MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
MIXED SIGNAL MICROCONTROLLER
1FEATURES
23 Embedded Microcontroller eUSCI_A0 and eUSCI_A1 Support:
16-Bit RISC Architecture up to 24-MHz UART With Automatic Baud-Rate
Clock Detection
Wide Supply Voltage Range (2 V to 3.6 V) IrDA Encode and Decode
-40°C to 85°C Operation SPI at Rates up to 10 Mbps
Optimized Ultra-Low Power Modes eUSCI_B0 Supports:
I2C With Multi-Slave Addressing
Consumption
Mode SPI at Rates up to 10 Mbps
(Typical) Hardware UART or I2C Bootstrap Loader
Active Mode 81.4 µA/MHz (BSL)
Standby (LPM3 With VLO) 6.3 µA Power Management System
Real-Time Clock (LPM3.5 With Crystal) 1.5 µA
Shutdown (LPM4.5) 0.32 µA Fully Integrated LDO
Supply Voltage Supervisor for Core and
Ultra-Low Power Ferroelectric RAM Supply Voltages With Reset Capability
Up to 16KB Nonvolatile Memory Always-On Zero-Power Brownout Detection
Ultra-Low Power Writes Serial On-Board Programming With No
Fast Write at 125 ns per Word (16KB in 1 External Voltage Needed
ms) Flexible Clock System
Built in Error Coding and Correction (ECC) Fixed-Frequency DCO With Six Selectable
and Memory Protection Unit (MPU) Factory-Trimmed Frequencies (Device
Universal Memory = Program + Data + Dependent)
Storage Low-Power Low-Frequency Internal Clock
1015 Write Cycle Endurance Source (VLO)
Radiation Resistant and Nonmagnetic 32-kHz Crystals (LFXT)
Intelligent Digital Peripherals High-Frequency Crystals (HFXT)
32-Bit Hardware Multiplier (MPY) Development Tools and Software
Three-Channel Internal DMA Free Professional Development
Real-Time Clock With Calendar and Alarm Environments (IAR, CCS, GCC)
Functions Low-Cost Full-Featured Kit (MSP-
Five 16-Bit Timers With up to Three EXP430FR5739)
Capture/Compare Full Development Kit (MSP-FET430U40A)
16-Bit Cyclic Redundancy Checker (CRC) Target Board (MSP-TS430RHA40A)
High-Performance Analog Family Members
16-Channel Analog Comparator With 20 Different Variants and 5 Available
Voltage Reference and Programmable Packages Summarized in Table 1 and
Hysteresis Table 2
14-Channel 10-Bit Analog-to-Digital For Complete Module Descriptions, See the
Converter (ADC) With Internal Reference MSP430FR57xx Family User's Guide
and Sample-and-Hold (SLAU272)
200 ksps at 100-µA Consumption
Enhanced Serial Communication
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2MSP430 is a trademark of Texas Instruments.
3All other trademarks are the property of their respective owners.
UNLESS OTHERWISE NOTED this document contains Copyright © 2011–2012, Texas Instruments Incorporated
PRODUCTION DATA information current as of publication date.
Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
CAUTION These products use FRAM nonvolatile memory technology. FRAM retention is sensitive to extreme temperatures, such
as those experienced during reflow or hand soldering. See Absolute Maximum Ratings for more information.
CAUTION System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical
overstress or disturb of data or code memory. See the application report MSP430™ System-Level ESD Considerations
(SLAA530) for more information.
DESCRIPTION
The Texas Instruments MSP430FR57xx family of ultralow-power microcontrollers consists of multiple devices
featuring embedded FRAM nonvolatile memory, ultralow power 16-bit MSP430 CPU, and different peripherals
targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power
modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a
new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and
reliability of flash, all at lower total power consumption. Peripherals include 10-bit A/D converter, 16-channel
comparator with voltage reference generation and hysteresis capabilities, three enhanced serial channels
capable of I2C, SPI, or UART protocols, internal DMA, hardware multiplier, real-time clock, five 16-bit timers, and
more. The family members that are available are summarized in Table 1.
Table 1. Family Members
eUSCI
System Channel
FRAM SRAM Channel
Device Clock ADC10_B Comp_D Timer_A(1) Timer_B(2) I/O Package
A:
(KB) (KB) B:
(MHz) UART, SPI, I2C
IrDA, SPI
32 RHA
12 ext,
MSP430FR5739 16 1 24 16 ch. 3, 3 3, 3, 3 2 1
2 int ch. 30 DA
6 ext, 2 int 10 ch. 17 RGE
ch.
8 ext, 2 int
MSP430FR5738 16 1 24 12 ch. 3, 3 3 1 1 21 PW
ch.
5 ext, 2 int 9 ch. 16 YFF(3)
ch.
32 RHA
MSP430FR5737 16 1 24 16 ch. 3, 3 3, 3, 3 2 1 30 DA
10 ch. 17 RGE
MSP430FR5736 16 1 24 12 ch. 3, 3 3 1 1 21 PW
9 ch. 16 YFF(3)
32 RHA
12 ext,
MSP430FR5735 8 1 24 16 ch. 3, 3 3, 3, 3 2 1
2 int ch. 30 DA
6 ext, 2 int 10 ch. 17 RGE
ch.
MSP430FR5734 8 1 24 3, 3 3 1 1
8 ext, 2 int 12 ch. 21 PW
ch.
32 RHA
MSP430FR5733 8 1 24 16 ch. 3, 3 3, 3, 3 2 1 30 DA
10 ch. 17 RGE
MSP430FR5732 8 1 24 3, 3 3 1 1
12 ch. 21 PW
32 RHA
12 ext,
MSP430FR5731 4 1 24 16 ch. 3, 3 3, 3, 3 2 1
2 int ch. 30 DA
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
(2) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
(3) Product Preview
2Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 1. Family Members (continued)
eUSCI
System Channel
FRAM SRAM Channel
Device Clock ADC10_B Comp_D Timer_A(1) Timer_B(2) I/O Package
A:
(KB) (KB) B:
(MHz) UART, SPI, I2C
IrDA, SPI
6 ext, 2 int 10 ch. 17 RGE
ch.
8 ext, 2 int
MSP430FR5730 4 1 24 12 ch. 3, 3 3 1 1 21 PW
ch.
5 ext, 2 int 9 ch. 16 YFF(3)
ch.
32 RHA
12 ext,
MSP430FR5729 16 1 8 16 ch. 3, 3 3, 3, 3 2 1
2 int ch. 30 DA
6 ext, 2 int 10 ch. 17 RGE
ch.
MSP430FR5728 16 1 8 3, 3 3 1 1
8 ext, 2 int 12 ch. 21 PW
ch.
32 RHA
MSP430FR5727 16 1 8 16 ch. 3, 3 3, 3, 3 2 1 30 DA
10 ch. 17 RGE
MSP430FR5726 16 1 8 3, 3 3 1 1
12 ch. 21 PW
32 RHA
12 ext,
MSP430FR5725 8 1 8 16 ch. 3, 3 3, 3, 3 2 1
2 int ch. 30 DA
6 ext, 2 int 10 ch. 17 RGE
ch.
MSP430FR5724 8 1 8 3, 3 3 1 1
8 ext, 2 int 12 ch. 21 PW
ch.
32 RHA
MSP430FR5723 8 1 8 16 ch. 3, 3 3, 3, 3 2 1 30 DA
10 ch. 17 RGE
MSP430FR5722 8 1 8 3, 3 3 1 1
12 ch. 21 PW
32 RHA
12 ext,
MSP430FR5721 4 1 8 16 ch. 3, 3 3, 3, 3 2 1
2 int ch. 30 DA
6 ext, 2 int 10 ch. 17 RGE
ch.
MSP430FR5720 4 1 8 3, 3 3 1 1
8 ext, 2 int 12 ch. 21 PW
ch.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 3
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 2. Ordering Information(1)
PACKAGED DEVICES(2)
PLASTIC 40-PIN PLASTIC 24-PIN PLASTIC 38-PIN PLASTIC 28-PIN PLASTIC 25-BALL
TAVQFN VQFN TSSOP TSSOP DSBGA
(RHA) (RGE) (DA) (PW) (YFF)(3)
MSP430FR5721IRHA MSP430FR5720IRGE MSP430FR5721IDA MSP430FR5720IPW MSP430FR5730IYFF(3)
MSP430FR5723IRHA MSP430FR5722IRGE MSP430FR5723IDA MSP430FR5722IPW MSP430FR5736IYFF(3)
MSP430FR5725IRHA MSP430FR5724IRGE MSP430FR5725IDA MSP430FR5724IPW MSP430FR5738IYFF(3)
MSP430FR5727IRHA MSP430FR5726IRGE MSP430FR5727IDA MSP430FR5726IPW
MSP430FR5729IRHA MSP430FR5728IRGE MSP430FR5729IDA MSP430FR5728IPW
–40°C to
85°C MSP430FR5731IRHA MSP430FR5730IRGE MSP430FR5731IDA MSP430FR5730IPW
MSP430FR5733IRHA MSP430FR5732IRGE MSP430FR5733IDA MSP430FR5732IPW
MSP430FR5735IRHA MSP430FR5734IRGE MSP430FR5735IDA MSP430FR5734IPW
MSP430FR5737IRHA MSP430FR5736IRGE MSP430FR5737IDA MSP430FR5736IPW
MSP430FR5739IRHA MSP430FR5738IRGE MSP430FR5739IDA MSP430FR5738IPW
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/packaging.
(3) Product Preview
4Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
Clock
System
16 KB
8 KB
FRAM
(’5737, ’5727)
(’5733, ‘5723) 1 KB
RAM
MCLK
ACLK
SMCLK
CPUXV2
and
Working
Registers
EEM
(S: 3+1)
PJ.4/XIN PJ.5/XOUT
JTAG/
SBW
Interface
DMA
3 Channel
Power
Management
SVS
SYS
Watchdog
MPY32
TA0
TA1
(2) Timer_A
3 CC
Registers
TB0
TB1
TB2
(3) Timer_B
3 CC
Registers
DVCC DVSS AVCC AVSS
RST/NMI/SBWTDIO
RTC_B
REF
VCORE
MAB
MDB
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
I/O Ports
P1/P2
2×8 I/Os
Interrupt
& Wakeup
PA
1×16 I/Os
PA
P1.x P2.x
I/O Ports
P3/P4
1×8 I/Os
1x 2 I/Os
Interrupt
& Wakeup
PB
1×10 I/Os
PB
P3.x P4.x
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Boot
ROM
Memory
Protection
Unit
eUSCI_A1:
UART,
IrDA, SPI
Comp_D
16 channels
Clock
System
16 KB
8 KB
FRAM
(’5739, ’5729)
(’5735, ‘5725)
4 KB
(’5731, ‘5721)
1 KB
RAM
MCLK
ACLK
SMCLK
CPUXV2
and
Working
Registers
EEM
(S: 3+1)
PJ.4/XIN PJ.5/XOUT
JTAG/
SBW
Interface
DMA
3 Channel
Power
Management
SVS
SYS
Watchdog
MPY32
TA0
TA1
(2) Timer_A
3 CC
Registers
TB0
TB1
TB2
(3) Timer_B
3 CC
Registers
ADC10_B
200KSPS
16 channels
(12 ext/2 int)
10 Bit
DVCC DVSS AVCC AVSS
RST/NMI/SBWTDIO
RTC_B
Comp_D
16 channels
VCORE
MAB
MDB
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
I/O Ports
P1/P2
2×8 I/Os
Interrupt
& Wakeup
PA
1×16 I/Os
PA
P1.x P2.x
I/O Ports
P3/P4
1×8 I/Os
1x 2 I/Os
Interrupt
& Wakeup
PB
1×10 I/Os
PB
P3.x P4.x
REF
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Boot
ROM
Memory
Protection
Unit
eUSCI_A1:
UART,
IrDA, SPI
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Functional Block Diagram
MSP430FR5721IRHA, MSP430FR5725IRHA, MSP430FR5729IRHA,
MSP430FR5731IRHA, MSP430FR5735IRHA, MSP430FR5739IRHA
Functional Block Diagram
MSP430FR5723IRHA, MSP430FR5727IRHA,
MSP430FR5733IRHA, MSP430FR5737IRHA
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 5
21
22
23
24
25
26
27
28
29
P2.2/TB2.2/UCB0CLK/TB1.0
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
TEST/SBWTCK
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0
P3.4/TB1.1/TB2CLK/SMCLK
P3.5/TB1.2/CDOUT
P3.6/TB2.1/TB1CLK
RST/NMI/SBWTDIO
PJ.0/TDO/TB0OUTH/SMCLK/CD6
31
32
33
34
35
36
37
38
39
P2.3/TA0.0/UCA1STE/A6*/CD10
P2.4/TA1.0/UCA1CLK/A7*/CD11
AVCC
PJ.5/XOUT
PJ.4/XIN
AVSS
P2.7
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* 1
9
8
7
6
5
4
3
2
P1.3/TA1.2/UCB0STE/A3*/CD3
P3.3/A15*/CD15
P3.2/A14*/CD14
P3.1/A13*/CD13
P3.0/A12*/CD12
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*
VCORE
11
19
18
17
16
15
14
13
12
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0
P2.6/TB1.0/UCA1RXD/UCA1SOMI
P2.5/TB0.0/UCA1TXD/UCA1SIMO
P4.1P4.0/TB2.0
DVCC
DVSS
40
30
10
20
RHA PACKAGE
(TOP VIEW)
P1.4/TB0.1/UCA0STE/A4*/CD4
P1.5/TB0.2/UCA0CLK/A5*/CD5
MSP430FR5721
MSP430FR5723
MSP430FR5725
MSP430FR5727
MSP430FR5729
MSP430FR5731
MSP430FR5733
MSP430FR5735
MSP430FR5737
MSP430FR5739
PJ.3/TCK/CD9
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7
PJ.2/TMS/TB2OUTH/ACLK/CD8
P3.7/TB2.2
AVSS
*Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723
Note: Power Pad connection to V recommended.
SS
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Pin Designation
MSP430FR5721IRHA, MSP430FR5723IRHA, MSP430FR5725IRHA, MSP430FR5727IRHA,
MSP430FR5729IRHA,
MSP430FR5731IRHA, MSP430FR5733IRHA, MSP430FR5735IRHA, MSP430FR5737IRHA,
MSP430FR5739IRHA
6Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
Clock
System
16 KB
8 KB
FRAM
(’5737, ’5727)
(’5733, ‘5723) 1 KB
RAM
MCLK
ACLK
SMCLK
CPUXV2
and
Working
Registers
EEM
(S: 3+1)
PJ.4/XIN PJ.5/XOUT
JTAG/
SBW
Interface
DMA
3 Channel
Power
Management
SVS
SYS
Watchdog
MPY32
TA0
TA1
(2) Timer_A
3 CC
Registers
TB0
TB1
TB2
(3) Timer_B
3 CC
Registers
DVCC DVSS AVCC AVSS
RST/NMI/SBWTDIO
RTC_B
Comp_D
16 channels
VCORE
MAB
MDB
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
I/O Ports
P1/P2
2×8 I/Os
Interrupt
& Wakeup
PA
1×16 I/Os
PA
P1.x P2.x
I/O Ports
P3
1×8 I/Os
Interrupt
& Wakeup
PB
1×8 I/Os
PB
P3.x
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Boot
ROM
Memory
Protection
Unit
eUSCI_A1:
UART,
IrDA, SPI
REF
Clock
System
16 KB
8 KB
FRAM
(’5739, ’5729)
(’5735, ‘5725)
4 KB
(’5731, ‘5721)
1 KB
RAM
MCLK
ACLK
SMCLK
CPUXV2
and
Working
Registers
EEM
(S: 3+1)
PJ.4/XIN PJ.5/XOUT
JTAG/
SBW
Interface
DMA
3 Channel
Power
Management
SVS
SYS
Watchdog
MPY32
TA0
TA1
(2) Timer_A
3 CC
Registers
TB0
TB1
TB2
(3) Timer_B
3 CC
Registers
ADC10_B
200KSPS
16 channels
(12 ext/2 int)
10 Bit
DVCC DVSS AVCC AVSS
RST/NMI/SBWTDIO
RTC_B
Comp_D
16 channels
VCORE
MAB
MDB
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
I/O Ports
P1/P2
2×8 I/Os
Interrupt
& Wakeup
PA
1×16 I/Os
PA
P1.x P2.x
I/O Ports
P3
1×8 I/Os
Interrupt
& Wakeup
PB
1×8 I/Os
PB
P3.x
REF
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Boot
ROM
Memory
Protection
Unit
eUSCI_A1:
UART,
IrDA, SPI
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Functional Block Diagram
MSP430FR5721IDA, MSP430FR5725IDA, MSP430FR5729IDA,
MSP430FR5731IDA, MSP430FR5735IDA, MSP430FR5739IDA
Functional Block Diagram
MSP430FR5723IDA, MSP430FR5727IDA,
MSP430FR5733IDA, MSP430FR5737IDA
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 7
DA PACKAGE
(TOP VIEW)
1
9
8
7
6
5
4
3
2
10
11
19
18
17
16
14
12
13
15
38
30
31
32
33
34
35
36
37
29
28
20
21
22
23
25
27
26
24
AVCC
AVSS
PJ.5/XOUT
PJ.4/XIN
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*
P1.3/TA1.2/UCB0STE/A3*/CD3
P3.3/A15*/CD15
P3.2/A14*/CD14
P3.1/A13*/CD13
P3.0/A12*/CD12
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*
P1.4/TB0.1/UCA0STE/A4*/CD4
P1.5/TB0.2/UCA0CLK/A5*/CD5
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.3/TCK/CD9
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7
PJ.2/TMS/TB2OUTH/ACLK/CD8
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0
P2.6/TB1.0/UCA1RXD/UCA1SOMI
P2.5/TB0.0/UCA1TXD/UCA1SIMO
P2.2/TB2.2/UCB0CLK/TB1.0
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
TEST/SBWTCK
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0
P3.4/TB1.1/TB2CLK/SMCLK
P3.5/TB1.2/CDOUT
P3.6/TB2.1/TB1CLK
RST/NMI/SBWTDIO
AVSS
P2.3/TA0.0/UCA1STE/A6*/CD10
P2.7
VCORE
DVCC
DVSS
P3.7/TB2.2
P2.4/TA1.0/UCA1CLK/A7*/CD11
MSP430FR5721
MSP430FR5723
MSP430FR5725
MSP430FR5727
MSP430FR5729
MSP430FR5731
MSP430FR5733
MSP430FR5735
MSP430FR5737
MSP430FR5739
*Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Pin Designation
MSP430FR5721IDA, MSP430FR5723IDA, MSP430FR5725IDA, MSP430FR5727IDA,
MSP430FR5729IDA,
MSP430FR5731IDA, MSP430FR5733IDA, MSP430FR5735IDA, MSP430FR5737IDA,
MSP430FR5739IDA
8Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
Clock
System
MCLK
ACLK
SMCLK
CPUXV2
and
Working
Registers
EEM
(S: 3+1)
PJ.4/XIN PJ.5/XOUT
JTAG/
SBW
Interface
DMA
3 Channel
Power
Management
SVS
SYS
Watchdog
MPY32
TA0
TA1
(2) Timer_A
3 CC
Registers
TB0
(1) Timer_B
3 CC
Registers
DVCC DVSS AVCC AVSS
RST/NMI/SBWTDIO
RTC_B
Comp_D
10 channels
VCORE
MAB
MDB
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
I/O Ports
P1/P2
1×8 I/Os
1
Interrupt
& Wakeup
PA
1×11 I/Os
×3 I/Os
PA
P1.x P2.x
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Boot
ROM
Memory
Protection
Unit
16 KB
8 KB
FRAM
(’5736, ’5726)
(’5732, ‘5722) 1 KB
RAM
REF
Clock
System
MCLK
ACLK
SMCLK
CPUXV2
and
Working
Registers
EEM
(S: 3+1)
PJ.4/XIN PJ.5/XOUT
JTAG/
SBW
Interface
DMA
3 Channel
Power
Management
SVS
SYS
Watchdog
MPY32
TA0
TA1
(2) Timer_A
3 CC
Registers
TB0
(1) Timer_B
3 CC
Registers
ADC10_B
200KSPS
8 channels
(6 ext/2 int)
10 Bit
DVCC DVSS AVCC AVSS
RST/NMI/SBWTDIO
RTC_B
Comp_D
10 channels
VCORE
MAB
MDB
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
I/O Ports
P1/P2
1×8 I/Os
1
Interrupt
& Wakeup
PA
1×11 I/Os
×3 I/Os
PA
P1.x P2.x
REF
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Boot
ROM
Memory
Protection
Unit
16 KB
8 KB
FRAM
(’5738, ’5728)
(’5734, ‘5724)
4 KB
(’5730, ‘5720)
1 KB
RAM
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Functional Block Diagram
MSP430FR5720IRGE, MSP430FR5724IRGE, MSP430FR5728IRGE,
MSP430FR5730IRGE, MSP430FR5734IRGE, MSP430FR5738IRGE
Functional Block Diagram
MSP430FR5722IRGE, MSP430FR5726IRGE,
MSP430FR5732IRGE, MSP430FR5736IRGE
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 9
13
14
15
16
17
19
20
21
22
23
24
1
6
5
4
3
2
7
12
11
10
9
8
18
RGEPACKAGE
(TOP VIEW)
MSP430FR5720
MSP430FR5722
MSP430FR5724
MSP430FR5726
MSP430FR5728
MSP430FR5730
MSP430FR5732
MSP430FR5734
MSP430FR5736
MSP430FR5738
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*
P1.3/TA1.2/UCB0STE/A3*/CD3
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*
P1.4/TB0.1/UCA0STE/A4*/CD4
P1.5/TB0.2/UCA0CLK/A5*/CD5
AVCC
PJ.5/XOUT PJ.4/XIN
AVSS
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.1/TDI/TCLK/MCLK/CD7
PJ.2/TMS/ACLK/CD8
PJ.3/TCK/CD9
P2.2/UCB0CLK
P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
P2.1/UCA0RXD/UCA0SOMI/TB0.0
P1.7/UCB0SOMI/UCB0SCL/TA1.0
P1.6/UCB0SIMO/UCB0SDA/TA0.0
VCORE
DVCC
DVSS
TEST/SBWTCK
RST/NMI/SBWTDIO
*NotavailableonMSP430FR5736,MSP430FR5732,MSP430FR5726,MSP430FR5722
Note:PowerPadconnectiontoV recommended.
SS
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Pin Designation
MSP430FR5720IRGE, MSP430FR5722IRGE, MSP430FR5724IRGE, MSP430FR5726IRGE,
MSP430FR5728IRGE,
MSP430FR5730IRGE, MSP430FR5732IRGE, MSP430FR5734IRGE, MSP430FR5736IRGE,
MSP430FR5738IRGE
10 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
A1 A2 A3 A4 A5
B1 B2 B3 B4 B5
C1 C2
D1 D2 D4 D5
E1 E2 E4 E5
YFF PACKAGE
(TOP VIEW)
C4 C5
D3
E3
C3
NC1P1.1 P1.2 P1.3 P1.5
PJ.5 AVCC AVSS P1.4 PJ.1
PJ.4 AVSS
DVCC DVSS TEST
RST/NMI
VCORE P1.6 P2.2 P2.0
PJ.2 PJ.3
P2.1
P1.7
PJ.0
1NC (no connect). This ball must be attached but remain floating (no electrical connection).
P1.0 must be initialized properly to avoid the floating input of the device.
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Pin Designation
MSP430FR5730IYFF, MSP430FR5736IYFF, MSP430FR5738IYFF
Package Dimensions: The package dimensions for the YFF package are shown in Table 3. See the package
drawing at the end of this data sheet for more details.
Table 3. YFF Package Dimensions
PACKAGED DEVICES D E
MSP430FR5738IYFF
MSP430FR5736IYFF 2.04 ± 0.03 2.24 ± 0.03
MSP430FR5730IYFF
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 11
Clock
System
MCLK
ACLK
SMCLK
CPUXV2
and
Working
Registers
EEM
(S: 3+1)
PJ.4/XIN PJ.5/XOUT
JTAG/
SBW
Interface
DMA
3 Channel
Power
Management
SVS
SYS
Watchdog
MPY32
TA0
TA1
(2) Timer_A
3 CC
Registers
TB0
(1) Timer_B
3 CC
Registers
DVCC DVSS AVCC AVSS
RST/NMI/SBWTDIO
RTC_B
Comp_D
12 channels
VCORE
MAB
MDB
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
I/O Ports
P1/P2
1×8 I/Os
1
Interrupt
& Wakeup
PA
1×15 I/Os
×7 I/Os
PA
P1.x P2.x
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Boot
ROM
Memory
Protection
Unit
16 KB
8 KB
FRAM
(’5736, ’5726)
(’5732, ‘5722) 1 KB
RAM
REF
Clock
System
MCLK
ACLK
SMCLK
CPUXV2
and
Working
Registers
EEM
(S: 3+1)
PJ.4/XIN PJ.5/XOUT
JTAG/
SBW
Interface
DMA
3 Channel
Power
Management
SVS
SYS
Watchdog
MPY32
TA0
TA1
(2) Timer_A
3 CC
Registers
TB0
(1) Timer_B
3 CC
Registers
ADC10_B
200KSPS
12 channels
(8 ext/2 int)
10 Bit
DVCC DVSS AVCC AVSS
RST/NMI/SBWTDIO
RTC_B
Comp_D
12 channels
VCORE
MAB
MDB
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
I/O Ports
P1/P2
1×8 I/Os
1
Interrupt
& Wakeup
PA
1×15 I/Os
×7 I/Os
PA
P1.x P2.x
REF
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Boot
ROM
Memory
Protection
Unit
16 KB
8 KB
FRAM
(’5738, ’5728)
(’5734, ‘5724)
4 KB
(’5730, ‘5720)
1 KB
RAM
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Functional Block Diagram
MSP430FR5720IPW, MSP430FR5724IPW, MSP430FR5728IPW,
MSP430FR5730IPW, MSP430FR5734IPW, MSP430FR5738IPW
Functional Block Diagram
MSP430FR5722IPW, MSP430FR5726IPW,
MSP430FR5732IPW, MSP430FR5736IPW
12 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
PW PACKAGE
(TOP VIEW)
1
9
8
7
6
5
4
3
2
10
11
14
12
13
28
20
21
22
23
24
25
26
27
19
18
15
17
16
AVCC
AVSS
PJ.5/XOUT
PJ.4/XIN
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*
P1.3/TA1.2/UCB0STE/A3*/CD3
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*
P1.4/TB0.1/UCA0STE/A4*/CD4
P1.5/TB0.2/UCA0CLK/A5*/CD5
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.3/TCK/CD9
PJ.1/TDI/TCLK/MCLK/CD7
PJ.2/TMS/ACLK/CD8
P1.7/UCB0SOMI/UCB0SCL/TA1.0
P1.6/UCB0SIMO/UCB0SDA/TA0.0
P2.6
P2.5/TB0.0
P2.2/UCB0CLK
P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
TEST/SBWTCK
P2.1/UCA0RXD/UCA0SOMI/TB0.0
RST/NMI/SBWTDIO
P2.3/TA0.0/A6*/CD10
VCORE
DVCC
DVSS
P2.4/TA1.0/A7*/CD11
MSP430FR5738
MSP430FR5736
MSP430FR5734
MSP430FR5732
MSP430FR5730
MSP430FR5728
MSP430FR5726
MSP430FR5724
MSP430FR5722
MSP430FR5720
*Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Pin Designation
MSP430FR5720IPW, MSP430FR5722IPW, MSP430FR5724IPW, MSP430FR5726IPW,
MSP430FR5728IPW,
MSP430FR5730IPW, MSP430FR5732IPW, MSP430FR5734IPW, MSP430FR5736IPW,
MSP430FR5738IPW
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 13
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 4. Terminal Functions
TERMINAL
NO. I/O (1) DESCRIPTION
NAME RHA RGE DA PW YFF
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TA0 CCR1 capture: CCI1A input, compare: Out1
External DMA trigger
P1.0/TA0.1/DMAE0/ 1155(2) I/O RTC clock calibration output
RTCCLK/A0/CD0/VeREF- Analog input A0 ADC (not available on devices without ADC)
Comparator_D input CD0
External applied reference voltage (not available on devices without
ADC)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TA0 CCR2 capture: CCI2A input, compare: Out2
TA1 input clock
P1.1/TA0.2/TA1CLK/ 2 2 6 6 A2 I/O Comparator_D output
CDOUT/A1/CD1/VeREF+ Analog input A1 ADC (not available on devices without ADC)
Comparator_D input CD1
Input for an external reference voltage to the ADC (not available on
devices without ADC)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TA1 CCR1 capture: CCI1A input, compare: Out1
P1.2/TA1.1/TA0CLK/ 3 3 7 7 A3 I/O TA0 input clock
CDOUT/A2/CD2 Comparator_D output
Analog input A2 ADC (not available on devices without ADC)
Comparator_D input CD2
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
Analog input A12 ADC (not available on devices without ADC or
P3.0/A12/CD12 4 N/A 8 N/A N/A I/O package options PW, RGE)
Comparator_D input CD12 (not available on package options PW,
RGE)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
Analog input A13 ADC (not available on devices without ADC or
P3.1/A13/CD13 5 N/A 9 N/A N/A I/O package options PW, RGE)
Comparator_D input CD13 (not available on package options PW,
RGE)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
Analog input A14 ADC (not available on devices without ADC or
P3.2/A14/CD14 6 N/A 10 N/A N/A I/O package options PW, RGE)
Comparator_D input CD14 (not available on package options PW,
RGE)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
Analog input A15 ADC (not available on devices without ADC or
P3.3/A15/CD15 7 N/A 11 N/A N/A I/O package options PW, RGE)
Comparator_D input CD15 (not available on package options PW,
RGE)
(1) I = input, O = output, N/A = not available
(2) The functions associated with P1.0 are implemented but not available on the device pinout. To avoid floating inputs, this digital I/O
should be properly configured. The pullup/down resistors of P1.0 should be enabled.
14 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 4. Terminal Functions (continued)
TERMINAL
NO. I/O (1) DESCRIPTION
NAME RHA RGE DA PW YFF
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TA1 CCR2 capture: CCI2A input, compare: Out2
P1.3/TA1.2/UCB0STE/ 8 4 12 8 A4 I/O
A3/CD3 Slave transmit enable eUSCI_B0 SPI mode
Analog input A3 ADC (not available on devices without ADC)
Comparator_D input CD3
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TB0 CCR1 capture: CCI1A input, compare: Out1
P1.4/TB0.1/UCA0STE/ 9 5 13 9 B4 I/O
A4/CD4 Slave transmit enable eUSCI_A0 SPI mode
Analog input A4 ADC (not available on devices without ADC)
Comparator_D input CD4
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TB0 CCR2 capture: CCI2A input, compare: Out2
P1.5/TB0.2/UCA0CLK/ 10 6 14 10 A5 I/O Clock signal input eUSCI_B0 SPI slave mode, Clock signal
A5/CD5 output eUSCI_B0 SPI master mode
Analog input A5 ADC (not available on devices without ADC)
Comparator_D input CD5
General-purpose digital I/O
Test data output port
PJ.0/TDO/TB0OUTH/ 11 7 15 11 C3 I/O Switch all PWM outputs high impedance input TB0
SMCLK/CD6 (3)
SMCLK output
Comparator_D input CD6
General-purpose digital I/O
Test data input or test clock input
PJ.1/TDI/TCLK/TB1OUTH/ Switch all PWM outputs high impedance input TB1 (not available
12 8 16 12 B5 I/O
MCLK/CD7 (3) on devices without TB1)
MCLK output
Comparator_D input CD7
General-purpose digital I/O
Test mode select
PJ.2/TMS/TB2OUTH/ Switch all PWM outputs high impedance input TB2 (not available
13 9 17 13 C4 I/O
ACLK/CD8 (3) on devices without TB2)
ACLK output
Comparator_D input CD8
General-purpose digital I/O
PJ.3/TCK/CD9 (3) 14 10 18 14 C5 I/O Test clock
Comparator_D input CD9
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
P4.0/TB2.0 15 N/A N/A N/A N/A I/O TB2 CCR0 capture: CCI0B input, compare: Out0 (not available on
devices without TB2 or package options DA, PW, RGE)
General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not
P4.1 16 N/A N/A N/A N/A I/O available on package options DA, PW, RGE)
(3) See JTAG Operation for use with JTAG function.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 15
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 4. Terminal Functions (continued)
TERMINAL
NO. I/O (1) DESCRIPTION
NAME RHA RGE DA PW YFF
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
P2.5/TB0.0/UCA1TXD/ 17 N/A 19 15 N/A I/O TB0 CCR0 capture: CCI0A input, compare: Out0
UCA1SIMO Transmit data eUSCI_A1 UART mode, Slave in, master out
eUSCI_A1 SPI mode (not available on devices without UCSI_A1)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
P2.6/TB1.0/UCA1RXD/ TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on
18 N/A 20 16 N/A I/O
UCA1SOMI devices without TB1)
Receive data eUSCI_A1 UART mode, Slave out, master in
eUSCI_A1 SPI mode (not available on devices without UCSI_A1)
Test mode pin enable JTAG pins
TEST/SBWTCK (3) (4) 19 11 21 17 D5 I Spy-Bi-Wire input clock
Reset input active low
RST/NMI/SBWTDIO (3) (4) 20 12 22 18 D4 I/O Non-maskable interrupt input
Spy-Bi-Wire data input/output
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TB2 CCR0 capture: CCI0A input, compare: Out0 (not available on
devices without TB2)
P2.0/TB2.0/UCA0TXD/ 21 13 23 19 E5 I/O
UCA0SIMO/TB0CLK/ACLK (4) Transmit data eUSCI_A0 UART mode, Slave in, master out
eUSCI_A0 SPI mode
TB0 clock input
ACLK output
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TB2 CCR1 capture: CCI1A input, compare: Out1 (not available on
P2.1/TB2.1/UCA0RXD/ 22 14 24 20 D3 I/O devices without TB2)
UCA0SOMI/TB0.0 (5) Receive data eUSCI_A0 UART mode, Slave out, master in
eUSCI_A0 SPI mode
TB0 CCR0 capture: CCI0A input, compare: Out0
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TB2 CCR2 capture: CCI2A input, compare: Out2 (not available on
devices without TB2)
P2.2/TB2.2/UCB0CLK/ TB1.0 23 15 25 21 E4 I/O Clock signal input eUSCI_B0 SPI slave mode, Clock signal
output eUSCI_B0 SPI master mode
TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on
devices without TB1)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
TB1 CCR1 capture: CCI1B input, compare: Out1 (not available on
P3.4/TB1.1/TB2CLK/ SMCLK 24 N/A 26 N/A N/A I/O devices without TB1)
TB2 clock input (not available on devices without TB2 or package
options PW, RGE)
SMCLK output (not available on package options PW, RGE)
(4) See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions.
(5) See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions.
16 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 4. Terminal Functions (continued)
TERMINAL
NO. I/O (1) DESCRIPTION
NAME RHA RGE DA PW YFF
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
P3.5/TB1.2/CDOUT 25 N/A 27 N/A N/A I/O TB1 CCR2 capture: CCI2B input, compare: Out2 (not available on
devices without TB1)
Comparator_D output (not available on package options PW, RGE)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
TB2 CCR1 capture: CCI1B input, compare: Out1 (not available on
P3.6/TB2.1/TB1CLK 26 N/A 28 N/A N/A I/O devices without TB2)
TB1 clock input (not available on devices without TB1 or package
options PW, RGE)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options PW, RGE)
P3.7/TB2.2 27 N/A 29 N/A N/A I/O TB2 CCR2 capture: CCI2B input, compare: Out2 (not available on
devices without TB2 or package options PW, RGE)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TB1 CCR1 capture: CCI1A input, compare: Out1 (not available on
P1.6/TB1.1/UCB0SIMO/ devices without TB1)
28 16 30 22 E2 I/O
UCB0SDA/TA0.0 Slave in, master out eUSCI_B0 SPI mode
I2C data eUSCI_B0 I2C mode
TA0 CCR0 capture: CCI0A input, compare: Out0
General-purpose digital I/O with port interrupt and wake up from
LPMx.5
TB1 CCR2 capture: CCI2A input, compare: Out2 (not available on
P1.7/TB1.2/UCB0SOMI/ devices without TB1)
29 17 31 23 E3 I/O
UCB0SCL/TA1.0 Slave out, master in eUSCI_B0 SPI mode
I2C clock eUSCI_B0 I2C mode
TA1 CCR0 capture: CCI0A input, compare: Out0
VCORE (6) 30 18 32 24 E1 Regulated core power supply (internal use only, no external current loading)
DVSS 31 19 33 25 D2 Digital ground supply
DVCC 32 20 34 26 D1 Digital power supply
General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not
P2.7 33 N/A 35 N/A N/A I/O available on package options PW, RGE)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options RGE)
TA0 CCR0 capture: CCI0B input, compare: Out0 (not available on
package options RGE)
P2.3/TA0.0/UCA1STE/ 34 N/A 36 27 N/A I/O
A6/CD10 Slave transmit enable eUSCI_A1 SPI mode (not available on
devices without eUSCI_A1)
Analog input A6 ADC (not available on devices without ADC)
Comparator_D input CD10 (not available on package options RGE)
General-purpose digital I/O with port interrupt and wake up from
LPMx.5 (not available on package options RGE)
TA1 CCR0 capture: CCI0B input, compare: Out0 (not available on
package options RGE)
P2.4/TA1.0/UCA1CLK/ 35 N/A 37 28 N/A I/O Clock signal input eUSCI_A1 SPI slave mode, Clock signal
A7/CD11 output eUSCI_A1 SPI master mode (not available on devices
without eUSCI_A1)
Analog input A7 ADC (not available on devices without ADC)
Comparator_D input CD11 (not available on package options RGE)
(6) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 17
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 4. Terminal Functions (continued)
TERMINAL
NO. I/O (1) DESCRIPTION
NAME RHA RGE DA PW YFF
AVSS 36 N/A 38 N/A B3 Analog ground supply
General-purpose digital I/O
PJ.4/XIN 37 21 1 1 C1 I/O Input terminal for crystal oscillator XT1
General-purpose digital I/O
PJ.5/XOUT 38 22 2 2 B1 I/O Output terminal of crystal oscillator XT1
AVSS 39 23 3 3 C2 Analog ground supply
AVCC 40 24 4 4 B2 Analog power supply
QFN Pad Pad Pad N/A N/A N/A QFN package pad. Connection to VSS recommended.
18 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
SHORT-FORM DESCRIPTION
CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,
other than program-flow instructions, are performed as register operations in conjunction with seven addressing
modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register
operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant
generator, respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all
instructions.
The instruction set consists of the original 51 instructions with three formats and seven address modes and
additional instructions for the expanded address range. Each instruction can operate on word and byte data.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 19
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Operating Modes
The MSP430 has one active mode and seven software-selectable low-power modes of operation. An interrupt
event can wake up the device from low-power modes LPM0 through LPM4, service the request, and restore back
to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the
core supply to minimize power consumption.
The following eight operating modes can be configured by software:
Active mode (AM)
All clocks are active
Low-power mode 0 (LPM0)
CPU is disabled
ACLK active, MCLK disabled, SMCLK optionally active
Complete data retention
Low-power mode 1 (LPM1)
CPU is disabled
ACLK active, MCLK disabled, SMCLK optionally active
DCO disabled
Complete data retention
Low-power mode 2 (LPM2)
CPU is disabled
ACLK active, MCLK disabled, SMCLK optionally active
DCO disabled
Complete data retention
Low-power mode 3 (LPM3)
CPU is disabled
ACLK active, MCLK and SMCLK disabled
DCO disabled
Complete data retention
Low-power mode 4 (LPM4)
CPU is disabled
ACLK, MCLK, SMCLK disabled
Complete data retention
Low-power mode 3.5 (LPM3.5)
RTC operation
Internal regulator disabled
No data retention
I/O pad state retention
Wake up from RST, general-purpose I/O, RTC events
Low-power mode 4.5 (LPM4.5)
Internal regulator disabled
No data retention
I/O pad state retention
Wake up from RST and general-purpose I/O
20 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Interrupt Vector Addresses
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 5. Interrupt Sources, Flags, and Vectors
SYSTEM WORD
INTERRUPT SOURCE INTERRUPT FLAG PRIORITY
INTERRUPT ADDRESS
System Reset
Power-Up, Brownout, Supply SVSLIFG, SVSHIFG
Supervisors PMMRSTIFG
External Reset RST WDTIFG
Watchdog Timeout (Watchdog WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW
mode) DBDIFG Reset 0FFFEh 63, highest
WDT, FRCTL MPU, CS, PMM MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,
Password Violation MPUSEG3IFG
FRAM double bit error detection PMMPORIFG, PMMBORIFG
MPU segment violation (SYSRSTIV) (1) (2)
Software POR, BOR
System NMI VMAIFG
Vacant Memory Access JMBNIFG, JMBOUTIFG
JTAG Mailbox ACCTIMIFG
FRAM access time error (Non)maskable 0FFFCh 62
ACCVIFG
Access violation SBDIFG, DBDIFG
FRAM single, double bit error (SYSSNIV) (1)
detection
User NMI NMIIFG, OFIFG
External NMI (Non)maskable 0FFFAh 61
(SYSUNIV) (1) (2)
Oscillator Fault Comparator_D interrupt flags
Comparator_D Maskable 0FFF8h 60
(CBIV) (1) (3)
TB0 TB0CCR0 CCIFG0 (3) Maskable 0FFF6h 59
TB0CCR1 CCIFG1 to TB0CCR2 CCIFG2,
TB0 TB0IFG Maskable 0FFF4h 58
(TB0IV) (1) (3)
Watchdog Timer WDTIFG Maskable 0FFF2h 57
(Interval Timer Mode) UCA0RXIFG, UCA0TXIFG (SPI mode)
UCA0STTIFG, UCA0TXCPTIFG, UCA0RXIFG,
eUSCI_A0 Receive and Transmit Maskable 0FFF0h 56
UXA0TXIFG (UART mode)
(UCA0IV) (1) (3)
UCB0STTIFG, UCB0TXCPTIFG, UCB0RXIFG,
UCB0TXIFG (SPI mode)
UCB0ALIFG, UCB0NACKIFG, UCB0STTIFG,
UCB0STPIFG, UCB0RXIFG0, UCB0TXIFG0,
eUSCI_B0 Receive and Transmit Maskable 0FFEEh 55
UCB0RXIFG1, UCB0TXIFG1, UCB0RXIFG2,
UCB0TXIFG2, UCB0RXIFG3, UCB0TXIFG3,
UCB0CNTIFG, UCB0BIT9IFG (I2C mode)
(UCB0IV) (1) (3)
ADC10OVIFG, ADC10TOVIFG, ADC10HIIFG,
ADC10LOIFG
ADC10_B Maskable 0FFECh 54
ADC10INIFG, ADC10IFG0
(ADC10IV) (1) (3) (4)
TA0 TA0CCR0 CCIFG0 (3) Maskable 0FFEAh 53
TA0CCR1 CCIFG1 to TA0CCR2 CCIFG2,
TA0 TA0IFG Maskable 0FFE8h 52
(TA0IV) (1) (3)
(1) Multiple source flags
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
(3) Interrupt flags are located in the module.
(4) Only on devices with ADC, otherwise reserved.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 21
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 5. Interrupt Sources, Flags, and Vectors (continued)
SYSTEM WORD
INTERRUPT SOURCE INTERRUPT FLAG PRIORITY
INTERRUPT ADDRESS
UCA1RXIFG, UCA1TXIFG (SPI mode)
UCA1STTIFG, UCA1TXCPTIFG, UCA1RXIFG,
eUSCI_A1 Receive and Transmit Maskable 0FFE6h 51
UXA1TXIFG (UART mode)
(UCA1IV) (1) (3)
DMA0IFG, DMA1IFG, DMA2IFG
DMA Maskable 0FFE4h 50
(DMAIV) (1) (3)
TA1 TA1CCR0 CCIFG0 (3) Maskable 0FFE2h 49
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
TA1 TA1IFG Maskable 0FFE0h 48
(TA1IV) (1) (3)
P1IFG.0 to P1IFG.7
I/O Port P1 Maskable 0FFDEh 47
(P1IV) (1) (3)
TB1 TB1CCR0 CCIFG0 (3) Maskable 0FFDCh 46
TB1CCR1 CCIFG1 to TB1CCR2 CCIFG2,
TB1 TB1IFG Maskable 0FFDAh 45
(TB1IV) (1) (3)
P2IFG.0 to P2IFG.7
I/O Port P2 Maskable 0FFD8h 44
(P2IV) (1) (3)
TB2 TB2CCR0 CCIFG0 (3) Maskable 0FFD6h 43
TB2CCR1 CCIFG1 to TB2CCR2 CCIFG2,
TB2 TB2IFG Maskable 0FFD4h 42
(TB2IV) (1) (3)
P3IFG.0 to P3IFG.7
I/O Port P3 Maskable 0FFD2h 41
(P3IV) (5) (6)
P4IFG.0 to P4IFG.2
I/O Port P4 Maskable 0FFD0h 40
(P4IV) (5) (6)
RTCRDYIFG, RTCTEVIFG, RTCAIFG,
RTC_B RT0PSIFG, RT1PSIFG, RTCOFIFG Maskable 0FFCEh 39
(RTCIV) (5) (6)
0FFCCh 38
Reserved Reserved (7)
0FF80h 0, lowest
(5) Multiple source flags
(6) Interrupt flags are located in the module.
(7) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain
compatibility with other devices, it is recommended to reserve these locations.
22 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Memory Organization
Table 6. Memory Organization (1) (2)
MSP430FR5726 MSP430FR5722
MSP430FR5727 MSP430FR5723
MSP430FR5728 MSP430FR5724 MSP430FR5720
MSP430FR5729 MSP430FR5725 MSP430FR5721
MSP430FR5736 MSP430FR5732 MSP430FR5730
MSP430FR5737 MSP430FR5733 MSP430FR5731
MSP430FR5738 MSP430FR5734
MSP430FR5739 MSP430FR5735
Memory (FRAM) Total Size 15.5 KB 8.0 KB 4 KB
Main: interrupt vectors 00FFFFh–00FF80h 00FFFFh–00FF80h 00FFFFh–00FF80h
Main: code memory 00FF7Fh–00C200h 00FF7Fh–00E000h 00FF7Fh–00F000h
1 KB 1 KB 1 KB
RAM 001FFFh–001C00h 001FFFh–001C00h 001FFFh–001C00h
Device Descriptor Info 128 B 128 B 128 B
(TLV) (FRAM) 001A7Fh–001A00h 001A7Fh–001A00h 001A7Fh–001A00h
N/A 0019FFh–001980h 0019FFh–001980h 0019FFh–001980h
Address space mirrored to Address space mirrored to Address space mirrored to
Info A Info A Info A
N/A 00197Fh–001900h 00197Fh–001900h 00197Fh–001900h
Address space mirrored to Address space mirrored to Address space mirrored to
Information memory Info B Info B Info B
(FRAM) Info A 128 B 128 B 128 B
0018FFh–001880h 0018FFh–001880h 0018FFh–001880h
Info B 128 B 128 B 128 B
00187Fh–001800h 00187Fh–001800h 00187Fh–001800h
BSL 3 512 B 512 B 512 B
0017FFh–001600h 0017FFh–001600h 0017FFh–001600h
BSL 2 512 B 512 B 512 B
0015FFh–001400h 0015FFh–001400h 0015FFh–001400h
Bootstrap loader (BSL)
memory (ROM) BSL 1 512 B 512 B 512 B
0013FFh–001200h 0013FFh–001200h 0013FFh–001200h
BSL 0 512 B 512 B 512 B
0011FFh–001000h 0011FFh–001000h 0011FFh–001000h
Size 4 KB 4 KB 4 KB
Peripherals 000FFFh–0h 000FFFh–0h 000FFFh–0h
(1) N/A = Not available
(2) All address space not listed in this table is considered vacant memory.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 23
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Bootstrap Loader (BSL)
The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device
memory by the BSL is protected by an user-defined password. Use of the BSL requires four pins as shown in
Table 7. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For
complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the
Bootstrap Loader User's Guide (SLAU319).
Table 7. BSL Pin Requirements and Functions
DEVICE SIGNAL BSL FUNCTION
RST/NMI/SBWTDIO Entry sequence signal
TEST/SBWTCK Entry sequence signal
P2.0 Data transmit
P2.1 Data receive
VCC Power supply
VSS Ground supply
JTAG Operation
JTAG Standard Interface
The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430
development tools and device programmers. The JTAG pin requirements are shown in Table 8. For further
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's
Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see
MSP430 Programming Via the JTAG Interface (SLAU320).
Table 8. JTAG Pin Requirements and Functions
DEVICE SIGNAL DIRECTION FUNCTION
PJ.3/TCK IN JTAG clock input
PJ.2/TMS IN JTAG state control
PJ.1/TDI/TCLK IN JTAG data input, TCLK input
PJ.0/TDO OUT JTAG data output
TEST/SBWTCK IN Enable JTAG pins
RST/NMI/SBWTDIO IN External reset
VCC Power supply
VSS Ground supply
Spy-Bi-Wire Interface
In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. Spy-
Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire
interface pin requirements are shown in Table 9. For further details on interfacing to development tools and
device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of
the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface
(SLAU320).
Table 9. Spy-Bi-Wire Pin Requirements and Functions
DEVICE SIGNAL DIRECTION FUNCTION
TEST/SBWTCK IN Spy-Bi-Wire clock input
RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input and output
VCC Power supply
VSS Ground supply
24 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
FRAM
The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU.
Features of the FRAM include:
Low-power ultrafast write nonvolatile memory
Byte and word access capability
Programmable and automated wait state generation
Error Correction Coding (ECC) with single bit detection and correction, double bit detection
Memory Protection Unit (MPU)
The FRAM can be protected from inadvertent CPU execution or write access by the MPU. Features of the MPU
include:
Main memory partitioning programmable up to three segments
Each segment's (main and information memory) access rights can be individually selected
Access violation flags with interrupt capability for easy servicing of access violations
Peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all
instructions. For complete module descriptions, see the MSP430FR57xx Family User's Guide (SLAU272).
Digital I/O
There are up to four 8-bit I/O ports implemented:
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Programmable pullup or pulldown on all ports.
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports.
Read/write access to port-control registers is supported by all instructions.
Ports can be accessed byte-wise or word-wise in pairs.
Oscillator and Clock System (CS)
The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF mode), an internal very-low-
power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-
frequency crystal oscillator XT1 (HF mode). The clock system module is designed to meet the requirements of
both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock
system module provides the following clock signals:
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1 LF mode), a high-frequency crystal (XT1
HF mode), the internal VLO, or the internal DCO.
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by the same sources made
available to ACLK.
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by
the same sources made available to ACLK.
Power Management Module (PMM)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also
includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit is implemented to
provide the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if
the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary and core
supplies.
Hardware Multiplier (MPY)
The multiplication operation is supported by a dedicated peripheral module. The module performs operations with
32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed and unsigned multiplication as well as
signed and unsigned multiply-and-accumulate operations.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 25
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Real-Time Clock (RTC_B)
The RTC_B module contains an integrated real-time clock (RTC) (calendar mode). Calendar mode integrates an
internal calendar which compensates for months with fewer than 31 days and includes leap year correction. The
RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in
LPM3.5 mode to minimize power consumption.
Watchdog Timer (WDT_A)
The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog
function is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
System Module (SYS)
The SYS module handles many of the system functions within the device. These include power-on reset (POR)
and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators,
bootstrap loader entry mechanisms, and configuration management (device descriptors). It also includes a data
exchange mechanism using JTAG called a JTAG mailbox that can be used in the application.
26 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 10. System Module Interrupt Vector Registers
INTERRUPT VECTOR ADDRESS INTERRUPT EVENT VALUE PRIORITY
REGISTER
SYSRSTIV, 019Eh No interrupt pending 00h
System Reset Brownout (BOR) 02h Highest
RSTIFG RST/NMI (BOR) 04h
PMMSWBOR software BOR (BOR) 06h
LPMx.5 wake up (BOR) 08h
Security violation (BOR) 0Ah
SVSLIFG SVSL event (BOR) 0Ch
SVSHIFG SVSH event (BOR) 0Eh
Reserved 10h
Reserved 12h
PMMSWPOR software POR (POR) 14h
WDTIFG watchdog timeout (PUC) 16h
WDTPW password violation (PUC) 18h
FRCTLPW password violation (PUC) 1Ah
DBDIFG FRAM double bit error (PUC) 1Ch
Peripheral area fetch (PUC) 1Eh
PMMPW PMM password violation (PUC) 20h
MPUPW MPU password violation (PUC) 22h
CSPW CS password violation (PUC) 24h
MPUSEGIIFG information memory segment violation (PUC) 26h
MPUSEG1IFG segment 1 memory violation (PUC) 28h
MPUSEG2IFG segment 2 memory violation (PUC) 2Ah
MPUSEG3IFG segment 3 memory violation (PUC) 2Ch
Reserved 2Eh
Reserved 30h to 3Eh Lowest
SYSSNIV, System NMI 019Ch No interrupt pending 00h
DBDIFG FRAM double bit error 02h Highest
ACCTIMIFG access time error 04h
ACCVIFG access violation 0Eh
VMAIFG Vacant memory access 10h
JMBINIFG JTAG mailbox input 12h
JMBOUTIFG JTAG mailbox output 14h
SBDIFG FRAM single bit error 16h
Reserved 18h to 1Eh Lowest
SYSUNIV, User NMI 019Ah No interrupt pending 00h
NMIFG NMI pin 02h Highest
OFIFG oscillator fault 04h
Reserved 06h
Reserved 08h
Reserved 0Ah to 1Eh Lowest
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 27
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
DMA Controller
The DMA controller allows movement of data from one memory address to another without CPU intervention. For
example, the DMA controller can be used to move data from the ADC10_B conversion memory to RAM. Using
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system
power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or
from a peripheral.
Table 11. DMA Trigger Assignments (1)
TRIGGER CHANNEL 0 CHANNEL 1 CHANNEL 2
0 DMAREQ DMAREQ DMAREQ
1 TA0CCR0 CCIFG TA0CCR0 CCIFG TA0CCR0 CCIFG
2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG
3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG
4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG
5 Reserved Reserved Reserved
6 Reserved Reserved Reserved
7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG
8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG
9 TB1CCR0 CCIFG (2) TB1CCR0 CCIFG (2) TB1CCR0 CCIFG (2)
10 TB1CCR2 CCIFG (2) TB1CCR2 CCIFG (2) TB1CCR2 CCIFG (2)
11 TB2CCR0 CCIFG (3) TB2CCR0 CCIFG (3) TB2CCR0 CCIFG (3)
12 TB2CCR2 CCIFG (3) TB2CCR2 CCIFG (3) TB2CCR2 CCIFG (3)
13 Reserved Reserved Reserved
14 UCA0RXIFG UCA0RXIFG UCA0RXIFG
15 UCA0TXIFG UCA0TXIFG UCA0TXIFG
16 UCA1RXIFG (4) UCA1RXIFG (4) UCA1RXIFG (4)
17 UCA1TXIFG (4) UCA1TXIFG (4) UCA1TXIFG (4)
18 UCB0RXIFG0 UCB0RXIFG0 UCB0RXIFG0
19 UCB0TXIFG0 UCB0TXIFG0 UCB0TXIFG0
20 UCB0RXIFG1 UCB0RXIFG1 UCB0RXIFG1
21 UCB0TXIFG1 UCB0TXIFG1 UCB0TXIFG1
22 UCB0RXIFG2 UCB0RXIFG2 UCB0RXIFG2
23 UCB0TXIFG2 UCB0TXIFG2 UCB0TXIFG2
24 UCB0RXIFG3 UCB0RXIFG3 UCB0RXIFG3
25 UCB0TXIFG3 UCB0TXIFG3 UCB0TXIFG3
26 ADC10IFGx (5) ADC10IFGx (5) ADC10IFGx (5)
27 Reserved Reserved Reserved
28 Reserved Reserved Reserved
29 MPY ready MPY ready MPY ready
30 DMA2IFG DMA0IFG DMA1IFG
31 DMAE0 (6) DMAE0 (6) DMAE0 (6)
(1) If a reserved trigger source is selected, no trigger is generated.
(2) Only on devices with TB1, otherwise reserved
(3) Only on devices with TB2, otherwise reserved
(4) Only on devices with eUSCI_A1, otherwise reserved
(5) Only on devices with ADC, otherwise reserved
(6) This function is not available on YFF package types.
28 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Enhanced Universal Serial Communication Interface (eUSCI)
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as
UART, enhanced UART with automatic baudrate detection, and IrDA. Each eUSCI module contains two portions,
A and B.
The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA.
The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C.
The MSP430FR572x and MSP430FR573x series include one or two eUSCI_An modules (eUSCI_A0,
eUSCI_A1) and one eUSCI_Bn module (eUSCI_B).
TA0, TA1
TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. Each can
support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Table 12. TA0 Signal Connections
INPUT PIN NUMBER DEVICE MODULE MODULE DEVICE OUTPUT PIN NUMBER
MODULE
INPUT INPUT OUTPUT OUTPUT
BLOCK
RHA RGE, YFF DA PW RHA RGE, YFF DA PW
SIGNAL SIGNAL SIGNAL SIGNAL
3-P1.2,
3-P1.2 7-P1.2 7-P1.2 TA0CLK TACLK
A3P1.2
ACLK ACLK
(internal) Timer N/A N/A
SMCLK SMCLK
(internal)
3-P1.2,
3-P1.2 7-P1.2 7-P1.2 TA0CLK TACLK
A3P1.2
16-P1.6, 16-P1.6 ,
28-P1.6 30-P1.6 22-P1.6 TA0.0 CCI0A 28-P1.6 30-P1.6 22-P1.6
E2P1.6 E2P1.6
34-P2.3 N/A 36-P2.3 27-P2.3 TA0.0 CCI0B 34-P2.3 N/A 36-P2.3 27-P2.3
CCR0 TA0 TA0.0
DVSS GND
DVCC VCC
1-P1.0,
1-P1.0 5-P1.0 5-P1.0 TA0.1 CCI1A 1-P1.0 1-P1.0 , N/A 5-P1.0 5-P1.0
N/A
ADC10 ADC10 ADC10 ADC10
CDOUT (internal) (1) (internal) (1) (internal) (1) (internal) (1)
CCI1B CCR1 TA1 TA0.1
(internal) ADC10SHSx ADC10SHSx ADC10SHSx ADC10SHSx
= {1} = {1} = {1} = {1}
DVSS GND
DVCC VCC
2-P1.1, 2-P1.1,
2-P1.1 6-P1.1 6-P1.1 TA0.2 CCI2A 2-P1.1 6-P1.1 6-P1.1
A2P1.1 A2P1.1
ACLK CCI2B CCR2 TA2 TA0.2
(internal)
DVSS GND
DVCC VCC
(1) Only on devices with ADC
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 29
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 13. TA1 Signal Connections
INPUT PIN NUMBER DEVICE MODULE MODULE DEVICE OUTPUT PIN NUMBER
MODULE
INPUT INPUT OUTPUT OUTPUT
BLOCK
RHA RGE, YFF DA PW RHA RGE, YFF DA PW
SIGNAL SIGNAL SIGNAL SIGNAL
2-P1.1,
2-P1.1 6-P1.1 6-P1.1 TA1CLK TACLK
A2P1.1
ACLK ACLK
(internal) Timer N/A N/A
SMCLK SMCLK
(internal)
2-P1.1,
2-P1.1 6-P1.1 6-P1.1 TA1CLK TACLK
A2P1.1
17-P1.7, 17-P1.7,
29-P1.7 31-P1.7 23-P1.7 TA1.0 CCI0A 29-P1.7 31-P1.7 23-P1.7
E3P1.7 E3P1.7
35-P2.4 N/A 37-P2.4 28-P2.4 TA1.0 CCI0B 35-P2.4 N/A 37-P2.4 28-P2.4
CCR0 TA0 TA1.0
DVSS GND
DVCC VCC
3-P1.2 3-P1.2, N/A 7-P1.2 7-P1.2 TA1.1 CCI1A 3-P1.2 3-P1.2, N/A 7-P1.2 7-P1.2
CDOUT CCI1B
(internal) CCR1 TA1 TA1.1
DVSS GND
DVCC VCC
4-P1.3, 4-P1.3,
8-P1.3 12-P1.3 8-P1.3 TA1.2 CCI2A 8-P1.3 12-P1.3 8-P1.3
A4P1.3 A4P1.3
ACLK CCI2B CCR2 TA2 TA1.2
(internal)
DVSS GND
DVCC VCC
30 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
TB0, TB1, TB2
TB0, TB1, and TB2 are 16-bit timers/counters (Timer_B type) with three capture/compare registers each. Each
can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.
Table 14. TB0 Signal Connections
INPUT PIN NUMBER DEVICE MODULE MODULE DEVICE OUTPUT PIN NUMBER
MODULE
INPUT INPUT OUTPUT OUTPUT
BLOCK
RHA RGE, YFF DA PW RHA RGE, YFF DA PW
SIGNAL SIGNAL SIGNAL SIGNAL
13-P2.0,
21-P2.0 23-P2.0 19-P2.0 TB0CLK TBCLK
E5P2.0
ACLK ACLK
(internal) Timer N/A N/A
SMCLK SMCLK
(internal)
13-P2.0,
21-P2.0 23-P2.0 19-P2.0 TB0CLK TBCLK
E5P2.0
14-P2.1, 14-P2.1,
22-P2.1 24-P2.1 20-P2.1 TB0.0 CCI0A 22-P2.1 24-P2.1 20-P2.1
D3P2.1 D3P2.1
17-P2.5 N/A 19-P2.5 15-P2.5 TB0.0 CCI0B 17-P2.5 N/A 19-P2.5 15-P2.5
ADC10 ADC10 ADC10 ADC10
CCR0 TB0 TB0.0 (internal) (1) (internal) (1) (internal) (1) (internal) (1)
DVSS GND ADC10SHSx ADC10SHSx ADC10SHSx ADC10SHSx
= {2} = {2} = {2} = {2}
DVCC VCC
5-P1.4, 5-P1.4,
9-P1.4 13-P1.4 9-P1.4 TB0.1 CCI1A 9-P1.4 13-P1.4 9-P1.4
B4P1.4 B4P1.4
ADC10 ADC10 ADC10 ADC10
CDOUT (internal) (1) (internal) (1) (internal) (1) (internal) (1)
CCI1B CCR1 TB1 TB0.1
(internal) ADC10SHSx ADC10SHSx ADC10SHSx ADC10SHSx
= {3} = {3} = {3} = {3}
DVSS GND
DVCC VCC
6P1.5, A5- 6-P1.5,
10-P1.5 14-P1.5 19-P1.5 TB0.2 CCI2A 10-P1.5 14-P1.5 19-P1.5
P1.5 A5P1.5
ACLK CCI2B CCR2 TB2 TB0.2
(internal)
DVSS GND
DVCC VCC
(1) Only on devices with ADC
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 31
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 15. TB1 Signal Connections (1)
INPUT PIN NUMBER DEVICE MODULE MODULE DEVICE OUTPUT PIN NUMBER
MODULE
INPUT INPUT OUTPUT OUTPUT
BLOCK
RHA RGE, YFF DA PW RHA RGE, YFF DA PW
SIGNAL SIGNAL SIGNAL SIGNAL
N/A (DVSS),
26-P3.6 28-P3.6 N/A (DVSS) TB1CLK TBCLK
N/A (DVSS)
ACLK ACLK
(internal) Timer N/A N/A
SMCLK SMCLK
(internal)
N/A (DVSS),
26-P3.6 28-P3.6 N/A (DVSS) TB1CLK TBCLK
N/A (DVSS)
N/A (DVSS),
23-P2.2 25-P2.2 N/A (DVSS) TB1.0 CCI0A 23-P2.2 N/A 25-P2.2 N/A
N/A (DVSS)
N/A (DVSS),
18-P2.6 20-P2.6 N/A (DVSS) TB1.0 CCI0B 18-P2.6 N/A 20-P2.6 N/A
CCR0 TB0 TB1.0
N/A (DVSS)
DVSS GND
DVCC VCC
N/A (DVSS),
28-P1.6 30-P1.6 N/A (DVSS) TB1.1 CCI1A 28-P1.6 N/A 30-P1.6 N/A
N/A (DVSS)
N/A (DVSS),
24-P3.4 26-P3.4 N/A (DVSS) TB1.1 CCI1B 24-P3.4 N/A 26-P3.4 N/A
CCR1 TB1 TB1.1
N/A (DVSS)
DVSS GND
DVCC VCC
N/A (DVSS),
29-P1.7 31-P1.7 N/A (DVSS) TB1.2 CCI2A 29-P1.7 N/A 31-P1.7 N/A
N/A (DVSS)
N/A (DVSS),
25-P3.5 27-P3.5 N/A (DVSS) TB1.2 CCI2B 25-P3.5 N/A 27-P3.5 N/A
CCR2 TB2 TB1.2
N/A (DVSS)
DVSS GND
DVCC VCC
(1) TB1 is not present on all device types.
Table 16. TB2 Signal Connections (1)
INPUT PIN NUMBER DEVICE MODULE MODULE DEVICE OUTPUT PIN NUMBER
MODULE
INPUT INPUT OUTPUT OUTPUT
BLOCK
RHA RGE, YFF DA PW RHA RGE, YFF DA PW
SIGNAL SIGNAL SIGNAL SIGNAL
N/A (DVSS),
24-P3.4 26-P3.4 N/A (DVSS) TB2CLK TBCLK
N/A (DVSS)
ACLK ACLK
(internal) Timer N/A N/A
SMCLK SMCLK
(internal)
N/A (DVSS),
24-P3.4 26-P3.4 N/A (DVSS) TB2CLK TBCLK
N/A (DVSS)
N/A (DVSS),
21-P2.0 23-P2.0 N/A (DVSS) TB2.0 CCI0A 21-P2.0 N/A 23-P2.0 N/A
N/A (DVSS)
N/A (DVSS),
15-P4.0 N/A (DVSS) N/A (DVSS) TB2.0 CCI0B 15-P4.0 N/A 36-P4.0 N/A
CCR0 TB0 TB2.0
N/A (DVSS)
DVSS GND
DVCC VCC
N/A (DVSS),
22-P2.1 24-P2.1 N/A (DVSS) TB2.1 CCI1A 22-P2.1 N/A 24-P2.1 N/A
N/A (DVSS)
N/A (DVSS),
26-P3.6 28-P3.6 N/A (DVSS) TB2.1 CCI1B 26-P3.6 N/A 28-P3.6 N/A
CCR1 TB1 TB2.1
N/A (DVSS)
DVSS GND
DVCC VCC
N/A (DVSS),
23-P2.2 25-P2.2 N/A (DVSS) TB2.2 CCI2A 23-P2.2 N/A 25-P2.2 N/A
N/A (DVSS)
N/A (DVSS),
27-P3.7 29-P3.7 N/A (DVSS) TB2.2 CCI2B 27-P3.7 N/A 29-P3.7 N/A
CCR2 TB2 TB2.2
N/A (DVSS)
DVSS GND
DVCC VCC
(1) TB2 is not present on all device types.
32 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
ADC10_B
The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR
core, sample select control, reference generator, and a conversion result buffer. A window comparator with a
lower limit and an upper limit allows CPU-independent result monitoring with three window comparator interrupt
flags.
Comparator_D
The primary function of the Comparator_D module is to support precision slope analog-to-digital conversions,
battery voltage supervision, and monitoring of external analog signals.
CRC16
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
Shared Reference (REF)
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by
the various analog peripherals in the device.
Embedded Emulation Module (EEM)
The EEM supports real-time in-system debugging. The S version of the EEM implemented on all devices has the
following features:
Three hardware triggers or breakpoints on memory access
One hardware trigger or breakpoint on CPU register write access
Up to four hardware triggers can be combined to form complex triggers or breakpoints
One cycle counter
Clock control on module level
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 33
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Peripheral File Map
Table 17. Peripherals
OFFSET ADDRESS
MODULE NAME BASE ADDRESS RANGE
Special Functions (see Table 18) 0100h 000h-01Fh
PMM (see Table 19) 0120h 000h-010h
FRAM Control (see Table 20) 0140h 000h-00Fh
CRC16 (see Table 21) 0150h 000h-007h
Watchdog (see Table 22) 015Ch 000h-001h
CS (see Table 23) 0160h 000h-00Fh
SYS (see Table 24) 0180h 000h-01Fh
Shared Reference (see Table 25) 01B0h 000h-001h
Port P1/P2 (see Table 26) 0200h 000h-01Fh
Port P3/P4 (see Table 27) 0220h 000h-01Fh
Port PJ (see Table 28) 0320h 000h-01Fh
TA0 (see Table 29) 0340h 000h-02Fh
TA1 (see Table 30) 0380h 000h-02Fh
TB0 (see Table 31) 03C0h 000h-02Fh
TB1 (see Table 32) 0400h 000h-02Fh
TB2 (see Table 33) 0440h 000h-02Fh
Real-Time Clock (RTC_B) (see Table 34) 04A0h 000h-01Fh
32-Bit Hardware Multiplier (see Table 35) 04C0h 000h-02Fh
DMA General Control (see Table 36) 0500h 000h-00Fh
DMA Channel 0 (see Table 36) 0510h 000h-00Ah
DMA Channel 1 (see Table 36) 0520h 000h-00Ah
DMA Channel 2 (see Table 36) 0530h 000h-00Ah
MPU Control (see Table 37) 05A0h 000h-00Fh
eUSCI_A0 (see Table 38) 05C0h 000h-01Fh
eUSCI_A1 (see Table 39) 05E0h 000h-01Fh
eUSCI_B0 (see Table 40) 0640h 000h-02Fh
ADC10_B (see Table 41) 0700h 000h-03Fh
Comparator_D (see Table 42) 08C0h 000h-00Fh
34 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 18. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION REGISTER OFFSET
SFR interrupt enable SFRIE1 00h
SFR interrupt flag SFRIFG1 02h
SFR reset pin control SFRRPCR 04h
Table 19. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION REGISTER OFFSET
PMM Control 0 PMMCTL0 00h
PMM interrupt flags PMMIFG 0Ah
PM5 Control 0 PM5CTL0 10h
Table 20. FRAM Control Registers (Base Address: 0140h)
REGISTER DESCRIPTION REGISTER OFFSET
FRAM control 0 FRCTLCTL0 00h
General control 0 GCCTL0 04h
General control 1 GCCTL1 06h
Table 21. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION REGISTER OFFSET
CRC data input CRC16DI 00h
CRC data input reverse byte CRCDIRB 02h
CRC initialization and result CRCINIRES 04h
CRC result reverse byte CRCRESR 06h
Table 22. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION REGISTER OFFSET
Watchdog timer control WDTCTL 00h
Table 23. CS Registers (Base Address: 0160h)
REGISTER DESCRIPTION REGISTER OFFSET
CS control 0 CSCTL0 00h
CS control 1 CSCTL1 02h
CS control 2 CSCTL2 04h
CS control 3 CSCTL3 06h
CS control 4 CSCTL4 08h
CS control 5 CSCTL5 0Ah
CS control 6 CSCTL6 0Ch
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 35
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 24. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION REGISTER OFFSET
System control SYSCTL 00h
JTAG mailbox control SYSJMBC 06h
JTAG mailbox input 0 SYSJMBI0 08h
JTAG mailbox input 1 SYSJMBI1 0Ah
JTAG mailbox output 0 SYSJMBO0 0Ch
JTAG mailbox output 1 SYSJMBO1 0Eh
Bus Error vector generator SYSBERRIV 18h
User NMI vector generator SYSUNIV 1Ah
System NMI vector generator SYSSNIV 1Ch
Reset vector generator SYSRSTIV 1Eh
Table 25. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION REGISTER OFFSET
Shared reference control REFCTL 00h
Table 26. Port P1/P2 Registers (Base Address: 0200h)
REGISTER DESCRIPTION REGISTER OFFSET
Port P1 input P1IN 00h
Port P1 output P1OUT 02h
Port P1 direction P1DIR 04h
Port P1 pullup/pulldown enable P1REN 06h
Port P1 selection 0 P1SEL0 0Ah
Port P1 selection 1 P1SEL1 0Ch
Port P1 interrupt vector word P1IV 0Eh
Port P1 complement selection P1SELC 16h
Port P1 interrupt edge select P1IES 18h
Port P1 interrupt enable P1IE 1Ah
Port P1 interrupt flag P1IFG 1Ch
Port P2 input P2IN 01h
Port P2 output P2OUT 03h
Port P2 direction P2DIR 05h
Port P2 pullup/pulldown enable P2REN 07h
Port P2 selection 0 P2SEL0 0Bh
Port P2 selection 1 P2SEL1 0Dh
Port P2 complement selection P2SELC 17h
Port P2 interrupt vector word P2IV 1Eh
Port P2 interrupt edge select P2IES 19h
Port P2 interrupt enable P2IE 1Bh
Port P2 interrupt flag P2IFG 1Dh
36 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 27. Port P3/P4 Registers (Base Address: 0220h)
REGISTER DESCRIPTION REGISTER OFFSET
Port P3 input P3IN 00h
Port P3 output P3OUT 02h
Port P3 direction P3DIR 04h
Port P3 pullup/pulldown enable P3REN 06h
Port P3 selection 0 P3SEL0 0Ah
Port P3 selection 1 P3SEL1 0Ch
Port P3 interrupt vector word P3IV 0Eh
Port P3 complement selection P3SELC 16h
Port P3 interrupt edge select P3IES 18h
Port P3 interrupt enable P3IE 1Ah
Port P3 interrupt flag P3IFG 1Ch
Port P4 input P4IN 01h
Port P4 output P4OUT 03h
Port P4 direction P4DIR 05h
Port P4 pullup/pulldown enable P4REN 07h
Port P4 selection 0 P4SEL0 0Bh
Port P4 selection 1 P4SEL1 0Dh
Port P4 complement selection P4SELC 17h
Port P4 interrupt vector word P4IV 1Eh
Port P4 interrupt edge select P4IES 19h
Port P4 interrupt enable P4IE 1Bh
Port P4 interrupt flag P4IFG 1Dh
Table 28. Port J Registers (Base Address: 0320h)
REGISTER DESCRIPTION REGISTER OFFSET
Port PJ input PJIN 00h
Port PJ output PJOUT 02h
Port PJ direction PJDIR 04h
Port PJ pullup/pulldown enable PJREN 06h
Port PJ selection 0 PJSEL0 0Ah
Port PJ selection 1 PJSEL1 0Ch
Port PJ complement selection PJSELC 16h
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 37
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 29. TA0 Registers (Base Address: 0340h)
REGISTER DESCRIPTION REGISTER OFFSET
TA0 control TA0CTL 00h
Capture/compare control 0 TA0CCTL0 02h
Capture/compare control 1 TA0CCTL1 04h
Capture/compare control 2 TA0CCTL2 06h
TA0 counter register TA0R 10h
Capture/compare register 0 TA0CCR0 12h
Capture/compare register 1 TA0CCR1 14h
Capture/compare register 2 TA0CCR2 16h
TA0 expansion register 0 TA0EX0 20h
TA0 interrupt vector TA0IV 2Eh
Table 30. TA1 Registers (Base Address: 0380h)
REGISTER DESCRIPTION REGISTER OFFSET
TA1 control TA1CTL 00h
Capture/compare control 0 TA1CCTL0 02h
Capture/compare control 1 TA1CCTL1 04h
Capture/compare control 2 TA1CCTL2 06h
TA1 counter register TA1R 10h
Capture/compare register 0 TA1CCR0 12h
Capture/compare register 1 TA1CCR1 14h
Capture/compare register 2 TA1CCR2 16h
TA1 expansion register 0 TA1EX0 20h
TA1 interrupt vector TA1IV 2Eh
Table 31. TB0 Registers (Base Address: 03C0h)
REGISTER DESCRIPTION REGISTER OFFSET
TB0 control TB0CTL 00h
Capture/compare control 0 TB0CCTL0 02h
Capture/compare control 1 TB0CCTL1 04h
Capture/compare control 2 TB0CCTL2 06h
TB0 register TB0R 10h
Capture/compare register 0 TB0CCR0 12h
Capture/compare register 1 TB0CCR1 14h
Capture/compare register 2 TB0CCR2 16h
TB0 expansion register 0 TB0EX0 20h
TB0 interrupt vector TB0IV 2Eh
38 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 32. TB1 Registers (Base Address: 0400h)
REGISTER DESCRIPTION REGISTER OFFSET
TB1 control TB1CTL 00h
Capture/compare control 0 TB1CCTL0 02h
Capture/compare control 1 TB1CCTL1 04h
Capture/compare control 2 TB1CCTL2 06h
TB1 register TB1R 10h
Capture/compare register 0 TB1CCR0 12h
Capture/compare register 1 TB1CCR1 14h
Capture/compare register 2 TB1CCR2 16h
TB1 expansion register 0 TB1EX0 20h
TB1 interrupt vector TB1IV 2Eh
Table 33. TB2 Registers (Base Address: 0440h)
REGISTER DESCRIPTION REGISTER OFFSET
TB2 control TB2CTL 00h
Capture/compare control 0 TB2CCTL0 02h
Capture/compare control 1 TB2CCTL1 04h
Capture/compare control 2 TB2CCTL2 06h
TB2 register TB2R 10h
Capture/compare register 0 TB2CCR0 12h
Capture/compare register 1 TB2CCR1 14h
Capture/compare register 2 TB2CCR2 16h
TB2 expansion register 0 TB2EX0 20h
TB2 interrupt vector TB2IV 2Eh
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 39
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 34. Real-Time Clock Registers (Base Address: 04A0h)
REGISTER DESCRIPTION REGISTER OFFSET
RTC control 0 RTCCTL0 00h
RTC control 1 RTCCTL1 01h
RTC control 2 RTCCTL2 02h
RTC control 3 RTCCTL3 03h
RTC prescaler 0 control RTCPS0CTL 08h
RTC prescaler 1 control RTCPS1CTL 0Ah
RTC prescaler 0 RTCPS0 0Ch
RTC prescaler 1 RTCPS1 0Dh
RTC interrupt vector word RTCIV 0Eh
RTC seconds, RTC counter register 1 RTCSEC, RTCNT1 10h
RTC minutes, RTC counter register 2 RTCMIN, RTCNT2 11h
RTC hours, RTC counter register 3 RTCHOUR, RTCNT3 12h
RTC day of week, RTC counter register 4 RTCDOW, RTCNT4 13h
RTC days RTCDAY 14h
RTC month RTCMON 15h
RTC year low RTCYEARL 16h
RTC year high RTCYEARH 17h
RTC alarm minutes RTCAMIN 18h
RTC alarm hours RTCAHOUR 19h
RTC alarm day of week RTCADOW 1Ah
RTC alarm days RTCADAY 1Bh
Binary-to-BCD conversion register BIN2BCD 1Ch
BCD-to-binary conversion register BCD2BIN 1Eh
40 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 35. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER DESCRIPTION REGISTER OFFSET
16-bit operand 1 multiply MPY 00h
16-bit operand 1 signed multiply MPYS 02h
16-bit operand 1 multiply accumulate MAC 04h
16-bit operand 1 signed multiply accumulate MACS 06h
16-bit operand 2 OP2 08h
16 × 16 result low word RESLO 0Ah
16 × 16 result high word RESHI 0Ch
16 × 16 sum extension register SUMEXT 0Eh
32-bit operand 1 multiply low word MPY32L 10h
32-bit operand 1 multiply high word MPY32H 12h
32-bit operand 1 signed multiply low word MPYS32L 14h
32-bit operand 1 signed multiply high word MPYS32H 16h
32-bit operand 1 multiply accumulate low word MAC32L 18h
32-bit operand 1 multiply accumulate high word MAC32H 1Ah
32-bit operand 1 signed multiply accumulate low word MACS32L 1Ch
32-bit operand 1 signed multiply accumulate high word MACS32H 1Eh
32-bit operand 2 low word OP2L 20h
32-bit operand 2 high word OP2H 22h
32 × 32 result 0 least significant word RES0 24h
32 × 32 result 1 RES1 26h
32 × 32 result 2 RES2 28h
32 × 32 result 3 most significant word RES3 2Ah
MPY32 control register 0 MPY32CTL0 2Ch
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 41
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 36. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)
REGISTER DESCRIPTION REGISTER OFFSET
DMA channel 0 control DMA0CTL 00h
DMA channel 0 source address low DMA0SAL 02h
DMA channel 0 source address high DMA0SAH 04h
DMA channel 0 destination address low DMA0DAL 06h
DMA channel 0 destination address high DMA0DAH 08h
DMA channel 0 transfer size DMA0SZ 0Ah
DMA channel 1 control DMA1CTL 00h
DMA channel 1 source address low DMA1SAL 02h
DMA channel 1 source address high DMA1SAH 04h
DMA channel 1 destination address low DMA1DAL 06h
DMA channel 1 destination address high DMA1DAH 08h
DMA channel 1 transfer size DMA1SZ 0Ah
DMA channel 2 control DMA2CTL 00h
DMA channel 2 source address low DMA2SAL 02h
DMA channel 2 source address high DMA2SAH 04h
DMA channel 2 destination address low DMA2DAL 06h
DMA channel 2 destination address high DMA2DAH 08h
DMA channel 2 transfer size DMA2SZ 0Ah
DMA module control 0 DMACTL0 00h
DMA module control 1 DMACTL1 02h
DMA module control 2 DMACTL2 04h
DMA module control 3 DMACTL3 06h
DMA module control 4 DMACTL4 08h
DMA interrupt vector DMAIV 0Ah
Table 37. MPU Control Registers (Base Address: 05A0h)
REGISTER DESCRIPTION REGISTER OFFSET
MPU control 0 MPUCTL0 00h
MPU control 1 MPUCTL1 02h
MPU Segmentation Register MPUSEG 04h
MPU access management MPUSAM 06h
42 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 38. eUSCI_A0 Registers (Base Address: 05C0h)
REGISTER DESCRIPTION REGISTER OFFSET
eUSCI_A control word 0 UCA0CTLW0 00h
eUSCI _A control word 1 UCA0CTLW1 03h
eUSCI_A baud rate 0 UCA0BR0 06h
eUSCI_A baud rate 1 UCA0BR1 07h
eUSCI_A modulation control UCA0MCTLW 08h
eUSCI_A status UCA0STAT 0Ah
eUSCI_A receive buffer UCA0RXBUF 0Ch
eUSCI_A transmit buffer UCA0TXBUF 0Eh
eUSCI_A LIN control UCA0ABCTL 10h
eUSCI_A IrDA transmit control UCA0IRTCTL 12h
eUSCI_A IrDA receive control UCA0IRRCTL 13h
eUSCI_A interrupt enable UCA0IE 1Ah
eUSCI_A interrupt flags UCA0IFG 1Ch
eUSCI_A interrupt vector word UCA0IV 1Eh
Table 39. eUSCI_A1 Registers (Base Address: 05E0h)
REGISTER DESCRIPTION REGISTER OFFSET
eUSCI_A control word 0 UCA1CTLW0 00h
eUSCI _A control word 1 UCA1CTLW1 03h
eUSCI_A baud rate 0 UCA1BR0 06h
eUSCI_A baud rate 1 UCA1BR1 07h
eUSCI_A modulation control UCA1MCTLW 08h
eUSCI_A status UCA1STAT 0Ah
eUSCI_A receive buffer UCA1RXBUF 0Ch
eUSCI_A transmit buffer UCA1TXBUF 0Eh
eUSCI_A LIN control UCA1ABCTL 10h
eUSCI_A IrDA transmit control UCA1IRTCTL 12h
eUSCI_A IrDA receive control UCA1IRRCTL 13h
eUSCI_A interrupt enable UCA1IE 1Ah
eUSCI_A interrupt flags UCA1IFG 1Ch
eUSCI_A interrupt vector word UCA1IV 1Eh
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 43
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 40. eUSCI_B0 Registers (Base Address: 0640h)
REGISTER DESCRIPTION REGISTER OFFSET
eUSCI_B control word 0 UCB0CTLW0 00h
eUSCI_B control word 1 UCB0CTLW1 02h
eUSCI_B bit rate 0 UCB0BR0 06h
eUSCI_B bit rate 1 UCB0BR1 07h
eUSCI_B status word UCB0STATW 08h
eUSCI_B byte counter threshold UCB0TBCNT 0Ah
eUSCI_B receive buffer UCB0RXBUF 0Ch
eUSCI_B transmit buffer UCB0TXBUF 0Eh
eUSCI_B I2C own address 0 UCB0I2COA0 14h
eUSCI_B I2C own address 1 UCB0I2COA1 16h
eUSCI_B I2C own address 2 UCB0I2COA2 18h
eUSCI_B I2C own address 3 UCB0I2COA3 1Ah
eUSCI_B received address UCB0ADDRX 1Ch
eUSCI_B address mask UCB0ADDMASK 1Eh
eUSCI I2C slave address UCB0I2CSA 20h
eUSCI interrupt enable UCB0IE 2Ah
eUSCI interrupt flags UCB0IFG 2Ch
eUSCI interrupt vector word UCB0IV 2Eh
Table 41. ADC10_B Registers (Base Address: 0700h)
REGISTER DESCRIPTION REGISTER OFFSET
ADC10_B Control register 0 ADC10CTL0 00h
ADC10_B Control register 1 ADC10CTL1 02h
ADC10_B Control register 2 ADC10CTL2 04h
ADC10_B Window Comparator Low Threshold ADC10LO 06h
ADC10_B Window Comparator High Threshold ADC10HI 08h
ADC10_B Memory Control Register 0 ADC10MCTL0 0Ah
ADC10_B Conversion Memory Register ADC10MEM0 12h
ADC10_B Interrupt Enable ADC10IE 1Ah
ADC10_B Interrupt Flags ADC10IGH 1Ch
ADC10_B Interrupt Vector Word ADC10IV 1Eh
Table 42. Comparator_D Registers (Base Address: 08C0h)
REGISTER DESCRIPTION REGISTER OFFSET
Comparator_D control register 0 CDCTL0 00h
Comparator_D control register 1 CDCTL1 02h
Comparator_D control register 2 CDCTL2 04h
Comparator_D control register 3 CDCTL3 06h
Comparator_D interrupt register CDINT 0Ch
Comparator_D interrupt vector word CDIV 0Eh
44 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
Voltage applied at VCC to VSS –0.3 V to 4.1 V
Voltage applied to any pin (excluding VCORE) (2) –0.3 V to VCC + 0.3 V
Diode current at any device pin ±2 mA
Storage temperature range, Tstg (3) (4) (5) -55°C to 125°C
Maximum junction temperature, TJ95°C
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.
(3) Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, Tstg.
(4) For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
(5) Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed
information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020
specification.
Recommended Operating Conditions MIN NOM MAX UNIT
VCC Supply voltage during program execution and FRAM programming (AVCC = DVCC) (1) 2.0 3.6 V
VSS Supply voltage (AVSS = DVSS) 0 V
TAOperating free-air temperature I version -40 85 °C
TJOperating junction temperature I version -40 85 °C
CVCORE Required capacitor at VCORE 470 nF
CVCC/Capacitor ratio of VCC to VCORE 10
CVCORE No FRAM wait states (3),0 8.0
2 V VCC 3.6 V
With FRAM wait states (3),
fSYSTEM Processor frequency (maximum MCLK frequency) (2) MHz
NACCESS = {2}, 0 24.0
NPRECHG = {1},
2 V VCC 3.6 V
(1) It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power up and operation.
(2) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
(3) When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common
system frequencies.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 45
f = f x 1 / [# of wait states x ((1 - cache hit ratio percent/100)) + 1]
MCLK,eff,MHZ MCLK,MHZ
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Electrical Characteristics
Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3)
Frequency (fMCLK = fSMCLK)(4)
EXECUTION
PARAMETER VCC 1 MHz 4 MHz 8 MHz 16 MHz (5) 20 MHz (5) 24 MHz (5) UNIT
MEMORY TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX
IAM, FRAM_UNI (6) FRAM 3 V 0.27 0.58 1.0 1.53 1.9 2.2 mA
FRAM
IAM,0% (7) 0% cache hit 3 V 0.42 0.73 1.2 1.6 2.2 2.8 2.3 2.9 2.8 3.6 3.45 4.3
ratio
FRAM
IAM,50% (7) (8) 50% cache hit 3 V 0.31 0.73 1.3 1.75 2.1 2.5
ratio
FRAM
IAM,66% (7) (8) 66% cache hit 3 V 0.27 0.58 1.0 1.55 1.9 2.2 mA
ratio
FRAM
IAM,75% (7) (8) 75% cache hit 3 V 0.25 0.5 0.82 1.3 1.6 1.8
ratio
FRAM
IAM,100% (7) (8) 100% cache hit 3 V 0.2 0.43 0.3 0.55 0.42 0.8 0.73 1.15 0.88 1.3 1.0 1.5
ratio
IAM, RAM (8) (9) RAM 3 V 0.2 0.4 0.35 0.55 0.55 0.75 1.0 1.25 1.20 1.45 1.45 1.75 mA
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance are chosen to closely match the required 9 pF.
(3) Characterized with program executing typical data processing.
(4) At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency,
fMCLK,eff, decreases. The effective MCLK frequency is also dependent on the cache hit ratio. SMCLK is not affected by the number of
wait states or the cache hit ratio. The following equation can be used to compute fMCLK,eff:
(5) MSP430FR573x series only
(6) Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK.
(7) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit
ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 25% ratio implies one of every
four accesses is from cache, the remaining are FRAM accesses.
For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK. No wait states enabled.
For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (fDCO = 16 MHz).MCLK = SMCLK. One wait state enabled.
For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (fDCO = 20 MHz).MCLK = SMCLK. Three wait states enabled.
For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz).MCLK = SMCLK. Three wait states enabled.
(8) See Figure 1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best
linear fit using the typical data shown in Active Mode Supply Current Into VCC Excluding External Current.
fACLK = 32786 Hz, fMCLK = fSMCLK at specified frequency. No peripherals active.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
(9) All execution is from RAM.
For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK.
For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (fDCO = 16 MHz). MCLK = SMCLK.
For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (fDCO = 20 MHz). MCLK = SMCLK.
For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz). MCLK = SMCLK.
46 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
Typical Active Mode Supply Current, No Wait States
0.00
0.50
1.00
1.50
2.00
2.50
0 1 2 3 4 5 6 7 8 9
fMCLK = fSMCLK , MHz
IAM
, mA
IAM,50% (mA) = 0.1415 * (f, MHz) + 0.1669
IAM,66%(mA) = 0.1043 * (f, MHz) + 0.1646
IAM,75% (mA) = 0.0814 * (f, MHz) + 0.1708
IAM,100% (mA) = 0.0314 * (f, MHz) + 0.1708
IAM,RAM (mA) = 0.05 * (f, MHz) + 0.150
IAM,0% (mA) = 0.2541 * (f, MHz) + 0.1724
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Figure 1. Typical Active Mode Supply Currents, No Wait States
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 47
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)
-40°C 25°C 60°C 85°C
PARAMETER VCC UNIT
TYP MAX TYP MAX TYP MAX TYP MAX
2 V,
ILPM0,1MHz Low-power mode 0 (3) (4) 166 175 190 225 µA
3 V
2 V,
LPM0,8MHz Low-power mode 0 (5) (4) 170 177 244 195 225 360 µA
3 V
2 V,
LPM0,24MHz Low-power mode 0 (6) (4) 274 285 340 315 340 455 µA
3 V
2 V,
ILPM2 Low-power mode 2 (7) (8) 56 61 80 75 110 210 µA
3 V
Low-power mode 3, crystal 2 V,
ILPM3,XT1LF 3.4 6.4 15 18 48 150 µA
mode (9) (8) 3 V
Low-power mode 3, 2 V,
ILPM3,VLO 3.3 6.3 15 18 48 150 µA
VLO mode (10) (8) 3 V
2 V,
ILPM4 Low-power mode 4 (11) (8) 2.9 5.9 15 18 48 150 µA
3 V
2 V,
ILPM3.5 Low-power mode 3.5 (12) 1.3 1.5 2.2 1.9 2.8 5.0 µA
3 V
2 V,
ILPM4.5 Low-power mode 4.5 (13) 0.3 0.32 0.66 0.38 0.57 2.55 µA
3 V
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance are chosen to closely match the required 9 pF.
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 1 MHz. DCORSEL = 0,
DCOFSELx = 3 (fDCO = 8 MHz)
(4) Current for brownout, high-side supervisor (SVSH) and low-side supervisor (SVSL) included.
(5) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 8 MHz. DCORSEL = 0,
DCOFSELx = 3 (fDCO = 8 MHz)
(6) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 24 MHz. DCORSEL = 1,
DCOFSELx = 3 (fDCO = 24 MHz)
(7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCORSEL = 0,
DCOFSELx = 3, DCO bias generator enabled.
(8) Current for brownout, high-side supervisor (SVSH) included. Low-side supervisor disabled (SVSL).
(9) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
(10) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz
(11) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
(12) Internal regulator disabled. No data retention. RTC active.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
(13) Internal regulator disabled. No data retention.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
48 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Schmitt-Trigger Inputs General Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
2 V 0.80 1.40
VIT+ Positive-going input threshold voltage V
3 V 1.50 2.10
2 V 0.45 1.10
VIT– Negative-going input threshold voltage V
3 V 0.75 1.65
2 V 0.25 0.8
Vhys Input voltage hysteresis (VIT+ VIT–) V
3 V 0.30 1.0
For pullup: VIN = VSS
RPull Pullup or pulldown resistor 20 35 50 k
For pulldown: VIN = VCC
CIInput capacitance VIN = VSS or VCC 5 pF
Inputs Ports P1 and P2 (1)
(P1.0 to P1.7, P2.0 to P2.7)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
t(int) External interrupt timing (2) External trigger pulse duration to set interrupt flag 2 V, 3 V 20 ns
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
Leakage Current General Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
Ilkg(Px.x) High-impedance leakage current (1) (2) 2 V, 3 V -50 50 nA
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is
disabled.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 49
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Outputs General Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
I(OHmax) = –1 mA (1) VCC 0.25 VCC
2 V
I(OHmax) = –3 mA (2) VCC 0.60 VCC
VOH High-level output voltage V
I(OHmax) = –2 mA (1) VCC 0.25 VCC
3 V
I(OHmax) = –6 mA (2) VCC 0.60 VCC
I(OLmax) = 1 mA (1) VSS VSS + 0.25
2 V
I(OLmax) = 3 mA (2) VSS VSS + 0.60
VOL Low-level output voltage V
I(OLmax) = 2 mA (1) VSS VSS + 0.25
3 V
I(OLmax) = 6 mA (2) VSS VSS + 0.60
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
drop specified.
Output Frequency General Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
2 V 16
Port output frequency
fPx.y Px.y (1) (2) MHz
(with load) 3 V 24
2 V 16
ACLK, SMCLK, or MCLK at configured output port,
fPort_CLK Clock output frequency MHz
CL= 20 pF, no DC loading (2) 3 V 24
(1) A resistive divider with 2 × 1.6 kbetween VCC and VSS is used as load. The output is connected to the center tap of the divider.
CL= 20 pF is connected from the output to VSS.
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
50 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
0
2
4
6
8
10
12
14
16
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
VOL Low-Level Output Voltage - V
IOL - Typical Low-Level Output Current - mA
TA= -40 °C
TA= 25 °C
TA= 85 °C
VCC = 2.0 V
Px.y
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Typical Characteristics Outputs
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
Figure 2.
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
Figure 3.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 51
-16
-14
-12
-10
-8
-6
-4
-2
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
VOH High-Level Output Voltage - V
IOH - Typical High-Level Output Current - mA
TA= -40 °C
TA= 85 °C
TA= 25 °C
VCC = 2.0 V
Px.y
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Typical Characteristics Outputs (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
Figure 4.
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
Figure 5.
52 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Crystal Oscillator, XT1, Low-Frequency (LF) Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {1}, 3 V 60
CL,eff = 9 pF, TA= 25°C,
Additional current consumption fOSC = 32768 Hz, XTS = 0,
ΔIVCC.LF XT1 LF mode from lowest drive XT1BYPASS = 0, XT1DRIVE = {2}, 3 V 90 nA
setting TA= 25°C, CL,eff = 9 pF
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {3}, 3 V 140
TA= 25°C, CL,eff = 12 pF
XT1 oscillator crystal frequency,
fXT1,LF0 XTS = 0, XT1BYPASS = 0 32768 Hz
LF mode
XT1 oscillator logic-level square-
fXT1,LF,SW XTS = 0, XT1BYPASS = 1 (2) (3) 10 32.768 50 kHz
wave input frequency, LF mode XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {0}, 210
fXT1,LF = 32768 Hz, CL,eff = 6 pF
Oscillation allowance for
OALF k
LF crystals (4) XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {3}, 300
fXT1,LF = 32768 Hz, CL,eff = 12 pF
XTS = 0, Measured at ACLK,
Duty cycle, LF mode 30 70 %
fXT1,LF = 32768 Hz
Oscillator fault frequency, LF mode
fFault,LF XTS = 0 (6) 10 10000 Hz
(5)
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {0}, 1000
TA= 25°C, CL,eff = 6 pF
tSTART,LF Startup time, LF mode (7) 3 V ms
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {3}, 1000
TA= 25°C, CL,eff = 12 pF
Integrated effective load
CL,eff XTS = 0 1 pF
capacitance, LF mode (8) (9)
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
(a) Keep the trace between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
(2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this data sheet.
(3) Maximum frequency of operation of the entire device cannot be exceeded.
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVE
settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but
should be evaluated based on the actual crystal selected for the application:
(a) For XT1DRIVE = {0}, CL,eff 6 pF.
(b) For XT1DRIVE = {1}, 6 pF CL,eff 9 pF.
(c) For XT1DRIVE = {2}, 6 pF CL,eff 10 pF.
(d) For XT1DRIVE = {3}, 6 pF CL,eff 12 pF.
(5) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
(6) Measured with logic-level input frequency but also applies to operation with crystals.
(7) Includes startup counter of 4096 clock cycles.
(8) Requires external capacitors at both terminals.
(9) Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin).
Recommended values supported are 6 pF, 9 pF, and 12 pF. Maximum shunt capacitance of 1.6 pF.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 53
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Crystal Oscillator, XT1, High-Frequency (HF) Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
fOSC = 4 MHz,
XTS = 1, XOSCOFF = 0, 175
XT1BYPASS = 0, XT1DRIVE = {0},
TA= 25°C, CL,eff = 16 pF
fOSC = 8 MHz,
XTS = 1, XOSCOFF = 0, 300
XT1BYPASS = 0, XT1DRIVE = {1},
TA= 25°C, CL,eff = 16 pF
XT1 oscillator crystal current HF
IVCC,HF 3 V µA
mode fOSC = 16 MHz,
XTS = 1, XOSCOFF = 0, 350
XT1BYPASS = 0, XT1DRIVE = {2},
TA= 25°C, CL,eff = 16 pF
fOSC = 24 MHz,
XTS = 1, XOSCOFF = 0, 550
XT1BYPASS = 0, XT1DRIVE = {3},
TA= 25°C, CL,eff = 16 pF
XT1 oscillator crystal frequency, XTS = 1,
fXT1,HF0 4 6 MHz
HF mode 0 XT1BYPASS = 0, XT1DRIVE = {0} (2)
XT1 oscillator crystal frequency, XTS = 1,
fXT1,HF1 6 10 MHz
HF mode 1 XT1BYPASS = 0, XT1DRIVE = {1} (3)
XT1 oscillator crystal frequency, XTS = 1,
fXT1,HF2 10 16 MHz
HF mode 2 XT1BYPASS = 0, XT1DRIVE = {2} (3)
XT1 oscillator crystal frequency, XTS = 1,
fXT1,HF3 16 24 MHz
HF mode 3 XT1BYPASS = 0, XT1DRIVE = {3} (3)
XT1 oscillator logic-level square- XTS = 1,
fXT1,HF,SW 1 24 MHz
wave input frequency, HF mode XT1BYPASS = 1 (4) (3)
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {0}, 450
fXT1,HF = 4 MHz, CL,eff = 16 pF
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {1}, 320
fXT1,HF = 8 MHz, CL,eff = 16 pF
Oscillation allowance for
OAHF
HF crystals (5) XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {2}, 200
fXT1,HF = 16 MHz, CL,eff = 16 pF
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {3}, 200
fXT1,HF = 24 MHz, CL,eff = 16 pF
fOSC = 4 MHz, XTS = 1,
XT2BYPASS = 0, XT2DRIVE = {0}, 8
TA= 25°C, CL,eff = 16 pF
tSTART,HF Startup time, HF mode (6) 3 V ms
fOSC = 24 MHz, XTS = 1,
XT2BYPASS = 0, XT2DRIVE = {3}, 2
TA= 25°C, CL,eff = 16 pF
(1) To improve EMI on the XT1 oscillator the following guidelines should be observed.
(a) Keep the traces between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
(2) Maximum frequency of operation of the entire device cannot be exceeded.
(3) Maximum frequency of operation of the entire device cannot be exceeded.
(4) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this data sheet.
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.
(6) Includes startup counter of 4096 clock cycles.
54 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Crystal Oscillator, XT1, High-Frequency (HF) Mode (1) (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Integrated effective load
CL,eff XTS = 1 1 pF
capacitance (7) (8)
XTS = 1, Measured at ACLK,
Duty cycle, HF mode 40 50 60 %
fXT1,HF2 = 24 MHz
Oscillator fault frequency, HF mode
fFault,HF XTS = 1 (10) 145 900 kHz
(9)
(7) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should
always match the specification of the used crystal.
(8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14
pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF.
(9) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
(10) Measured with logic-level input frequency but also applies to operation with crystals.
Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
fVLO VLO frequency Measured at ACLK 2 V to 3.6 V 5 8.3 13 kHz
dfVLO/dTVLO frequency temperature drift Measured at ACLK (1) 2 V to 3.6 V 0.5 %/°C
dfVLO/dVCC VLO frequency supply voltage drift Measured at ACLK (2) 2 V to 3.6 V 4 %/V
fVLO,DC Duty cycle Measured at ACLK 2 V to 3.6 V 40 50 60 %
(1) Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C (–40°C))
(2) Calculated using the box method: (MAX(2.0 to 3.6 V) MIN(2.0 to 3.6 V)) / MIN(2.0 to 3.6 V) / (3.6 V 2 V)
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 55
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
DCO Frequencies
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
VCC
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TA
2 V to 3.6 V 5.37 ±3.5%
-40°C to 85°C
Measured at ACLK, MHz
DCORSEL = 0 2 V to 3.6 V 5.37 ±2.0%
0°C to 50°C
fDCO,LO DCO frequency low, trimmed 2 V to 3.6 V 16.2 ±3.5%
-40°C to 85°C
Measured at ACLK, MHz
DCORSEL = 1 (1) 2 V to 3.6 V 16.2 ±2.0%
0°C to 50°C
2 V to 3.6 V 6.67 ±3.5%
-40°C to 85°C
Measured at ACLK, MHz
DCORSEL = 0 2 V to 3.6 V 6.67 ±2.0%
0°C to 50°C
fDCO,MID DCO frequency mid, trimmed 2 V to 3.6 V 20 ±3.5%
-40°C to 85°C
Measured at ACLK, MHz
DCORSEL = 1 (1) 2 V to 3.6 V 20 ±2.0%
0°C to 50°C
2 V to 3.6 V 8 ±3.5%
-40°C to 85°C
Measured at ACLK, MHz
DCORSEL = 0 2 V to 3.6 V 8 ±2.0%
0°C to 50°C
fDCO,HI DCO frequency high, trimmed 2 V to 3.6 V 23.8 ±3.5%
-40°C to 85°C
Measured at ACLK, MHz
DCORSEL = 1 (1) 2 V to 3.6 V 23.8 ±2.0%
0°C to 50°C
Measured at ACLK, divide by 1, 2 V to 3.6 V
fDCO,DC Duty cycle No external divide, all DCO 40 50 60 %
-40°C to 85°C
settings
(1) MSP40FR573x devices only
MODOSC
over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
IMODOSC Current consumption Enabled 2 V to 3.6 V 44 80 µA
fMODOSC MODOSC frequency 2 V to 3.6 V 4.5 5.0 5.5 MHz
fMODOSC,DC Duty cycle Measured at ACLK, divide by 1 2 V to 3.6 V 40 50 60 %
56 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCORE(AM) Core voltage, active mode 2 V DVCC 3.6 V 1.5 V
VCORE(LPM) Core voltage, low-current mode 2 V DVCC 3.6 V 1.5 V
PMM, SVS, BOR
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ISVSH,AM SVSHcurrent consumption, active mode VCC = 3.6 V 5 µA
ISVSH,LPM SVSHcurrent consumption, low power modes VCC = 3.6 V 0.8 1.5 µA
VSVSH- SVSHon voltage level, falling supply voltage 1.83 1.88 1.93 V
VSVSH+ SVSHoff voltage level, rising supply voltage 1.88 1.93 1.98 V
tPD,SVSH, AM SVSHpropagation delay, active mode dVCC/dt = 10 mV/µs 10 µs
tPD,SVSH, LPM SVSHpropagation delay, low power modes dVCC/dt = 1 mV/µs 30 µs
ISVSL SVSLcurrent consumption 0.3 0.5 µA
Wake-Up from Low Power Modes
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
VCC
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TA
Wake-up time from LPM0 to active 2 V, 3 V
tWAKE-UP LPM0 0.58 1 µs
mode (1) -40°C to 85°C
Wake-up time from LPM1, LPM2 to 2 V, 3 V
tWAKE-UP LPM12 12 25 µs
active mode (1) -40°C to 85°C
Wake-up time from LPM3 or LPM4 to 2 V, 3 V
tWAKE-UP LPM34 78 120 µs
active mode (1) -40°C to 85°C
2 V, 3 V 310 575 µs
0°C to 85°C
Wake-up time from LPM3.5 or
tWAKE-UP LPMx.5 LPM4.5 to active mode (1) 2 V, 3 V 310 1100 µs
-40°C to 85°C
Wake-up time from RST to active 2 V, 3 V
tWAKE-UP RESET VCC stable 170 210 µs
mode (2) -40°C to 85°C
Wake-up time from BOR or power-up 2 V, 3 V
tWAKE-UP BOR dVCC/dt = 2400 V/s 1.6 ms
to active mode -40°C to 85°C
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first
instruction of the user program is executed.
(2) The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 57
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK 8
fTA Timer_A input clock frequency External: TACLK 2 V, 3 V MHz
24 (1)
Duty cycle = 50% ± 10%
All capture inputs, Minimum pulse
tTA,cap Timer_A capture timing 2 V, 3 V 20 ns
duration required for capture
(1) MSP430FR573x devices only
Timer_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK 8
fTB Timer_B input clock frequency External: TBCLK 2 V, 3 V MHz
24 (1)
Duty cycle = 50% ± 10%
All capture inputs, Minimum pulse
tTB,cap Timer_B capture timing 2 V, 3 V 20 ns
duration required for capture
(1) MSP430FR573x devices only
eUSCI (UART Mode) Recommended Operating Conditions
PARAMETER CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK
feUSCI eUSCI input clock frequency External: UCLK fSYSTEM MHz
Duty cycle = 50% ± 10%
BITCLK clock frequency
fBITCLK 5 MHz
(equals baud rate in MBaud)
eUSCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
UCGLITx = 0 5 15 20
UCGLITx = 1 20 45 60
ttUART receive deglitch time (1) 2 V, 3 V ns
UCGLITx = 2 35 80 120
UCGLITx = 3 50 110 180
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
58 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
eUSCI (SPI Master Mode) Recommended Operating Conditions
PARAMETER CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK
feUSCI eUSCI input clock frequency fSYSTEM MHz
Duty cycle = 50% ± 10%
eUSCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
UCSTEM = 0, 2 V, 3 V 1
UCMODEx = 01 or 10 UCxCLK
tSTE,LEAD STE lead time, STE active to clock cycles
UCSTEM = 1, 2 V, 3 V 1
UCMODEx = 01 or 10
UCSTEM = 0, 2 V, 3 V 1
UCMODEx = 01 or 10
STE lag time, Last clock to STE UCxCLK
tSTE,LAG inactive cycles
UCSTEM = 1, 2 V, 3 V 1
UCMODEx = 01 or 10
UCSTEM = 0, 2 V, 3 V 55
UCMODEx = 01 or 10
STE access time, STE active to SIMO
tSTE,ACC ns
data out UCSTEM = 1, 2 V, 3 V 35
UCMODEx = 01 or 10
UCSTEM = 0, 2 V, 3 V 40
UCMODEx = 01 or 10
STE disable time, STE inactive to
tSTE,DIS ns
SIMO high impedance UCSTEM = 1, 2 V, 3 V 30
UCMODEx = 01 or 10 2 V 35
tSU,MI SOMI input data setup time ns
3 V 35
2 V 0
tHD,MI SOMI input data hold time ns
3 V 0
2 V 30
UCLK edge to SIMO valid,
tVALID,MO SIMO output data valid time (2) ns
CL= 20 pF 3 V 30
2 V 0
tHD,MO SIMO output data hold time (3) CL= 20 pF ns
3 V 0
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams
in Figure 6 and Figure 7.
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 6
and Figure 7.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 59
tSU,MI
tHD,MI
UCLK
SOMI
SIMO
tVALID,MO
CKPL =0
CKPL =1
tLOW/HIGH tLOW/HIGH
1/fUCxCLK
tSTE,LEAD tSTE,LAG
tSTE,ACC
tSTE,DIS
UCMODEx=01
UCMODEx=10
STE
tSU,MI
tHD,MI
UCLK
SOMI
SIMO
tVALID,MO
CKPL =0
CKPL =1
tLOW/HIGH tLOW/HIGH
1/fUCxCLK
STE tSTE,LEAD tSTE,LAG
tSTE,ACC tSTE,DIS
UCMODEx=01
UCMODEx=10
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Figure 6. SPI Master Mode, CKPH = 0
Figure 7. SPI Master Mode, CKPH = 1
60 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
eUSCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
2 V 7
tSTE,LEAD STE lead time, STE active to clock ns
3 V 7
2 V 0
tSTE,LAG STE lag time, Last clock to STE inactive ns
3 V 0
2 V 65
tSTE,ACC STE access time, STE active to SOMI data out ns
3 V 40
2 V 40
STE disable time, STE inactive to SOMI high
tSTE,DIS ns
impedance 3 V 35
2 V 2
tSU,SI SIMO input data setup time ns
3 V 2
2 V 5
tHD,SI SIMO input data hold time ns
3 V 5
2 V 30
UCLK edge to SOMI valid,
tVALID,SO SOMI output data valid time (2) ns
CL= 20 pF 3 V 30
2 V 4
tHD,SO SOMI output data hold time (3) CL= 20 pF ns
3 V 4
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)).
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams
in Figure 8 and Figure 9.
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 8
and Figure 9.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 61
UCLK
CKPL =0
CKPL =1
SOMI
SIMO
tSU,SI
tHD,SI
tVALID,SO
tLOW/HIGH
1/fUCxCLK
tLOW/HIGH
tDIS
tACC
STE tSTE,LEAD tSTE,LAG
UCMODEx=01
UCMODEx=10
UCLK
CKPL =0
CKPL =1
SOMI
SIMO
tSU,SIMO
tHD,SIMO
tVALID,SOMI
tLOW/HIGH
1/fUCxCLK
tLOW/HIGH
tDIS
tACC
STE tSTE,LEAD tSTE,LAG
UCMODEx=01
UCMODEx=10
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Figure 8. SPI Slave Mode, CKPH = 0
Figure 9. SPI Slave Mode, CKPH = 1
62 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
SDA
SCL
tHD,DAT
tSU,DAT
tHD,STA
tHIGH
tLOW
tBUF
tHD,STA
tSU,STA
tSP
tSU,STO
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
eUSCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 10)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK
feUSCI eUSCI input clock frequency External: UCLK fSYSTEM MHz
Duty cycle = 50% ± 10%
fSCL SCL clock frequency 2 V, 3 V 0 400 kHz
fSCL = 100 kHz 4.0
tHD,STA Hold time (repeated) START 2 V, 3 V µs
fSCL > 100 kHz 0.6
fSCL = 100 kHz 4.7
tSU,STA Setup time for a repeated START 2 V, 3 V µs
fSCL > 100 kHz 0.6
tHD,DAT Data hold time 2 V, 3 V 0 ns
tSU,DAT Data setup time 2 V, 3 V 250 ns
fSCL = 100 kHz 4.0
tSU,STO Setup time for STOP 2 V, 3 V µs
fSCL > 100 kHz 0.6
UCGLITx = 0 50 600 ns
UCGLITx = 1 25 300 ns
Pulse duration of spikes suppressed by
tSP 2 V, 3 V
input filter UCGLITx = 2 12.5 150 ns
UCGLITx = 3 6.25 75 ns
UCCLTOx = 1 27 ms
tTIMEOUT Clock low timeout UCCLTOx = 2 2 V, 3 V 30 ms
UCCLTOx = 3 33 ms
Figure 10. I2C Mode Timing
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 63
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
10-Bit ADC, Power Supply and Input Range Conditions
over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
AVCC and DVCC are connected together,
AVCC Analog supply voltage AVSS and DVSS are connected together, 2.0 3.6 V
V(AVSS) = V(DVSS) = 0 V
V(Ax) Analog input voltage range All ADC10 pins 0 AVCC V
Operating supply current into fADC10CLK = 5 MHz, ADC10ON = 1, 2 V 90 140
IADC10_A AVCC terminal, reference REFON = 0, SHT0 = 0, SHT1 = 0, µA
3 V 100 160
current not included ADC10DIV = 0
Only one terminal Ax can be selected at one
CIInput capacitance time from the pad to the ADC10_A capacitor 2.2 V 6 8 pF
array including wiring and pad
RIInput MUX ON resistance AVCC 2 V, 0 V VAx AVCC 36 k
10-Bit ADC, Timing Parameters
over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
For specified performance of ADC10 linearity 2 V to
fADC10CLK 0.45 5 5.5 MHz
parameters 3.6 V
Internal ADC10 oscillator 2 V to
fADC10OSC ADC10DIV = 0, fADC10CLK = fADC10OSC 4.5 4.5 5.5 MHz
(MODOSC) 3.6 V
REFON = 0, Internal oscillator, 2 V to
12 ADC10CLK cycles, 10-bit mode, 2.18 2.67
3.6 V
fADC10OSC = 4.5 MHz to 5.5 MHz
tCONVERT Conversion time µs
External fADC10CLK from ACLK, MCLK, or SMCLK, 2 V to (1)
ADC10SSEL 0 3.6 V
The error in a conversion started after tADC10ON is
Turn on settling time of
tADC10ON less than ±0.5 LSB, 100 ns
the ADC Reference and input signal already settled
RS= 1000 , RI= 36000 , CI= 3.5 pF, 2 V 1.5
tSample Sampling time Approximately eight Tau (τ) are required to get an µs
3 V 2.0
error of less than ±0.5 LSB
(1) 12 × ADC10DIV × 1/fADC10CLK
10-Bit ADC, Linearity Parameters
over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
1.4 V (VeREF+ VREF–/VeREF–)min 1.6 V -1.4 1.4
Integral 2 V to
EILSB
linearity error 3.6 V
1.6 V < (VeREF+ VREF–/VeREF–)min VAVCC -1.1 1.1
Differential 2 V to
ED(VeREF+ VREF–/VeREF–)min (VeREF+ VREF–/VeREF–) -1 1 LSB
linearity error 3.6 V
2 V to
EOOffset error (VeREF+ VREF–/VeREF–)min (VeREF+ VREF–/VeREF–) -6.5 6.5 mV
3.6 V
Gain error, external 2 V to
(VeREF+ VREF–/VeREF–)min (VeREF+ VREF–/VeREF–) -1.2 1.2 LSB
reference 3.6 V
EGGain error, internal -4 4 %
reference (1)
Total unadjusted 2 V to
error, external (VeREF+ VREF–/VeREF–)min (VeREF+ VREF–/VeREF–) -2 2 LSB
3.6 V
reference
ETTotal unadjusted
error, internal -4 4 %
reference (1)
(1) Error is dominated by the internal reference.
64 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
REF, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
VeREF+ Positive external reference voltage input VeREF+ > VeREF– (2) 1.4 AVCC V
VeREF– Negative external reference voltage input VeREF+ > VeREF– (3) 0 1.2 V
(VeREF+ Differential external reference voltage VeREF+ > VeREF– (4) 1.4 AVCC V
VREF–/VeREF–) input 1.4 V VeREF+ VAVCC,
VeREF– = 0 V,
fADC10CLK = 5 MHz, 2.2 V, 3 V -6 6 µA
ADC10SHTx = 1h,
Conversion rate 200 ksps
IVeREF+,Static input current
IVeREF– 1.4 V VeREF+ VAVCC,
VeREF– = 0 V,
fADC10CLK = 5 MHz, 2.2 V, 3 V -1 1 µA
ADC10SHTx = 8h,
Conversion rate 20 ksps
Capacitance at VREF+ or VREF- terminal
CVREF+, CVREF- 10 µF
(5)
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC10_B. Also see the MSP430FR57xx Family User's Guide (SLAU272).
REF, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
REFVSEL = {2} for 2.5 V, REFON = 1 3 V 2.4 2.5 2.6
Positive built-in reference
VREF+ REFVSEL = {1} for 2 V, REFON = 1 3 V 1.92 2.0 2.08 V
voltage output REFVSEL = {0} for 1.5 V, REFON = 1 3 V 1.44 1.5 1.56
REFVSEL = {0} for 1.5 V 2.0
AVCC minimum voltage,
AVCC(min) Positive built-in reference REFVSEL = {1} for 2 V 2.2 V
active REFVSEL = {2} for 2.5 V 2.7
Operating supply current into fADC10CLK = 5 MHz,
IREF+ 3 V 33 45 µA
AVCC terminal (1) REFON = 1, REFBURST = 0
Temperature coefficient of ppm/
TREF+ REFVSEL = (0, 1, 2}, REFON = 1 ±35
built-in reference °C
AVCC = AVCC (min) - AVCC(max),
TA= 25°C, REFON = 1, 1600
REFVSEL = (0} for 1.5 V
AVCC = AVCC (min) - AVCC(max),
Power supply rejection ratio
PSRR_DC TA= 25°C, REFON = 1, 1900 µV/V
(DC) REFVSEL = (1} for 2 V
AVCC = AVCC (min) - AVCC(max),
TA= 25°C, REFON = 1, 3600
REFVSEL = (2} for 2.5 V
Settling time of reference AVCC = AVCC (min) - AVCC(max),
tSETTLE 30 µs
voltage (2) REFVSEL = (0, 1, 2}, REFON = 0 1
(1) The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
(2) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 65
600
650
700
750
800
850
900
950
1000
1050
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80
Ambient Temperature - Degrees Celsius
Typical Temperature Sensor Voltage - mV
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
REF, Temperature Sensor and Built-In VMID
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
ADC10ON = 1, INCH = 0Ah,
VSENSOR See (1) 2 V, 3 V 790 mV
TA= 0°C
TCSENSOR ADC10ON = 1, INCH = 0Ah 2 V, 3 V 2.55 mV/°C
2 V 30
Sample time required if ADC10ON = 1, INCH = 0Ah,
tSENSOR(sample) µs
channel 10 is selected (2) Error of conversion result 1 LSB 3 V 30
2 V 0.97 1.0 1.03
ADC10ON = 1, INCH = 0Bh,
VMID AVCC divider at channel 11 V
VMID is ~0.5 × VAVCC 3 V 1.46 1.5 1.54
Sample time required if ADC10ON = 1, INCH = 0Bh,
tVMID(sample) 2 V, 3 V 1000 ns
channel 11 is selected (3) Error of conversion result 1 LSB
(1) The temperature sensor offset can vary significantly. A single-point calibration is recommended to minimize the offset error of the built-in
temperature sensor.
(2) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on).
(3) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
Figure 11. Typical Temperature Sensor Voltage
66 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Comparator_D
over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Overdrive = 10 mV, 50 100 200 ns
VIN- = (VIN+ 400 mV) to (VIN+ + 10 mV)
Propagation delay, Overdrive = 100 mV,
tpd 80 ns
AVCC = 2 V to 3.6 V VIN- = (VIN+ 400 mV) to (VIN+ + 100 mV)
Overdrive = 250 mV, 50 ns
(VIN+ 400 mV) to (VIN+ + 250 mV)
CDF = 1, CDFDLY = 00 0.3 0.5 0.9 µs
Filter timer added to the CDF = 1, CDFDLY = 01 0.5 0.9 1.5 µs
tfilter propagation delay of the CDF = 1, CDFDLY = 10 0.9 1.6 2.8 µs
comparator CDF = 1, CDFDLY = 11 1.6 3.0 5.5 µs
Voffset Input offset AVCC = 2 V to 3.6 V -20 20 mV
Common mode input
Vic AVCC = 2 V to 3.6 V 0 AVCC - 1 V
range
Icomp(AVCC) Comparator only CDON = 1, AVCC = 2 V to 3.6 V 29 34 µA
Reference buffer and R-
Iref(AVCC) CDREFLx = 01, AVCC = 2 V to 3.6 V 20 24 µA
ladder CDON = 0 to CDON = 1,
tenable,comp Comparator enable time 1.1 2.0 µs
AVCC = 2 V to 3.6 V
Resistor ladder enable CDON = 0 to CDON = 1,
tenable,rladder 1.1 2.0 µs
time AVCC = 2 V to 3.6 V VIN × VIN × VIN ×
Reference voltage for a VIN = voltage input to the R-ladder,
VCB_REF (n + 0.5) (n + 1) (n + 1.5) V
tap n = 0 to 31 / 32 / 32 / 32
FRAM
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DVCC(WRITE) Write supply voltage 2.0 3.6 V
tWRITE Word or byte write time 120 ns
tACCESS Read access time (1) 60 ns
tPRECHARGE Precharge time (1) 60 ns
tCYCLE Cycle time, read or write operation (1) 120 ns
Read and write endurance 1015 cycles
TJ= 25°C 100
tRetention Data retention duration TJ= 70°C 40 years
TJ= 85°C 10
(1) When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common
system frequencies.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 67
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER VCC MIN TYP MAX UNIT
fSBW Spy-Bi-Wire input frequency 2 V, 3 V 0 20 MHz
tSBW,Low Spy-Bi-Wire low clock pulse duration 2 V, 3 V 0.025 15 µs
tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1) 2 V, 3 V 1 µs
tSBW,Rst Spy-Bi-Wire return to normal operation time 19 35 µs
2 V 0 5 MHz
fTCK TCK input frequency, 4-wire JTAG (2) 3 V 0 10 MHz
Rinternal Internal pulldown resistance on TEST 2 V, 3 V 20 35 50 k
(1) Tools accessing the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the
first SBWTCK clock edge.
(2) fTCK may be restricted to meet the timing requirements of the module selected.
68 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF-
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2
P1SEL0.x
P1DIR.x
P1IN.x
EN
To modules
From module 1
P1OUT.x
1
0
DVSS
DVCC 1
D
To Comparator
From Comparator
Pad Logic
To ADC
From ADC
Bus
Keeper
Direction
0: Input
1: Output
CDPD.x
P1REN.x
0 1
0 0
1 0
1 1
P1SEL1.x
0 1
0 0
1 0
1 1
From module 2
External ADC reference
(P1.0, P1.1)
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
INPUT/OUTPUT SCHEMATICS
Port P1, P1.0 to P1.2, Input/Output With Schmitt Trigger
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 69
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 43. Port P1 (P1.0 to P1.2) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL1.x P1SEL0.x
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF- (1) 0 P1.0 (I/O) I: 0; O: 1 0 0
TA0.CCI1A 0 0 1
TA0.1 1
DMAE0 0 1 0
RTCCLK 1
A0 (2) (3)
CD0 (2) (4) X 1 1
VeREF- (2) (3)
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+ 1 P1.1 (I/O) I: 0; O: 1 0 0
TA0.CCI2A 0 0 1
TA0.2 1
TA1CLK 0 1 0
CDOUT 1
A1 (2) (3)
CD1 (2) (4) X 1 1
VeREF+ (2) (3)
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2 2 P1.2 (I/O) I: 0; O: 1 0 0
TA1.CCI1A 0 0 1
TA1.1 1
TA0CLK 0 1 0
CDOUT 1
A2 (2) (3) X 1 1
CD2 (2) (4)
(1) This pin is tied to AVSS for YFF package types. All functions are therefore tied to ground at the pin.
(2) Setting P1SEL1.x and P1SEL0.x disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
(3) Not available on all devices and package types.
(4) Setting the CDPD.x bit of the comparator disables the output driver as well as the input Schmitt trigger to prevent parasitic cross
currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically
disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.
70 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
P1.3/TA1.2/UCB0STE/A3/CD3
P1.4/TB0.1/UCA0STE/A4/CD4
P1.5/TB0.2/UCA0CLK/A5/CD5
P1SEL0.x
P1DIR.x
P1IN.x
EN
Tomodules
Frommodule1
P1OUT.x
1
0
DVSS
DVCC 1
D
ToComparator
FromComparator
PadLogic
To ADC
From ADC
Bus
Keeper
Direction
0:Input
1:Output
CDPD.x
P1REN.x
01
00
10
11
P1SEL1.x
01
00
10
11
Frommodule2
Frommodule2
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 71
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 44. Port P1 (P1.3 to P1.5) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL1.x P1SEL0.x
P1.3/TA1.2/UCB0STE/A3/CD3 3 P1.3 (I/O) I: 0; O: 1 0 0
TA1.CCI2A 0 0 1
TA1.2 1
UCB0STE X (1) 1 0
A3 (2) (3) X 1 1
CD3 (2) (4)
P1.4/TB0.1/UCA0STE/A4/CD4 4 P1.4 (I/O) I: 0; O: 1 0 0
TB0.CCI1A 0 0 1
TB0.1 1
UCA0STE X (5) 1 0
A4 (2) (3) X 1 1
CD4 (2) (4)
P1.5/TB0.2/UCA0CLK/A5/CD5 5 P1.5(I/O) I: 0; O: 1 0 0
TB0.CCI2A 0 0 1
TB0.2 1
UCA0CLK X (5) 1 0
A5 (2) (3) X 1 1
CD5 (2) (4)
(1) Direction controlled by eUSCI_B0 module.
(2) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
(3) Not available on all devices and package types.
(4) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit
(5) Direction controlled by eUSCI_A0 module.
72 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0
P1SEL0.x
P1DIR.x
P1IN.x
EN
To modules
From module 1
P1OUT.x
1
0
DVSS
DVCC 1
D
Pad Logic
Bus
Keeper
Direction
0: Input
1: Output
P1REN.x
0 1
0 0
1 0
1 1
P1SEL1.x
0 1
0 0
1 0
1 1
From module 2
From module 2
From module 3
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger
Table 45. Port P1 (P1.6 to P1.7) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL1.x P1SEL0.x
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 6 P1.6 (I/O) I: 0; O: 1 0 0
TB1.CCI1A (1) 00 1
TB1.1 (1) 1
UCB0SIMO/UCB0SDA X (2) 1 0
TA0.CCI0A 0 1 1
TA0.0 1
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 7 P1.7 (I/O) I: 0; O: 1 0 0
TB1.CCI2A (1) 00 1
TB1.2 (1) 1
UCB0SOMI/UCB0SCL X (3) 1 0
TA1.CCI0A 0 1 1
TA1.0 1
(1) Not available on all devices and package types.
(2) Direction controlled by eUSCI_B0 module.
(3) Direction controlled by eUSCI_A0 module.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 73
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0
P2.2/TB2.2/UCB0CLK/TB1.0
P2SEL0.x
P2DIR.x
P2IN.x
EN
To modules
From module 1
P2OUT.x
1
0
DVSS
DVCC 1
D
Pad Logic
Bus
Keeper
Direction
0: Input
1: Output
P2REN.x
0 1
0 0
1 0
1 1
P2SEL1.x
0 1
0 0
1 0
1 1
From module 2
From module 2
From module 3
DVSS
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Port P2, P2.0 to P2.2, Input/Output With Schmitt Trigger
Table 46. Port P2 (P2.0 to P2.2) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL1.x P2SEL0.x
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK 0 P2.0 (I/O) I: 0; O: 1 0 0
TB2.CCI0A (1) 00 1
TB2.0 (1) 1
UCA0TXD/UCA0SIMO X (2) 1 0
TB0CLK 0 1 1
ACLK 1
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 1 P2.1 (I/O) I: 0; O: 1 0 0
TB2.CCI1A (1) 00 1
TB2.1 (1) 1
UCA0RXD/UCA0SOMI X (2) 1 0
TB0.CCI0A 0 1 1
TB0.0 1
P2.2/TB2.2/UCB0CLK/TB1.0 2 P2.2 (I/O) I: 0; O: 1 0 0
TB2.CCI2A (1) 00 1
TB2.2 (1) 1
UCB0CLK X (3) 1 0
TB1.CCI0A (1) 01 1
TB1.0 (1) 1
(1) Not available on all devices and package types.
(2) Direction controlled by eUSCI_A0 module.
(3) Direction controlled by eUSCI_B0 module.
74 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
P2.3/TA0.0/UCA1STE/A6/CD10
P2.4/TA1.0/UCA1CLK/A7/CD11
P2SEL0.x
P2DIR.x
P2IN.x
EN
Tomodules
Frommodule1
P2OUT.x
1
0
DVSS
DVCC 1
D
ToComparator
FromComparator
PadLogic
To ADC
From ADC
Bus
Keeper
Direction
0:Input
1:Output
CDPD.x
P2REN.x
01
00
10
11
P2SEL1.x
01
00
10
11
Frommodule2
Frommodule2
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port P2, P2.3 to P2.4, Input/Output With Schmitt Trigger
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 75
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 47. Port P2 (P2.3 to P2.4) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL1.x P2SEL0.x
P2.3/TA0.0/UCA1STE/A6/CD10 3 P2.3 (I/O) I: 0; O: 1 0 0
TA0.CCI0B 0 0 1
TA0.0 1
UCA1STE X (1) 1 0
A6 (2) (3) X 1 1
CD10 (2) (4)
P2.4/TA1.0/UCA1CLK/A7/CD11 4 P2.4 (I/O) I: 0; O: 1 0 0
TA1.CCI0B 0 0 1
TA1.0 1
UCA1CLK X (1) 1 0
A7 (2) (3) X 1 1
CD11 (2) (4)
(1) Direction controlled by eUSCI_A1 module.
(2) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
(3) Not available on all devices and package types.
(4) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.
76 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
P2.5/TB0.0/UCA1TXD/UCA1SIMO
P2.6/TB1.0/UCA1RXD/UCA1SOMI
P2SEL0.x
P2DIR.x
P2IN.x
EN
To modules
From module 1
P2OUT.x
1
0
DVSS
DVCC 1
D
Pad Logic
Bus
Keeper
Direction
0: Input
1: Output
P2REN.x
0 1
0 0
1 0
1 1
P2SEL1.x
0 1
0 0
1 0
1 1
From module 2
From module 2
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port P2, P2.5 to P2.6, Input/Output With Schmitt Trigger
Table 48. Port P2 (P2.5 to P2.6) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL1.x P2SEL0.x
P2.5/TB0.0/UCA1TXD/UCA1SIMO 5 P2.5(I/O) (1) I: 0; O: 1 0 0
TB0.CCI0B (1) 00 1
TB0.0 (1) 1
UCA1TXD/UCA1SIMO (1) X(2) 1 0
P2.6/TB1.0/UCA1RXD/UCA1SOMI 6 P2.6(I/O) (1) I: 0; O: 1 0 0
TB1.CCI0B (1) 00 1
TB1.0 (1) 1
UCA1RXD/UCA1SOMI (1) X(2) 1 0
(1) Not available on all devices and package types.
(2) Direction controlled by eUSCI_A1 module.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 77
P2.7
P2SEL0.x
P2DIR.x
P2IN.x
EN
Tomodules
P2OUT.x
1
0
DVSS
DVCC 1
D
PadLogic
Bus
Keeper
Direction
0:Input
1:Output
P2REN.x
01
00
10
11
P2SEL1.x
01
00
10
11
DVSS
DVSS
DVSS
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Port P2, P2.7, Input/Output With Schmitt Trigger
Table 49. Port P2 (P2.7) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL1.x P2SEL0.x
P2.7 7 P2.7(I/O) (1) I: 0; O: 1 0 0
(1) Not available on all devices and package types.
78 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
P3.0/A12/CD12
P3.1/A13/CD13
P3.2/A14/CD14
P3.3/A15/CD15
P3SEL0.x
P3DIR.x
P3IN.x
EN
Tomodules
DVSS
P3OUT.x
1
0
DVSS
DVCC 1
D
ToComparator
FromComparator
PadLogic
To ADC
From ADC
Bus
Keeper
Direction
0:Input
1:Output
CDPD.x
P3REN.x
01
00
10
11
P3SEL1.x
01
00
10
11
DVSS
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 79
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 50. Port P3 (P3.0 to P3.3) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P3.x) x FUNCTION P3DIR.x P3SEL1.x P3SEL0.x
P3.0/A12/CD12 0 P3.0 (I/O) I: 0; O: 1 0 0
A12 (1) (2) X 1 1
CD12 (1) (3)
P3.1/A13/CD13 1 P3.1 (I/O) I: 0; O: 1 0 0
A13 (1) (2) X 1 1
CD13 (1) (3)
P3.2/A14/CD14 2 P3.2 (I/O) I: 0; O: 1 0 0
A14 (1) (2) X 1 1
CD14 (1) (3)
P3.3/A15/CD15 3 P3.3 (I/O) I: 0; O: 1 0 0
A15 (1) (2) X 1 1
CD15 (1) (3)
(1) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
(2) Not available on all devices and package types.
(3) Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents
when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output
driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.
80 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
P3.4/TB1.1/TB2CLK/SMCLK
P3.5/TB1.2/CDOUT
P3.6/TB2.1/TB1CLK
P3SEL0.x
P3DIR.x
P3IN.x
EN
To modules
From module 1
P3OUT.x
1
0
DVSS
DVCC 1
D
Pad Logic
Bus
Keeper
Direction
0: Input
1: Output
P3REN.x
0 1
0 0
1 0
1 1
P3SEL1.x
0 1
0 0
1 0
1 1
From module 2
DVSS
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port P3, P3.4 to P3.6, Input/Output With Schmitt Trigger
Table 51. Port P3 (P3.4 to P3.6) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P3.x) x FUNCTION P3DIR.x P3SEL1.x P3SEL0.x
P3.4/TB1.1/TB2CLK/SMCLK 4 P3.4 (I/O) (1) I: 0; O: 1 0 0
TB1.CCI1B (1) 00 1
TB1.1 (1) 1
TB2CLK (1) 01 1
SMCLK (1) 1
P3.5/TB1.2/CDOUT 5 P3.5 (I/O) (1) I: 0; O: 1 0 0
TB1.CCI2B (1) 00 1
TB1.2 (1) 1
CDOUT (1) 1 1 1
P3.6/TB2.1/TB1CLK 6 P3.6 (I/O) (1) I: 0; O: 1 0 0
TB2.CCI1B (1) 00 1
TB2.1 (1) 1
TB1CLK (1) 0 1 1
(1) Not available on all devices and package types.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 81
P3.7/TB2.2
P3SEL0.x
P3DIR.x
P3IN.x
EN
Tomodules
Frommodule1
P3OUT.x
1
0
DVSS
DVCC 1
D
PadLogic
Bus
Keeper
Direction
0:Input
1:Output
P3REN.x
01
00
10
11
P3SEL1.x
01
00
10
11
DVSS
DVSS
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Port P3, P3.7, Input/Output With Schmitt Trigger
Table 52. Port P3 (P3.7) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P3.x) x FUNCTION P3DIR.x P3SEL1.x P3SEL0.x
P3.7/TB2.2 7 P3.7 (I/O) (1) I: 0; O: 1 0 0
TB2.CCI2B (1) 00 1
TB2.2 (1) 1
(1) Not available on all devices and package types.
82 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
P4.0/TB2.0
P4SEL0.x
P4DIR.x
P4IN.x
EN
Tomodules
Frommodule1
P4OUT.x
1
0
DVSS
DVCC 1
D
PadLogic
Bus
Keeper
Direction
0:Input
1:Output
P4REN.x
01
00
10
11
P4SEL1.x
01
00
10
11
DVSS
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port P4, P4.0, Input/Output With Schmitt Trigger
Table 53. Port P4 (P4.0) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P4.x) x FUNCTION P4DIR.x P4SEL1.x P4SEL0.x
P4.0/TB2.0 0 P4.0 (I/O) (1) I: 0; O: 1 0 0
TB2.CCI0B (1) 00 1
TB2.0 (1) 1
(1) Not available on all devices and package types.
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 83
P4.1
P4SEL0.x
P4DIR.x
P4IN.x
EN
Tomodules
P4OUT.x
1
0
DVSS
DVCC 1
D
PadLogic
Bus
Keeper
Direction
0:Input
1:Output
P4REN.x
01
00
10
11
P4SEL1.x
01
00
10
11
DVSS
DVSS
DVSS
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Port P4, P4.1, Input/Output With Schmitt Trigger
Table 54. Port P4 (P4.1) Pin Functions
CONTROL BITS/SIGNALS
PIN NAME (P4.x) x FUNCTION P4DIR.x P4SEL1.x P4SEL0.x
P4.1 1 P4.1 (I/O) (1) I: 0; O: 1 0 0
(1) Not available on all devices and package types.
84 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
PJ.3/TCK/CD9
PJSEL0.x
PJDIR.x
PJIN.x
EN
To modules
and JTAG
PJOUT.x
1
0
DVSS
DVCC 1
D
Pad Logic
Bus
Keeper
Direction
0: Input
1: Output
PJREN.x
0 1
0 0
1 0
1 1
PJSEL1.x
0 1
0 0
1 0
1 1
DVSS
DVSS
0
1
0
1
JTAG enable
From JTAG
From JTAG
To Comparator
From Comparator
CDPD.x
0
1
From JTAG
DVSS
PJSEL0.x
PJDIR.x
PJIN.x
EN
To modules
and JTAG
PJOUT.x
1
0
DVSS
DVCC 1
D
Pad Logic
Bus
Keeper
Direction
0: Input
1: Output
PJREN.x
0 1
0 0
1 0
1 1
PJSEL1.x
0 1
0 0
1 0
1 1
DVSS
DVSS
0
1
0
1
JTAG enable
From JTAG
From JTAG
To Comparator
From Comparator
CDPD.x
0
1
From JTAG
From module 1
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7
PJ.2/TMS/TB2OUTH/ACLK/CD8
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or
Output
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 85
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 55. Port PJ (PJ.0 to PJ.3) Pin Functions
CONTROL BITS/ SIGNALS (1)
PIN NAME (PJ.x) x FUNCTION PJDIR.x PJSEL1.x PJSEL0.x
PJ.0/TDO/TB0OUTH/SMCLK/CD6 0 PJ.0 (I/O) (2) I: 0; O: 1 0 0
TDO (3) X X X
TB0OUTH 0 0 1
SMCLK 1
CD6 X 1 1
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 1 PJ.1 (I/O) (2) I: 0; O: 1 0 0
TDI/TCLK (3) (4) X X X
TB1OUTH 0 0 1
MCLK 1
CD7 X 1 1
PJ.2/TMS/TB2OUTH/ACLK/CD8 2 PJ.2 (I/O) (2) I: 0; O: 1 0 0
TMS (3) (4) X X X
TB2OUTH 0 0 1
ACLK 1
CD8 X 1 1
PJ.3/TCK/CD9 3 PJ.3 (I/O) (2) I: 0; O: 1 0 0
TCK (3) (4) X X X
CD9 X 1 1
(1) X = Don't care
(2) Default condition
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made by the SYS module or by the Spy-Bi-Wire four-wire
entry sequence. PJSEL1.x and PJSEL0.x have no effect in these cases.
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.
86 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
PJ.4/XIN
PJSEL0.4
PJDIR.4
PJIN.4
EN
Tomodules
DVSS
PJOUT.4
1
0
DVSS
DVCC 1
D
ToXT1XIN
PadLogic
Bus
Keeper
Direction
0:Input
1:Output
PJREN.4
01
00
10
11
PJSEL1.4
01
00
10
11
DVSS
DVSS
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 87
PJ.5/XOUT
PJSEL0.5
PJDIR.5
PJIN.5
EN
Tomodules
DVSS
PJOUT.5
1
0
DVSS
DVCC 1
D
ToXT1XOUT
PadLogic
Bus
Keeper
Direction
0:Input
1:Output
PJREN.5
01
00
10
11
PJSEL1.5
01
00
10
11
DVSS
DVSS
PJSEL0.4
XT1BYPASS
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 56. Port PJ (PJ.4 and PJ.5) Pin Functions
CONTROL BITS/SIGNALS (1)
PIN NAME (P7.x) x FUNCTION XT1
PJDIR.x PJSEL1.5 PJSEL0.5 PJSEL1.4 PJSEL0.4 BYPASS
PJ.4/XIN 4 PJ.4 (I/O) I: 0; O: 1 X X 0 0 X
XIN crystal mode (2) X X X 0 1 0
XIN bypass mode (2) X X X 0 1 1
PJ.5/XOUT 5 PJ.5 (I/O) I: 0; O: 1 0 0 0 0 X
XOUT crystal mode X X X 0 1 0
(3)
PJ.5 (I/O) (4) I: 0; O: 1 X X 0 1 1
(1) X = Don't care
(2) Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass
operation and PJ.5 is configured as general-purpose I/O.
(3) Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass
operation and PJ.5 is configured as general-purpose I/O.
(4) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.
88 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
DEVICE DESCRIPTORS (TLV)
The following tables list the complete contents of the device descriptor tag-length-value (TLV) structure for each
device type.
Table 57. Device Descriptor Table (1)
FR5739 FR5738 FR5737 FR5736 FR5735
Description Address Value Value Value Value Value
Info Block Info length 01A00h 05h 05h 05h 05h 05h
CRC length 01A01h 05h 05h 05h 05h 05h
01A02h per unit per unit per unit per unit per unit
CRC value 01A03h per unit per unit per unit per unit per unit
Device ID 01A04h 03h 02h 01h 77h 76h
Device ID 01A05h 81h 81h 81h 81h 81h
Hardware revision 01A06h per unit per unit per unit per unit per unit
Firmware revision 01A07h per unit per unit per unit per unit per unit
Die Record Die Record Tag 01A08h 08h 08h 08h 08h 08h
Die Record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah
01A0Ah per unit per unit per unit per unit per unit
01A0Bh per unit per unit per unit per unit per unit
Lot/Wafer ID 01A0Ch per unit per unit per unit per unit per unit
01A0Dh per unit per unit per unit per unit per unit
01A0Eh per unit per unit per unit per unit per unit
Die X position 01A0Fh per unit per unit per unit per unit per unit
01A10h per unit per unit per unit per unit per unit
Die Y position 01A11h per unit per unit per unit per unit per unit
01A12h per unit per unit per unit per unit per unit
Test results 01A13h per unit per unit per unit per unit per unit
ADC10 ADC10 Calibration 01A14h 13h 13h 13h 05h 13h
Calibration Tag
ADC10 Calibration 01A15h 10h 10h 10h 10h 10h
length 01A16h per unit per unit NA NA per unit
ADC Gain Factor 01A17h per unit per unit NA NA per unit
01A18h per unit per unit NA NA per unit
ADC Offset 01A19h per unit per unit NA NA per unit
ADC 1.5-V 01A1Ah per unit per unit NA NA per unit
Reference 01A1Bh per unit per unit NA NA per unit
Temp. Sensor 30°C
ADC 1.5-V 01A1Ch per unit per unit NA NA per unit
Reference 01A1Dh per unit per unit NA NA per unit
Temp. Sensor 85°C
ADC 2.0-V 01A1Eh per unit per unit NA NA per unit
Reference 01A1Fh per unit per unit NA NA per unit
Temp. Sensor 30°C
ADC 2.0-V 01A20h per unit per unit NA NA per unit
Reference 01A21h per unit per unit NA NA per unit
Temp. Sensor 85°C
ADC 2.5-V 01A22h per unit per unit NA NA per unit
Reference 01A23h per unit per unit NA NA per unit
Temp. Sensor 30°C
(1) NA = Not applicable
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 89
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 57. Device Descriptor Table (1) (continued)
FR5739 FR5738 FR5737 FR5736 FR5735
Description Address Value Value Value Value Value
ADC 2.5-V 01A24h per unit per unit NA NA per unit
Reference 01A25h per unit per unit NA NA per unit
Temp. Sensor 85°C
REF REF Calibration Tag 01A26h 12h 12h 12h 12h 12h
Calibration
REF Calibration 01A27h 06h 06h 06h 06h 06h
length 01A28h per unit per unit per unit per unit per unit
REF 1.5-V
Reference 01A29h per unit per unit per unit per unit per unit
01A2Ah per unit per unit per unit per unit per unit
REF 2.0-V
Reference 01A2Bh per unit per unit per unit per unit per unit
01A2Ch per unit per unit per unit per unit per unit
REF 2.5-V
Reference 01A2Dh per unit per unit per unit per unit per unit
Table 58. Device Descriptor Table (1)
FR5734 FR5733 FR5732 FR5731 FR5730
Description Address Value Value Value Value Value
Info Block Info length 01A00h 05h 05h 05h 05h 05h
CRC length 01A01h 05h 05h 05h 05h 05h
01A02h per unit per unit per unit per unit per unit
CRC value 01A03h per unit per unit per unit per unit per unit
Device ID 01A04h 00h 7Fh 75h 7Eh 7Ch
Device ID 01A05h 81h 80h 81h 80h 80h
Hardware revision 01A06h per unit per unit per unit per unit per unit
Firmware revision 01A07h per unit per unit per unit per unit per unit
Die Record Die Record Tag 01A08h 08h 08h 08h 08h 08h
Die Record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah
01A0Ah per unit per unit per unit per unit per unit
01A0Bh per unit per unit per unit per unit per unit
Lot/Wafer ID 01A0Ch per unit per unit per unit per unit per unit
01A0Dh per unit per unit per unit per unit per unit
01A0Eh per unit per unit per unit per unit per unit
Die X position 01A0Fh per unit per unit per unit per unit per unit
01A10h per unit per unit per unit per unit per unit
Die Y position 01A11h per unit per unit per unit per unit per unit
01A12h per unit per unit per unit per unit per unit
Test results 01A13h per unit per unit per unit per unit per unit
ADC10 ADC10 Calibration 01A14h 13h 13h 13h 05h 13h
Calibration Tag
ADC10 Calibration 01A15h 10h 10h 10h 10h 10h
length 01A16h per unit NA NA per unit per unit
ADC Gain Factor 01A17h per unit NA NA per unit per unit
01A18h per unit NA NA per unit per unit
ADC Offset 01A19h per unit NA NA per unit per unit
ADC 1.5-V 01A1Ah per unit NA NA per unit per unit
Reference 01A1Bh per unit NA NA per unit per unit
Temp. Sensor 30°C
(1) NA = Not applicable
90 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 58. Device Descriptor Table (1) (continued)
FR5734 FR5733 FR5732 FR5731 FR5730
Description Address Value Value Value Value Value
ADC 1.5-V 01A1Ch per unit NA NA per unit per unit
Reference 01A1Dh per unit NA NA per unit per unit
Temp. Sensor 85°C
ADC 2.0-V 01A1Eh per unit NA NA per unit per unit
Reference 01A1Fh per unit NA NA per unit per unit
Temp. Sensor 30°C
ADC 2.0-V 01A20h per unit NA NA per unit per unit
Reference 01A21h per unit NA NA per unit per unit
Temp. Sensor 85°C
ADC 2.5-V 01A22h per unit NA NA per unit per unit
Reference 01A23h per unit NA NA per unit per unit
Temp. Sensor 30°C
ADC 2.5-V 01A24h per unit NA NA per unit per unit
Reference 01A25h per unit NA NA per unit per unit
Temp. Sensor 85°C
REF REF Calibration Tag 01A26h 12h 12h 12h 12h 12h
Calibration
REF Calibration 01A27h 06h 06h 06h 06h 06h
length 01A28h per unit per unit per unit per unit per unit
REF 1.5-V
Reference 01A29h per unit per unit per unit per unit per unit
01A2Ah per unit per unit per unit per unit per unit
REF 2.0-V
Reference 01A2Bh per unit per unit per unit per unit per unit
01A2Ch per unit per unit per unit per unit per unit
REF 2.5-V
Reference 01A2Dh per unit per unit per unit per unit per unit
Table 59. Device Descriptor Table (1)
FR5729 FR5728 FR5727 FR5726 FR5725
Description Address Value Value Value Value Value
Info Block Info length 01A00h 05h 05h 05h 05h 05h
CRC length 01A01h 05h 05h 05h 05h 05h
01A02h per unit per unit per unit per unit per unit
CRC value 01A03h per unit per unit per unit per unit per unit
Device ID 01A04h 7Bh 7Ah 79h 74h 78h
Device ID 01A05h 80h 80h 80h 81h 80h
Hardware revision 01A06h per unit per unit per unit per unit per unit
Firmware revision 01A07h per unit per unit per unit per unit per unit
Die Record Die Record Tag 01A08h 08h 08h 08h 08h 08h
Die Record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah
01A0Ah per unit per unit per unit per unit per unit
01A0Bh per unit per unit per unit per unit per unit
Lot/Wafer ID 01A0Ch per unit per unit per unit per unit per unit
01A0Dh per unit per unit per unit per unit per unit
01A0Eh per unit per unit per unit per unit per unit
Die X position 01A0Fh per unit per unit per unit per unit per unit
01A10h per unit per unit per unit per unit per unit
Die Y position 01A11h per unit per unit per unit per unit per unit
01A12h per unit per unit per unit per unit per unit
Test results 01A13h per unit per unit per unit per unit per unit
(1) NA = Not applicable
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 91
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
Table 59. Device Descriptor Table (1) (continued)
FR5729 FR5728 FR5727 FR5726 FR5725
Description Address Value Value Value Value Value
ADC10 ADC10 Calibration 01A14h 13h 13h 13h 05h 13h
Calibration Tag
ADC10 Calibration 01A15h 10h 10h 10h 10h 10h
length 01A16h per unit per unit NA NA per unit
ADC Gain Factor 01A17h per unit per unit NA NA per unit
01A18h per unit per unit NA NA per unit
ADC Offset 01A19h per unit per unit NA NA per unit
ADC 1.5-V 01A1Ah per unit per unit NA NA per unit
Reference 01A1Bh per unit per unit NA NA per unit
Temp. Sensor 30°C
ADC 1.5-V 01A1Ch per unit per unit NA NA per unit
Reference 01A1Dh per unit per unit NA NA per unit
Temp. Sensor 85°C
ADC 2.0-V 01A1Eh per unit per unit NA NA per unit
Reference 01A1Fh per unit per unit NA NA per unit
Temp. Sensor 30°C
ADC 2.0-V 01A20h per unit per unit NA NA per unit
Reference 01A21h per unit per unit NA NA per unit
Temp. Sensor 85°C
ADC 2.5-V 01A22h per unit per unit NA NA per unit
Reference 01A23h per unit per unit NA NA per unit
Temp. Sensor 30°C
ADC 2.5-V 01A24h per unit per unit NA NA per unit
Reference 01A25h per unit per unit NA NA per unit
Temp. Sensor 85°C
REF REF Calibration Tag 01A26h 12h 12h 12h 12h 12h
Calibration
REF Calibration 01A27h 06h 06h 06h 06h 06h
length 01A28h per unit per unit per unit per unit per unit
REF 1.5-V
Reference 01A29h per unit per unit per unit per unit per unit
01A2Ah per unit per unit per unit per unit per unit
REF 2.0-V
Reference 01A2Bh per unit per unit per unit per unit per unit
01A2Ch per unit per unit per unit per unit per unit
REF 2.5-V
Reference 01A2Dh per unit per unit per unit per unit per unit
Table 60. Device Descriptor Table (1)
FR5724 FR5723 FR5722 FR5721 FR5720
Description Address Value Value Value Value Value
Info Block Info length 01A00h 05h 05h 05h 05h 05h
CRC length 01A01h 05h 05h 05h 05h 05h
01A02h per unit per unit per unit per unit per unit
CRC value 01A03h per unit per unit per unit per unit per unit
Device ID 01A04h 73h 72h 71h 77h 70h
Device ID 01A05h 81h 81h 81h 80h 81h
Hardware revision 01A06h per unit per unit per unit per unit per unit
Firmware revision 01A07h per unit per unit per unit per unit per unit
Die Record Die Record Tag 01A08h 08h 08h 08h 08h 08h
Die Record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah
(1) NA = Not applicable
92 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639D JULY 2011REVISED AUGUST 2012
Table 60. Device Descriptor Table (1) (continued)
FR5724 FR5723 FR5722 FR5721 FR5720
Description Address Value Value Value Value Value
01A0Ah per unit per unit per unit per unit per unit
01A0Bh per unit per unit per unit per unit per unit
Lot/Wafer ID 01A0Ch per unit per unit per unit per unit per unit
01A0Dh per unit per unit per unit per unit per unit
01A0Eh per unit per unit per unit per unit per unit
Die X position 01A0Fh per unit per unit per unit per unit per unit
01A10h per unit per unit per unit per unit per unit
Die Y position 01A11h per unit per unit per unit per unit per unit
01A12h per unit per unit per unit per unit per unit
Test results 01A13h per unit per unit per unit per unit per unit
ADC10 ADC10 Calibration 01A14h 13h 13h 13h 05h 13h
Calibration Tag
ADC10 Calibration 01A15h 10h 10h 10h 10h 10h
length 01A16h per unit NA NA per unit per unit
ADC Gain Factor 01A17h per unit NA NA per unit per unit
01A18h per unit NA NA per unit per unit
ADC Offset 01A19h per unit NA NA per unit per unit
ADC 1.5-V 01A1Ah per unit NA NA per unit per unit
Reference 01A1Bh per unit NA NA per unit per unit
Temp. Sensor 30°C
ADC 1.5-V 01A1Ch per unit NA NA per unit per unit
Reference 01A1Dh per unit NA NA per unit per unit
Temp. Sensor 85°C
ADC 2.0-V 01A1Eh per unit NA NA per unit per unit
Reference 01A1Fh per unit NA NA per unit per unit
Temp. Sensor 30°C
ADC 2.0-V 01A20h per unit NA NA per unit per unit
Reference 01A21h per unit NA NA per unit per unit
Temp. Sensor 85°C
ADC 2.5-V 01A22h per unit NA NA per unit per unit
Reference 01A23h per unit NA NA per unit per unit
Temp. Sensor 30°C
ADC 2.5-V 01A24h per unit NA NA per unit per unit
Reference 01A25h per unit NA NA per unit per unit
Temp. Sensor 85°C
REF REF Calibration Tag 01A26h 12h 12h 12h 12h 12h
Calibration
REF Calibration 01A27h 06h 06h 06h 06h 06h
length 01A28h per unit per unit per unit per unit per unit
REF 1.5-V
Reference 01A29h per unit per unit per unit per unit per unit
01A2Ah per unit per unit per unit per unit per unit
REF 2.0-V
Reference 01A2Bh per unit per unit per unit per unit per unit
01A2Ch per unit per unit per unit per unit per unit
REF 2.5-V
Reference 01A2Dh per unit per unit per unit per unit per unit
Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 93
MSP430FR573x
MSP430FR572x
SLAS639D JULY 2011REVISED AUGUST 2012
www.ti.com
REVISION HISTORY
REVISION COMMENTS
SLAS639 Product Preview release
SLAS639A Updated Product Preview release including preliminary electrical specifications
SLAS639B Changes throughout for updated Product Preview
SLAS639C Production Data release
SLAS639D Changed PW package options from Product Preview to Production Data.
Added information for YFF package option throughout as Product Preview.
Table 26 and Table 27, Changed offset of PxSELC registers.
Table 28, Added PJSELC register.
Table 29, Removed registers that do no apply (TA0CCTL3,4 and TA0CCR3,4)
Absolute Maximum Ratings, Changed low limit of Tstg from -40°C to -55°C.
FRAM, Added tRetention MIN values for TJ= 25°C and TJ= 70°C.
94 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com 23-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
MSP430FR5720IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5720IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5720IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5721IDA PREVIEW TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5721IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5721IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5721IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5722IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5722IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5722IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5723IDA PREVIEW TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5723IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5723IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5723IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5724IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5724IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5724IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PACKAGE OPTION ADDENDUM
www.ti.com 23-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
MSP430FR5725IDA PREVIEW TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5725IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5725IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5726IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5726IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5726IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5727IDA PREVIEW TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5727IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5727IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5727IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5728IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5728IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5728IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5729IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5729IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5729IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5730IPW PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5730IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
PACKAGE OPTION ADDENDUM
www.ti.com 23-Aug-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
MSP430FR5730IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5731IDA PREVIEW TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5731IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5731IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5731IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5732IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5732IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5732IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5733IDA PREVIEW TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5733IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5733IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5733IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5734IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5734IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5734IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5735IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5735IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5735IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
PACKAGE OPTION ADDENDUM
www.ti.com 23-Aug-2012
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
MSP430FR5736IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5736IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5736IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5737IDA PREVIEW TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5737IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5737IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5737IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5738IPWR PREVIEW TSSOP PW 28 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
MSP430FR5738IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5738IRGET ACTIVE VQFN RGE 24 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5739IDA ACTIVE TSSOP DA 38 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5739IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5739IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
MSP430FR5739IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
PACKAGE OPTION ADDENDUM
www.ti.com 23-Aug-2012
Addendum-Page 5
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated