LM158,LM258,LM2904,LM358

LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers

PDF.Support

Literature Number: SNOSBT3G

LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers

General Description

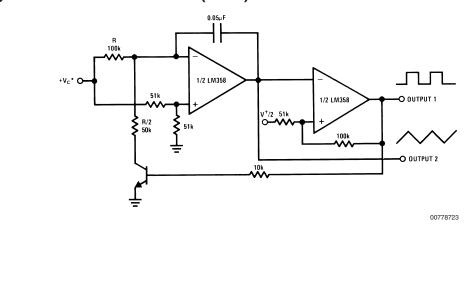
The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15V$ power supplies.

The LM358 and LM2904 are available in a chip sized package (8-Bump micro SMD) using National's micro SMD package technology.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.


Advantages

- Two internally compensated op amps
- Eliminates need for dual supplies
- Allows direct sensing near GND and V_{OUT} also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Available in 8-Bump micro SMD chip sized package, (See AN-1112)
- Internally frequency compensated for unity gain
- Large dc voltage gain: 100 dB
- Wide bandwidth (unity gain): 1 MHz (temperature compensated)
- Wide power supply range:
 Single supply: 3V to 32V
 or dual supplies: ±1.5V to ±16V
- Very low supply current drain (500 µA)—essentially independent of supply voltage
- Low input offset voltage: 2 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing

Voltage Controlled Oscillator (VCO)

Absolute Maximum Ratings (Note 9)

Distributors for availability and specifications.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/

	LM158/LM258/LM358 LM158A/LM258A/LM358A	LM2904
Supply Voltage, V ⁺	32V	26V
Differential Input Voltage	32V	26V
Input Voltage	-0.3V to +32V	-0.3V to +26V
Power Dissipation (Note 1)		
Molded DIP	830 mW	830 mW
Metal Can	550 mW	
Small Outline Package (M)	530 mW	530 mW
micro SMD	435mW	
Output Short-Circuit to GND		
(One Amplifier) (Note 2)		
$V^+ \le 15V$ and $T_A = 25^{\circ}C$	Continuous	Continuous
Input Current ($V_{IN} \le -0.3V$) (Note 3)	50 mA	50 mA
Operating Temperature Range		
LM358	0°C to +70°C	-40°C to +85°C
LM258	–25°C to +85°C	
LM158	−55°C to +125°C	
Storage Temperature Range	−65°C to +150°C	–65°C to +150°C
Lead Temperature, DIP		
(Soldering, 10 seconds)	260°C	260°C
Lead Temperature, Metal Can		
(Soldering, 10 seconds)	300°C	300°C
Soldering Information		
Dual-In-Line Package		
Soldering (10 seconds)	260°C	260°C
Small Outline Package		
Vapor Phase (60 seconds)	215°C	215°C
Infrared (15 seconds)	220°C	220°C
See AN-450 "Surface Mounting Methods and The surface mount devices.	ir Effect on Product Reliability" for other methods	s of soldering
ESD Tolerance (Note 10)	250V	250V

Electrical Characteristics

 V^+ = +5.0V, unless otherwise stated

Parameter	Conditions		LM158A		LM358A			LM158/LM258			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	(Note 5), T _A = 25°C		1	2		2	3		2	5	mV
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$, $T_A = 25^{\circ}C$,		20	50		45	100		45	150	nA
	$V_{CM} = 0V$, (Note 6)										
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V, T_A = 25^{\circ}C$		2	10		5	30		3	30	nA
Input Common-Mode	V ⁺ = 30V, (Note 7)	0		V+-1.5	0		V+-1.5	0		V+-1.5	V
Voltage Range	(LM2904, V ⁺ = 26V), T _A = 25°C										
Supply Current	Over Full Temperature Range										
	$R_L = \infty$ on All Op Amps										
	V ⁺ = 30V (LM2904 V ⁺ = 26V)		1	2		1	2		1	2	mA
	$V^{+} = 5V$		0.5	1.2		0.5	1.2		0.5	1.2	mA

Electrical Characteristics

 V^+ = +5.0V, unless otherwise stated

Parameter	Conditions	LM358			LM2904	۱ I	Units	
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	(Note 5) , T _A = 25°C		2	7		2	7	mV
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$, $T_A = 25^{\circ}C$, $V_{CM} = 0V$, (Note 6)		45	250		45	250	nA
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V, T_A = 25^{\circ}C$		5	50		5	50	nA
Input Common-Mode	V ⁺ = 30V, (Note 7)	0		V+-1.5	0		V+-1.5	V
Voltage Range	(LM2904, V ⁺ = 26V), T _A = 25°C							
Supply Current	Over Full Temperature Range							
	$R_{L} = \infty$ on All Op Amps							
	V ⁺ = 30V (LM2904 V ⁺ = 26V)		1	2		1	2	mA
	$V^{+} = 5V$		0.5	1.2		0.5	1.2	mA

Electrical Characteristics

 V^+ = +5.0V, (Note 4), unless otherwise stated

Paramet	or	Conditions		LM158	A		_M358	BA	LM158/LM258			Units	
Faramet	ei	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
Large Signal Vol	tage	$V^+ = 15V, T_A = 25^{\circ}C,$											
Gain		$R_L \ge 2 k\Omega$, (For $V_O = 1V$	50	100		25	100		50	100		V/mV	
		to 11V)											
Common-Mode		T _A = 25°C,	70	85		65	85		70	85		dB	
Rejection Ratio		$V_{CM} = 0V$ to $V^{+}-1.5V$	10	00		05	00		10	00		uВ	
Power Supply		V ⁺ = 5V to 30V											
Rejection Ratio		(LM2904, V ⁺ = 5V	65	100		65	100		65	100		dB	
		to 26V), T _A = 25°C											
Amplifier-to-Amp	lifier	$f = 1 \text{ kHz to } 20 \text{ kHz}, T_A = 25^{\circ}C$		100			100			100		dD	
Coupling		(Input Referred), (Note 8)		-120			-120			-120		dB	
Output Current	Source	$V_{IN}^{+} = 1V,$											
		$V_{IN}^{-} = 0V,$		10			40			40			
		V ⁺ = 15V,	20	40		20	40		20	40		mA	
		$V_{O} = 2V, T_{A} = 25^{\circ}C$											
	Sink	$V_{IN}^{-} = 1V, V_{IN}^{+} = 0V$											
		V ⁺ = 15V, T _A = 25°C,	10	20		10	20		10	20		mA	
		$V_{O} = 2V$											
		$V_{IN}^{-} = 1V,$											
		$V_{IN}^{+} = 0V$		50			50			50			
		T _A = 25°C, V _O = 200 mV,	12	50		12	50		12	50		μA	
		V ⁺ = 15V											
Short Circuit to (Ground	T _A = 25°C, (Note 2),		40	00		40	00		40	00		
		V ⁺ = 15V		40	60		40	60		40	60	mA	
Input Offset Volt	age	(Note 5)			4			5			7	mV	
Input Offset Volt	age	$R_{\rm S} = 0\Omega$		7	15		7	20		7		µV/°C	
Drift				/	15		/	20		/		μν/ Ο	
Input Offset Curr	rent	$I_{IN(+)} - I_{IN(-)}$			30			75			100	nA	
Input Offset Curr	rent	$R_{S} = 0\Omega$		10	200		10	300		10		pA/°C	
Drift				10	200		10	300		10		prv C	
Input Bias Curre	nt	I _{IN(+)} or I _{IN(-)}		40	100		40	200		40	300	nA	
Input Common-N	/lode	V ⁺ = 30 V, (Note 7)	0		V+-2	0		V+-2	0		V+-2	V	
Voltage Range		(LM2904, V ⁺ = 26V)			v -2			v -2			v -2	v	

Electrical Characteristics (Continued) $V^+ = +5.0V$, (Note 4), unless otherwise stated

Deremet	~ *	Condition	Conditions		LM158A		LM358A		LM158/LM258			Units	
Paramete	er	Condition	15	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	
Large Signal Vol	tage	V ⁺ = +15V											
Gain		$(V_{O} = 1V \text{ to } 11V)$		25			15			25			V/mV
		$R_L \ge 2 \ k\Omega$											
Output	V _{OH}	V ⁺ = +30V	$R_L = 2 k\Omega$	26			26			26			V
Voltage		(LM2904, V ⁺ = 26V)	$R_L = 10 \ k\Omega$	27	28		27	28		27	28		V
Swing	V _{OL}	$V^+ = 5V, R_L = 10 \text{ k}\Omega$			5	20		5	20		5	20	mV
Output Current	Source	$V_{IN}^{+} = +1V, V_{IN}^{-} = 0V$	ſ,	10	20		10	20		10	20		mA
		$V^+ = 15V, V_0 = 2V$		10	20			20		10	20		ma
	Sink	$V_{IN}^{-} = +1V, V_{IN}^{+} = 0V,$		10	15		5	8		5	8		m۸
		V ⁺ = 15V, V _O = 2V			1D		5	0		5	0		mA

Electrical Characteristics

 V^+ = +5.0V, (Note 4), unless otherwise stated

Parameter		Conditions	LM358			LM2904			Units	
Falameter			Min	Тур	Max	Min	Тур	Мах		
Large Signal Voltage		$V^+ = 15V, T_A = 25^{\circ}C,$								
Gain		$R_L \geq 2 \ k\Omega,$ (For V_O = 1V	25	100		25	100		V/mV	
		to 11V)								
Common-Mode		T _A = 25°C,	65	85		50	70		dB	
Rejection Ratio		$V_{CM} = 0V$ to $V^+ - 1.5V$	05	65		50	70		uВ	
Power Supply		$V^{+} = 5V$ to 30V								
Rejection Ratio		$(LM2904, V^{+} = 5V)$	65	100		50	100		dB	
		to 26V), T _A = 25°C								
Amplifier-to-Amplifier		f = 1 kHz to 20 kHz, $T_A = 25^{\circ}C$		-120			100		dB	
Coupling		(Input Referred), (Note 8)		-120			-120		uв	
Output Current	Source	$V_{IN}^{+} = 1V,$								
		$V_{IN}^{-} = 0V,$	00	40		20	40			
		V ⁺ = 15V,	20	40		20	40		mA	
		$V_{O} = 2V, T_{A} = 25^{\circ}C$								
	Sink	$V_{IN}^{-} = 1V, V_{IN}^{+} = 0V$								
		$V^+ = 15V, T_A = 25^{\circ}C,$	10	20		10	20		mA	
		$V_{O} = 2V$								
		$V_{IN}^{-} = 1V,$								
		$V_{IN}^{+} = 0V$	12	50		12	50			
		$T_A = 25^{\circ}C, V_O = 200 \text{ mV},$	12	50		12	50		μA	
		V ⁺ = 15V								
Short Circuit to Groun	ıd	T _A = 25°C, (Note 2),		40	60		40	00		
		V ⁺ = 15V		40	60		40	60	mA	
Input Offset Voltage		(Note 5)			9			10	mV	
Input Offset Voltage		$R_{S} = 0\Omega$		7			7		µV/°C	
Drift				/			1		μν/ Ο	
Input Offset Current		$ I_{ N(+)} - I_{ N(-)} $			150		45	200	nA	
Input Offset Current		$R_{\rm S} = 0\Omega$		10			10		~^/° ^	
Drift				10			10		pA/°C	
Input Bias Current		I _{IN(+)} or I _{IN(-)}		40	500		40	500	nA	
Input Common-Mode		V ⁺ = 30 V, (Note 7)				0		V+ 0	V	
Voltage Range		(LM2904, V ⁺ = 26V)	0		V+-2	0		V+ –2	V	

Electrical Characteristics (Continued)

 V^+ = +5.0V, (Note 4), unless otherwise stated

Parameter		Condition		LM358			LM2904		Units	
Parameter		Conditions		Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage		V ⁺ = +15V								
Gain		$(V_{O} = 1V \text{ to } 11V)$		15			15			V/mV
		$R_L \ge 2 \ k\Omega$								
Output	V _{OH}	V ⁺ = +30V	$R_L = 2 k\Omega$	26			22			V
Voltage		(LM2904, V ⁺ = 26V)	$R_L = 10 \ k\Omega$	27	28		23	24		V
Swing	V _{OL}	$V^+ = 5V, R_L = 10 \text{ k}\Omega$			5	20		5	100	mV
Output Current	Source	$V_{IN}^{+} = +1V, V_{IN}^{-} = 0V$,	10	20		10	20		mA
		V ⁺ = 15V, V _O = 2V		10	20		10	20		mA
	Sink	$V_{IN}^{-} = +1V, V_{IN}^{+} = 0V$,	5	8		5	8		mA
		$V^+ = 15V, V_O = 2V$		5	0		5	0		IIIA

Note 1: For operating at high temperatures, the LM358/LM358A, LM2904 must be derated based on a +125°C maximum junction temperature and a thermal resistance of 120°C/W for MDIP, 182°C/W for Metal Can, 189°C/W for Small Outline package, and 230°C/W for micro SMD, which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM258/LM258A and LM158/LM158A can be derated based on a +150°C maximum junction temperature. The dissipation is the total of both amplifiers — use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

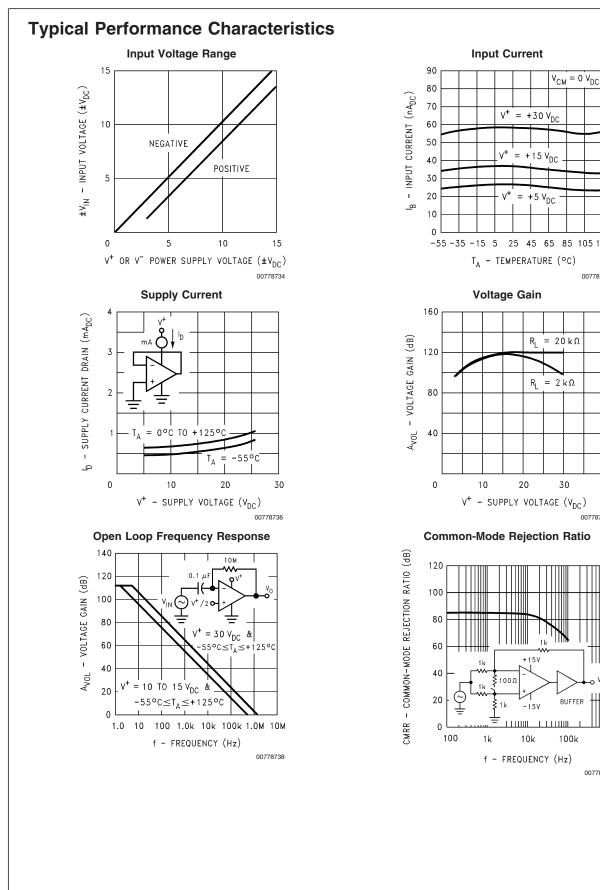
Note 2: Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V⁺voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V (at 25°C).

Note 4: These specifications are limited to $-55^{\circ}C \le T_A \le +125^{\circ}C$ for the LM158/LM158A. With the LM258/LM258A, all temperature specifications are limited to $-25^{\circ}C \le T_A \le +85^{\circ}C$, the LM358/LM358A temperature specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$, and the LM2904 specifications are limited to $-40^{\circ}C \le T_A \le +85^{\circ}C$.

Note 5: $V_0 \simeq 1.4V$, $R_S = 0\Omega$ with V⁺ from 5V to 30V; and over the full input common-mode range (0V to V⁺ -1.5V) at 25°C. For LM2904, V⁺ from 5V to 26V.

Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.


Note 7: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is V^+ –1.5V (at 25°C), but either or both inputs can go to +32V without damage (+26V for LM2904), independent of the magnitude of V^+ .

Note 8: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

Note 9: Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.

Note 10: Human body model, 1.5 k Ω in series with 100 pF.

105 125

00778735

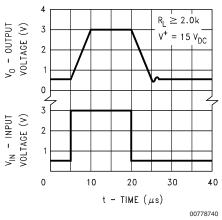
30

BUFFER

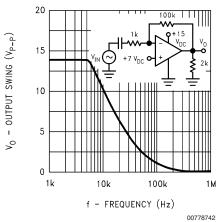
100k

1M

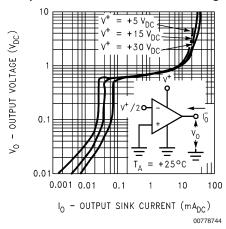
00778739

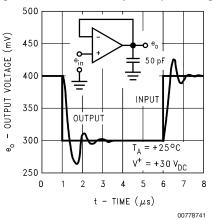

40

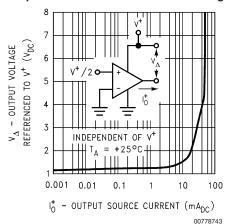
00778737

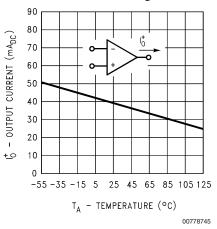

LM158/LM258/LM358/LM2904

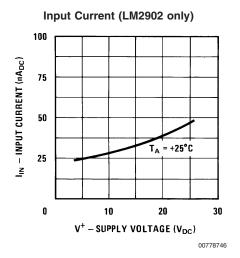
Typical Performance Characteristics (Continued)




Large Signal Frequency Response


Output Characteristics Current Sinking

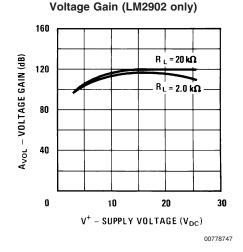

Voltage Follower Pulse Response (Small Signal)


Output Characteristics Current Sourcing

Current Limiting

Typical Performance Characteristics (Continued)

Application Hints

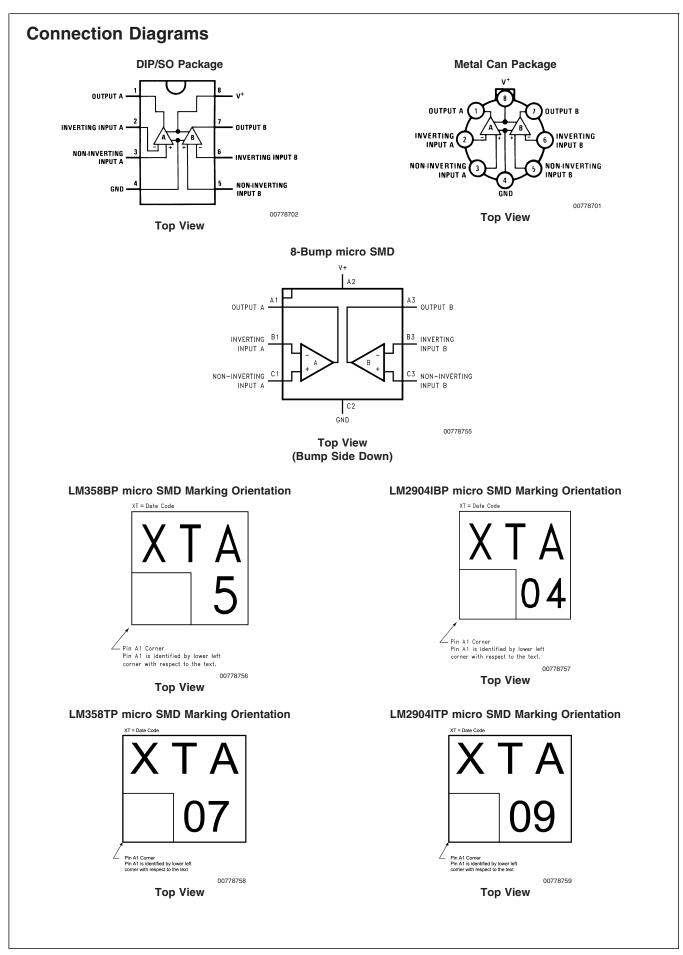

The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 V_{DC}. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 V_{DC}.

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accomodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V⁺ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V_{DC} (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

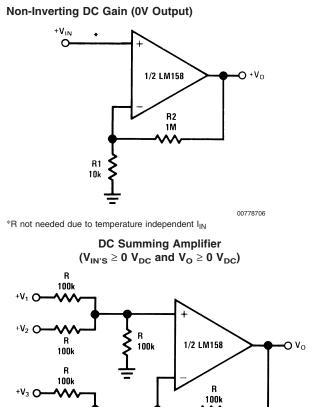
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

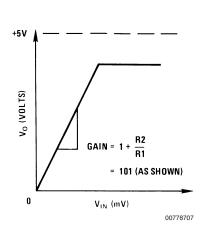


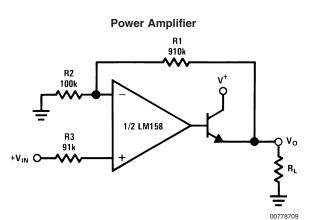
Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accomodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of 3 V_{DC} to 30 V_{DC} .

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive function temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

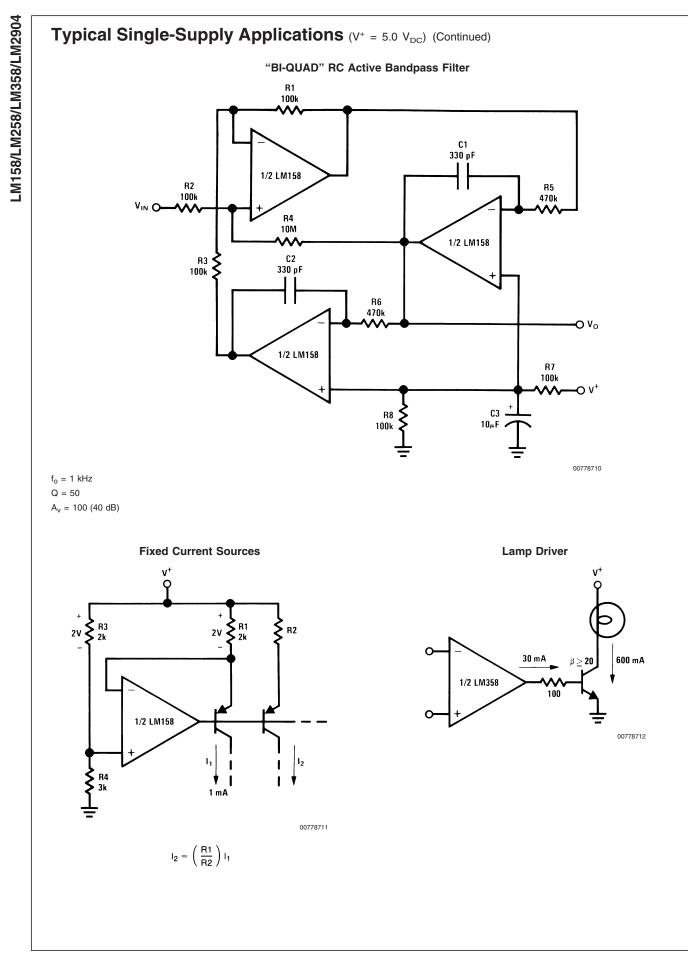

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V⁺/2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.



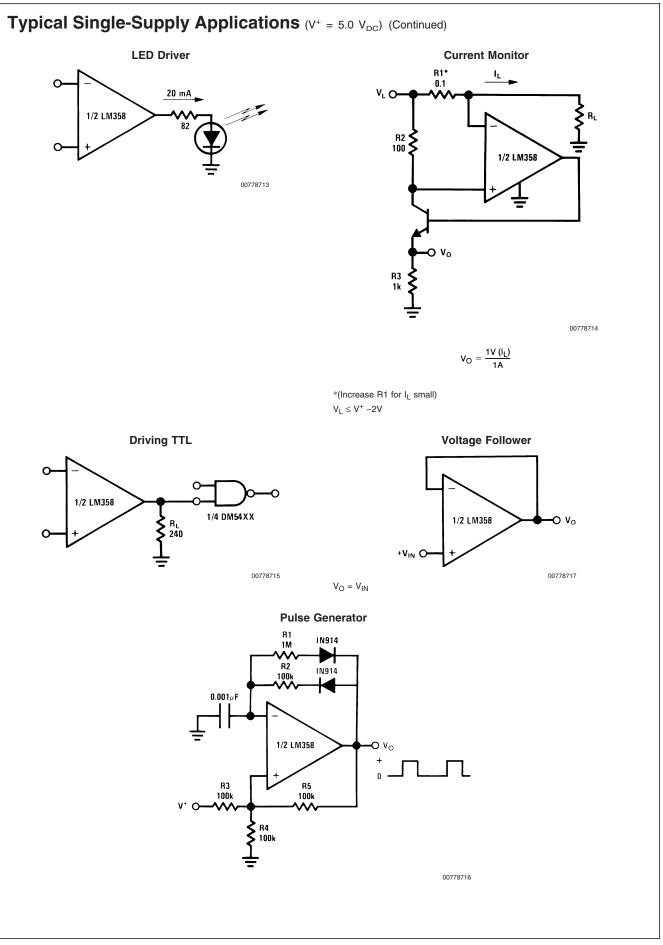

LM158/LM258/LM358/LM2904

Deeleese					
Package	–55°C to 125°C	–25°C to 85°C	0°C to 70°C	-40°C to 85°C	NSC Drawing
SO-8			LM358AM LM358AMX LM358M LM358MX	LM2904M LM2904MX	M08A
B-Pin Molded DIP			LM358AN LM358N	LM2904N	N08E
-Pin Ceramic DIP	LM158AJ/883(Note 11) LM158J/883(Note 11) LM158J LM158AJLQML(Note 12) LM158AJQMLV(Note 12)				J08A
O-5, 8-Pin Metal Can	LM158AH/883(Note 11) LM158H/883(Note 11) LM158AH LM158AH LM158AH LM158AHLQML(Note 12) LM158AHLQMLV(Note 12)	LM258H	LM358H		H08C
8-Bump micro SMD			LM358BP LM358BPX	LM2904IBP LM2904IBPX	BPA08AAB 0.85 mm Thicl
8-Bump micro SMD Lead Free			LM358TP LM358TPX	LM2904ITP LM2904ITPX	TPA08AAA 0.50 mm Thicl
14-Pin Ceramic SOIC	LM158AWG/883				WG10A
LM158A is available pe Note 12: See STD Mil	DWG 5962L87710 for Radiation Tolerant	Devices			

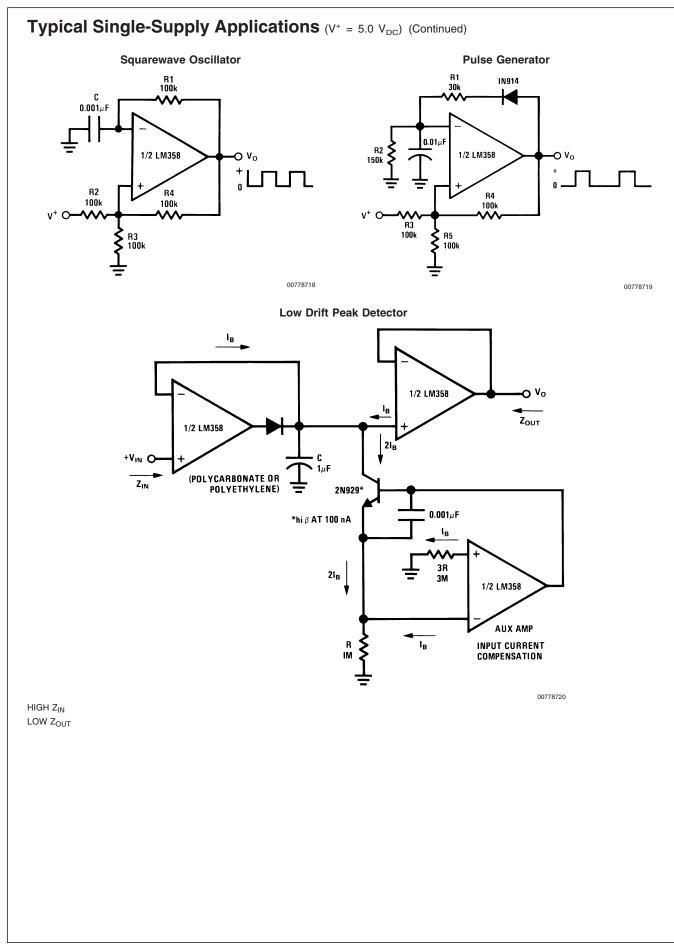
Typical Single-Supply Applications $(V^{+} = 5.0 V_{DC})$

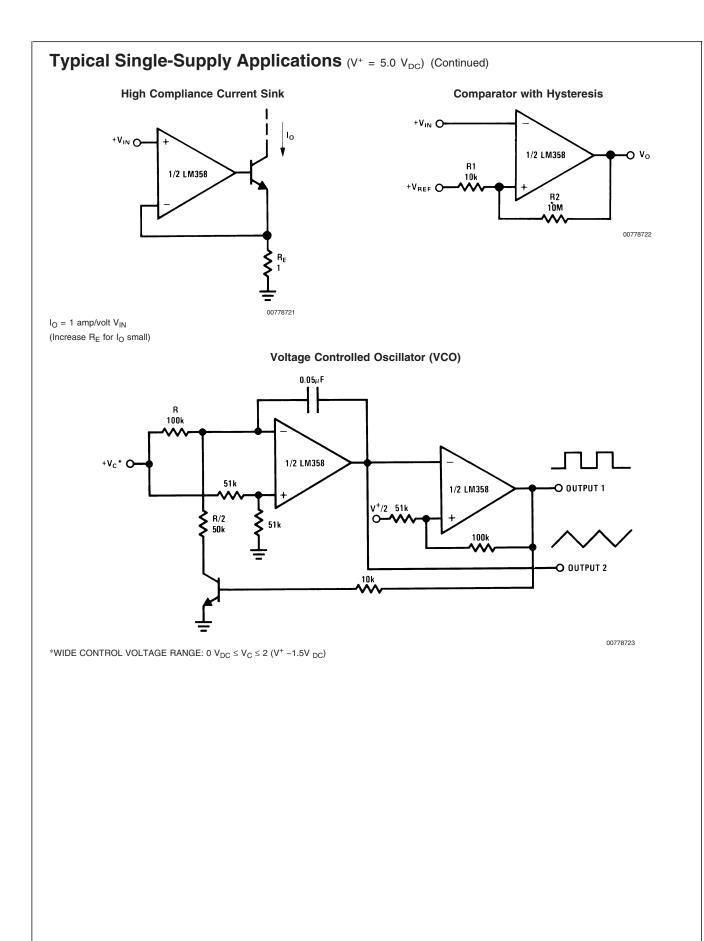


Where: $V_0 = V_1 + V_2 - V_3 - V_4$ $(V_1$ + $V_2) \geq (V_3$ + $V_4)$ to keep V_O > 0 V_{DC}

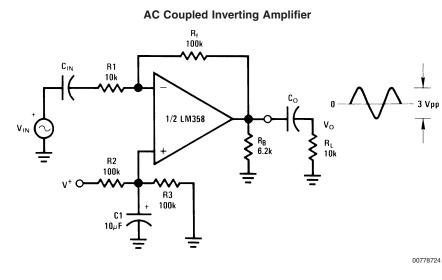

R 100k

+V4 O

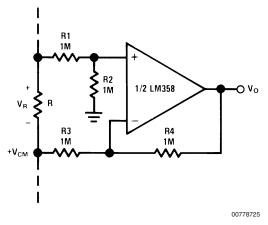

00778708 V_{O} = 0 V_{DC} for V_{IN} = 0 V_{DC} $A_{V} = 10$



www.national.com

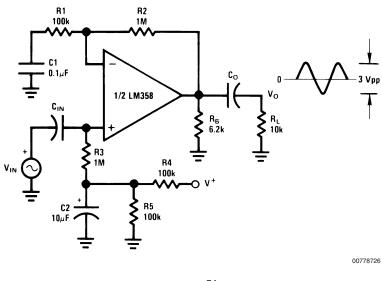


LM158/LM258/LM358/LM2904

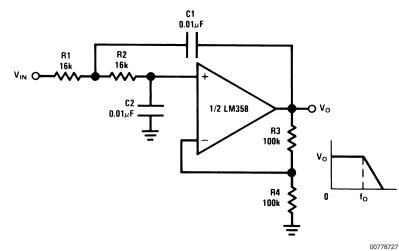


Typical Single-Supply Applications (V⁺ = 5.0 V_{DC}) (Continued)

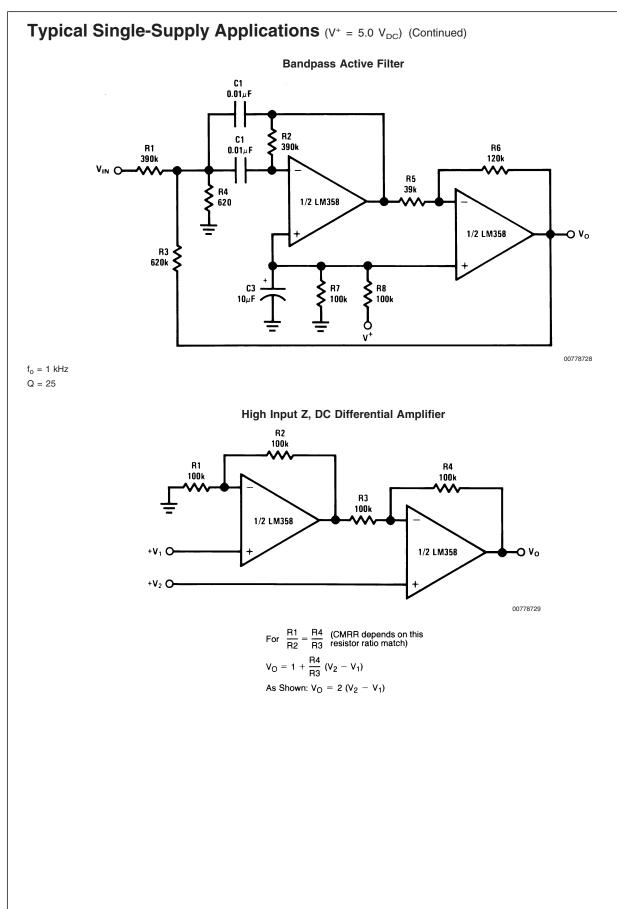
 $A_V = \frac{R_f}{R1} \quad \text{(As shown, } A_V = 10\text{)}$

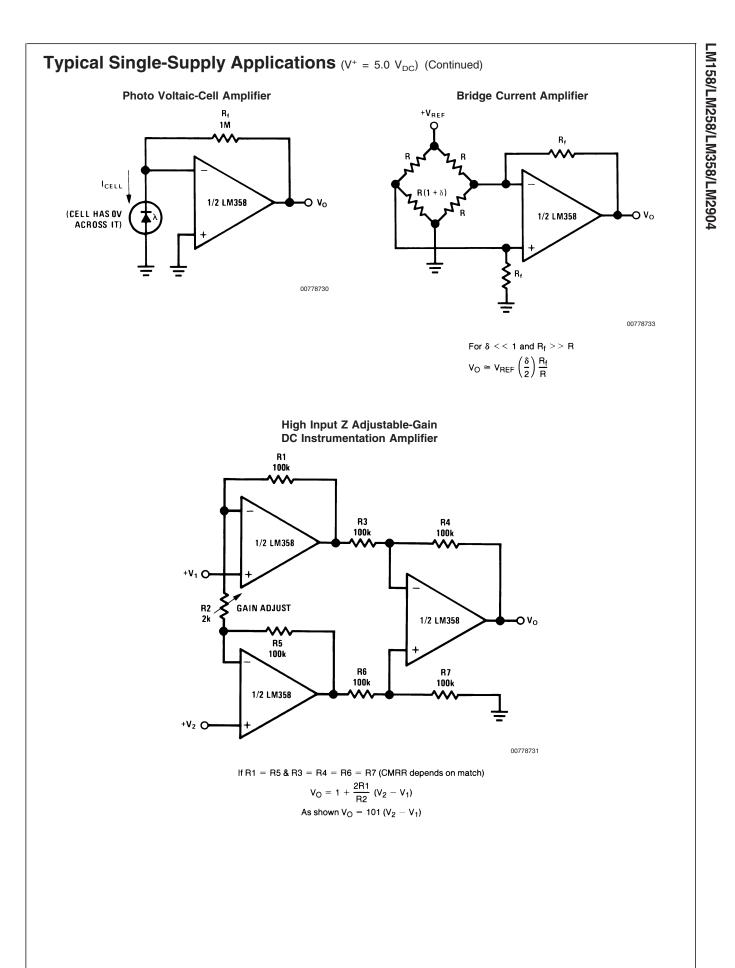


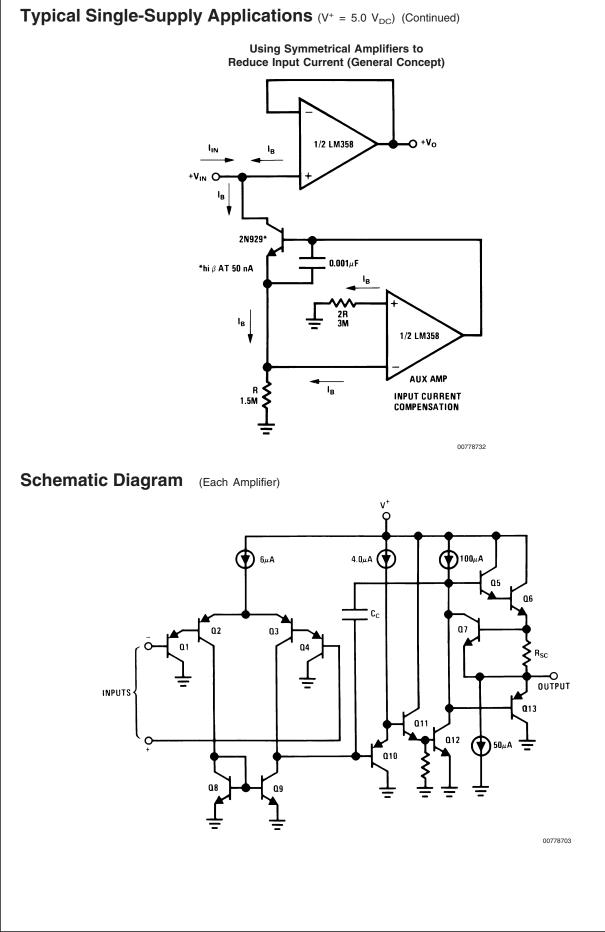
Typical Single-Supply Applications (V⁺ = 5.0 V_{DC}) (Continued)

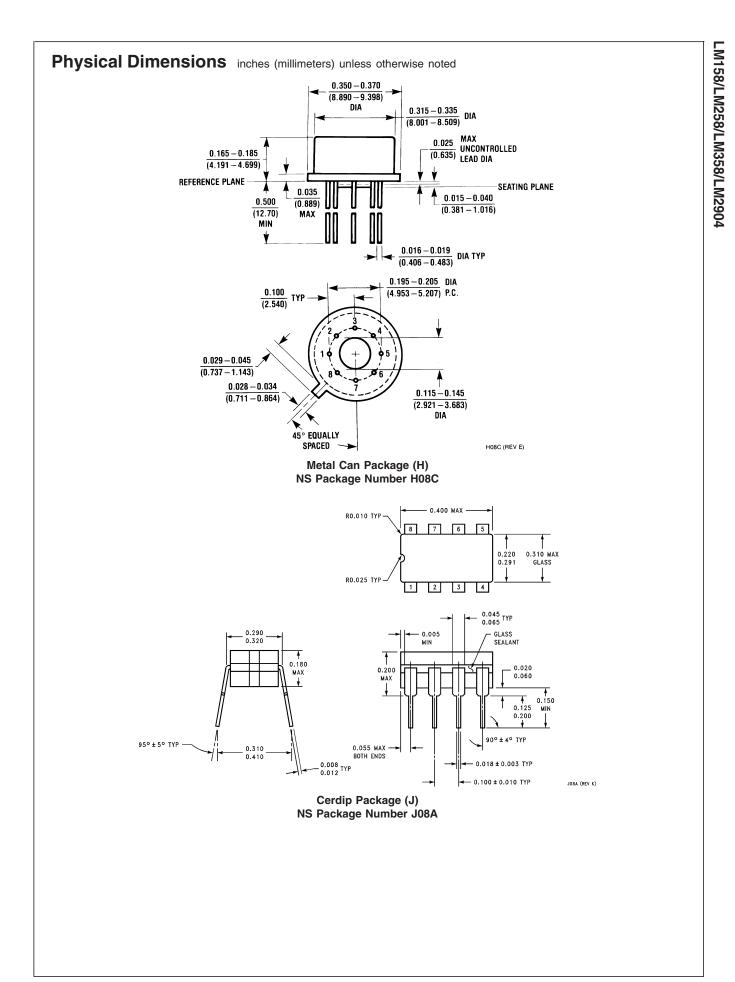


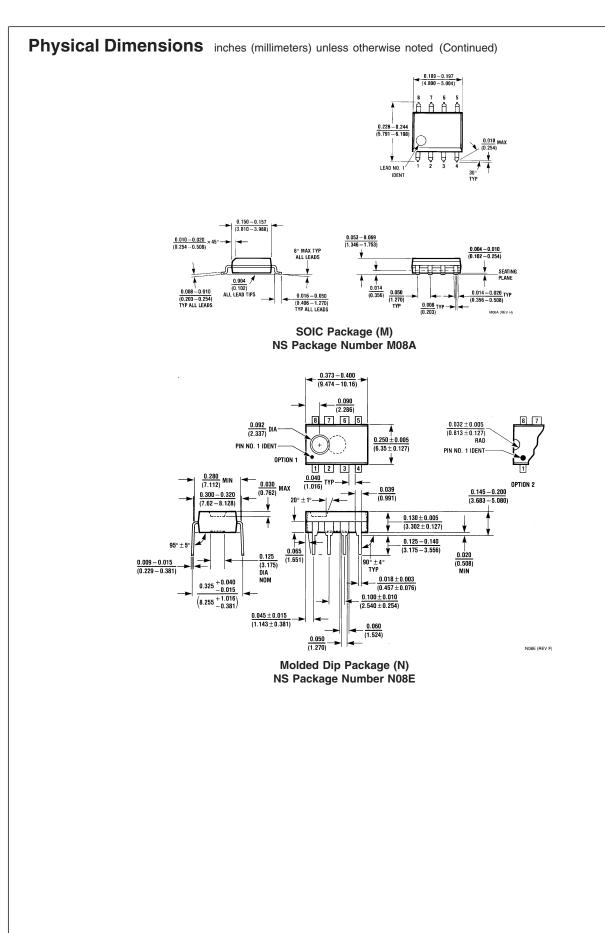
 $A_V = 1 + \frac{R2}{R1}$

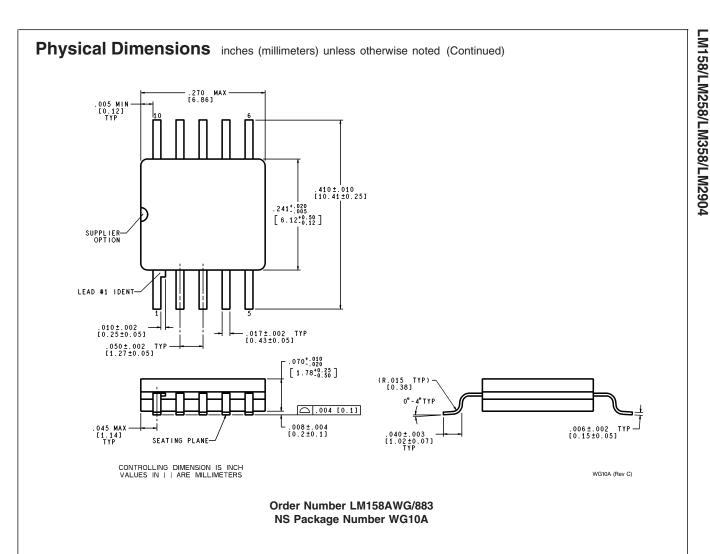

 $A_v = 11$ (As Shown)

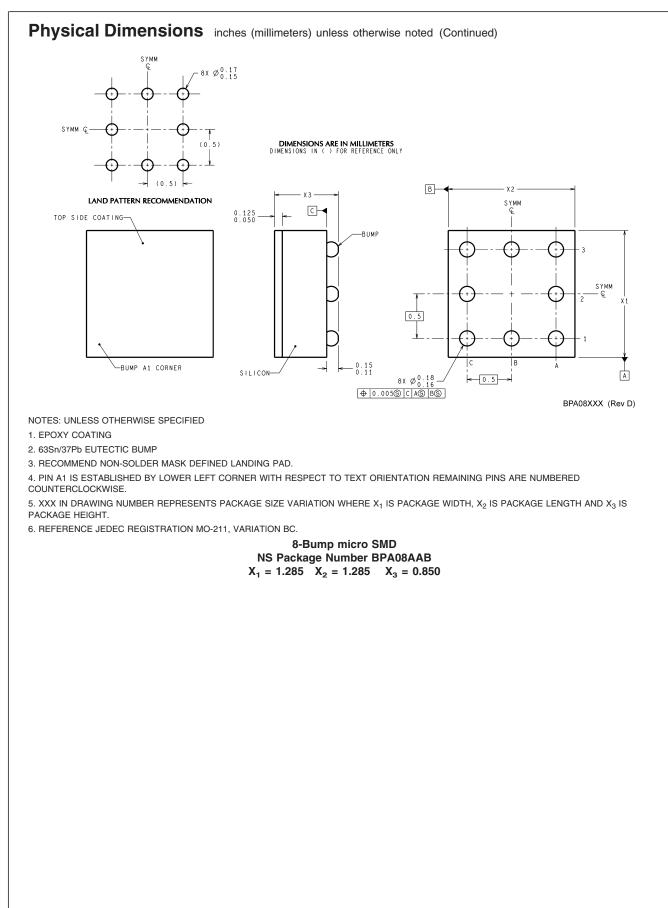


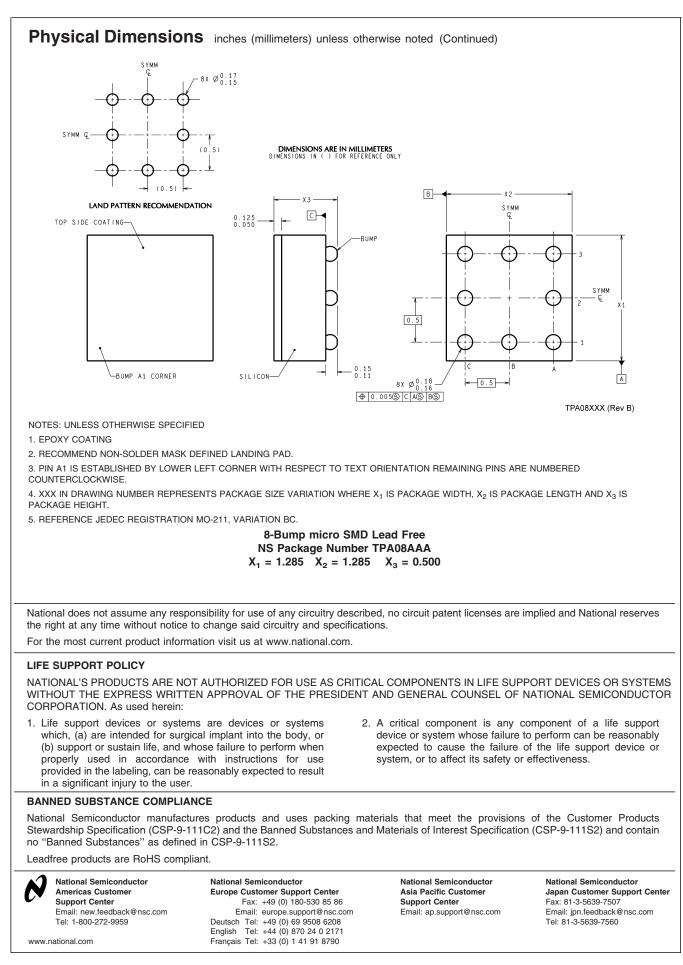












IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications			
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications		
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers		
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps		
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy		
DSP	dsp.ti.com	Industrial	www.ti.com/industrial		
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical		
Interface	interface.ti.com	Security	www.ti.com/security		
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Mobile Processors	www.ti.com/omap				
Wireless Connectivity	www.ti.com/wirelessconnectivity				

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated