1/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Operational Amplifiers / Comparators
Ground Sense
Operational Amplifiers
BA10358F/FV,BA10324AF/FV,BA2904S F/FV/FVM,BA2904F/FV/F VM
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Description
General-purpose BA10358/BA10324A family and high-reliability BA2904 /BA2902 family integrate two or four independent
Op-Amps and phase compensation capacitors on a single chip and have some features of high-gain, low power
consumption, and operating voltage range of 3[V] to 32[V] (single power supply ). BA3404 family is realized high speed
operation and reduces the crossover distortions that compare with BA10358 family.
Characteristics
1) Operable with a single power supply
2) Wide operating supply voltage
+3.0[V]+32.0[V]( single supply) (BA10358/BA103 24A/BA2904/BA2902 family)
+4.0[V]+36.0[V]( single supply) (BA3404 family)
3) Standard Op-Amp Pin-assignments
4) Input and output are operable GND sense
5) Internal phase compensation type
6) Low supply current
7) High open loop voltage gain
8) Internal ESD protection
Human body model (HBM) ±5000[V](Typ.)(BA2904/BA2902/BA3404 family)
9) Gold PAD (BA2904/BA2902/ BA3404 family)
10) Wide temperature ran ge
-40[]+85[] (BA10358/BA103 24/BA3404 family)
-40[]+105[] (BA2904S/BA2902S family)
-40[]+125[] (BA2904/B A2902 family)
Pin Assignment
SOP8
1
2
3
4
12
11
10
9
+IN1
VCC
NC
+IN2
-IN2 OUT2 OUT3 -IN3
-IN1 OUT1 OUT4 -IN4
+IN4
VEE
NC
+IN3
CH1
-
+CH4
-
+
CH2
CH3
16 15 14 13
5 6 7 8
SSOP-B8 MSOP8 SOP14 SSOP-B14 VQFN16
1
2
3
4
8
7
5
OUT1
-IN1
+IN1
VEE
VCC
OUT2
-IN2
+IN2
CH1
- +
CH2
+ - 6
OUT1
-IN1
+IN1
-IN2
CH1
-+
1
2
3
4
5
6
7
14
13
12
11
10
9
8
VCC
+IN2
OUT2
OUT4
-IN4
+IN4
-IN3
VEE
+IN3
OUT3
CH4
+ -
CH2
-+ CH3
+ -
BA10358F
BA2904SF
BA2904F
BA3404F
BA10358FV
BA2904SFV
BA2904FV
BA2904SFVM
BA2904FVM
BA3404FVM
BA10324AF
BA2902SF
BA2902F
BA2902SKN
BA2902KN
BA10324AFV
BA2902SFV
BA2902FV
No.11049EBT15
BA2902S F/FV/KN:105guaranteed
Quad
Dual BA2904S F/FV/FVM:105 guaranteed
BA2902F/FV/KN:125guaranteed
High-reliability
BA2904F/FV/FVM:125guaranteed
Quad BA10324A F/FV
General purpose Dual BA10358F/FV
Dual BA3404F/FVM
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
2/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Absolute Maximum Ratings (Ta=25[])
BA10358 family,BA10324A family
Parameter Symbol Ratings Unit
BA10358 family BA10324A family
Supply Voltage VCC-VEE +32 V
Differential Input Voltage (*1) Vid VCC-VEE V
Input Common-mode Voltage Range Vicm (VEE-0.3)VCC V
Operating Temperature Range Topr -40+85
Storage Temperature Range Tstg -55+125
Maximum Junction Temperature Tjmax +125
Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating
or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.
(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
Electric Characteristics
BA10358 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[])
Parameter Symbol Temperature
Range
Limits Unit Condition
BA10358F/FV
Min. Typ. Max.
Input Offset Voltage (*2) Vio 25 - 2 7 mV VOUT=1.4[V]
Input Offset Current (*2) Iio 25 - 5 50 nA VOUT=1.4[V]
Input Bias Current (*3) Ib 25 - 45 250 nA VOUT=1.4[V]
Supply Current ICC 25 - 0.7 1.2 mA RL= All Op-Amps
Large Signal Voltage Gain AV 25 25 100 - V/mV
RL2[k],VCC=15[V],
VOUT=1.411.4[V]
Input Common-mode Voltage Range Vicm 25 0 - VCC-1.5 V
(VCC-VEE)=5[V],
VOUT=VEE+1.4[V]
Common-mode Rejection Ratio CMRR 25 65 80 - dB VOUT=1.4[V]
Power Supply Rejection Ratio PSRR 25 65 100 - dB VCC=530[V]
Output Source Current IOH 25 10 20 - mA
VIN+=1[V],VIN-=0[V],
VOUT=0[V],
1CH is short circuit
Output Sink Current IOL 25 10 20 - mA
VIN+=0[V],VIN-=1[V],
VOUT=5[V],
1CH is short circuit
Output Voltage Range Vo 25 0 - VCC-1.5 V RL=2[k]
Channel Separation CS 25 - 120 - dB f=1[kHz], input referred
(*2) Absolute value
(*3) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
3/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA10324A family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[])
Parameter Symbol Temperature
Range
Limits Unit Condition
BA10324A F/FV
Min. Typ. Max.
Input Offset Voltage (*4) Vio 25 - 2 7 mV VOUT=1.4[V]
Input Offset Current (*4) Iio 25 - 5 50 nA VOUT=1.4[V]
Input Bias Current (*5) Ib 25 - 20 250 nA VOUT=1.4[V]
Supply Current ICC 25 - 0.6 2 mA RL= All Op-Amps
High Level Output Voltage VOH 25 3.5 - - V RL=2[k]
Low Level Output Voltage VOL 25 - - 250 mV RL= All Op-Amps
Large Signal Voltage Gain AV 25 25 100 - V/mV
RL2[k],VCC=15[V],
VOUT=1.411.4[V]
Input Common-mode Voltage range Vicm 25 0 - VCC-1.5 V
(VCC-VEE)=5[V],
VOUT=VEE+1.4[V]
Common-mode Rejection Ratio CMRR 25 65 75 - dB VOUT=1.4[V]
Power Supply Rejection Ratio PSRR 25 65 100 - dB VCC=530[V]
Output Source Current IOH 25 20 35 - mA
VIN+=1[V],VIN-=0[V],
VOUT=0[V],
1CH is short circuit
Output Sink Current IOL 25 10 20 - mA
VIN+=0[V],VIN-=1[V],
VOUT=5[V]
1CH is short circuit
Channel Separation CS 25 - 120 - dB f=1[kHz], input referred
(*4) bsolute value
(*5) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
4/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Absolute Maximum Ratings (Ta=25[])
BA2904/BA2902 family
Parameter Symbol Ratings Unit
BA2904S F/FV/FVM
BA2902S F/FV/KN BA2904F/FV/FVM
BA2902F/FV/KN
Supply Voltage VCC-VEE +32 V
Differential Input Voltage (*6) Vid 32 V
Input Common-mode Voltage Range Vicm (VEE-0.3)(VEE+32) V
Operating Temperature Range Topr -40+105 -40+125
Storage Temperature Range Tstg -55+150
Maximum Junction Temperature Tjmax +150
Note:Absolute maximum rating item indicates the condition which must not be exceeded.
Application if volt age in excess o f absolute max imum rating or use out of abso lute maximum rated temperature environment may cau se deterioration of charac teristics.
(*6) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE.
Electric Characteristics
BA2904 family (Unless other wise specified VCC=+5[V], VEE=0[V])
Parameter Symbol Temperature
Range
Limits
Unit Condition
BA2904S F/FV/FVM
BA2904F/FV/FVM
Min. Typ. Max.
Input Offset Voltage (*7) (*8) Vio
25 - 2 7
mV VOUT=1.4[V]
Full range - - 10 VCC=530[V],VOUT=1.4[V]
Input Offset Voltage Drift Vio/T - - ±7 - μV/ VOUT=1.4[V]
Input Offset Current (*7) (*8) Iio
25 - 2 50
nA VOUT=1.4[V]
Full range - - 200
Input Offset Current Drift lio/T- - ±10- pA/ VOUT=1.4[V]
Input Bias Current (*7) (*8) Ib
25 - 20 250 nA VOUT=1.4[V]
Full range - - 250
Supply Current (*8) ICC
25 - 0.7 1.2
mA RL=All Op-Amps
Full range - - 2
High Level Output Voltage (*8) VOH
25 3.5 - - V RL=2[k]
Full range 27 28 - VCC=30[V],RL=10[k]
Low Level Output Voltage (*8) VOL Full range - 5 20 mV RL= All Op-Amps
Large Signal Voltage Gain AV 25 25 100 - V/mV
RL2[k],VCC=15[V]
VOUT=1.411.4[V]
Input Common-mode
Voltage Range Vicm 25 0 - VCC-1.5 V
(VCC-VEE)=5[V],
VOUT=VEE+1.4[V]
Common-mode Rejection Ratio CMRR 25 50 80 - dB VOUT=1.4[V]
Power Supply R ejection Ratio PSRR 25 65 100 - dB VCC=5~30[V]
Output Source Current (*8) (*9) IOH
25 20 30 -
mA VIN+=1[V],VIN-=0[V]
VOUT=0[V] 1CH is short circuit
Full range 10 - -
Output Sink Current (*8) (*9) IOL 25 10 20 -
mA VIN+=0[V],VIN-=1[V]
VOUT=5[V] 1CH is short circuit
Full range 2 - -
Isink 25 12 40 - μA VIN+=0[V],VIN-=1[V]
VOUT=200[mV]
Channel Separation CS 25 - 120 - dB f=1[kHz], input referred
Slew rate SR 25 - 0.2 - V/μs VCC=15[V],AV=0[dB],
RL=2[k],CL=100[pF]
Maximum frequency ft 25 - 0.5 - MHz
VCC=30[V],RL=2[k],
CL=100[pF]
Input referred noise voltage Vn 25 - 40 - HznV/ VCC=15[V],VEE=-15[V],
RS=100[],Vi=0[V],f=1[kHz]
(*7) Absolute value
(*8) BA2904S family:Full range -40+105 BA2904 family:Full range -40+125
(*9) Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
5/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA2902 family (Unless other wise specified VCC=+5[V], VEE=0[V])
Parameter Symbol Temperature
Range
Limits
Unit
Condition
BA2902S F/FV/KN
BA2902F/FV/KN
Min. Typ. Max.
Input Offset Voltage ( *10) (*11) Vio
25 - 2 7
mV VOUT=1.4[V]
Full range - - 10 VCC=530[V],VOUT=1.4[V]
Input Offset Voltage Drift Vio/T - - ±7 - μV/ VOUT=1.4[V]
Input Offset Current (*10) (*11) Iio
25 - 2 50
nA VOUT=1.4[V]
Full range - - 200
Input Offset Current Drift lio/T- - ±10- pA/ VOUT=1.4[V]
Input Bias Current (*10) (*11) Ib
25 - 20 250 nA VOUT=1.4[V]
Full range - - 250
Supply Current (*10) ICC
25 - 0.7 2
A RL= All Op-Amps
Full range - - 3
High Level Output Voltage (*11) VOH
25 3.5 - - V RL=2[k]
Full range 27 28 - VCC=30[V],RL= 10[k ]
Low Level Output Voltage (*11) VOL Full range - 5 20 mV RL=All Op-Amps
Large Signal Voltage Gain AV 25 25 100 - V/mV
RL2[k],VCC=15[V]
VOUT=1.411.4[V]
Input Common-mode Voltage Range Vicm 25 0 -
VCC-1.
5 V (VCC-VEE)=5[V],
VOUT=VEE+1.4[V]
Common-mode Rejection Ratio CMRR 25 50 80 - dB VOUT=1.4[V]
Power Supply Rejection Ratio PSRR 25 65 100 - dB VCC=5~30[V]
Output SourceCurrent (*11) (*12) IOH
25 20 30 -
mA VIN+=1[V],VIN-=0[V]
VOUT=0[V] 1CH is short
circuit
Full range 10 - -
Output Sink Current (*11) (*12) IOL 25 10 20 -
mA VIN+=0[V],VIN-=1[V]
VOUT=5[V] 1CH is short circuit
Full range 2 - -
Isink 25 12 40 - μA VIN+=0[V],VIN-=1[V]
VOUT=200[mV]
Channel Separation CS 25 - 120 - dB f=1[kHz], input referred
Slew rate SR 25 - 0.2 - V/μs VCC=15[V],AV=0[dB],
RL=2[k],CL=100[pF]
Maximum frequency ft 25 - 0.5 - MHz
VCC=30[V],RL=2[k],
CL=100[pF]
Input referred noise voltage Vn 25 - 40 - HznV/ VCC=15[V] ,V E E= -1 5 [ V ] ,
RS=100[],Vi=0[V],f=1[kHz]
(*10) Absolute value
(*11) BA2902S family:Full range -40+105 ,BA2902 family:Full range -40+125
(*12) Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
6/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Absolute Maximum Ratings (Ta=25[])
BA3404 family
Parameter Symbol Ratings Unit
Supply Voltage VCC-VEE +36 V
Differential Input Voltage (*13) Vid 36 V
Input Common-mode Voltage Range Vicm (VEE-0.3)(VEE+36) V
Operating Temperature Range Topr -40+85
Storage Temperature Range Tstg -55+150
Maximum Junction Temperature Tjmax +150
Note:Absolute maximum rating item indicates the condition which must not be exceeded.
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause
deterioration of characteristics.
(*13) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
Electric Characteristics
BA3404 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[])
Parameter Symbol Temperature
Range
Limits Unit Condition
BA3404 family
Min. Typ. Max.
Input Offset Voltage (*14) Vio 25 - 2 5 mV VOUT=0[V], Vicm=0[V]
Input Offset Current (*14) Iio 25 - 5 50 nA VOUT=0[V], Vicm=0[V]
Input Bias Current (*14) Ib 25 - 70 200 nA VOUT=0[V], Vicm=0[V]
Large Signal Voltage Gain AV 25 88 100 - dB
RL2[k],
VOUT=±10[V],Vicm=0[V]
Maximum Output Voltage VOM 25 ±13 ±14 - V RL2[k]
Input Common-mode Voltage Range Vicm 25 -15 - 13 V VOUT=0[V]
Common-mode Rejection Ratio CMRR 25 70 90 - dB
VOUT=0[V],
Vicm=-15[V]+13[V]
Power Supply Rejection Ratio PSRR 25 80 94 - dB
Ri10[k],
VCC=+4[V]+30[V]
Supply Current ICC 25 - 2.0 3.5 mA
RL= All Op-Amps,
VIN+=0[V]
Output Source Current Isource 25 20 30 - mA
VIN+=1[V],VIN-=0[V],
VOUT=+12[V ],
Output of one channel only
Output Sink Current Isink 25 10 20 - mA
VIN+=0[V], VIN-=1[V],
VOUT= -12[V],
Output of one channel only
Slew rate SR 25 - 1.2 - V/μs AV=0[dB],
RL=2[k],CL=100[pF]
Unity Gain Frequency ft 25 - 1.2 - MHz RL=2[k]
Total Harmonic Distortion THD 25 - 0.1 - %
VOUT=10[Vp-p],f=20[kHz],
AV=0[dB],RL=2[k]
(*14) Absolute value
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
7/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
0
10
20
30
40
50
60
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
LOW L EVEL SINK CURRENT [μA]
-40
85
25
BA10358 famil
y
0
10
20
30
40
50
60
-50-250 255075100
AMBIENT TEMPERATURE []
LOW LEVEL SI NK CURRE NT [μA] .
32V
5V
3V
BA10358 famil
y
-8
-6
-4
-2
0
2
4
6
8
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT OFFSET VOLTAGE [mV]
-40
25 85
BA10358 family
0.001
0.01
0.1
1
10
100
0 0.4 0.8 1.2 1.6 2
OUTPUT VOLTAGE [V]
O UT PUT S INK CURRENT [ mA]
0
10
20
30
40
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
O UTPUT SOURCE CURRENT [ mA]
15V
5V
BA10358 famil
y
25
85
BA10358 famil
y
0
10
20
30
40
-50 -25 0 25 50 75 100
AMBIENT TEMPERAURE []
O UT PUT SI NK CURRENT [mA]
5V
15V
BA10358 family
0
5
10
15
20
25
30
35
0 5 10 15 20 25 30 35
SUPPL Y VOL TAGE [V]
OUTPUT VOLTAGE [V]
0
10
20
30
40
012345
OUTPUT VOLTAGE [V]
O UT PUT S OURCE CURRENT [ mA]
85
-40
25
BA10358 family
0
1
2
3
4
5
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE[]
OUTPUT VOLTAGE [V]
BA10358 famil
y
85
BA10358 famil
y
-40
25
Fig. 4
Maximum Output Voltage - Supply Voltage
((RL=10[k]))
Fig. 5
Maximum Output Voltage - Ambient Temperature
(VCC=5[V],RL=2[k])
Fig. 6
Output Source Current - Output Voltage
(VCC=5[V])
Output Source Current - Ambient Temperature
(VOUT=0[V])
3V
Output Sink Current - Output Voltage
(VCC=5[V])
-40
Output Sink Current - Ambient Temperature
(VOUT=VCC)
3V
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V]) Low Level Sink Current - Ambient Temperature
(VOUT=0.2[V]) Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
Reference Data (The data is ability value of sample, it is not guaranteed. )
BA10358 famil y
Fig. 1
Derating Curve Fig. 2
Supply Current - Supply Voltage Fig. 3
Supply Current - Ambient Temperature
0
0.2
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
SUPPLY CUR RENT [mA]
0.0
0.2
0.4
0.6
0.8
1.0
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
SUPPLY CURRENT [mA]   .
25
85
BA10358 famil
y
-40
BA10358 family
3V
32V
5V
0
200
400
600
800
1000
0 25 50 75 100 125
AMBIENT TEMPERTURE [] .
POWER DISSIPATION [mW]
.
BA10358F
BA10358 family
BA10358FV
85
Fig. 7 Fig. 8 Fig. 9
Fig. 10 Fig. 11 Fig. 12
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
8/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
-8
-6
-4
-2
0
2
4
6
8
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
INPUT OFFSET VOLTAGE [mV] .
3V
32V 5V
BA10358 famil
y
0
10
20
30
40
50
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT BIAS CURRENT [nA]
85
-40
25
BA10358 famil
y
0
10
20
30
40
50
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
INPUT BIAS CURRENT [nA]
3V
5V
32V
BA10358 famil
y
Fig. 13 Fig. 14 Fig. 15
Input Offset Current - Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
Input Offset Voltage - Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
Input Bias Current - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
Input Bias Current - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Input Bias Current - Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
Input Offset Voltage - Common Mode Input Voltage
(VCC=5[V])
Input Offset Current - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Large Signal Voltage Gain - Supply Voltage
(RL=2[k])
Large Signal Voltage Gain - Ambient Temperature
(
RL=2
[
k
]
)
Common Mode Rejection Ratio
- Supply Voltage
Common Mode Rejection Ratio
- Ambient Temperature
Power Supply Rejection Ratio
- Ambient Temperature
40
60
80
100
120
140
0 5 10 15 20 25 30 35
SUPPLY VOL TAGE [V]
CO MMO N MODE REJ ECTI ON RAT IO [d B]
. ..
40
60
80
100
120
140
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
COMMON MODE REJECTION RATIO [dB ] .
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
POWER SUPPLY REJECTION RATIO [dB]
.
-40
85
25
BA10358 famil
y
5V
3V
32V
BA10358 famil
y
BA10358 family
Fig. 16 Fig. 17 Fig. 18
Fig. 19 Fig. 20 Fig. 21
Fig. 22 Fig. 23 Fig. 24
-8
-6
-4
-2
0
2
4
6
8
-1012345
COMMON MODE INPUT VOLTAGE [V]
INPUT OFFSE T VOLTAGE [mV] .
-10
-5
0
5
10
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
I NPUT O F FSE T CURRENT [ nA ] .
-40 25
85
0
10
20
30
40
50
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
INPUT BIAS CURRENT [nA]
BA10358 famil
y
-40
25
85
BA10358 famil
y
BA10358 family
BA10358 family
-10
-5
0
5
10
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
I NPUT O FF SE T CURRENT [ nA ] .
3V
32V
5V
BA10358 family
60
70
80
90
100
110
120
130
140
2 4 6 8 10 12 14 16 18
SUPPLY VOLTAGE[V]
LARGE SIGNAL VOL TAGE GAIN [dB] .
-40
85
25
BA10358 famil
y
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
LARGE SIGNAL VOLTAGE GAIN [dB]
15V
5V
BA10358 family
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
9/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA10324A family
0
5
10
15
20
25
30
35
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
OUTPUT VOLTAGE [V]
-40
25
85
BA10324A famil
y
0
1
2
3
4
5
-50-250 255075100
AMBIENT TEMPERATURE[]
OUTPUT VOLTAGE [V]
BA10324A famil
y
0
10
20
30
40
50
012345
OUTPUT VOLTAGE [V]
O UT PUT SO URC E CURRE NT [mA]
-40
25
85
BA10324A famil
y
0
200
400
600
800
1000
0255075100125
AMBIENT TEMPERTURE [] .
POWER DISSIPATION [mW]
.
0.0
0.4
0.8
1.2
1.6
2.0
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
SUPPLY CURRENT [mA]
 
.
25
85
BA10324A famil
y
-40
0
0.4
0.8
1.2
1.6
2
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
S U PP LY CURRENT [ mA]
BA10324A family
3V
32V
5V
BA10324AFV
BA10324A famil
y
BA10324AF
Supply Current - Supply Voltage
Supply Current - Ambient Temperature
Derating Curve
Maximum Output Voltage - Supply Voltage
(RL=10[k])
Maximum Output Voltage - Ambient Temperature
(VCC=5[V],RL=2[k])
Output Source Current - Output Voltage
(VCC=5[V])
Output Source Current - Ambient Temperature
(VOUT=0[V]) Output Sink Current - Output Voltage
(VCC=5[V])
-40
25
Output Sink Current - Ambient Temperature
(VOUT=VCC)
3V 5V
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V])
Low Level Sink Current - Ambient Temperature
(VOUT=0.2[V])
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
Fig. 25 Fig. 26 Fig. 27
Fig. 28 Fig. 29 Fig. 30
Fig. 31 Fig. 32 Fig. 33
Fig. 34 Fig. 35 Fig. 36
85
0
10
20
30
40
-50 -25 0 25 50 75 100
AMBIENT TEMPERAURE []
O UTPUT SINK CURRENT [ mA]
0.001
0.01
0.1
1
10
100
0.0 0.4 0.8 1.2 1.6 2.0
OUTPUT VOLTAGE [V]
O UT PUT SI NK CURRE N T [mA]
0
10
20
30
40
50
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
O UTPUT SOURCE CURRENT [ mA]
15V
3V 5V
BA10324A family
85
BA10324A famil
y
15V
BA10324A famil
y
0
10
20
30
40
50
60
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
LOW LEVE L SI N K CURRE NT [μA]
-40 85
25
BA10324A family
0
10
20
30
40
50
60
-50-250 255075100
AMBIENT TEMPERATURE []
LOW LEVE L SI NK CURRE NT [μA ] .
32V
5V
3V
BA10324A famil
y
-8
-6
-4
-2
0
2
4
6
8
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT OFFSET VOLTAGE [mV]
-40 25
85
BA10324A family
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
10/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA10324A family
-10
-5
0
5
10
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
I NPUT O F FSE T CURRENT [ nA] .
3V
32V
5V
BA10324A family
60
70
80
90
100
110
120
130
140
4 6 8 10 12 14 16
SUPPLY VOLTAGE [V]
LARGE SIGNAL VOLTAGE GAIN [dB]
-40
85
25
BA10324A famil
y
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
LARGE SIGNAL VOLTAGE GAIN [dB]
15V
5V
BA10324A famil
y
40
60
80
100
120
140
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
CO MMO N MODE REJECTI ON RAT IO [dB ] .
..
40
60
80
100
120
140
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
COMMON MODE REJECTION RATIO [dB] .
5V
3V
32V
BA10324A famil
y
60
70
80
90
100
110
120
130
140
-50-250 255075100
AMBIENT TEMPERATURE []
POWER SUPPLY REJECTION RATIO [dB]
.
BA10324A family
-40 25
BA10324A family
-8
-6
-4
-2
0
2
4
6
8
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
INPUT OFFSET VOLTAGE [mV] .
Input Offset Voltage - Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
3V
32V
5V
BA10324A family
0
10
20
30
40
50
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT B IAS CURRENT [nA ]
Input Bias Current - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
85
-40
25
BA10324A family
0
10
20
30
40
50
-50-250 255075100
AMBI E NT TEM PERATURE []
INPUT BIAS CURRENT [nA]
Input Bias Current - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
3V
5V
32V
BA10324A family
Input Bias Current - Ambient Temperature
(VCC=30[V],Vicm=28[V ],VOUT=1.4[V])
Input Offset Voltage
- Common Mode Input Voltage
(VCC=5[V])
Input Offset Current - Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
Input Offset Current - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Large Signal Voltage Gain - Supply Voltage
(RL=2[k])
Large Signal Voltage Gain
- Ambient Temperature
(RL=2[k])
Common Mode Rejection Ratio
- Ambient Temperature
Power Supply Rejection Ratio
- Ambient Temperature
85
Common Mode Rejection Ratio -
Supply Voltage
Fig. 37 Fig. 38 Fig. 39
Fig. 40 Fig. 41 Fig. 42
Fig. 43 Fig. 44 Fig. 45
Fig. 46 Fig. 47 Fig. 48
-8
-6
-4
-2
0
2
4
6
8
-1012345
COMMON MODE INPUT VOLTAGE [V]
INPUT OFFSE T VOLTAGE [mV] .
0
10
20
30
40
50
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
INPUT BIAS CURRENT [nA]
-10
-5
0
5
10
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT OFFSET CURRENT [nA ] .
BA10324A famil
y
-40
25
85
BA10324A famil
y
-40 25
85
BA10324A famil
y
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
11/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA2904 family
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V])
Low Level Sink Current - Ambient Temperature
(VOUT=0.2[V])
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
Supply Current - Supply Voltage
Supply Current - Ambient Temperature
Derating Curve
Maximum Output Voltage - Supply Voltage
(RL=10[k])
Maximum Output Voltage - Ambient Temperature
(VCC=5[V],RL=2[k])
Output Source Current - Output Voltage
(VCC=5[V])
Output Source Current - Ambient Temperature
(VOUT=0[V]) Output Sink Current - Output Voltage
(VCC=5[V]) Output Sink Current - Ambient Temperature
(VOUT=VCC)
0
10
20
30
40
010203040
SUPPLY VOLTAGE [V]
MAXIMU M OUTPUT VO LTAGE [ V]
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
MAXIMUM OUTPUT VOLTAGE [V]
0
10
20
30
40
50
012345
OUTPUT VOLTAGE [V]
O UTPUT S OURCE CURRENT [mA]
25
-40
-40
25
105
125
105 125
BA2904 famil
y
BA2904 famil
y
BA2904 family
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
OUTPUT SOURCE CURRENT [mA]
0.001
0.01
0.1
1
10
100
0 0.4 0.8 1.2 1.6 2
OUTPUT VOLTAGE [V]
OUTPUT SINK CURRENT [mA]
0
10
20
30
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
OUTPUT SINK CURRENT [mA]
15V
3V
5V
-40
25
105
3V
5V
15V
125
BA2904 famil
y
BA2904 family BA2904 famil
y
0
10
20
30
40
50
60
70
80
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
LOW LEVEL SINK CURRENT [μA]
0
10
20
30
40
50
60
70
80
-50-250 255075100125150
AMBIENT TEMPERATURE []
LOW LEVEL SINK CURRENT [μA]
-8
-6
-4
-2
0
2
4
6
8
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT OF F SET VOLT AG E [mV]
-40
125
25
32V
5V
3V
-40 25
125
105
105
BA2904 family BA2904 family BA2904 family
0.0
0.2
0.4
0.6
0.8
1.0
0 10203040
SUPPLY VOLTAGE [V]
SUPPLY CURRENT [mA]
0.0
0.2
0.4
0.6
0.8
1.0
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
SUPPLY CURRENT [mA]
0
200
400
600
800
1000
0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
PO WE R DISS IP A TION [mA
]
25
125
-40
3V
32V
5V
BA2904F
BA2904 family
BA2904FV
BA2904FVM
BA2904SFV
BA2904SFVM 105
105
POWER DISSIPATION [mA]
BA2904 famil
y
BA2904 famil
y
BA2904SF
Fig. 49 Fig. 50 Fig. 51
Fig. 52 Fig. 53 Fig. 54
Fig. 55 Fig. 56 Fig. 57
Fig. 58 Fig. 59 Fig. 60
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
12/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA2904 family
-8
-6
-4
-2
0
2
4
6
8
-50 -25 0 25 50 75 100 125 150
AMBIEN T TEMPERATURE []
INPUT OF F SET VOLTAGE [m V]
0
10
20
30
40
50
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT BIAS CURRENT [nA]
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT BIAS CURRENT [nA]
3V
32V
5V
125
-40 25
3V
5V
105
32V
BA2904 famil
y
BA2904 famil
y
BA2904 family
Input Bias Current - Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
Input Offset Voltage - Common Mode Input Voltage
(VCC=5[V])
Input Bias Current - Supply Voltage
(Vicm = 0 [V] , VOUT=1.4[V])
Input Offset Voltage - Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
Input Bias Current - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Input Offset Current - Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
Input Offset Current - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Large Signal Voltage Gain
- Ambient Temperature
(RL=2[k])
Common Mode Rejection Ratio
- Supply Voltage
Common Mode Rejection Ratio
- Ambient Temperature
Power Supply Rejection Ratio
- Ambient Temperature
Large Signal Voltage Gain - Supply Voltage
(RL=2[k])
Fig. 61 Fig. 62 Fig. 63
Fig. 64 Fig. 65 Fig. 66
Fig. 67 Fig. 68 Fig. 69
Fig. 70 Fig. 71 Fig. 72
-10
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT BIAS CURRENT[nA]
-8
-6
-4
-2
0
2
4
6
8
-1012345
INPUT VOLTAGE [Vin]
INPUT OFFSET VOLTAGE [mV]
-10
-5
0
5
10
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT OFFSET CURRENT [nA]
-40 25
125
-40
25 125
105
105
BA2904 family BA2904 family BA2904 family
[V]
40
60
80
100
120
140
010203040
SUPPLY VOLTAGE [V]
COMMON MO DE REJECTION RATIO [dB]
40
60
80
100
120
140
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATU RE [ ]
COMMON MO DE REJECTION RATIO [dB]
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATUR E []
POWER SUPPLY REJECTION RATIO [dB]
-40
125
25
5V
3V
32V
105
BA2904 famil
y
BA2904 famil
y
BA2904 famil
y
36V
-10
-5
0
5
10
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT OF FSET CU RR ENT [nA]
60
70
80
90
100
110
120
130
140
4 6 8 10121416
SUPPLY V OLTAGE [V]
LARGE SIGNAL VOLTAGE GAIN [dB]
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
LARGE SIGNAL VOLT AGE G AIN [dB]
3V
32V
5V
-40
105
25
15V
5V
125
BA2904 family BA2904 family BA2904 famil
y
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
13/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA2902 family
0
10
20
30
40
50
60
70
80
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
LOW LEVEL SINK CURRENT [μA]
0
10
20
30
40
50
60
70
80
-50-250 255075100125150
AMBIENT TEMPERATURE []
LOW LEVEL SINK CURRENT [μA]
-8
-6
-4
-2
0
2
4
6
8
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT OF F SET VOLT AG E [mV]
-40℃
125
25
32V
5V
3V
-40 25
125
105
105
BA2902 family BA2902 famil
y
BA2902 family
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
OUTPUT SOURCE CURRENT [mA]
0.001
0.01
0.1
1
10
100
0 0.4 0.8 1.2 1.6 2
OUTPUT VOLTAGE [V]
OUTPUT SINK CURRENT [mA]
0
10
20
30
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
OUTPUT SINK CURRENT [mA]
15V
3V
5V
-40
25
105
3V
5V
15V
125
BA2902 family BA2902 family BA2902 family
Derating Curve
AMBIENT TEMPER TURE []
Supply Current - Supply Voltage
Supply Current - Ambient Temperature
Maximum Output Voltage - Supply Voltage
(RL=10[k])
Maximum Output Voltage - Ambient Temperature
(VCC=5[V],RL=2[k])
Output Source Current - Output Voltage
(VCC=5[V])
Output Source Current - Ambient Temperature
(VOUT=0[V]) Output Sink Current - Output Voltage
(VCC=5[V]) Output Sink Current - Ambient Temperature
(VOUT=VCC)
Low Level Sink Current - Supply Voltage
(VOUT=0.2[V])
Low Level Sink Current - Ambient Temperature
(VOUT=0.2[V])
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
0
10
20
30
40
010203040
SUPPLY VOLTAGE [V]
MAXIMU M OUTPUT VO LTAGE [ V]
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
MAXIMUM OUTPUT VOLTAGE [V]
0
10
20
30
40
50
012345
OUTPUT VOLTAGE [V]
O UT PUT SO URCE CURRENT [mA ]
25
-40
-40
25
105
100
105 125
BA2902 family BA2902 famil
y
BA2902 family
Fig. 73 Fig. 74 Fig. 75
Fig. 76 Fig. 77 Fig. 78
Fig. 79 Fig. 80 Fig. 81
Fig. 82 Fig. 83 Fig. 84
105
0.0
0.2
0.4
0.6
0.8
1.0
0 10203040
SUPPLY VOLTAGE [V]
SUPPLY CURRENT [mA]
0.0
0.2
0.4
0.6
0.8
1.0
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
SUPPLY CURRENT [mA]
0
200
400
600
800
1000
0 25 50 75 100 125 150
POWER DISSIPATION [mW]
BA2902FV
BA2902KN
BA2902F
BA2902SFV
BA2902SKN
BA2902SF
25
125
-40
3V
32V
5V
105
BA2902 famil
y
BA2902 famil
y
BA2902 famil
y
2.0
1.6
1.2
0.8
0.4
0.0
2.0
1.6
1.2
0.8
0.4
0.0
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
14/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA2902 family
Input Offset Current - Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
Large Signal Voltage Gain - Ambient Temperature
(RL=2[k])
Input Bias Current - Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
Input Offset Voltage - Common Mode Input Voltage
(VCC=5[V])
Input Bias Current - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
Input Offset Voltage - Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
Input Bias Current - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Input Offset Current - Ambient Temperature
(Vicm=0[V],VOUT=1.4[V])
Common Mode Rejection Ratio
- Supply Voltage
Common Mode Rejection Ratio
- Ambient Temperature Power Supply Rejection Ratio
- Ambient Temperature
Large Signal Voltage Gain - Supply Voltage
(RL=2[k])
-10
-5
0
5
10
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT OF FSET CU RR ENT [nA]
60
70
80
90
100
110
120
130
140
4 6 8 10121416
SUPPLY V OLTAGE [V]
LARGE SIGNAL VOLTAGE GAIN [dB]
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
LARGE SIGNAL VOLT AGE G AIN [dB]
3V
32V
5V
-40
105
25 15V
5V
125
BA2902 famil
y
BA2902 family BA2902 family
Fig. 85 Fig. 86 Fig. 87
Fig. 88 Fig. 89 Fig. 90
Fig. 91 Fig. 92 Fig. 93
Fig. 94 Fig. 95 Fig. 96
-8
-6
-4
-2
0
2
4
6
8
-50 -25 0 25 50 75 100 125 150
AMBIEN T TEMPERATURE []
INPUT OF F SET VOLTAGE [m V]
0
10
20
30
40
50
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT BIAS CURRENT [nA]
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT BIAS CURRENT [nA]
3V
32V
5V
125
-40 25
3V 5V
105
32V
BA2902 family BA2902 family BA2902 family
-10
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT BIAS CURRENT[nA]
-8
-6
-4
-2
0
2
4
6
8
-1012345
INPUT VOLTAGE [Vin]
INPUT OFFSET VOLTAGE [mV]
-10
-5
0
5
10
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT OFFSET CURRENT [nA]
-40 25
125
-40
25 125
105
105
BA2902 family BA2902 famil
y
BA2902 famil
y
[V]
40
60
80
100
120
140
010203040
SUPPLY VOLTAGE [V]
COMMON MO DE REJECTION RATIO [dB]
40
60
80
100
120
140
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATU RE [ ]
COMMON MO DE REJECTION RATIO [dB]
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATUR E []
POWER SUPPLY REJECTION RATIO [dB]
-40
125
25
5V
3V
32V
105
BA2902 family BA2902 famil
y
BA2902 family
36V
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
15/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
BA3404 family
-40
-30
-20
-10
0
10
20
30
40
±0 ±5 ±10 ±15 ±20
SUPPLY VOLTAGE [V]
INPUT OFFSET CURRENT [nA] .
-40
-30
-20
-10
0
10
20
30
40
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
I NPUT O F FSE T C URRENT [nA]
0
50
100
150
200
250
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
I NPUT BI AS CURRENT [ nA]
±2.0V
±15.0V
±18.0V
BA3404 famil
y
-40 25
85
BA3404 famil
y
±2.0V ±15.0V
±18.0V
BA3404 family
Supply Current - Supply Voltage
Derating Curve
Supply Current - Ambient Temperature
0
1
2
3
4
0 8 16 24 32 40
SUPPLY VOL TAGE [V]
SUPPLY CURRENT [ mA]   .
0
1
2
3
4
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE []
SUPPLY CURRENT [ mA]
0
200
400
600
800
1000
0255075100
AMBIENT TEMPERTURE [] .
POWER DISSIPATION [mW]
.
BA3404F
BA3404 famil
y
BA3404FVM
25
85
-40
BA3404 famil
y
±2.0V
±18.0V
±15.0V
BA3404 famil
y
Maximum Output Voltage - Load Resistance
(VCC/VEE=+15[V]/-15[V],Ta=25[])
Maximum Output Voltage - Supply Voltage
Output Voltage - Output Current
(VCC/VEE=+15[V]/-15[V],Ta=25[])
Input Offset Voltage - Ambient Temperature
(Vicm=0[V], VOUT=0[V])
Input Bias Current - Supply Voltage
(Vicm=0[V], VOUT=0[V])
Input Offset Voltage - Supply voltage
(Vicm=0[V], VOUT=0[V])
-6
-4
-2
0
2
4
6
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
INPUT OFFSET VOLTAGE [mV]
0
50
100
150
200
250
±0 ±5 ±10 ±15 ±20
SUPPLY VOLTAGE [V]
I NPUT BI AS CURRENT [ nA] .
-6
-4
-2
0
2
4
6
±0 ±5 ±10 ±15 ±20
SUPPLY VOLTAGE [V]
INPUT OFFSET VOLTGE [mV]
±2.0V
±15.0V
±18.0V
BA3404 family
-40 25
85
BA3404 family
-40 25
85
BA3404 family
Input Bias Current - Ambient Temperature
(Vicm=0[V], VOUT=0[V])
Input Offset Current - Supply Voltage
(Vicm=0[V], VOUT=0[V])
Input Offset Current - Ambient Temperature
(Vicm=0[V], VOUT=0[V])
-15
-10
-5
0
5
10
15
0.001 0.01 0.1 1 10 100
O UT PUT CURRENT [ mA]
OUTPUT VOLTAGE [V]
-20
-15
-10
-5
0
5
10
15
20
±0 ±4 ±8 ±12 ±16 ±20
SUPPLY VOLTAGE [V]
OUTPUT VOLTAGE [V]
-15
-10
-5
0
5
10
15
0.1 10 1000 100000
LOAD RESISTANCE [kΩ]
OUTPUT VOLTAGE [V]
BA3404 family
VOH
VOL
BA3404 family
VOH
VOL
BA3404 family
VOH
VOL
Fig. 97 Fig. 98 Fig. 99
Fig. 100 Fig. 101 Fig. 102
Fig. 103 Fig. 104 Fig. 105
Fig. 106 Fig. 107 Fig. 108
85
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
16/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
±0 ±4 ±8 ±12 ±16 ±20
SUPPLY VOLTAGE[V]
SL EW RATE L-H [V/us] .
BA3404 family
0
10
20
30
40
50
1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
FREQUENCY [Hz]
GAIN [dB]
0
20
40
60
80
100
120
140
160
180
200
PHASE [deg]
40
60
80
100
120
140
160
±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18 ±20
SUPPLY VOLTAGE [V]
LARGE SIGNAL VOLTAGE GAIN [dB]
.
-40 25
85
BA3404 famil
y
0
25
50
75
100
125
150
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
LARGE SIGNAL V OLTAGE GAIN [dB] .
BA3404 famil
y
BA3404 family
±2.0V
±15.0V
±18.0V
Gain
Phase
-20
-15
-10
-5
0
5
10
15
20
-3 -2 -1 0 1 2 3
CO MMO N MODE INP UT VO LTAG E [ V]
INPUT OFFSET VOLTAGE [mV]
-40 25
85
BA3404 family
0
25
50
75
100
125
150
-50 -25 0 25 50 75 100
AMBIENT TEMPERATURE [°C]
CMRR [dB] .
BA3404 famil
y
0
25
50
75
100
125
150
-50-250 255075100
AMBIENT TEMPERATURE [°C]
PSRR [dB] .
BA3404 famil
y
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
-50 -25 0 25 50 75 100
AMBI ENT TEMPERATURE []
SLEW RATE H-L [V/us] .
Large Signal Voltage Gain
- Ambient Temperature (RL=2[k])
0.001
0.01
0.1
1
0.01 0.1 1 10
OUTPUT VOLTAG E [ V rms]
TOTAL HARMONIC DISTORTION [%]
Input Offset Voltage
- Common Mode Input Voltage
(VCC/VEE=+2.5[V]/-2.5[V])
Common Mode Rejection Ratio
- Ambient Temperature
(VCC/VEE=+15[V]/-15[V])
Power Supply Rejection Ratio
- Ambient Temperature
(VCC/VEE=+15[V]/-15[V])
Large Signal Voltage Gain
- Supply Voltage (RL=2[k])
Voltage Gain - Frequency
(VCC=±15V)
-40 85
25
Slew Rate L-H - Supply Voltage
BA3404 family
Slew Rate H-L - Ambient Temperature
±15.0V
±2.5V
±18.0V
BA3404 family
Total Harmonic Distoration - Output Voltage
(VCC/VEE=+4[V]/-4[V],Av=0[dB],
RL=2[k],80[kHz]-LPF,Ta=25[])
20kHz
20Hz
1kHz
BA3404 famil
y
0
20
40
60
80
10 100 1000 10000
FREQUENCY [Hz]
EQUIVALENT INPUT NOI SE VOLTAGE
[nV/Hz] .
Equivalent Input Noise Voltage - Frequency
(VCC/VEE=+15[V]/-15[V],Rs=100[],Ta=25[])
BA3404 family
Fig. 109 Fig. 110 Fig. 111
Fig. 112 Fig. 113 Fig. 114
Fig. 115 Fig. 116 Fig. 117
Fig. 118
Technical Note
BA10358F/FV, BA10324AF / FV, BA2904SF/FV/FVM, BA2904F/FV/FVM
BA2902SF/FV/K N, BA2902F/FV/KN, BA3404F/FVM
17/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Circuit Diagram
Test circuit1 NULL method VCC,VEE,EK,Vicm Unit:[V]
Parameter VF S1 S2 S3 BA10358 fa m i l y
BA10324A f a m i l y BA2904 f a m i ly
BA2902 f a m i ly BA3404 f a m i ly calculation
VCC VEE EK Vicm VCC VEE EK Vicm VCC VEE EK Vicm
Input Offset Voltage VF1 ON ON OFF 5 0 -1.4 0 5~30 0 -1.4 0 15 -15 0 0 1
Input Offset Current VF2 OFF OFF OFF 5 0 -1.4 0 5 0 -1.4 0 15 -15 0 0 2
Input Bias Current VF3 OFF ON OFF 5 0 -1.4 0 5 0 -1.4 0 15 -15 0 0 3
VF4 ON OFF
Large Signal Voltage Gain VF5 ON ON ON 15 0 -1.4 0 15 0 -1.4 0 15 -15 10 0 4
VF6 15 0 -11.4 0 15 0 -11.4 0 15 -15 -10 0
Common-mode Rejection
Ratio (Input common-mode
Voltage Range)
VF7 ON ON OFF 5 0 -1.4 0 5 0 -1.4 0 15 -15 0 -15 5
VF8 5 0 -1.4 3.5 5 0 -1.4 3.5 15 -15 0 13
Power Supply
Rejection Ratio VF9 ON ON OFF 5 0 -1.4 0 5 0 -1.4 0 2 -2 0 0 6
VF10 30 0 -1.4 0 30 0 -1.4 0 15 -15 0 0
-Calculation-
1. Input Offset Voltage (Vio)
]V[
Rs / Rf + 1 VF1
Vio
2. Input Offset Current (Iio)
]A[
Rs) / Rf + (1× Ri VF1-VF2
Iio
3. Input Bias Current (I b)
]A[
Rs) / Rf + (1 ×Ri×2 VF3-VF4
Ib
4. Large Signal Voltage Gain (Av)
]dB[
VF6-VF5 Rf/Rs)+(1×EK
Log×20 Av Δ
5. Common-mode Rejection Ration (CMRR)
]dB[
VF7-VF8 Rf/Rs)+(1×Vicm
Log×20 CMRR Δ
6. Power supply rejection ratio (PSRR)
]dB[
VF9-VF10 Rf/Rs)+(1×Vcc
Log×20 PSRR Δ
Fig. 120 Schemat ic Diagram
(BA3404)
Fig. 121 Test circuit1 (one channel only)
IN
IN VOU
T
VCC
VEE
VOU
T
IN
IN
VCC
VEE
Fig. 119 Schematic Diagram
(BA10358/BA10324A/BA2904S/
BA2904/BA2902S/BA2902)
VC
C2
0.1[μF]
Rf
50[k]
S1
RiRs
10[k]50[]10[k]
50[]
Ri
Rs
S2 RL
S3
1000[pF]
C3
500[k]
500[k]0.1[μF]
R
K
E
K
R
K
C1
+15[V]
-15[V]
NULL
V
V
F
DUT
VE
E
Vic
m
Technical Note
BA10358F/FV, BA10324AF/FV, BA2904SF /FV/FVM, BA2904F/FV/FVM
BA2902SF/FV /KN, BA2902F/FV/KN, BA3404F/FVM
18/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Test Circuit 2 Switch Condition
SW No. SW
1 SW
2 SW
3 SW
4 SW
5 SW
6 SW
7 SW
8 SW
9 SW
10 SW
11 SW
12 SW
13 SW
14
Supply Current OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF
High Level Output Voltage OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF
Low Level Output Voltage OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF
Output Source Current OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON
Output Sink Current OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON
Slew Rate OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF
Gain Bandwidth Product OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF
Equivalent Input Noise Voltage ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF
Measurement Circu it 3 Amplifier To Amplifier Coupling
Fig.122 Test Circuit 2 (each Op-Amp) Fig. 123 Slew Rate Input Waveform
Fig. 124 Test Circuit 3
VCC
VEE
R1
V
R2
R1//R2
VOUT1
=0.5[Vrms]
VIN
VCC
VEE
R1
V
R2
R1//R2
VOUT2
OTHE
R
CH
CS20×log 100×VOUT1
VOUT2
SW1 SW2 SW3
SW10 SW11 SW12
A
VIN- VIN+ RL
VCC
VEE
SW9
SW6 SW7 SW8
CL
SW13 SW14
A
V
VOU
T
RS
SW5
SW4
V
R1
R2
VH
VL
Input wave t
Input voltage
VH
VL
Δ
t
ΔV
Output wave
SR=ΔV/Δt
t
Output voltage
Technical Note
BA10358F/FV, BA10324AF/FV, BA2904SF /FV/FVM, BA2904F/FV/FVM
BA2902SF/FV /KN, BA2902F/FV/KN, BA3404F/FVM
19/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Examples of cir c uit
Voltage follower
Inverting amplifier
Non-inverting amplifier
Voltage gain is 0 [dB].
This circuit controls output voltage (Vout) equal input
voltage (Vin), and keeps Vout with stable because of
high input impedance and low output impedance.
Vout is shown next formula.
Vout=Vin
For inverting amplifier, Vin is amplifi ed by voltage gain
decided R1 and R2, and phase reversed voltage is
outputed.
Vout is shown next formula.
Vout=-(R2/R1)Vin
Input impedan c e is R1.
For non-inverting amplifier, Vin is amplified by voltage
gain decided R 1 and R2, and phase is same with Vin.
Vout is shown next formula.
Vout=(1+R2/R1)Vin
This circuit realizes high input impedance because
Input impedance is operational amplifier’s input
Impedance.
VEE
Vout
Vin
VCC
R2
R1
VEE
R1//R2
Vin
Vout
VCC
VEE
R2
VCC
Vin Vout
R1
Technical Note
BA10358F/FV, BA10324AF/FV, BA2904SF /FV/FVM, BA2904F/FV/FVM
BA2902SF/FV /KN, BA2902F/FV/KN, BA3404F/FVM
20/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Description of Electrical Characteristics
Described below are descriptions of the relevant electrical terms
Please note that item names, symbols and their me anings may differ from those on another manufacturer’s documents.
1. Absolute maximum ratings
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of
electrical chara c teristics or damage to the part itself as well as peripheral components.
1.1 Power supply voltage (VCC-VEE)
Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without
causing deterioration of the electrical characteristics or destruction of the internal circuitry.
1.2 Differential inp ut voltage (Vid)
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without
damaging the IC.
1.3 Input common-mode voltage range (Vicm)
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing
deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the
common-mode voltage range of the maximum ratings - use within the input common-mode voltage range of the
electric characteristics instead.
1.4 Operating and storage temperature ranges (Topr,Tstg)
The operating temperature range indicates the temperature range within which the IC can operate. The higher the
ambient temperat ure, the lower t he power consumpt ion of the IC. The storage temperatu re range denot es the range
of temperatures the IC can be stored under without causing excessive deterioration of the electrical characterist ics.
1.5 Power dissipation (Pd)
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25). For
packaged products, Pd is determined by the maximum ju nction temperature and t he thermal resistance.
2. Electrical characteristics
2.1 Input offset voltage (Vio)
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input
voltage difference required for sett i ng the output voltage to 0 V.
2.2 Input offset voltage drift ( Vio/T)
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.
2.3 Input offset current (Iio)
Indicates the difference of in put bias current between the non-inverting and inverting terminals.
2.4 Input offset current drift ( Iio/T)
Signifies the rati o of the input offset current fluctuation to the ambient temperature fluctuation.
2.5 Input bias current (Ib)
Denotes the current that flows into or out of the input terminal, it is defined by the av erage of the input bias current at
the non-inverting terminal and the input bias current at the inverting terminal.
2.6 Circuit current (ICC)
Indicates the current of the IC itself that flows under specified conditions and duri ng no-load steady state.
2.7 High level output voltage/low level output voltage (VOH/VOL)
Signifying th e voltage range that can be out put under specif ied load cond itions, it is in ge neral divided in to high level
output voltage and low level out put voltage. High level output voltage indicates the upp er limit of the output voltage,
while low level output voltage the lower limit.
2.8 Large signal vo ltage gain (AV)
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting
terminals, it is (normally) the a m plifying rate (gain) with respect to DC voltage.
AV = (output voltage fl uctuation) / (input offset fluct uation)
2.9 Input common-mode voltage range (Vicm)
Indicates the input voltage range under which the IC operates normally.
Technical Note
BA10358F/FV, BA10324AF/FV, BA2904SF /FV/FVM, BA2904F/FV/FVM
BA2902SF/FV /KN, BA2902F/FV/KN, BA3404F/FVM
21/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
2.10 Common-mode rejection ratio (CMRR)
Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).
CMRR = (change in input common-mode voltage) / (input offset fluctuation)
2.11 Power supply rejection rat io (PSRR)
Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation).
SVR = (change in power supply voltage) / (inp ut offset fluctuation)
2.12 Output source current/ output sink current (IOH/IOL)
The maximum current that can be output under specific output conditions, it is divided into output source current and
output sink curr ent. The output source curr ent indicates the current flowing out of the IC, and the out put sink current
the current flowing into the IC.
2.13 Channel separation (CS)
Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the
output voltage of a driven channel.
2.14 Slew rate (SR)
Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.
2.15 Gain bandwidth product (GBW)
The product of the specifie d signal f requency and t he gain of the op-amp at such frequenc y, it gives t he approximate
value of the frequency where the gain of the op-amp is 1 (maximum frequenc y, and unity gain frequency).
Technical Note
BA10358F/FV, BA10324AF/FV, BA2904SF /FV/FVM, BA2904F/FV/FVM
BA2902SF/FV /KN, BA2902F/FV/KN, BA3404F/FVM
22/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
0
200
400
600
800
1000
0 25 50 75 100 125
囲温度 Ta []
許容損失 Pd  [mW]
BA10358F
BA10358FV
620m W (* 1)
550m W (* 2)
(a) BA10358
0
200
400
600
800
1000
0 25 50 75 100 125
周囲温度 Ta []
許容損失 Pd  [mW]
BA10324AFV
BA10324AF
700m W (* 3)
490m W (* 4)
(a) BA10324A
0
200
400
600
800
1000
0 25 50 75 100 125 150
周囲温度 Ta []
許容損失 Pd  [mW]
BA2904F
BA3404F
BA2904FV
BA2904FVM
BA3404FVM
780m W ( * 5)
690m W ( * 6)
590m W (* 7)
BA3404F
BA3404FVM
(a) BA2904
0
200
400
600
800
1000
0 25 50 75 100 125 150
周囲温度 Ta []
許容損失 Pd  [mW]
BA2902FV
BA2902KN
BA2902F
870m W ( * 8)
660m W ( * 9)
610m W (* 10)
(a) BA2902
Fig. 125 Thermal resistance and deratin g
(b)
620mW(*15)
550mW(*16)
700mW
(
*17
)
490mW(*18)
780mW(*19)
690mW(*20)
590mW(*21)
BA2904FVM
BA2904SFV
105
870mW(*22)
660mW(*23)
610mW(*24)
(c) BA10358 family (d) BA10324 family
POWER DISSIPATION Pd [mW]
POWER DISSIPATION Pd [mW]
POWER DISSIPATION Pd [mW]
POWER DISSIPATION Pd [mW]
A
mbient temperature Ta []
A
mbient temperature Ta []
A
mbient temperature Ta []
A
mbient temperature Ta []
BA2904SF
BA2904SFVM
85
BA2902SFV
BA2902SKN
BA2902SF
105
(e) BA2904/BA3404 family (f) BA2902 family
Derating curves
Power dissipation(total loss) indicates the po wer that can be consum ed by I C at Ta=25(normal temperature). IC is heat ed
when it consumed p ower, and the temperat ure of IC chip becom es higher than am bient temperatur e. The temperatur e that
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.
Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal
resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum
value in the storage temperature range. Heat generated by consumed power of IC radiates fr om the mold resin or lead
frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called
thermal resistance, represented by the symbol θja[/W ].T he t emperature of I C inside the package can be estimated b y this
thermal resistance. Fig.125(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient
temperature Ta, junct i on temperature Tj, and power dissipation Pd can be calculated by the equatio n below:
θja = (Tj-Ta) / Pd [/W] ・・・・・ ()
Derating curve in Fig. 125(b) in dicat es power that can be consumed by IC with reference to ambient temperat ure.Power that
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal
resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package
condition, wind velocity, etc even when the sa me of package is used.
Thermal reduction curve indicates a reference value measured at a specified condition. Fig.126(c)(f) show a derating
curve for an example of BA10358, BA10 324A, BA2904S, BA2904, BA2902S, BA2902, BA3404.
(*15) (*16) (*17) (*18) (*19) (*20) (*21) (*22) (*23) (*24) Unit
6.2 5.5 7.0 4.9 6.2 5.5 4.8 7.0 5.3 4.9 [mW/]
When using the unit above Ta=25[], subtract the value above per degree [].
Permissible dissipation is the value when FR4 glass epoxy board 70[mm] ×70[mm] ×1.6[mm] (cooper foil area below 3[%]) is mounted.
Fig. 126 Derating curve
(a)Thermal resistance (b) Derating curve
周囲温度 Ta []
面温度 Tj []
P [W]
θja = ( Tj Ta ) / Pd [/W]
Ambient temperature
Chip surface tem perature
Power dissipation Pd[W]
0 50 75 100 125 15025
P1
P2
Pd (m ax)
LSI消費電 [W]
θ' ja2
θ' ja1 Tj ' ( ma x)
θja2 < θja1
周囲温度 Ta []
θ ja2
θ ja1 Tj ( ma x )
Ambient temperature
Power dissipation of LSI
Technical Note
BA10358F/FV, BA10324AF/FV, BA2904SF /FV/FVM, BA2904F/FV/FVM
BA2902SF/FV /KN, BA2902F/FV/KN, BA3404F/FVM
23/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Notes for use
1) Unused circuits
When there are unused circuits, it is recommended that they be connected as in
Fig.127, setting the non-inverting input terminal to a potential within the in-phase
input voltage range (Vicm).
2) Input voltage
Applying VEE+32[V] (BA2904S / BA2904 /BA2902S / BA2902 family,
BA2904HFVM-C) and VEE+36[V](BA3404 family) to the input terminal is possibl e
without causing deterioration of the electrical characteristics or destruction,
irrespective of the supply voltage. However, this does not ensure normal circuit
operation. Please note that the circuit operates normally only when the input
voltage is within the common mode input voltage range of the electric
characteristics.
3) Power supply (single / dual)
The op-amp operates when the voltage supplied is between VCC and VEE Therefore, the single supply op-mp can be
used as a dual supply op-amp as well.
4) Power dissipation (Pd)
Using the unit in e xcess of the rated po wer dissipation may cause deterior ation in electric al charact eristics due t o the ri se
in chip temperature, including reduced current capabilit y. Therefore, please take into consi deration the power dissipation
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating
curves for more information.
5) Short-circuit between pins and errone ous mounting
Incorrect mounting may dama ge the IC. In addition, the presence of foreign substances between the out puts, the out put
and the power suppl y, or the output and GND may result in IC destruction.
6) Operation in a strong electromagnetic field
Operation in a strong electromagnetic field may cause malfunctions.
7) Radiation
This IC is not designed to withstand radiation.
8) IC handing
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical
characteristics due to piezoelectric (piezo) effects.
9) IC operation
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to
the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and charging of
the output current . Connectin g a resistor between t he output t erminal and GND, and increasi ng the bias current f or Class
A operation will suppress crossover distortion.
10) Board inspection
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every
process is recommended. In addition, when attaching and detaching the jig dur ing the inspection phase, ensure that the
power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly
process as well as during transportation and storage.
11) Output capacitor
Discharge of the e xternal o ut put capacitor to VCC is poss ib le via i nt ernal parasitic eleme n ts when VCC is shorted to VEE,
causing damage to t he internal circuitry due to thermal stress. Theref ore, when using this IC in circuits where oscill ation
due to output c apacitive load does not occur, such as in v oltage comparators, use an out put capacitor with a capacitance
less than 0.1μF.
Fig. 127 Example of processing
unused circuit
VCC
VEE
同相入力電圧
範囲内の電位
Please keep this
potencial in Vicm
Technical Note
BA10358F/FV, BA10324AF/FV, BA2904SF /FV/FVM, BA2904F/FV/FVM
BA2902SF/FV /KN, BA2902F/FV/KN, BA3404F/FVM
24/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Ordering part number
B A 2 9 0 4 F V - E 2
Part No. Part No.
10358,10324A
2904S,2904
2902S, 2902
3404
Package
F : SOP8
SOP14
FV : SSOP-B8
SSOP-B14
FVM : MSOP8
KN : VQFN16
Packaging and forming specification
E2: Embossed tape and reel
(SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16)
TR: Embossed tape and reel
(MSOP8)
(Unit : mm)
SOP8
0.9±0.15
0.3MIN
4
°
+
6
°
4
°
0.17 +0.1
-
0.05
0.595
6
43
8
2
5
1
7
5.0±0.2
6.2±0.3
4.4±0.2
(MAX 5.35 include BURR)
1.27
0.11
0.42±0.1
1.5±0.1
S
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
2500pcs
E2
()
Direction of feed
Reel 1pin
(Unit : mm)
SOP14
7
14
1.27
0.11
1
8
0.3MIN
8.7±0.2
0.4±0.1
0.15±0.1
1.5±0.1
6.2±0.3
4.4±0.2
(MAX 9.05 include BURR)
0.1
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
2500pcs
E2
()
Direction of feed
Reel 1pin
(Unit : mm)
SSOP-B8
0.08
M
1234
5678
0.1
+0.06
-
0.04
0.22
0.3MIN
0.65
(0.52)
3.0±0.2
0.15±0.1
6.4±0.3
1.15±0.1 4.4±0.2
(MAX 3.35 include BURR)
S
0.1
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
2500pcs
E2
()
Direction of feed
Reel 1pin
Technical Note
BA10358F/FV, BA10324AF/FV, BA2904SF /FV/FVM, BA2904F/FV/FVM
BA2902SF/FV /KN, BA2902F/FV/KN, BA3404F/FVM
25/25
www.rohm.com 2011.08 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
(Unit : mm)
MSOP8
0.08 S
S
4.0±0.2
8
3
2.8±0.1
1
6
2.9±0.1
0.475
4
57
(MAX 3.25 include BURR)
2
1PIN MARK
0.9MAX
0.75±0.05
0.65
0.08±0.05
0.22 +0.05
–0.04
0.6±0.2
0.29±0.15
0.145 +0.05
–0.03
4°
+6°
4°
Direction of feed
Reel
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
The direction is the 1pin of product is at the upper right when you hold
reel on the left hand and you pull out the tape on the right hand
3000pcs
TR
()
1pin
(Unit : mm)
VQFN16
0.05
M
4.2±0.1
(1.35)
4.0±0.1
0.22±0.05
12 9
16
13 8
5
4
1
4.0±0.1
4.2±0.1
(0.22)
(0.5)
3-(0.35)
0.5
0.6 +0.1
0.3
0.05
0.95MAX
0.22±0.05
0.02+0.03
0.02
Notice :
Do not use the dotted line area
for soldering
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tape (with dry pack)Tape
Quantity
Direction
of feed The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
2500pcs
E2
()
Direction of feed
Reel 1pin
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
2500pcs
E2
()
Direction of feed
Reel 1pin
(Unit : mm)
SSOP-B14
8
7
14
1
0.10
6.4 ± 0.3
4.4
±
0.2
5.0 ± 0.2
0.22 ± 0.1
1.15 ± 0.1
0.65
0.15 ± 0.1
0.3Min.
0.1
Datasheet
Datasheet
Notice - GE Rev.002
© 2014 ROHM Co., Ltd. All rights reserved.
Notice
Precaution on using ROHM Products
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific
Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN USA EU CHINA
CLASS CLASS CLASSb CLASS
CLASS CLASS
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any
special or extraordinary environments or conditions. If you intend to use our Products under any special or
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of
product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning
residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual
ambient temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the
ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Datasheet
Datasheet
Notice - GE Rev.002
© 2014 ROHM Co., Ltd. All rights reserved.
Precautions Regarding Application Examples and External Circuits
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
QR code printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,
please consult with ROHM representative in case of export.
Precaution Regarding Intellectual Property Rights
1. All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable
for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the information contained in this document.
Other Precaution
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
DatasheetDatasheet
Notice – WE Rev.001
© 2014 ROHM Co., Ltd. All rights reserved.
General Precaution
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.
ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior
notice. Before purchasing or using ROHMs Products, please confirm the la test information with a ROHM sale s
representative.
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or
concerning such information.