit 7 ret urns “0” if PROGRAM or ERASE operati on s are performed on
a locked block. Additionally, when using the OTP PROGRAM DATA command, status regis-
ter bit 7 returns “0” if the page is protected. This bit is not modified until the next PRO-
GRAM or ERASE command is issued.
Figure 18: Status Register Operation
Table 9: Status Register Bit Definition
SR
Bit Program
Page Program Page
Cache Mode Page
Read Page Read
Cache Mode Block
Erase Definition Notes
0 Pass/fail Pass/fail (N) Pass/fail 0 = Successful PROGRAM/ERASE
1 = Error in PROGRAM/ERASE
1 Pass/fail (N - 1) 0 = Successful PROGRAM
1 = Error in PROGRAM
2–
0
3–
0
4–
0
5 Ready/busy Ready/busy Ready/busy Ready/busy Ready/busy 0 = Busy
1 = Ready 1
6 Ready/busy Ready/busy
cache Ready/busy Ready/busy
cache Ready/busy 0 = Busy
1 = Ready 2
7 Write
protect Write protect Write
protect Write protect Write
protect 0 = Protected
1 = Not protected 3
[15:8] 0
70h
CE#
CLE
WE#
RE#
I/Ox Status
Status
Toggle RE# as required
Status
tREA
tCLR
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 30 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
PROGRAM Operations
PROGRAM PAGE 80h-10h
Micron NAND Flash devices are inherently page-programmed devices. Pages must be
programmed consecutively within a block, from the least significant page address to
most significant page address (that is, 0, 1, 2, …, 63). Random page address program-
ming is prohibited.
Micron NAND Flash devices also support partial-page programming operations. This
means that any single bit can only be programmed one time b efore an erase is r equire d;
however, the page can be partitioned so that a maximum of eight programming opera-
tions are supported before an erase is required.
SERIAL DATA INPUT 80h
PR OGRAM PAGE operations require loading the SERIAL DATA INPUT (80h) command
into the command r egister, followed by the ADDRESS cycles, then the data. S erial data is
loaded on consecutive WE# cycles starting at the given address. The PROGRAM (10h)
command is written after the data input is complete. The internal control logic automat-
ically executes the prope r algorithm and controls all the necessary timing to program
and verify the operation. Write verification only detects “1s” that are not successfully
written to “0.
R/B# goes LOW for the duration of array programming time, tPR OG. The READ STATUS
REGISTER (70h) command and the RESET (FFh) command are the only commands valid
during the programming operation. Bit 6 of the status register will reflect the state of
R/B#. When the device reaches ready, read bit 0 of the status register to determine if the
program operation passed or failed (see Figure 19). The command register stays in read
status re gister mode until another valid command is written to it.
RANDOM DATA INPUT 85h
After the initial data set is input, additional data can be written to a new column address
with the RANDOM DATA INPUT (85h) command. The RANDOM DATA INPUT com-
mand can be used any number of times in the same page prior to issuing the PAGE
WRITE (10h) command. See Figure 20 for the proper command sequence.
Figure 19: PROGRAM and READ STATUS Operation
I/Ox 80h Address 10h 70h
R/B#
tPROG
Status
DIN
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 31 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 20: RANDOM DATA INPUT
PROGRAM PAGE CACHE MODE 80h-15h
Cache pr og r amming is act ually a buffered programming mode of the s tandar d page pr o-
gramming command. Programming is started b y loading the SERIAL DATA INPUT (80h)
command to the c ommand register, followed by 4 cycles of address, and a full or partial
page of data. The data is initially copied into the cache register, and the CACHE WRITE
(15h) command is then latched to the command register. Data is transferred from the
cache register to the data register on the r ising edge of WE#. R/B# goes LOW during this
transfer time. After the data has been copied into the data register and R/B# returns to
HIGH, memory array programming begins.
When R/B# returns to HIGH, new data can be written to the cache register by issuing
another PROGRAM PAGE CACHE MODE command sequence. The time that R/B# stays
LOW will be contr olled by the actual programming time. The first time through equals
the time it takes to transfer the cache register contents to the data register. On the sec-
ond and subsequent programming passes, transfer from the cache register to the data
register is held off until current data register content has been programmed into the
array.
The PROGRAM PAGE CACHE MODE command can cross block address boundaries; it
must not cross die address boundaries. RANDOM DATA INPUT (85h) commands are
permitted with PROGRAM PAGE CACHE MODE operations.
Bit 6 (cache R/B#) of the status register can be read by issuing the READ STATUS (70h)
command to determine when the cache register is ready to accept new data. R/B#
always follows bit 6.
Bit 5 (R/B#) of the status register can be polled to determine when the actual program-
ming of the array is complete for the current progr amming cycle.
If R/B# is used to deter mine programming comp le tion, the last page of the program
sequence must use the PROGRAM PAGE (10h) command inst ead of the CACHE PRO-
GRAM (15h) command. If the CACHE PROGRA M (15h) command is used every time,
including the last page of the programming sequence, status register bit 5 mus t be used
to determine when programming is complete.
Bit 1 of the status register returns the pass/fail for the previous page when bit 6 of the
status register is a “1” (ready state). The pass/fail status of the current PROGRAM opera-
tion is returned with bit 0 of the status register when bit 5 of the status register is a “1”
(ready state) (see Figure 21 on page 32).
I/Ox 80h
Address
85h
Address (2 cycles)
10h 70h
R/B#
tPROG
DIN
DIN Status
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 32 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 21: PROGRAM PAGE CACHE MODE Example
Notes: 1. For definition of tLPROG, see note 3, Table 23 on page 55.
2. Check I/O[6:5] for internal ready/busy. Check I/O[1:0] for pass/fail. RE# can remain LOW or
pulse multiple times after a 70h command.
tCBSY
R/B#
I/Ox
R/B#
I/Ox
Address/
data input
80h 15h Address/
data input
80h 15h Address/
data input
80h 15h Address/
data input
80h 10h
tCBSY tCBSY tLPROG1
tCBSY
Address/
data input
80h 15h Address/
data input
80h 10h
Status
output2
70h
tPROG
Status
output1
70h
A: Without status reads
B: With status reads
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 33 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
INTERNAL DATA MOVE Operations
An internal data move r equires two command sequences. Issue a READ for INTERNAL
DATA MOVE (00h-35h) command first, then the INTERNAL DATA MOVE (85h-10h)
command. Data moves are only supported within the die from which data is read.
READ FOR INTERNAL DATA MOVE 00h-35h
This READ command is used in conjunction with the INTERNAL DA TA MOVE (85h-10h)
command. First, 00h is written to the command register, then the internal source
address is written (4 cycles). After the addr ess is input, the READ for INTERNAL DATA
MOVE (35h) command writes to the command register. This transfer s a page from m em-
ory into the cache register. The written column addresses are ignored even though all 4
address cycles are required. The memory device is now ready to accept the INTERNA L
DATA MOVE (85h-10h) command.
INTERNAL DATA MOVE 85h-10h
After the READ for INTERNAL DATA MOVE command has been issued and R/B# goes
HIGH, the INTERNAL DATA MOVE command can be written to the command register.
This command transfers the data from the cache register to the data r egister and program-
ming of the new destination page begins. After the INTERNAL DATA MOVE command
and address sequence are written to the devic e, R/B# goes LOW while the internal con-
trol logic automatically programs the new page. The READ STATUS command and bit 6
of the status register can be used instead of the R/B# line to determine when the WRITE
is complete. Bit 0 of the status register indica tes if the operation was successful.
The RANDOM DATA INPUT (85h) command can be used during the INTERNAL DATA
MOVE command sequence to modify a word or multiple words in the original data.
First, data is copied into the cache register using the 00h-35h command sequence; then
the RANDOM DATA INPUT (85h) command is written, along with the address of the
data to be modified next. New data is input on the external data balls. This copies the
new data into the cache register.
When 10h is writte n to the command register, the original data plus the modified data i s
transferred to the data register, and programming of the new page is started. The RAN-
DOM DATA INPUT command can be issued as many times as necessary before starting
the programming sequence with 10h (see F igure22 and Figure 23 on page 34 for details).
Because the INTERNAL DATA MOVE operation does not utilize external memory, ECC
cannot be used to check for errors before progra mming the data to a new page. This can
lead to a data error if the source page contains a bit error due to charge loss or charge
gain. If mult iple INTERNAL DATA MOVE operations are performed, these bit er r ors may
accumulate without correction. For this reason, it is highly recommended that systems
utilizing the INTERNAL DATA MOVE ope ration use a robust ECC scheme that can cor-
rect two or more bits per sector.
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 34 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 22: INTERNAL DATA MOVE
Figure 23: INTERNAL DATA MOVE with RANDOM DATA INPUT
BLOCK ERASE 60h-D0h
Erasing occurs at the block level. The MT29F1G08 and the MT29F1G16 have 1,024 erase
blocks organized as 64 pages per block. The BLOCK ERASE command operates on one
block at a time (see Figure 24).
Two cycles of addresses BA[15:6] are required for the x8 device, and 2 cycles of BA[15:6]
for the x16 device . Although addr esses PA[5:0] (x8) and P A[5:0] (x16) are loaded, t he y ar e a
“Dont Care” and are ignor ed for BLOCK ERASE operations . See Figur es6 and 7 on pages14
and 15 for addr essing details.
The actual BLOCK ERASE command sequence is a two-step process. First, write the
ERASE SETUP (60h) command to the command register. Then write 2 cycles of
addresses to the device. Next, write the ERASE CON FIRM (D0h) command to the com-
mand r egister. At the rising edge of WE#, R/B# goes L OW and the internal control logic
automatically controls the timing and er ase- v erify oper at io ns. R/B# st ays L OW for the
entire tBERS erase time .
The READ STATUS REGISTER command can be used to check the status of the ERASE
operation. When bit 6 = 1, the ERASE operation is complete. Bit 0 indicates a pass/fail
condition where 0 = pass. See BLOCK ERASE, and Table 9 on page 29 for details.
Figure 24: BLOCK ERASE Operation
I/Ox 00h Address 35h 85h Address 10h 70h
R/B#
tPROG
tR
Status
I/Ox 00h Address 35h 85h Address Data Data85h Address
(2 cycles)
Unlimited number of repetitions
10h 70h
R/B#
tPROG
tR
I/Ox 60h Address D0h 70h
R/B#
tBERS
Status
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 35 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
One-Time Programmable (OTP) Area
This Micron NAND Flash device offers a protected, one-time programmable NAND
Flash memory area. Ten full pages (2,112 bytes or 1,056 words per page) of O T P data is
available on the device, and the entire range is guaranteed to be good. The OTP area is
accessible only through the O TP com mands. C ustomers can use the O TP ar ea in any way
they desire; typical uses include programming serial numbers or other data for per ma -
nent storage.
In Micron NAND Flash devices, the OTP area leaves the factory in an unwritten state
(each OTP bit is “1”). Programming or partial-page programmi ng enables the user to
program only “0” bits in the OT P area. The OTP area cannot be eras ed, even if it is not
protected. Protecting the OTP area simply prevents further programming of the OTP
area.
While the OTP area is referr ed to as “one-time programmable,” Micron provides a
unique way to program and verify data—before permanently protecting it and prevent-
ing future changes.
OTP programming and protection are accomplished in two discr ete operations. First,
using the OTP DATA PROGRAM (A0h-10h) command, an OTP page is programmed
entirely in one operation, or in up to four partial-page programming sequences. Pro-
gramming can occur on other pages within the OTP area in a similar manner. Second,
the OTP area is permanently protected from further programming using the OTP DATA
PR O TECT (A 5h-10h) command. The pages within the O TP ar ea c an always be read using
the OTP DATA READ (AFh-30h) command, whether or not it is protected.
OTP DATA PROGRAM A0h-10h
The O TP DATA PROGRAM (A0h-10h) command is used to write data to the pages within
the OTP area. An entire page can be progr a mmed at one time, or a page can be partially
programmed up to four times. There is no ERASE operation for the OTP pages.
The O TP DATA PROGRAM enables pr ogramming into an offset of an O TP page , using the
two bytes of column addr ess (CA[11:0]). The OTP DATA PROGRAM command will not
execute if the OTP area has been protected. If the O TP area is protected, the busy time
for the OTP DATA PROGRAM operation is tOBSY and not tPROG.
To use the OTP DATA PROGRAM command, issue the A0h command. I ssue 4 ADDRESS
cycles: the first 2 ADDRESS cycles ar e the column addr ess, and for the r emaining 2 cycles
select a page in the 02h–0Bh r ange. N ext, write the data: from 1 to 2,112 b ytes (x8 device),
or from 1 to 1,056 words (x16 device). After data input is complete, issue the 10h com-
mand. The internal control logic au tom a ti ca lly executes the proper programm ing algo-
rithm and controls the necessary timing for programming and verification. Program
verification only detects “1”s that are not successfully written to “0”s.
RANDOM DATA INPUT (85h) commands are supported during OTP DATA PROGRAM
operations only if the OTP are a is unprotec ted.
R/B# goes LOW during the duration of the array programming time (tPROG). The READ
STATUS (70h) command is the only command valid during the OTP DATA PROGRAM
operation. For this operation, bits 5 and 6 of the st atus reg ister will reflect the state of
R/B#. If bit 7 is “0,” then the OTP area has been protected; otherwise, it will be a “1.
When the device is ready, read bit 0 of the status register to determine if the operation
passed or failed (see Table 9 on page 29).
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 36 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 25: OTP DATA PROGRAM
Notes: 1. The OTP page must be within the 02h–0Bh range.
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox
Don’t Care
OTP data written
(following "good" status confirmation)
tWC
tWB tPROG
OTP DATA INPUT
command PROGRAM
command READ STATUS
command
1 up to m bytes
serial input
x8 device: m = 2,112 bytes
x16 device: m = 1,056 words
A0h Col
add 1 Col
add 2 DIN
NDIN
M
00h 10h 70h Status
OTP
page1
OTP address1
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 37 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
OTP DATA PROTEC T A5h-10h
The OTP DATA PROTECT (A5h-10h) command is used to protect all the data in the OT P
area. After the data is protected, it cannot be programmed further. When the OTP ar ea is
protected, the pages within the area are no longer programmable and cannot be unpro-
tected.
To use the OTP DATA PROTECT command, issue the A5h command. Next, issue the fol-
lowing 4 ADDRESS cycles: 00h-00h-01h-00h. Finally, issue the 10h command.
R/B# goes LO W while the O TP ar ea is being protected. The pr otect command duration is
similar to a normal page programming operation, tPROG. The READ STATUS (70h) com-
mand is the only command valid during the OTP DATA PR OTECT operation. For this
operation, bits 5 and 6 of the status register will reflect the state of R/B#.
When the device is ready, read bit 0 of the status register to determine if the operation
passed or failed (see Table 9 on page 29).
Figure 26: OTP DATA PROTECT
Notes: 1. OTP data is protected followin g “good” status co nfirmation.
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox
Don’t Care
tWC
tWB tPROG
OTP DATA
PROTECT command OTP address
OTP data protected1
PROGRAM
command READ STATUS
command
A5h Col
00h Col
00h 10h 70h Status
01h 00h
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 38 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
OTP DATA READ AFh-30h
The OTP DATA READ (AFh-30h) command is used to read data from a page within the
OTP area. An OTP page within the OTP area is available for reading data whether or not
the area is protected.
To use the OT P DATA READ comm and, issue the AFh command. Next, issue 4 ADDRESS
cycles: the first 2 ADDRESS cycles are the column address, and for the remaining 2
cycles, select a page in the range of 02h–0Bh. Finally, issue the 30h command.
RANDOM DATA READ (05h-E0h) commands are supported during OTP DATA READ
operations.
R/B# goes LOW (tR) while the data is moved from the OTP page to the data regi ster. The
READ STATUS (70h) command and the RESET (FFh) command are the only commands
valid during the OTP DATA READ oper ati on. For this operation, bits 5 and 6 of the status
register will reflect the state of R/B#. For details, refer to Table 9 on page 29.
Normal READ operation timings apply to OTP read accesses (see Figure 27). Additional
pages within the OTP area can be selected by repeating the OTP DATA READ command.
Note that if OTP DATA READ is followed by PAGE READ CACHE MODE, a RESET (FFh)
must be issued prior to issuing the PAGE READ CACHE MODE command. The maxi-
mum RESET time will not exceed 5µs.
Figure 27: OTP DATA READ Operation
Notes: 1. The OTP page must be within the range 02h–0Bh.
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox
Busy
tR
AFh 00h 30h
Col
add 1 Col
add 2
Don’t Care
OTP
page1
OTP address
DOUT
NDOUT
N + 1 DOUT
M
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 39 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
BLOCK LOCK Feature
The BLOCK LOCK feature provides the ability to protect the entire device or ranges of
blocks from PROGRAM and ERASE operations. Using this BLOCK LOCK feature offers
increased functionality and flexibility over using just WP# to prevent PROGRAM and
ERASE operations .
BLOCK L OCK features are enabled and disabl ed at power-on through the use of the
LOCK signal. At po wer -on, if LOCK is LOW, all BLOCK LOCK commands are disabled.
H owever, at power-on, if LOCK is HIGH, the BLOCK LOCK commands are enabled and,
b y default, all of the blocks on the device are protected, or locked, from PROGRAM and
ERASE operations, even if WP# is HIGH.
Before the contents of the device can be modified, the device must first be unlocked.
Either a ra nge of blocks or the entire device can be unlocked. PROGRAM and ERASE
operations complete success f ully only in the block ranges that have been unlocked.
Blocks , once unlocked, can be locked again to protec t them from further PROGRAM and
ERASE operations .
Blocks that are locked can be protected further, or locked tight. When locked tight, the
devices blocks can no longer be locked or unlocked until WP# is pulled LOW for more
than 100ns. After WP# goes LOW for this period, the entire device is locked from PRO-
GRAM and ERASE operations until unlocked again.
WP# and BLOCK LOCK
When the BLOCK LOCK feature is enabled, it interacts with WP# as follows:
WP# must be driven HIGH and remain HIGH when UNLOCK and LOCK-TIGHT com-
mands are issued.
Holding WP# LOW locks all blocks.
If WP# is held LOW to lock blocks, and then returned to HIGH, a new UNLOCK com-
mand must be issued to unlock blocks.
UNLOCK 23h-24h
By default at power-on, if LOCK is HIGH, all of the blocks in the NAND Flash device are
locked, meaning that they are protected from PROGRAM and ERASE operations. The
UNLOCK (23h) command is used to unlock a range of blocks. Unlocked blocks have no
protection and can be programmed or erased.
The UNLOCK command uses two registers—a lower boundary block address register
and an upper boundary block address register—and the invert area bit to determine
which range of blocks is unlocked. When the invert area bit = 0, the r a nge of blocks
within the lower and upper boundary address registers is unlocked. When the invert
area bit = 1, the r ange of blocks outside the boundaries of the lower and upper boundary
address registers are unlocked. The lower boundary block address must be less than the
upper boundary block addre ss. Figures28 and 29 on page 40 show examples of how the
lower and upper boundary address registers work with the invert area bit.
To unlock a range of blocks, issue the UNL OCK (23h) comm and followed by the appro-
priate ADDRESS cycles that indicate the lower boundary block address. Then issue the
24h command followed by the appropriate ADDRESS cycles that ind ic ate the upper
boundary block address. The least significant page address bit, PA0, should be set to “1”
if setting the invert area bit; otherwise, it should be “0.” The other page address bits
should be “0” (see Figure 30 on page 41).
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 40 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Only one range of blocks can be sp ec ified in the lower and upper boundary block
addre ss registers. If, after unlocking a ra nge of blocks, the UNLOCK command is again
issued, the new block address range determines which blocks are unlocked. The previ-
ous unlocked block address range is not retained.
The UNLOCK (23h-24h) command is dis ab le d if LOCK is LOW at power-on or if the
device is locked tight (see page42).
Figure 28: Flash Array Protected: Inverted Area Bit = 0
Figure 29: Flash Array Protected: Invert Area Bit = 1
Block 1023
Block 1022
Block 1021
Block 1020
Block 1019
Block 1018
Block 1017
Block 1016
Block 1015
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Block 0002
Block 0001
Block 0000
3FCh
3F8h
Unprotected
area
Protected
area
Protected
area
Upper block boundary
Lower block boundary
3FCh
3F8h
Protected
area
Upper block boundary
Lower block boundary
Unprotected
area
Unprotected
area
Block 1023
Block 1022
Block 1021
Block 1020
Block 1019
Block 1018
Block 1017
Block 1016
Block 1015
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Block 0002
Block 0001
Block 0000
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 41 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Notes: 1. I/O[15:8] is applicable only for x16 devices.
2. Invert area bit is applicable for 24h command; it can be HIGH or LOW for the 23h com-
mand.
Figure 30: UNLOCK Operation
LOCK 2Ah
By default at power-on, if LOCK is HIGH, all of the blocks in the NAND Flash device are
locked and protected from PROGRAM and ERASE operations. If portions of the device
are unlocked using the UNLOCK (23h) command, they can be locked again using the
LOCK (2Ah) command. The LOCK command locks all of the blocks i n the device . L ocked
blocks are write-protected from PROGRAM and ERASE operations.
To lock all of the blocks in the device, issue the LOCK (2Ah) command.
When a PROGRAM or ERASE operation is issued to a locked block, R/B# goes LOW for
tLBSY. The PROGRAM or ERASE operation does not complete. The READ STATUS (70h)
command reports bit 7 as “0,” indicating that the block is protected.
The LOCK (2Ah) command is disabled if LOCK is LOW at power-on or if the device is
locked tight (see page 42).
Table 10: BLOCK LOCK Address Cycle Assignments
ALE Cycle I/O[15:8]1I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0
First LOW BA7 BA6 LOW LOW LOW LOW LOW Invert Area Bit2
Second LOW BA15BA14BA13BA12BA11BA10 BA9 BA8
UNLOCK Lower boundary Upper boundary
CLE
CE#
WE#
ALE
RE#
I/Ox 23h 24h
Block
add 1 Block
add 2 Block
add 1 Block
add 2
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 42 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 31: LOCK Operation
LOCK-TIGHT 2Ch
The LOCK-TIGHT (2Ch) command prevents locked blocks from being unlocked and
also prevents unlocked blocks from being locke d. When thi s command is issued, the
UNLOCK (23h) and LOCK (2Ah) commands are disabled. This provides an additional
level of protection to locked blocks from inadvertent PROGRAM and ERASE operations.
To implement the lock-tight stat e in all of the lo cked blocks in the dev ice, verify that WP#
is HIGH and then issue the LOCK-TIGHT (2Ch) command.
When a PROGRAM or ERASE operation is issued to a locked block that has also been
locked tight, R/B# goes LOW for tLBSY. The PROGRAM or ERASE operation does not
complete. The READ STATUS (70h) command reports bit 7 as “0,” indicating that the
block is protected. PROGRAM and ERASE operations complete successfully to blocks
that were not locked at the time the LOCK-TIGHT command was issued.
Once the LOCK-TIGHT command is issued, it cannot be dis ab le d via a softw are com-
mand. The only way to disable the lock-tight st atus is either to hold WP# LOW for greater
than 100ns or to power cycle the device. When the lock-tight status is disabled, all of the
blocks become locked, the same as if the LOCK (2Ah) command were issued.
The LOCK-TIGHT (2Ch) command is disabled if LOCK is LOW at power-on.
Figure 32: LOCK-TIG HT Operation
LOCK
command
CLE
CE#
WE#
I/Ox 2Ah
LOCK-TIGHT
command
WP#
CLE
CE#
WE#
I/Ox 2Ch
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 43 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 33: PROGRAM/ERASE Issued to Locked or Locked-Tight Block
Figure 34: LOCKED-TIGHT BLOCKS to LOCKED BLOCKS Operation
Note: The device ensures exit from lock-tight mode if the WP# pulse is greater than 100ns. The
device may exit lock-tight mode if WP# pulse is less than 100ns, however, this is not guar-
anteed.
BLOCK LOCK READ STATUS 7Ah
The BLOCK LOCK READ STATUS (7Ah) command is used to determine the protection
status of individual blocks . The ADDRESS cycles have the same format as shown in
Table 10 on page 41; the invert area bit should be s et LO W. On the falling edge of RE#, the
I/O outputs the block-lock status register which co ntains the information on the protec-
tion status of the block. Table 11 shows how to interpret the block-lock status register
bits.
The BLOCK LOCK READ STATUS (7Ah) command is disabled if LOCK is LOW at
power-on.
Table 11: BLOCK LOCK Status Register Bit Definitions
BLOCK LOCK Status Register Definitions I/O[7:3] I/O2 (Lock#) I/O1 (LT#) I/O0 (LT)
Block is locked and device is locked-tigh t X001
Block is locked and device is not locked-tight X010
Block is unlocked and device is locked-ti gh t X101
Block is unlocked and devic e is not locked-tight X110
R/B#
I/Ox PROGRAM or ERASE Address/data input CONFIRM 70h 60h
tLBSY
Locked or locked-tight block READ STATUS
LOCK
CE#
WP#
> 100ns
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 44 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 35: BLOCK LOCK READ STATUS
BLOCK LOCK
READ STATUS Block address
CLE
CE#
WE#
ALE
RE#
I/Ox 7Ah Add 1 Add 2 Status
tWHRIO
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 45 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 36: BLOCK LOCK Flow Chart
Power-up
Power-up with
LOCK HIGH
LOCK-TIGHT command
with WP# and
LOCK HIGH
LOCK-TIGHT command
with WP# and LOCK HIGH LOCK-TIGHT command
with WP# and LOCK HIGH
WP# LOW
>100ns
WP# LOW > 100ns WP# LOW > 100ns
UNLOCK command with
invert area bit = 1
LOCK commandLOCK
command
UNLOCK command with
invert area bit = 0
UNLOCK command with
invert area bit = 0
UNLOCK command
with invert area
bit = 1
UNLOCK command with invert area bit = 1
UNLOCK command invert area bit = 0
Entire NAND Flash
array locked
Entire NAND Flash
array locked tight
BLOCK LOCK function
disabled
Unlocked range
Locked range
Unlocked range
Unlocked range
Locked-tight range
Unlocked range
Locked-tight range
Unlocked range
Locked-tight range
Power-up with
LOCK LOW
(default)
Locked range
Unlocked range
Locked range
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 46 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
RESET Operation
RESET FFh
The RESET command is used to put the memory device into a known condition and to
abort a command sequence in progress.
READ, PROGRAM, and ERASE commands can be aborted while the devi ce is in the bus y
state. The contents of the me mory location being progr ammed or the block being erase d
are no longer valid. The command regi ste r is cleared and is r eady for the next command.
The status register contains the value E0h when WP# is HIGH; otherwise, it is written
with a 60h value . R/B# goes LOW for tRST after the RESET command is written to the
command regis te r. Se e Figure 37 and Table 12 for details.
The RESET command must be issued after power-on and before any other command is
issued to the de vic e. The device will be bus y for a ma xi m u m of 1ms at this time.
Figure 37: RESET Operation
Table 12: Status Register Contents After Reset
Condition Status Bit 7 Bit 6 Bit 5 Bi t 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex
WP# HIGH Ready 11100000E0h
WP# LOW Ready and write protected 0110000060h
WE#
CE#
CLE
R/B#
I/Ox
tRST
tWB
FFh
RESET
command
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 47 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Programmable Drive Strength
PROGRAMMABLE I/O DRIVE STRENGTH B8h
The B8h command is used to chang e th e de faul t I/O drive strength as shown in
Figure 38. Drive strength should be selected based on expected memory bus loading.
There are four allowable settings for the output drive strength. The settings and the
default drive strength are shown in Table 13 . Th e de vic e returns to the de fault drive
strength mode after it is power-cycled. Figure38 shows how to write and read the drive
strength. Refer toTa ble 14 on page 48 for unique timing parameters associated with the
PR OGRAMMABLE I/O DRIVE STRENGTH command. Note that the AC timing charac-
teristics doc u m ent ed in Table 21 on page 54 and Table 22 on page 54 m ay nee d to be
relaxed if the I/O drive strength is not set to “full.
Figure 38: Programmable I/O Drive Strength Command Sequence
Notes: 1. WRITE operation.
2. READ operatio n.
Notes: 1. For WRITE operati on, X = “Don’t Care.” For READ operation, X = “Undefined.”
2. T iming parameters shown in Table 21 on page 54 and Table 22 on page 54 represent full
drive setting.
Table 13: I/O Drive Strength Settings
Drive Strength I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0
Full (default) XXXX00XX
Three-quarters XXXX01XX
One-half XXXX10XX
One-quarter XXXX11XX
CLE
CE#
WE#
ALE
RE#
I/Ox B8h I/O[7:0]1 I/O[7:0]2
tWHRIO tRPIO
tDSIO
tWHIO
tWCIO
tWPIO
tDHIO
tCLSIO tCLHIO
tREAIO
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 48 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
WRITE PROTECT
The WRITE PROTECT feature protects the device against inadvertent PROGRAM and
ERASE operations . All PROGRAM and ERASE operations are disabled when WP# is L OW.
For WRITE PROTECT timing detail s, see Figures 39 through 42.
Figure 39: ERASE Enable
Figure 40: ERASE Disable
Table 14: Programmable I/O Drive Strength Register READ/WRITE Timing
Parameter Symbol Min Max Unit Notes
CLE hold time tCLHIO 15 ns
CLE setup time tCLSIO 25 ns
Data hold time tDHIO 15 ns
Data setup time tDSIO 30 ns
RE# access time tREAIO 250 ns
RE# pulse width tRPIO 250 ns
WRITE cycle time tWCIO 100 ns
WE# pulse width HIGH tWHIO 50 ns
WE# HIGH to RE# LOW tWHRIO 100 ns
WE# pulse width tWPIO 50 ns
tWW
60h D0h
WE#
I/Ox
WP#
R/B#
tWW
60h D0h
WE#
I/Ox
WP#
R/B#
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 49 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Command Definitions
Figure 41: PROGRAM Enable
Figure 42: PROGRAM Disable
tWW
80h 10h
WE#
I/Ox
WP#
R/B#
tWW
80h 10h
WE#
I/Ox
WP#
R/B#
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 50 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Error Management
Error Management
Micron MT29F1Gxx NAND Flash devices are specified to have a minimum of 1,004 valid
blocks (NVB) out of 1,024 total available blocks. This means the devices may have blocks
that ar e inva lid when they ar e s hipped. An in valid block is one that contains one or mor e
bad bits. Additional bad blocks may de vel o p with us e. However, the total number of
available blocks will not fall below NVB.
Although NAND Flash memory devices may contain bad blocks, they can be used quite
reliably in systems that provide bad-block mapping, replacement, and error correction
algorithms. This type of software environment ensures data integrity.
Internal circuitry isolates ea ch block from other blocks, so the presence of a bad block
does not affect the operation of the rest of the NAND Flash device.
The first block (physical block address 00h) for each CE# in Micron NAND Flash devices
is guaranteed to be free of defects (up to 1,000 PROGRAM/ERASE cycles) when shipped
from the factory. This provides a reliable location for storing boot code and critical boot
information.
Before NAND Flash devices are shippe d from Micron, they are erased. The factory iden-
tifies invalid blocks before shipping by programming data other than FFh (x8) or FFFFh
(x16) into the first spare location (column address 2,048 for x8 devices, or 1,024 for x16
devices) of the first or second page of each bad block.
System software should check the first spare address on the first and second page of
each block prior to perfor ming any erase or formatting operations on the NAND Flash
device. A bad-block table can then be created , enabling system software to map around
these areas. Factory testing is performed under worst-case conditions. Because blocks
marked “bad” may be marginal, it may not be possible to recover this information if the
block is erased.
If the NAND Flash device is erased before these operations are performed, system soft-
ware mus t determine which blocks are bad b y writing and ve rifying va lid information in
each memory location in the device. After writing and verifying all locations, the device
must be fully erased and checked to verify that each block has erased properly.
Over time, some memory locations may fail to program or erase properly. In order to
ensure that data is stored properly over the life of the NAND Flash device, certain pre-
cautions must be taken, inc lud ing :
Always check status after a WRITE or ERASE operation.
Under typical use conditions, utilize a minimum of 1-bit ECC for each 528 bytes of
data.
Use a bad-block replacement algorithm.
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 51 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Electrical Characteristics
Electrical Characteristics
S t resses greater than those listed under Absolute Maximum Ratings by Device (see
Table 15) may cause permanent damage to the device. This is a stress rating onl y, and
functional operation of the device at these or any other conditions above those indi-
cated in the operational sections of this specification is not guaranteed. Exposure to
absolute maximum rating condit ions for extended periods may affect reliability.
Table 15: Absolute Maximum Ratings by Device
Device Symbol Min Max Unit
MT29F1GxxABB VIN Supply voltage on any ball relative to VSS –0.6 +2.45 V
MT29F1GxxABB VCC –0.6 +2.45 V
MT29F1GxxABB TSTG Storage temperature –65 +150 °C
Short circuit output cur r e nt , I/Os 5mA
Table 16: Recommended Operating Conditions
Parameter/Condition Symbol Min Typ Max Units
Operating temperature Commercial TA0–70
oC
Extended TA–40 85 oC
VCC supply voltage MT29F1GxxABB VCC 1.65 1.8 1.95 V
Supply voltage VSS 000V
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 52 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Electrical Characteristics
VCC Power Cycling
Micron NAND Flash devices are designed to prevent data corruption duri ng power tran-
sitions. VCC is internally monitored. (The WP# signal permits additional hardware pro-
tection during power transitions.) When VCC reaches 1.5V, a minimum of 100µs should
be allowed for the Flash device to initia lize before any commands are executed (see
Figure43 for the states of signals during VCC power cycling).
The RESET command must be issued to all CE#s after the NAND Flash device is powered
on. Each CE# will be busy for a maximum of 1ms after a RESET command is issued.
Figure 43: AC Waveforms During Power Transitions
Notes: 1. If the system requires the LOCK features to be enabled, then the LOCK signal must be
HIGH during power-up. If the LOCK features are to be disabled, then the LOCK signal
should be held LOW during power-up.
100µs
(MIN)
Undefined
Don’t Care
FFh
1ms
(MAX)
1.8V device: 1.5V 1.8V device: 1.5V
tCS
VCC
CLE
CE#
WP#
LOCK1
WE#
ALE
RE#
I/Ox
R/B#
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 53 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Electrical Characteristics
Notes: 1. Invalid blocks are blocks that contain one or more bad bits. The device may contain bad
blocks after shippi ng . Additio nal bad bl oc ks may develop over time; however, the total
number of avail a ble blocks will not drop below NVB during the endurance life of the
device. Do not eras e or program blocks mark ed “invalid” by the fact ory.
2. Block 00h (the first block) is guaranteed to be valid, and does not require error correction
for up to 1,000 PROGRAM/ERASE cycles.
Notes: 1. These parameters are verified in device characterization and are not 100 percent tested.
2. Test conditions: TC = 25°C; f = 1 MHz; VIN = 0V.
Notes: 1. Verified on device characterization; not 100 percent tested.
2. Outputs tested at full drive strength.
Table 17: DC and Operati ng Characteristics, VCC = 1.65–1.95V
Parameter Conditions Symbol Min Typ Max Unit
Sequential READ current tCYCLE = 50ns; CE# = VIL;
IOUT = 0mA ICC1 10 20 mA
PROGRAM curre nt –I
CC2 10 20 mA
ERASE current –I
CC3 10 20 mA
Standby current (TTL) CE# = VIH; WP# = 0V/VCC ISB1– 1mA
Standby current (CMOS) CE# = VCC - 0.2V;
WP# = 0V/VCC ISB2 10 50 µA
Input leakage current VIN = 0V to VCC ILI ±10 µA
Output leakage current VOUT = 0V to VCC ILO ±10 µA
Input high volt ag e I/O [7:0], I/O [15:0], CE#, CLE, ALE,
WE#, RE#, WP#, R/B#, LOCK VIH 0.8 x VCC –VCC + 0.3 V
Input low voltage, all inputs –V
IL –0.3 0.2 x VCC V
Output high voltage IOH = –100µA VOH VCC - 0.1 V
Output low voltage IOL = 100µA VOL ––0.1V
Output low current (R/B#) VOL = 0.1V IOL 34mA
Table 18: Valid Blocks
Parameter Symbol Device Min Typ Max Unit Notes
Valid blo ck number NVB MT 29 F1 G xxA BB 1,004 1,024 bloc k s 1, 2
Table 19: Capacitance
Description Symbol Device Max Unit Notes
Input capacitance CIN MT29F1GxxABB 10 pF 1, 2
Input/output capacitance (I/O) CIO MT29F1GxxABB 10 pF 1, 2
Table 20: Te st Conditions
Parameter Value Notes
Input pulse levels MT29F1GxxABA 0.0V to 1.8V
Input ris e an d fa ll times 5ns
Input and outp ut timing levels VCC/2
Output load MT29F1GxxABA 1 TTL GATE and CL = 30pF 1, 2
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 54 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Electrical Characteristics
Notes: 1. Timing for tADL begins in the ADDRESS cycle, on the final rising edge of WE#, and ends
with the first rising edge of WE# data output.
Notes: 1. AC characteristics may need to be relaxed if I/O drive strength is not set to full.
2. Transition is measured ±200mV from steady-state voltage with load. This parameter is sam-
pled and not 100 percent tested.
3. When VCC is less than 1.7V down to 1.65V, tRC MIN is 60ns.
4. If RESET (FFh) command is loaded at ready state, the device goes busy for maximum 5µs.
5. Do not issue a new command during tWB, even if R/B# is ready.
Table 21: AC Characteristics – Command, Data, and Address Input
Parameter Symbol Min Max Unit Notes
ALE to data start tADL 100 ns 1
ALE hold time tALH 10 ns
ALE setup time tALS 25 ns
CE# hold time tCH 10 ns
CLE hold time tCLH 10 ns
CLE setup time tCLS 25 ns
CE# setup time tCS 25 ns
Data hold time tDH 10 ns
Data setup time tDS 20 ns
WRITE cycle time tWC 45 ns
WE# pulse width HIGH tWH 15 ns
WE# pulse width tWP 25 ns
WP# setup time tWW 30 ns
Table 22: AC Characteristics – Normal Operation
Parameter Symbol Min Max Unit Notes
ALE to RE# delay tAR 10 ns 1
CE# access time tCEA –45ns1
CE# HIGH to output High-Z tCHZ –45ns1,2
CLE to RE# delay tCLR 10 ns 1
CE# HIGH to output hold tCOH 15 ns 1
Cache busy in PAGE READ CACHE MODE (first 31h) tDCBSYR1 –3µs1
Cache busy in PAGE READ CACHE MODE (next 31h and 3Fh) tDCBSYR2 tDCBSYR1 25 µs 1
Ouput High-Z to RE# LOW tIR 0–ns1,2
Data transfer from Flash ar ray to data register tR–25µs1
READ cycle time tRC 50 ns 1, 3
RE# access time tREA –30ns1
RE# HIGH hold time tREH 15 ns 1
RE# HIGH to output hold tRHOH 15 ns 1
RE# HIGH to WE# LOW tRHW 100 ns 1
RE# HIGH to output High-Z tRHZ 100 ns 1, 2
RE# pulse width tRP 25 ns 1
Ready to RE# LOW tRR 20 ns 1
Reset time (READ/PROGRAM/ERASE/power-up) tRST 5/10/500/
1,000 µs 1, 4
WE# HIGH to busy tWB 100 ns 1, 4, 5
WE# HIGH to RE# LOW tWHR 80 ns 1
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 55 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Electrical Characteristics
Notes: 1. Eight total to the same page.
2. tCBSY MAX time depends on timing between internal program complet ion and data in.
3. tLPROG = tPROG (last page) + tPROG (last - 1 page) - command load time (last page) -
address load time (last page) - data load time (last page).
4. More than 50 percent of the pages will meet typical tPROG at 1.8V and 25°C.
Table 23: PROGRAM/ERASE Characteristics
Parameter Symbol Typ Max Unit Notes
Number of partial page programs NOP –8cycle1
Block erase time tBERS 23ms
Busy time for cache program tCBSY 3700µs2
Busy time for PROGRAM ERASE on locked block tLBSY s
Busy time for OTP DATA PROGRAM operation if
OTP is protected
tOBSY 30 µs
Last page program time tLPROG –––3
Page program time tPROG 250 700 µs 4
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 56 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Timing Diagrams
Figure 44: COMMAND LATCH Cycle
Note: The x16 devices must have I/O[15:8] set to “0.”
Figure 45: ADDRESS LATCH Cycle
Note: The x16 devices must have I/O[15:8] set to “0.”
WE#
CE#
ALE
CLE
I/Ox COMMAND
tWP
tCH
tCS
tALH
tDH
tDS
tALS
tCLH
tCLS
Don‘t Care
WE#
CE#
ALE
CLE
I/Ox Address
tWP tWH
tCS
tDH
tDS
tALS tALH
tCLS
Don‘t Care Undefined
tWC
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 57 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 46: INPUT DATA LATCH Cycle
Note: DIN Final = 2,112 (x8) or 1,056 (x16).
Figure 47: SERIAL ACCESS Cycle after READ
Note: Transition is measured ±200mV from steady-state voltage with load.
This parameter is sampled and not 100 percent tested.
W
E#
CE#
ALE
CLE
I/Ox DIN 0
tWP tWP tWP
tWH
tALS
tDH
tDS tDH
tDS tDH
tDS
tCLH
tCH
DIN 1 DIN Final1
Don‘t Care
tWC
CE#
RE#
I/Ox
tREH
tRP
tRR tRC
tCEA
tREA tREA tREA
1
Don‘t Care
tRHZ
1
tCHZ
1
tRHZ
1
tRHOH
R/B#
tCOH
D
OUT
D
OUT
D
OUT
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 58 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 48: READ STATUS Cycle
Figure 49: PAGE READ Operation
RE#
CE#
WE#
CLE
I/Ox
tRHZ
tWP
tWHR
tCEA
tCLR
tCH
tCLS
tCS
tCLH
tDH
tCOH
tRP
tCHZ
tDS tREA tRHOH
tIR
70h Status output
Don‘t Care
RE#
CE#
ALE
CLE
I/Ox 00h Address (4 cycles) Data output
(Serial access)
30h
R/B#
WE#
tR
Don‘t Care
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 59 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 50: READ Operation with CE# “Don’t Care”
Figure 51: RANDOM DATA READ Operation
RE#
CE# tREA
tCEA
RE#
CE#
ALE
CLE
I/Ox
I/Ox Out
R/B#
W
E#
Data output
tR
Don‘t Care
Address (4 cycles)00h 30h
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox
Busy
Col
add 1 Col
add 2 Row
add 1 Row
add 2
00h
tR
tAR
tRR
Don’t Care
tRC
DOUT
MDOUT
M + 1
Col
add 1 Col
add 2
05h E0h
tREA
tWHR
tCLR
DOUT
NDOUT
N + 1
30h
tWB
Column address N Column address M
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifications without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 60 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 52: PAGE READ CACHE MODE Operation, Part 1 of 2
tWC
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox 30h DOUT
0
Column address 0
1
DOUT
0
DOUT
1 DOUT
Column address
00h Page address
M Page address
M + 1
Page address
M
tCEA
tDS
tCLH
tCLS
tCS tCH
tDH
Don’t Care
tRR
31h
tWB tR
31h
Column address 0
Continued to 1
of next page
Col
add 1 Col
add 2 Row
add 1 Row
add 2
00h
tRC
tREA
tDCBSYR2
tDCBSYR1
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifications without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 61 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 53: PAGE READ CACHE MODE Operation, Part 2 of 2
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox
1
Page address
M + 1
Don’t Care
Page address
M + 2
Column address 0
Continued from 1
of previous page
Page address
M + x
Column address 0
tCLH
tCH
tREA
tCEA
tDS tDH tRR
tWB
Column address 0
D
OUT
0 D
OUT
1 31h D
OUT
0 D
OUT
3Fh
D
OUT
1 D
OUT
0 D
OUT
D
OUT
1
tCS
tRC
31h
tCLS
tDCBSYR2 tDCBSYR2
tDCBSYR2
D
OUT
D
OUT
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifications without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 62 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 54: PAGE READ CACHE MODE Operation without R/B#, Part 1 of 2
tWC
WE#
CE#
ALE
CLE
RE#
I/Ox
30h 70h Status D
OUT
0
Column address 0
1
D
OUT
0
D
OUT
1 D
OUT
Column address
00h Page address
M Page address
M + 1
Page address
M
tCEA
tDS
tCLH
tCLS
tCS tCH
tDH
Don’t Care
31h 31h
Column address 0
70h Status
I/O 6 = 0, Cache busy
= 1, Cache ready
I/O 5 = 0, Cache busy
= 1, Cache ready
Continued to 1
of next page
Col
add 1 Col
add 2 Row
add 1 Row
add 2
00h 00h 00h
tRC
tREA
70h Status
I/O 6 = 0, Cache busy
= 1, Cache ready
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifications without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 63 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 55: PAGE READ CACHE MODE Operation without R/B#, Part 2 of 2
WE#
CE#
ALE
CLE
RE#
I/Ox
1
Page address
M + 1
Don’t Care
Page address
M + 2
Column address 0
Continued from 1
of previous page
Page address
M + x
Column address 0
tCLH
tCH
tREA
tCEA
tDS tDH
Column address 0
D
OUT
1 31h D
OUT
0 D
OUT
3Fh
D
OUT
1 D
OUT
tCLS
tCS
tRC
D
OUT
31h 70h Status
I/O 6 = 0, Cache busy
= 1, Cache ready
70h Status
I/O 6 = 0, Cache busy
= 1, Cache ready
70h Status
I/O 6 = 0, Cache busy
= 1, Cache ready
00h 00h 00h D
OUT
D
OUT
0 D
OUT
0D
OUT
1
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 64 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 56: READ ID Operation
Notes: 1. See Table 8 on page 25 for byte definitions.
Figure 57: PROGRAM Operation with CE# “Don’t Care”
Device ID1
WE#
CE#
ALE
CLE
RE#
I/Ox
Address, 1 cycle
90h 00h
Manufacturer ID1
Byte 21
Byte 0 Byte 1 Byte 31Byte 4
tAR
tREA
tWHR
CLE
CE#
WE#
ALE
I/Ox Address (4 cycles) Data input 10h
WE#
CE#
tWP
tCH
tCS
Don‘t Care
Data input80h
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 65 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 58: PROGRAM PAGE Operation
Figure 59: PROGRAM PAGE Operation with RA NDOM DATA INPUT
W
E#
CE#
ALE
CLE
RE#
R/B#
I/Ox
tWC
tWB
SERIAL DATA
INPUT command
x8 device: m = 2,112 bytes
x16 device: m = 1,056 words
PROGRAM
command READ STATUS
command
1 up to m Byte
serial input
80h Col
add 1 Col
add 2 Row
add 1 Row
add 2 DIN
NDIN
M70h Status
10h
tPROG
Don‘t Care
tADL
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox
tWC
SERIAL DATA
INPUT command Serial input
80h Col
add 1 Col
add 2 Row
add 1 DIN
N+1
tADL tADL
RANDOM DATA
INPUT command Column address PROGRAM
command READ STATUS
command
Serial input
85h Col
add 1 DIN
N+1 70h Status10h
tPROG
tWB
Don‘t Care
Row
add 2 DIN
NCol
add 2 DIN
N
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 66 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 60: INTERNAL DATA MOVE Operation
Figure 61: PROGRAM PAGE CACHE MODE Operation
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox Col
add 1
00h 35h
Col
add 2 Row
add 1 Row
add 2 Col
add 1 Col
add 2 Row
add 1 Row
add 2
tWB tPROG
tWB
85h Data
170h10h Status
Busy Busy READ STATUS
command
Data
N
tWC
INTERNAL
DATA MOVE Don‘t Care
tR
tADL
WE#
CE#
ALE
CLE
RE#
R/B#
I/Ox 80h 15h
tCBSY
tWB tWBtPROG
Col
add 1
80h 10h 70h Status
Col
add 2 Row
add 2
Row
add 1
Col
add 1 Col
add 2 Row
add 2
Row
add 1 DIN
M
DIN
N
DIN
M
DIN
N
Last page input and programming
tCSBY: Max 700µs
SERIAL DATA
INPUT command Serial input PROGRAM
PROGRAM
tWC
Don‘t Care
tADL tADL
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifications without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 67 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 62: PROGRAM PAGE CACHE MODE Operation Ending on 15h
WE#
CE#
ALE
CLE
RE#
I/Ox Col
add 1 Status 70h Status
70h Status Col
add 2 Row
add 2
Row
add 1 Row
add 3
Col
add 1 Col
add 2 Row
add 2
Row
add 1
D
IN
M
D
IN
N
D
IN
M
D
IN
N
Last pageLast page -1
Serial input PROGRAM PROGRAM
tWC
Don‘t Care
80h
Poll status until:
I/O6 = 1, Ready T o ensure PROGRAM success, last 2 pages:
I/O5 = 1, Ready
I/O0 = 0, Last page PROGRAM successful
I/O1 = 0, Last page -1 PROGRAM successful
tADL
70h15h
80h
15h
Serial data
input
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 68 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Timing Diagrams
Figure 63: BLOCK ERASE Operation
Figure 64: RESET Operation
WE#
CE#
ALE#
CLE
RE#
R/B#
I/Ox
ERASE SETUP
command
ERASE
command READ STATUS
command
Busy
Row address
60h Row
add 1 Row
add 2 70h Status
D0h
tWC
tBERS
tWB
Don‘t Care
WE#
CE#
CLE
R/B#
I/Ox
tRST
tWB
FFh
RESET
command
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932- 4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks ar e the property of
their respective owners.
This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range
for production devices. Although considered final, these specifications are subject to change, as further product develop-
ment and data characterization sometimes occur.
1Gb: x8, x16 NAND Flash Memory
Package Dimensions
09005aef8191f6ca alt pdf/ 09005aef8191f5ec sourcePDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifications without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 69 ©2006 Micron Technology, Inc. All rights reserved.
Package Dimensions
Figure 65: 63-Ball VFBGA Package
Note: All dimensions are in millimeters.
Ball A1 ID
1.00 MAX
Mold compound: Epoxy novolac
Substrate material: Plastic laminate
Solder ball material:
96.5% Sn, 3%Ag, 0.5% Cu
13.00 ±0.10
Ball A10
Ball A1 ID
0.80 TYP
0.80 TYP
6.50 ±0.05
10.50 ±0.10
5.25 ±0.053.60
4.40
0.65 ±0.05
Seating
plane
A
8.80
7.20
0.10 A
Ball A1
63X Ø0.45
Dimensions
apply to solder
balls post reflow.
Pre-reflow ball
is Ø0.42 on a Ø0.4
SMD ball pad.
C
L
C
L
PDF: 09005aef81dc05df / Source: 09005aef821d5f08 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
1gb_nand_m48a__2.fm - Rev. E 1/08 EN 70 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x8, x16 NAND Flash Memory
Revision History
Revision History
Rev. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1/08
OTP DATA READ AFh-30h” on page 38: Added comment regarding OTP DATA READ
followed by PAGE READ CACHE MODE.
Rev. D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6/07
“PROGRAM PAGE CACHE MODE 80h-15h” on page 31: Revised last paragraph.
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 /07
Figure 2: Ball Assignment (x8), 63-Ball VFBGA on page 8: Renumbered ball assign-
ments.
Figure 3: Ball Assignment (x16), 63-Ball VFBGA on page9: Renumbered ball assign-
ments.
Former Figure10: Time Constants on page 17: Converted figure to equation format.
Former Figure11: Minimum Rp on page 18: Converted figure to equation format.
OTP DATA PROGRAM A0h-10h” on page 35: Re vised RANDOM DATA INPUT (85h)
discussion.
“Error Management” on page 50: Modified second bullet point wording.
•V
CC Power Cycling and Figur e43: AC Waveforms During Power Transitions on
page 52: Changed 10µs to 100µs.
Table 22: AC Characteristics – Normal Operation on page 54: Removed tRLOH.
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11/06
“Features” on page 4: Added r equired RESET after power-up; changed ready/ busy pin
to ready/busy signal.
Table 22: AC Characteristics – Normal Operation on page 54: Deleted tLBSY and
tOBSY MIN values and notes; changed tOBSY (MAX) to 30µs; moved tLBSY and tOBSY
to table 23.
Table 23: PROGRAM/ERASE Characteristics on page 55: Changed tPR OG (TYP) to
250µs and added note 4.
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10/06
•Initial release.