1
File Number 3964.2
1-888-INTERSIL or 321-724-7143 |Copyright © Intersil Corporation 2000
RHRP840CC, RHRP860CC
8A, 400V - 600V Hyperfast Dual Diodes
The RHRP840CC and RHRP860CC are hyperfast dual
diodes with soft recovery characteristics (trr < 30ns). They
have half the recovery time of ultrafast diodes and are of
silicon nitride passivated ion-implanted epitaxial planar
construction.
These devices are intended for use as freewheeling/
clamping diodes and rectifiers in a variety of switching power
supplies and other power switching applications. Their low
stored charge and hyperfast soft recovery minimize ringing
and electrical noise in many power switching circuits, thus
reducing power loss in the switching transistors.
Formerly development type TA49059.
Symbol
Features
Hyperfast with Soft Recovery. . . . . . . . . . . . . . . . . .<30ns
Operating Temperature. . . . . . . . . . . . . . . . . . . . . . .175oC
Reverse Voltage Up To. . . . . . . . . . . . . . . . . . . . . . . .600V
Avalanche Energy Rated
Planar Construction
Applications
Switching Power Supplies
Power Switching Circuits
General Purpose
Packaging JEDEC TO-220AB
Ordering Information
PART NUMBER PACKAGE BRAND
RHRP840CC TO-220AB RHRP840C
RHRP860CC TO-220AB RHRP860C
NOTE: When ordering, use the entire part number.
K
A1A2
CATHODE
ANODE 2
ANODE 1
CATHODE
(FLANGE)
Absolute Maximum Ratings (Per Leg) TC = 25oC, Unless Otherwise Specified
RHRP840CC RHRP860CC UNITS
Peak Repetitive Reverse Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VRRM 400 600 V
Working Peak Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VRWM 400 600 V
DC Blocking Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VR400 600 V
Average Rectified Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IF(AV)
(TC = 150oC) 88A
Repetitive Peak Surge Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IFRM
(Square Wave, 20kHz) 16 16 A
Nonrepetitive Peak Surge Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IFSM
(Halfwave, 1 Phase, 60Hz) 100 100 A
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD75 75 W
Avalanche Energy (See Figures 10 and 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAVL 20 20 mJ
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ-65 to 175 -65 to 175 oC
Data Sheet January 2000
2
Electrical Specifications (Per Leg) TC = 25oC, Unless Otherwise Specified
SYMBOL TEST CONDITION
RHRP840CC RHRP860CC
UNITSMIN TYP MAX MIN TYP MAX
VFIF = 8A - - 2.1 - - 2.1 V
IF = 8A, TC = 150oC - - 1.7 - - 1.7 V
IRVR = 400V - - 100 - - - µA
VR = 600V - - - - - 100 µA
VR = 400V, TC = 150oC - - 500 - - - µA
VR = 600V, TC = 150oC -----500µA
trr IF = 1A, dIF/dt = 200A/µs--30--30ns
IF = 8A, dIF/dt = 200A/µs--35--35ns
taIF = 8A, dIF/dt = 200A/µs - 18 - - 18 - ns
tbIF = 8A, dIF/dt = 200A/µs - 10 - - 10 - ns
QRR IF = 8A, dIF/dt = 200A/µs - 56 - - 56 - nC
CJVR = 10V, IF = 0A - 25 - - 25 - pF
RθJC --2--2
oC/W
DEFINITIONS
VF = Instantaneous forward voltage (pw = 300µs, D = 2%).
IR = Instantaneous reverse current.
trr = Reverse recovery time (See Figure 9), summation of ta + tb.
ta = Time to reach peak reverse current (See Figure 9).
tb = Time from peak IRM to projected zero crossing of IRM based on a straight line from peak IRM through 25% of IRM (See Figure 9).
QRR = Reverse recovery charge.
CJ = Junction Capacitance.
RθJC = Thermal resistance junction to case.
pw = Pulse width.
D = Duty cycle.
Typical Performance Curves
FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE
IF, FORWARD CURRENT (A)
1
40
0.5
10
0 0.5 1 1.5 2 2.5 3
VF, FORWARD VOLTAGE (V)
175oC25oC
100oC
VR, REVERSE VOLTAGE (V)
0 200 400 600300 500
1000
0.01
0.1
1
10
100
100
175oC
100oC
25oC
IR, REVERSE CURRENT (µA)
RHRP840CC, RHRP860CC
3
FIGURE 3. trr,t
aAND tbCURVES vs FORWARD CURRENT FIGURE 4. trr,t
aAND tbCURVES vs FORWARD CURRENT
FIGURE 5. trr,t
aAND tbCURVES vs FORWARD CURRENT FIGURE 6. CURRENT DERATING CURVE
FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE
Typical Performance Curves (Continued)
IF, FORWARD CURRENT (A)
0.5
0
25
10
81
15
20
t, RECOVERY TIMES (ns)
4
tb
30
trr
ta
35
5
TC = 25oC, dIF/dt = 200A/µs
20
30
40
t, RECOVERY TIMES (ns)
IF, FORWARD CURRENT (A)
0.5
0814
50
ta
trr
60
tb
10
TC = 100oC, dIF/dt = 200A/µs
75
60
45
t, RECOVERY TIMES (ns)
IF, FORWARD CURRENT (A)
0.5
0814
ta
30
90
trr
tb
15
TC = 175oC, dIF/dt = 200A/µs10
2
0125 135 155 175165
4
6
8
TC, CASE TEMPERATURE (oC)
IF(AV), AVERAGE FORWARD CURRENT (A)
145
DC
SQ. WAVE
VR, REVERSE VOLTAGE (V)
20
10
0
40
0 50 100 150 200
60
CJ, JUNCTION CAPACITANCE (pF)
50
30
RHRP840CC, RHRP860CC
4
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Test Circuits and Waveforms
FIGURE 8. trr TEST CIRCUIT FIGURE 9. trr WAVEFORMS AND DEFINITIONS
FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT FIGURE11. AVALANCHE CURRENT AND VOLTAGE
WAVEFORMS
RG
L
VDD
IGBT
CURRENT
SENSE
DUT
VGE t1
t2
VGE AMPLITUDE AND
t1 AND t2CONTROL IF
RG CONTROL dIF/dt
+
-
dt
dIF
IFtrr
tatb
0
IRM
0.25 IRM
DUT
CURRENT
SENSE +
LR
VDD
R < 0.1
EAVL = 1/2LI2 [VR(AVL)/(VR(AVL) - VDD)]
Q1= IGBT (BVCES > DUT VR(AVL))
-
VDD
Q1
IMAX = 1A
L = 40mH
IV
t0t1t2
IL
VAVL
t
IL
RHRP840CC, RHRP860CC