LM25085
,
LM25085-Q1
SNVS593J –OCTOBER 2008–REVISED NOVEMBER 2014
www.ti.com
Feature Description (continued)
Similar to NFETs, the case or exposed thermal pad for a PFET is electrically connected to the drain terminal.
When designing a PFET buck regulator the drain terminal is connected to the switching node. This situation
requires a trade-off between thermal and EMI performance since increasing the PC board area of the switching
node to aid the PFET power dissipation also increases radiated noise, possibly disrupting the circuit operation.
Typically the switching node area is kept to a reasonable minimum and the PFET peak current is derated to stay
within the recommended temperature rating of the PFET. The RDS(ON) of the PFET determines a portion of the
power dissipation in the PFET. However, PFETs with very low RDS(ON) usually have large values of gate charge.
A PFET with a higher gate charge has a corresponding slower switching speed, leading to higher switching
losses and affecting the PFET power dissipation.
If the PFET RDS(ON) is used for current limit detection, note that it typically has a positive temperature coefficient.
At 100°C the RDS(ON) may be as much as 50% higher than the value at 25°C which could result in incorrect
current limiting if not accounted for when determining the value of the RADJ resistor. The PFET Total Gate
Charge determines most of the power dissipation in the LM25085 due to the repetitive charge and discharge of
the PFET’s gate capacitance by the gate driver (powered from the VCC regulator). The LM25085’s internal
power dissipation can be calculated from the following:
PDISS = VIN x ((QGx FS)+IIN)
where
• QGis the PFET Total Gate Charge obtained from its datasheet
• FSis the switching frequency
• IIN is the LM25085's operating current obtained from Figure 2 (14)
Using the Thermal Resistance specifications in Electrical Characteristics, the approximate junction temperature
can be determined. If the calculated junction temperature is near the maximum operating temperature of 125°C,
either the switching frequency must be reduced, or a PFET with a smaller Total Gate Charge must be used.
7.3.9 Soft-Start
The internal soft-start feature of the LM25085 allows the regulator to gradually reach a steady state operating
point at power up, thereby reducing startup stresses and current surges. Upon turn-on, when VCC reaches its
under-voltage lockout threshold, the internal soft-start circuit ramps the feedback reference voltage from 0V to
1.25V, causing VOUT to ramp up in a proportional manner. The soft-start ramp time is typically 2.5ms.
In addition to controlling the initial power up cycle, the soft-start circuit also activates when the LM25085 is
enabled by releasing the RT pin, and when the circuit is shutdown and restarted by the internal Thermal
Shutdown circuit.
If the voltage at FB is below the regulation threshold value due to an over-current condition or a short circuit at
VOUT, the internal reference voltage provided by the soft-start circuit to the regulation comparator is reduced
along with FB. When the over-current or short circuit condition is removed, VOUT returns to the regulated value at
a rate determined by the soft-start ramp. This feature helps prevent the output voltage from overshooting
following an overload event.
7.3.10 Thermal Shutdown
The LM25085 should be operated such that the junction temperature does not exceed 125°C. If the junction
temperature increases above that, an internal Thermal Shutdown circuit activates at 170°C (typical) to disable
the VCC regulator and the gate driver, and discharge the soft-start capacitor. This feature helps prevent
catastrophic failures from accidental device overheating. When the junction temperature falls below 150°C
(typical hysteresis = 20°C), the gate driver is enabled, the soft-start circuit is released, and normal operation
resumes.
7.4 Device Functional Modes
7.4.1 Standby Mode with VIN <4.5 V
The LM25085 is intended to operate with input voltages above 4.5 V. The minimum operating input voltage is
determined by the VCC undervoltage lockout threshold of 3.8 V (typ). If VIN is too low to support a VCC voltage
greater than the VCC UVLO threshhold, the controller switches to the standby mode with the PFET buck switch
in the off state.
16 Submit Documentation Feedback Copyright © 2008–2014, Texas Instruments Incorporated
Product Folder Links: LM25085 LM25085-Q1