1/17
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
General-purpose Operational Amplifiers /Comparators
TROPHY SERIES
Comparators
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
Description
The Universal Standard family LM 393 / LM339/ LM2 903
/ LM2901 monolithic ICs integrate t wo/four independent
comparators on a single chip and feature high gain, low
power consumption, and an operating voltage range
from 2[V] to 36[V] (single power supply).
Features
1) Operating temperature range
Commercial Grade LM339/393 family : 0[] to + 70[]
Extended Industrial Grade LM2903/2901 family : -40[] to +125[]
2) Open collector output
3) Single / dual power supply compatible
4) Low supply current
0.8[mA] typ. (LM393/339/2903/2901 family)
5) Low input-bias current: 25[nA] typ.
6) Low input-offset voltage: 2[mV] typ.
7) Differential input voltage range equal to maximum rating
8) Low output saturation voltage
9) TTL,MOS,CMOS compatible output
Pin Assignment
No.11094EBT03
TSSOP8SOIC8 MSOP8/VSSOP8 TSSOP14
SOIC14
LM393DR LM339DR LM339PWRLM393PWR
LM2903PWR LM2901DR LM2901PWR
LM393DGKR
LM2903DR
LM2903VQDR LM2903VQPWR LM2903DGKR LM2901VQDR LM2901VQPWR
1OUT
4
1IN-
1IN+
GND
Vcc
2OUT
2IN-
2IN+
 +
 +
3
2
1
5
6
7
8
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
2OUT
Vcc
2IN-
2IN+
1IN-
1IN+
- +
- +
- +
- +
OUT3
OUT4
GND
4IN+
4IN-
3IN+
3IN-
TROPHY
SERIES
LM393 family LM339 family
Quad
LM2903 family LM2901 famil
y
LM393DR
LM393PWR
LM393DGKR
LM339DR
LM339PWR
LM2903DR
LM2903PWR
LM2903DGKR
LM2903VQDR
LM2903VQPWR
LM2901DR
LM2901PWR
LM2901VQDR
LM2901VQPWR
Dual
Technical Note
2/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Absolute Maximum Ratings (Ta= 25)
Parameter Symbol Ratings Unit
LM393 family LM339 family LM2903 family LM2901 family
Supply Voltage Vcc-GND +36 V
Input Differential Voltage Vid ±36 V
Common-mode Input Vicm -0.3 to +36 V
Operating Temperature Topr 0 to +70 -40 to +125
Storage Temperature Range Tstg -65 to +150
Maximum Junction Temperature Tj +150
Electric Characteristics
LM393/339 family(Unless otherwise specified, Vcc=+5[V])
Parameter Symbol Temperature
range
Limits
Unit condition Fig.
No.
LM393 family LM339 family
Min. Typ. Max. Min. Typ. Max.
Input Offset Voltage (*1) VIO
25 2 7 2 7
mV Vcc=5 to 30[V],VO=1.4[V]
VIC=VIC(min) 88
Full range 9 9
Input Offset Current (*1) IIO
25 5 50 5 50
nA VO=1.4[V] 88
Full range 250 150
Input Bias Current (*1) IIB
25 25 250 25 250
nA VO=1.4[V] 88
Full range 400 400
Common-mode Input
Voltage Range VICR 25 Vcc-1.5 Vcc-1.5 V 88
Full range Vcc-2.0 Vcc-2.0
Large Signal Differential
V oltage Amplification AVD 25 25 200 25 200 V/mA Vcc=15[V]
VO=1.4 to 11.4[V],
RL15[kΩ],VRL=15[V] 88
High Level
Output Current IOH 25 0.1 0.1 nA VID=1[V],VO=5[V] 89
Full range 1 1 μA VID=1[V],VO=30[V]
Low Level
Output Voltage VOL 25 150 400 150 400
mV VID=-1[V],IOL=4[mA] 89
Full range 700 700
Low Level Output Current IOL 25 6 6 16 mA VID=-1[V],VOL=1.5[V] 89
Supply Current ICC 25 0.8 1 0.8 2 mA RL=,Vcc=5V 89
Full range 2.5 RL=,Vcc=30[V]
Response T ime T re 25
1.3 1.3
μs
RL=5.1[kΩ],VRL=5[V],CL=15pF
VIN=100[mVp-p],
overdrive=5[mV] 89
0.3 0.3 RL=5.1[kΩ],VRL=5[V], CL=15pF
VIN=TTL-Level input step
Vref=1.4[V]
(*1) Absolute value
Technical Note
3/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
LM2903/2901 family(Unless otherwise specified, Vcc=+5[V])
Parameter Symbol Temperature
range
Limits
Unit Condition Fig.
No
LM2903 family LM2901 family
Min. Typ. Max. Min. Typ. Max.
Input Offset Voltage (*2) VIO
25 2 7 2 7
mV Vcc=5 to MAX),VO=1.4[V]
VIC=VIC (min) 88
Full range 15 15
Input Offset Current (*2) IIO
25 5 50 5 50
nA VO=1.4[V] 88
Full range 200 200
Input Bias Current (*2)
IIB 25 25 250 25 250
nA VO=1.4[V] 88
Full range 500 500
Common-mode Input
Voltage Range VICR 25 Vcc-1.5 Vcc-1.5 V 88
Full range Vcc-2.0 Vcc-2.0
Large Signal Differential
V oltage Amplification AVD 25 25 100 25 100 V/mV Vcc=15[V],VOUT=1.4 to 11.4[V],
RL15[k],VRL=15[V] 88
High Level
Output Current IOH 25 0.1 0.1 nA VID=1[V], VOH=5[V] 89
Full range 1 1 μA VID=1[V], VOH=MAX
Low Level
Output
Voltage
LM2901(*3)
VOL
25 150 400 150 500
mV VIN(-)=1[V],VIN(+)=0[V]
ISINK4[mA] 89
LM2901V(*3) 25 150 400 150 400
Full range 700 700
Low Level Output Current IOL 25 6 16 6 16 mA VID=-1[V], VOL=1.5[V] 89
Supply Current
ICC 25
0.8 2 0.8 2 mA RL=,Vcc=5V 89
1 2.5 1 2.5 RL=,Vcc=MAX(*7)
Response T ime Tre 25
1.3 1.3
μs
RL=5.1[],VRL=5[V],CL=15pF
VIN=100[mVp-p],
Overdrive=5[mV] 89
0.3 0.3 RL=5.1[k],VRL=5[V], CL=15pF
VIN=TTL-Level input step
Vref=1.4[V]
(*2) Absolute value
(*3) Supply Voltage Maximum Value LM2901DR, LM2901PWR MAX=30[V], LM2901VQDR, LM2901VQPWR MAX=32[V]
Technical Note
4/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Reference Data LM393 family
Output Sink Current – Ambient Temperature
(VOUT=1.5[V])
Output Saturation Voltage
– Ambient Temperature
(IOL=4[mA])
Output Saturation Voltage
– Supply Voltage
(IOL=4[mA])
Supply Current – Supply Voltage
0
100
200
300
400
500
01020304050607080
AMBIENT TEMPERATURE [
]
OUTPU T SATURATION VOLTAGE [mV]
0
0.2
0.4
0.6
0.8
1
0 1020304050607080
AMBIENT TEMPERATURE []
SUPPLY CURRENT [mA]
0
0.2
0.4
0.6
0.8
1
0 10203040
SUPPLY VOLTAGE [V]
SUPPLY CURRENT [mA]   .
0
200
400
600
800
1000
0255075100125
A MBIE NT TE MPERATURE [ ] .
P OW ER DISSIPATIO N [mW] .
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0 2 4 6 8 101214161820
OUT P UT SI NK CURRE NT [mA]
LOW LEVEL OUTPUT VOLTAGE [V]
LM393 famil
y
2V
36V
5V
-50
-40
-30
-20
-10
0
10
20
30
40
50
0 10203040
SUPPLY VOLTAGE [ V ]
INPUT OFFSET CURRENT [ nA ]
70 25
0
LM393 famil
y
Input Offset Current – Supply Voltage
0
20
40
60
80
100
120
140
160
010203040
SUPPLY VOLTAGE [V]
INPUT BIAS CURRENT [nA]
LM393 famil
y
Input Bias Current – Supply Voltage
0 25
70
0
20
40
60
80
100
120
140
160
01020304050607080
AMBIENT TEMPERATURE []
INPUT BIAS CURRENT [nA] .
Input Bias Current – Ambient Temperature
2V
5V
36V
LM393 famil
y
-8
-6
-4
-2
0
2
4
6
8
0 1020304050607080
AMBIENT TEMPERATURE [
]
INPUT OFFSET VOLTAGE [mV]
Input Offset Voltage – Ambient Temperature
2V 5V
36V
LM393 famil
y
Supply Current – Ambient Temperature
2V
-8
-6
-4
-2
0
2
4
6
8
0 10203040
SUPPLY VOLTAGE [V]
INPUT OFFSET VOLTAGE [mV]
Input Offset Voltage – Supply Voltage
0 25
70
LM393 famil
y
Low Level Output Voltage
– Output Sink Current
(VCC=5[V])
LM393 family
0
25
70
0
10
20
30
40
0 1020304050607080
AM BIE NT TEMP ERATURE []
OUTPUT SINK CURRENT [mA]
36V 5V
2V
LM393 famil
y
LM393DR
Derating Curve
LM393 famil
y
25
70
0
0
100
200
300
400
500
010203040
SUPPLY VOLT AG E [V]
OUTPUT SATURATION VOLTAGE [mV]
LM393 famil
y
0
25
70
Fig.1 Fig.2 Fig. 3
Fig.4 Fig. 5 Fig. 6
Fig. 7 Fig. 8 Fig. 9
Fig. 10 Fig. 11 Fig. 12
(*)The data above is ability value of sample, it is not guaranteed. LM393family:0[]~+70[]
70
5V
36V
LM393 family
LM393 famil
y
LM393PWR
LM393DGKR
Technical Note
5/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Reference Data LM393 family
60
70
80
90
100
110
120
130
140
0 1020304050607080
AMBIENT TEMPERATURE [°C]
POWER SUPPLY REJECTION RATIO [ d B] .
0
1
2
3
4
5
0 1020304050607080
AMBIENT TEMPERATURE [°C]
RESPONSE TIME (HIGH to LOW) [μ] .
-50
-40
-30
-20
-10
0
10
20
30
40
50
0 1020304050607080
AMBIENT TEMPERATURE []
INPUT O FFSET CU RRENT [nA]
40
60
80
100
120
140
160
010203040
SUPPLY VOLT AGE [V]
COMM O N MO D E RE JE CT ION RATI O [ d B]
.
Common Mode Rejection Ratio
– Supply Voltage
LM393 famil
y
0 25
70
60
70
80
90
100
110
120
130
140
0 1020304050607080
AMBIENT TEMPERATURE [°C]
POWER SUPPLY REJECTION RATIO [dB]
LM393 family
Common Mode Rejection Ratio
– Ambient Temperature
2V
5V
36V
Input Offset Current – Ambient Temperature
LM393 family
2V
5V
36V
60
70
80
90
100
110
120
130
140
010203040
SUPPLY VOLTAGE [V]
LARGE SIGNAL VOLTAGE GAIN [dB] .
Large Signal Voltage Gain
– Supply Voltage
LM393 famil
y
25
70 0
60
70
80
90
100
110
120
130
140
01020304050607080
AMBIENT TEMPERATURE [° C]
LARGE SIGNAL VOLTAGE GAIN [dB] .
Large Signal Voltage Gain
– Ambient Temperature
LM393 famil
y
2V 5V
36V
0
1
2
3
4
5
01020304050607080
AMBIENT TEMPERATUREC]
RESPONSE TIME (LOW to HI GH) [μs] . .
Response Time (Low to High)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[k])
LM393 family
5mV overdrive
20mV overdrive
100mV overdrive
Response Time (High to Low)
–Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[k])
LM393 family
Power Supply Rejection Ratio
– Ambient Temperature
5mV overdrive
20mV overdrive
100mV overdrive
LM393 family
Fig. 13 Fig. 14 Fig. 15
Fig. 16 Fig. 17 Fig. 18
Fig. 19 Fig. 20
(*)The data above is ability value of sample, it is not guaranteed. LM393family:0[]~+70[]
Technical Note
6/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
0
200
400
600
800
1000
0255075100125
A MBIE NT TE MPERATURE [ ] .
P OW ER DISSIPATIO N [mW] .
Reference Data LM339 family
Low Level Output Voltage
– Output Sink Current
(VCC=5[V])
0
0.2
0.4
0.6
0.8
1
0 10203040
SUPPLY VOLTAGE [V]
SUPPLY CURRENT [mA]   .
Output Sink Current – Ambient
Temperature
(VOUT=1.5[V])
Output Saturation Voltage
– Ambient Temperature
(IOL=4[mA])
Output Saturation Voltage
– Supply Voltage
(IOL=4[mA])
Supply Current – Supply Voltage
0
100
200
300
400
500
01020304050607080
AMBIENT TEMPERATURE [
]
OUTPU T SATURATION VOLTAGE [mV]
0
0.2
0.4
0.6
0.8
1
0 10203040
SUPPLY VOLTAGE [V]
SUPPLY CURRENT [mA]   .
0
0.2
0.4
0.6
0.8
1
0 1020304050607080
AMBIENT TEMPERATURE []
SUPPLY CURRENT [mA]
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0 2 4 6 8 101214161820
OUT P UT SINK CURRE NT [mA]
LOW LEVEL OUTPUT VOLTAGE [V]
LM339 family
2V
36V
5V
-50
-40
-30
-20
-10
0
10
20
30
40
50
0 10203040
SUPPLY VOLTAGE [V]
INPUT OF F S E T CURRENT [ nA ]
70
25
0
LM339 famil
y
Input Offset Current – Supply Voltage
0
20
40
60
80
100
120
140
160
010203040
SUPPLY VOLTAGE [V]
INPUT BIAS CURRENT [nA]
LM339 family
Input Bias Current – Supply Voltage
0 25
70
0
20
40
60
80
100
120
140
160
01020304050607080
AMBIENT TEMPERATURE []
INPUT BIAS CURRENT [nA] .
Input Bias Current – Ambient Temperature
2V
5V
36V
LM339 famil
y
-8
-6
-4
-2
0
2
4
6
8
0 1020304050607080
AMBIENT TEMPERATURE [
]
INPUT OFFSET VOLTAGE [mV]
Input Offset Voltage – Ambient Temperature
2V 5V
36V
LM339 famil
y
Supply Current – Ambient Temperature
5V
-8
-6
-4
-2
0
2
4
6
8
0 10203040
SUPPLY VOLTAGE [V]
INPUT OFFSET VOLTAGE [mV]
Input Offset Voltage – Supply Voltage
0
25
70
LM339 famil
y
LM339 famil
y
0
25
70
0
10
20
30
40
0 1020304050607080
AM BIE NT TEMP ERATURE []
OUTPUT SINK CURRENT [mA]
36V 5V
2V
LM339 famil
y
LM339DR
Derating Curve
25
70
0
0
100
200
300
400
500
0 10203040
SUPPLY VOLT AG E [V]
OUTPUT SATURATION VOLTAGE [mV]
LM339 famil
y
0
25
70
Fig.21 Fig.22 Fig. 23
Fig.24 Fig. 25 Fig. 26
Fig. 27 Fig. 28 Fig. 29
Fig. 30 Fig. 31 Fig. 32
(*)The data above is ability value of sample, it is not guaranteed. LM339family:0[]~+70[]
70
36V
2V
LM339 famil
y
LM339 famil
y
LM339 family
LM339PWR
Technical Note
7/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Reference Data LM339 family
(*)上記のデータはサンプルの実力であり、保証すものではありまん。BA10393F:-40[]+85[]
0
1
2
3
4
5
0 1020304050607080
AMBIENT TEMPERATURE [°C]
RESPONSE TIME (HIGH to LOW) [μ] .
-50
-40
-30
-20
-10
0
10
20
30
40
50
0 1020304050607080
AMBIENT TEMPERATURE []
INPUT O FFSET CU RRENT [nA]
40
60
80
100
120
140
160
010203040
SUPPLY VOLT AGE [ V]
COMM O N MO DE REJ E CT I O N RATIO[d B]
.
Common Mode Rejection Ratio
– Supply Voltage
LM339 famil
y
0 25
70
60
70
80
90
100
110
120
130
140
0 1020304050607080
AMBIENT TEMPERATURE [°C]
POWER SUPPLY REJECTION RATIO [dB]
LM339 family
Common Mode Rejection Ratio
– Ambient Temperature
2V
5V
36V
Input Offset Current
– Ambient Temperature
LM339 famil
y
2V
5V
36V
60
70
80
90
100
110
120
130
140
010203040
SUPPLY VOLTAGE [V]
LARGE SIGNAL VOLTAGE GAIN [dB] .
Large Signal Voltage Gain
– Supply Voltage
LM339 famil
y
25
70 0
60
70
80
90
100
110
120
130
140
01020304050607080
AMBIENT TEMPERATURE [°C]
LARGE SIGNAL VOLTAGE GAIN [dB] .
Large Signal Voltage Gain
– Ambient Temperature
LM339 famil
y
2V 5V
36V
0
1
2
3
4
5
01020304050607080
AMBIENT TEMPERATUREC]
RESPONSE TIME (LOW to HI GH) [μs] . .
Response Time (Low to High)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[k])
LM339 famil
y
5mV overdrive
20mV overdrive
100mV overdrive
Response Time (High to Low)
–Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[k])
60
70
80
90
100
110
120
130
140
0 1020304050607080
AMBIENT TEMPERATURE [°C]
POWER SUPPLY REJECTION RATIO [ dB] .
LM339 family
Power Supply Rejection Ratio
– Ambient Temperature
5mV overdrive
20mV overdrive
100mV overdrive
LM339 family
Fig. 33 Fig. 34 Fig. 35
Fig. 36 Fig. 37 Fig. 38
Fig. 39 Fig. 40
(*)The data above is ability value of sample, it is not guaranteed. BA10393F:-40[]~+70[]
Technical Note
8/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
SUPPLY CURRENT [mA]
0
20
40
60
80
100
120
140
160
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [ V]
INPUT B IAS CURRENT [n A ]
0
20
40
60
80
100
120
140
160
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT BIAS CURRENT [nA]
-50
-40
-30
-20
-10
0
10
20
30
40
50
0 10203040
SUPPLY VOLTAGE [V]
INPUT OFFSET CURRENT[nA]
0
200
400
600
800
1000
0 255075100125150
AMBIENT T E M PERTURE [] .
POWER DISSIPATION [mV]
0
50
100
150
200
0 10203040
SUPPLY VO LTAGE [V]
MAXIMUM OUTPUT VOLTAGE [mV]
0
50
100
150
200
-50 -25 0 25 50 75 100 125 150
SUPPLY VOLTAGE [V]
MAXIMUM OUTPUT VOLTAGE [mV]
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 2 4 6 8 101214161820
OUTPUT SINK CURRENT [mA]
OUTPUT VOLTAGE [V]
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0 10203040
SUPPLY VOLTAGE [V]
SUPPLY C URRE N T [mA]
0
10
20
30
40
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
OUTPUT SINK CURRENT [mA]
-8
-6
-4
-2
0
2
4
6
8
0 10203040
SUPPLY VOLTAG E [ V]
INPUT OFFSET VOLTAGE [mV]
-8
-6
-4
-2
0
2
4
6
8
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT OFFSET VOLTAGE [mV]
Reference Data LM2903 family
Input Offset Current – Supply Voltage
Input Bias Current – Supply Voltage Input Bias Current – Ambient Temperature
Input Offset Voltage – Ambient Temperature
Supply Current – Ambient Temperature
Input Offset Voltage – Supply Voltage
Low Level Output Voltage
– Output Sink Current
(VCC=5[V])
Output Saturation Voltage
– Ambient Temperature
(IOL=4[mA])
Output Sink Current – Ambient
Temperature
(VOUT=1.5[V])
Supply Current – Supply Voltage
Output Saturation Voltage
– Supply Voltage
(IOL=4[mA])
25
125
-40
2V
36V
5V
2V
36V
5V
-40
25
125
-40
25
125
2V
5V 36V
36V
5V
2V
-40
25 125
125
25 -40
-40 25
125 2V
5V
105
105
105
105
36V
LM2903 family LM2903 family
LM2903 family LM2903 family LM2903 family
LM2903 family LM2903 family LM2903 family
LM2903 family
Fig. 44 Fig. 45 Fig. 46
Fig. 47 Fig. 48 Fig. 49
Fig. 50 Fig. 51 Fig. 52
LM2903 family
LM2903 family
105
105
(*)The data above is ability value of sample, it is not guaranteed.LM2903family:-40[]+125[]
0
200
400
600
800
0 25 50 75 100 125 150
AMBIENT TEMPER ATURE [℃]
POWER DISSIPATION P d [m W ]
LM2903DT
LM2903PT
Derating Curve
LM2903DGKR
Fig. 41 Fig. 42 Fig. 43
LM2903 family
Technical Note
9/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
LARGE SINGAL VOLTAGE GAIN [dB]
40
60
80
100
120
140
160
0 10203040
SUPPL Y VOLTAGE [V]
COMMON MO DE RE J ECT ION RATI O [dB]
60
70
80
90
100
110
120
130
140
0 10203040
SUPPLY VOLTAGE [V]
LARGE SINGAL VOLTAGE GAIN [dB]
60
80
100
120
140
160
180
200
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
POWER SUPPLY REJECTION RATIO [dB]
-50
-40
-30
-20
-10
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT OFFSET CURRENT [nA]
0
25
50
75
100
125
150
-50 -25 0 25 50 75 100 125 150
AM BIENT TEMPERATURE []
COMMON MODE REJECTION RATIO [dB]
-6
-4
-2
0
2
4
6
-1012345
INPUT VOLTAGE [V]
INPUT OFFSET VOLTAGE [mV]
0
1
2
3
4
5
-100 -80 -60 -40 -20 0
OVER DRIVE VOLTAGE [V]
RESPONSE TIME (LOW TO HIGH)[μs]
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
RRESPONSE TIME (LOW TO HIGH) [ μs]
0
1
2
3
4
5
0 20 40 60 80 100
OVER DRIVE VOLTAG E [V]
RESPONSE TIME (HIGH TO LOW)[μs]
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
RESPONSE TIME (HIGH TO LOW)[μs]
Reference Data LM2903 family
Power Supply Rejection Ratio
– Ambient Temperature
Common Mode Rejection Ratio
– Supply Voltage Common Mode Rejection Ratio
– Ambient Temperature
Input Offset Current – Ambient Temperature
Large Signal Voltage Gain
– Supply Voltage Large Signal Voltage Gain
– Ambient Temperature
Response Time (Low to High)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[k])
Input Offset Voltage – Input Voltage
(VCC=5V)
Response Time (High to Low)
– Over Drive Voltage
(VCC=5[V],VRL=5[V],RL=5.1[k])
Response Time (High to Low)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[k])
Response Time (Low to High)
– Over Drive Voltage
(VCC=5[V],VRL=5[V],RL=5.1[k])
-40 25
125
2V
5V
36V
2V
5V 36V
25
125
-40 15V 5V
36V
-40
25
125
5mV overdrive
20mV overdrive
100mV
overdrive
125
25 -40
125 25 -40
5mV overdrive
20mV overdrive
100mV overdrive
LM2903 family LM2903 family LM2903 family
LM2903 family LM2903 family LM2903 family
LM2903 family LM2903 family LM2903 family
LM2903 family LM2903 family
Fig. 53 Fig. 54 Fig. 55
Fig. 56 Fig. 57 Fig. 58
Fig. 59 Fig. 60 Fig. 61
Fig. 62 Fig. 63
105
105
105
105
105
(*)The data above is ability value of sample, it is not guaranteed. LM2903family:-40[]+125[]
Technical Note
10/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
SUPPLY CURRENT [mA]
0
20
40
60
80
100
120
140
160
0 5 10 15 20 25 30 35
SUPPLY VOLTAGE [V]
INPUT BIAS CURRENT [nA]
0
20
40
60
80
100
120
140
160
-50 -25 0 25 50 75 100 125 150
AMBI ENT TEMPERATURE []
INPUT BIAS CURRENT [nA]
-50
-40
-30
-20
-10
0
10
20
30
40
50
010203040
SUPPLY VOLTAGE [V]
INPUT OFFSET CURRENT[nA]
0
50
100
150
200
010203040
SUPPL Y VOLTAGE [V]
MAXIMUM OUTPUT VOLTAGE [mV]
0
50
100
150
200
-50 -25 0 25 50 75 100 125 150
SUPPLY VOLTAGE [V]
MAXIMUM OUTPUT VOLTA GE [mV]
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 2 4 6 8 101214161820
OUTPUT SINK CURRENT [mA]
OUTPUT VOLT AGE [V]
0
10
20
30
40
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
OUTPUT SINK CURRENT [mA]
-8
-6
-4
-2
0
2
4
6
8
0 10203040
SUPPLY VOLTAGE [V]
INPUT OFFSET VOLTAGE [mV]
-8
-6
-4
-2
0
2
4
6
8
-50 -25 0 25 50 75 100 125 150
AMBI ENT TEMPERATURE []
INPUT OFFSET VOLTAG E [mV]
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0 10203040
SUPPL Y VOLTAGE [V]
SUPPLY CURRENT [mA]
0
200
400
600
800
1000
0 25 50 75 100 125 150
AMBI ENT TEMPERATURE []
POWER DISSIPATION [mW]
Reference Data LM2901 family
Input Offset Current – Supply Voltage
Input Bias Current – Supply Voltage
Input Bias Current – Ambient Temperature
Input Offset Voltage – Ambient Temperature
Supply Current – Ambient Temperature
Input Offset Voltage – Supply Voltage
Low Level Output Voltage
– Output Sink Current
(VCC=5[V])
Output Saturation Voltage
– Ambient Temperature
(IOL=4[mA])
Output Sink Current – Ambient Temperature
(VOUT=1.5[V])
Derating Curve
Supply Current – Supply Voltage
Output Saturation Voltage
– Supply Voltage
(IOL=4[mA])
2V
36V
5V
2V
36V 5V
-40
25
125
-40
25
125
2V
5V 36V
36V
5V
2V
-40
25 125
125
25
-40
-40 25
125 2V
5V
LM2901 famil
y
105
105
105
36V
LM2901 family LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
-40 25
125
105
Fig. 67 Fig. 68 Fig. 69
Fig. 70 Fig. 71 Fig. 72
Fig. 73 Fig. 74 Fig. 75
105
105
(*)The data above is ability value of sample, it is not guaranteed. LM901family:-40[]+125[]
0
200
400
600
800
1000
0 25 50 75 100 125 150
AMBIENT TEMPER ATURE [℃]
POWER DISSIPATION P d [m W ]
LM2901 famil
y
LM290PWR
LM2901DR
Fig. 64 Fig. 65 Fig. 66
Technical Note
11/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
60
70
80
90
100
110
120
130
140
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
LARGE SINGAL VOLTAGE GAIN [dB]
40
60
80
100
120
140
160
0 10203040
SUPPL Y VOLTAGE [V]
COMMON MO DE RE J ECT ION RATI O [dB]
60
70
80
90
100
110
120
130
140
0 10203040
SUPPLY VOLTAGE [V]
LARGE SINGAL VOLTAGE GAIN [dB]
60
80
100
120
140
160
180
200
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
POWER SUPPLY REJECTION RATIO [dB]
-50
-40
-30
-20
-10
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
INPUT OFFSET CURRENT [nA]
0
25
50
75
100
125
150
-50 -25 0 25 50 75 100 125 150
AM BIENT TEMPERATURE []
COMMON MODE REJECTION RATIO [dB]
-6
-4
-2
0
2
4
6
-1012345
INPUT VOLTAGE [V]
INPUT OFFSET VOLTAGE [mV]
0
1
2
3
4
5
-100 -80 -60 -40 -20 0
OVER DRIVE VOLTAGE [V]
RESPONSE TIME (LOW TO HIGH)[μs]
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
RRESPONSE TIME (LOW TO HIGH) [ μs]
0
1
2
3
4
5
020406080100
OVER DRIVE VOLTAG E [V]
RESPONSE TIME (HIGH TO LOW)[μs]
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125 150
AMBIENT TEMPERATURE []
RESPONSE TIME (HIGH TO LOW)[μs]
Reference Data LM2901 family
Response Time (Low to High)
– Over Drive Voltage
(VCC=5[V],VRL=5[V],RL=5.1[k])
Input Offset Voltage – Input Voltage
(VCC=5V)
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
LM2901 famil
y
Power Supply Rejection Ratio
– Ambient Temperature
Common Mode Rejection Ratio
– Supply Voltage Common Mode Rejection Ratio
– Ambient Temperature
Input Offset Current – Ambient Temperature
Large Signal Voltage Gain
– Supply Voltage Large Signal Voltage Gain
– Ambient Temperature
Response Time (Low to High)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[k])
Response Time (High to Low)
– Over Drive Voltage
(VCC=5[V],VRL=5[V],RL=5.1[k])
Response Time (High to Low)
– Ambient Temperature
(VCC=5[V],VRL=5[V],RL=5.1[k])
-40 25
125
2V
5V
36V
2V
5V 36V
25
125
-40 15V 5V
36V
-40
25
125
5mV overdrive
20mV overdrive
100mV overdrive
125
25 -40
125 25 -40
5mV overdrive
20mV overdrive
100mV overdrive
Fig. 76 Fig. 77 Fig. 78
Fig. 79 Fig. 80 Fig. 81
Fig. 82 Fig. 83 Fig. 84
Fig. 85 Fig. 86
105
105
105
105
105
(*)The data above is ability value of sample, it is not guaranteed. LM901family:-40[]+125[]
Technical Note
12/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Circuit Diagram
Fig.87 Circuit Diagram (each Comparator)
Measurement circuit 1 NULL Method measurement condition Vcc,GND,EK,VICR Unit[V
Parameter VF S1 S2 S3 LM393/LM339 family LM2903/LM2901 family Calculation
Vcc GND EK VICR Vcc GND EK VICR
Input Offset V oltage VF1 ON ON ON 5 t o 3 0 0 -1.4 0 5 t o 3 0 0 -1.4 0 1
Input Offset Current VF2 OFF OFF ON 5 0 -1.4 0 5 0 -1.4 0 2
Input Bias Current VF3 OFF ON ON 5 0 -1.4 0 5 0 -1.4 0 3
VF4 ON OFF 5 0 -1.4 0 5 0 -1.4 0
Large Signal
Voltage Gain VF5 ON ON ON 15 0 -1.4 0 15 0 -1.4 0 4
VF6 15 0 -11.4 0 15 0 -11.4 0
Calculation
1.Input offset voltage (VIO)
2.Input offset current (IIO)
3.Input bias current (IIb)
4.Large signal differential voltage gain (AVD)
[V]
/RsRf1+
VF1
Vio
/
Rs)Rf(1+Ri
VF1VF 2 -
Iio [A]
VF 6 - VF5
/Rs)Rf(1+
Log20×
10×
AV [dB]
Fig.88 Measurement Circuit1 (each Comparator)
/Rf(1+Ri
VF3VF 4 -
Ib [A]
/ Rs )
Vcc
0.1[μF]
Rf
50[k]
S1
Ri10[k]
RS50[]
S2 RL
S3
1000[pF]
500[k]
500[k]0.1[μF]
RK
EK RK
+15[V]
-15[V]
NULL
VVF
DUT
GND VRL
Ri10[k]
RS50[]
50[k]
VIC
R
IN+
IN-
Vcc
OUT
GND
Technical Note
13/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Measurement Circuit2 S wit ch Condition
SW No. SW
1 SW
2 SW
3 SW
4 SW
5 SW
6 SW
7
Supply Current OFF OFF OFF OFF OFF OFF OFF
Low Level Output Current VOL=1.5[V] OFF ON ON OFF ON ON OFF
Low Level Output Current IOL=4[mA] OFF ON ON OFF OFF OFF ON
High Level Output Current VOH=36[V] OFF ON ON OFF OFF OFF ON
Response T ime RL=5.1[k] ON OFF ON ON OFF ON OFF
VRL=5[V]
Fig.89 Measurement Circuit2 (each channel)
Fig.90 Response Time
SW1 SW2
SW4 SW5
A
VIN-
Vcc 5[V]
GND
SW3 SW7
A
VVOL/VOH
RL
SW6
VIN+ VRL
0[V]
VIN
+100[mV]
0[V]
5[V]
0[V]
2.5[V]
Tre LH
Output waveform
Input waveform
over drive
VUOT
VIN
+100[mV]
0[V]
5[V]
0[V]
2.5[V]
Tre LH
Output waveform
Input waveform
over drive
VUOT
Technical Note
14/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Description of Ele ctrical Characteristics
Described below are descriptions of the relevant electrical terms.
Please note that item names, symbols, and their meanings may differ from those on another manufacturer’s documents.
1. Absolute maximum ratings
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical
characteristics or damage to the part itself as well as peripheral components.
1.1 Power supply voltage (Vcc/GND)
Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing
deterioration of the electrical characteristics or destruction of the internal circuitry.
1.2 Differential input voltage (VID)
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.
1.3 Input common-mode voltage range (VICR)
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the electrical
characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the
maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.
1.4 Operating temperature range and storage temperature range (Topr,Tstg)
The operating temperature range indicates the temperature range within which the IC can operate. The higher the a mbient temperature,
the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored
under without causing excessive deterioration of the electrical characteristics.
1.5 Power dissipation (Pd)
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25°C). Fo r packaged products, Pd is
determined by maximum junction temperature and the thermal resistance.
2. Electrical characteristics
2.1 Input offset voltage (VIO)
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference
required for setting the output voltage to 0V.
2.2 Input offset current (IIO)
Indicates the difference of the input bias current between the non-inverting and inverting terminals.
2.3 Input bias current (IIB)
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting
terminal and the input bias current at the inverting terminal.
2.4 Input common-mode voltage range (VICR)
Indicates the input voltage range under which the IC operates normally.
2.5 Large signal differential voltage gain (AVD)
The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting terminals, it is
(normally) the amplifying rate (gain) with respect to DC voltage.
AVD = (output voltage fluctuation) / (input offset fluctuation)
2.6 Supply current (ICC)
Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.
2.7 Low level output current (IOL)
Denotes the maximum current that can be output under specific output conditions.
2.8 Low level output voltage (VOL)
Signifies the voltage range that can be output under specific output conditions.
2.9 High level output current (IOH)
Indicates the current that flows into the IC under specific input and output conditions.
2.10 Response time (tre)
The interval between the application of input and output conditions.
2.11 Common-mode rejection ratio (CMRR)
Denotes the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).
CMRR = (change of input common-mode voltage) / (input offset fluctuation)
2.12 Power supply rejection ratio (PSRR)
Signifies the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation).
PSRR = (change in power supply voltage) / (input offset fluctuation)
Technical Note
15/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Derating Curves
0
200
400
600
800
0 25 50 75 100 125 150
POWER DISSIPATION Pd [mW]
AMBIENT TEMPERATURE [℃]
0
200
400
600
800
1000
0 25 50 75 100 125 150
POWER DISSIPATION Pd [mW]
AMBIENT TEMPERATURE [℃]
Power Dissipation Power Dissipation
Package Pd[W] θja [/W] Package Pd[W] θja [/W]
SOIC8 (*8) 450 3.6 SOIC14 610 4.9
TSSOP8 (*6) 500 4.0 TSSOP14 870 7.0
MSOP8/VSSOP8 (*7) 470 3.76
Fig.91 Derating Curves
Precautions
1) Unused circuits
When there are unused circuits it is recommended that they be connected as in Fig.92,
setting the non-inverting input terminalto a potential within the in-phase input voltage range (VICR).
2) Input terminal voltage
Applying GND + 36V to the input terminal is possible without causing deterioration of the electrical
characteristics or destruction, irrespective of the supply voltage. However, this does not ensure
normal circuit operation.
Please note that the circuit operates normally only when the input voltage is within the common
mode input voltage range of the electric characteristics.
3) Power supply (single / dual)
The op-amp operates when the specified voltage supplied is between Vcc and GND. Therefore, the single supply op-amp can be used as
a dual supply op-amp as well.
4) Power dissipation Pd
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in chip
temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual
operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information.
5) Short-circuit between pins and erroneous mounting
Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power
supply, or the output and GND may result in IC destruction.
6) Terminal short-circuits
When the output and Vcc terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently,
destruction.
7) Operation in a strong electromagnetic field
Operation in a strong electromagnetic field may cause malfunctions.
8) Radiation
This IC is not designed to withstand radiation.
9) IC handing
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to
piezoelectric (piezo) effects.
10) Board inspection
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is
recommended. In addition, when attaching and detaching the jig duri ng the inspection phase, ensure that the po wer is turned OFF before
inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and
storage.
Vcc
GND
LM393DR/PWR/DGKR
LM2903DR/PWR/DGKR/VQDR/VQPWR LM339DR/PWR
LM2901DR/PWR/VQDR/VQPWR
θja = (Tj-Ta)/Pd[/W]
Fig.92 Disable circuit example
θja = (Tj-Ta)/Pd[/W]
LM393DR
LM2903DR/VQDR
LM393PWR
LM2903PWR/VQPWR
LM393PWR
LM2903PWR/VQPWR
LM339PWR
LM2901PWR/VQPWR
LM339DR
LM2901DR/VQDR
Technical Note
16/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
Ordering part number
L M 2 9 0 3 V Q D R
Family name
LM393
LM339
LM2901
LM2903
Operating Volta ge
VQ : Tested to 32V
None : Tested to 30V
Package type
D : SOIC
PW : TSSOP
DGK : MSOP/VSSOP
Packaging and forming specification
R: Embossed tape and reel
(Unit : mm)(Unit : mm)
SOIC8
0.2±0.1
0.45Min.
234
5678
1
4.9±0.2
0.545
3.9±0.2
6.0±0.3
(MAX 5.25 include BURR)
0.42±0.1
1.27
0.175
1.375±0.1
0.1 S
S
+6°
4°
4°
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
2500pcs
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
()
Direction of feed
Reel 1pin
(Unit : mm)
SOIC14
(Unit : mm)
71
814
(Max 9.0 include BURR) +6°
4°
1.05±0.2
1PIN MARK
3.9±0.1
0.420.04
+0.05
0.22+0.05
0.03
0.515
1.65MAX
1.375±0.075
0.175±0.075
8.65±0.1
0.65±0.15
4°
6.0±0.2
1.27
S
0.08
M
0.08 S
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
2500pcs
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
()
Direction of feed
Reel 1pin
(Unit : mm)
TSSOP8
0.08 S
0.08
M
4 ± 4
234
8765
1
1.0±0.05
1PIN MARK
0.525
0.245+0.05
0.04
0.65
0.145+0.05
0.03
0.1±0.05
1.2MAX
3.0±0.1
4.4±0.1
6.4±0.2
0.5±0.15
1.0±0.2
(MAX 3.35 include BURR)
S
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
2500pcs
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
()
Direction of feed
Reel 1pin
Technical Note
17/17
LM393DR/PWR/DGKR,LM2903DR/PWR/DGKR/VQDR/VQPWR
LM339DR/PWR,LM2901DR/PWR/VQDR/VQPWR
www.rohm.com 2011.06 - Rev.B
© 2011 ROHM Co., Ltd. All rights reserved.
(Unit : mm)
MSOP / VSSOP8
0.08
M
0.08 S
S
4 ± 4
(MAX 3.35 include BURR)
578
1234
6
3.0±0.1
1PIN MARK
0.95±0.2
0.65
4.9±0.2
3.0±0.1
0.45±0.15
0.85±0.05
0.145
0.1±0.05
0.32
0.525
1.1MAX
+0.05
0.03
+0.05
0.04
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
2500pcs
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
()
Direction of feed
Reel 1pin
(Unit : mm)
TSSOP14
0.08 S
S
0.08
M
8
7
1
14
(Max 5.35 include BURR)
0.1±0.05
1PIN MARK
1.0±0.2
6.4±0.2
0.245+0.05
0.04
0.65
0.5±0.15
4.4±0.1
1.2MAX
0.145 +0.05
0.03
±44
1.0±0.05
0.55
5.0±0.1
Order quantity needs to be multiple of the minimum quantity.
<Tape and Reel information>
Embossed carrier tapeTape
Quantity
Direction
of feed
2500pcs
The direction is the 1pin of product is at the upper left when you hold
reel on the left hand and you pull out the tape on the right hand
()
Direction of feed
Reel 1pin
R1120
A
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Notice
ROHM Customer Support System
http://www.rohm.com/contact/
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specied herein is subject to change for improvement without notice.
The content specied herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specied in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specied herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specied in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, ofce-automation equipment, commu-
nication devices, electronic appliances and amusement devices).
The Products specied in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, re or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, re control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-
controller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specied herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.