www.irf.com 1
4/17/08
IRGP4086PbF
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
Circuits in PDP Applications
l Low VCE(on) and Energy per Pulse (EPULSETM)
for Improved Panel Efficiency
l High Repetitive Peak Current Capability
l Lead Free Package
PDP TRENCH IGBT
GC E
Gate Collector Em itter
TO-247AC
G
C
E
C
PD - 97132
E
C
G
n-channel
VCE min 300 V
VCE(ON) typ. @ IC = 70A 1.90 V
IRP max @ TC= 25°C c250 A
TJ max 150 °C
Key Parameters
Absolute Maximum Ratings
Parameter Units
VGE Gate-to-Emitter Voltage V
IC @ TC = 25°C Continuous Collector Current, VGE @ 15V A
IC @ TC = 100°C Continuous Collector, VGE @ 15V
IRP @ TC = 25°C Repetitive Peak Current c
PD @TC = 25°C Power Dissipation W
PD @TC = 100°C Power Dissipation
Linear Derating Factor W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw N
Thermal Resistance
Parameter Typ. Max. Units
RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) d––– 0.8
RθCS Case-to-Sink (flat, greased surface) 0.24 ––– °C/W
RθJA Junction-to-Ambient (typical socket mount) d––– 40
Weight 6.0 (0.21) ––– g (oz)
250
300
-40 to + 150
10lbxin (1.1Nxm)
160
63
1.3
Max.
40
70
±30
IRGP4086PbF
2www.irf.com
Notes:
Half sine wave with duty cycle = 0.1, ton=2μsec.
Rθ is measured at TJ of approximately 90°C.
Pulse width 400μs; duty cycle 2%.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVCES Collector-to-Emitter Breakdown Volta
g
300 ––– ––– V
ΔΒVCES/ΔTJ Breakdown Voltage Temp. Coefficien
t
––– 0.29 ––– V/°C
––– 1.29 1.46
––– 1.49 1.67
––– 1.90 2.10 V
––– 2.57 2.96
––– 2.27 –––
VGE(th) Gate Threshold Voltage 2.6 ––– 5.0 V
ΔVGE(th)/ΔTJGate Threshold Voltage Coefficient ––– -11 ––– mV/°C
ICES Collector-to-Emitter Leakage Current ––– 2.0 25 μA
––– 5.0 –––
––– 100 –––
IGES Gate-to-Emitter Forward Leakage ––– ––– 100 nA
Gate-to-Emitter Reverse Leakage ––– ––– -100
gfe Forward Transconductance ––– 29 ––– S
QgTotal Gate Charge ––– 65 ––– nC
Qgc Gate-to-Collector Charge ––– 22 –––
td(on) Turn-On delay time 36 IC = 25A, VCC = 196V
trRise time 31 ns RG = 10Ω, L=200μH, LS= 200nH
td(off) Turn-Off delay time 112 TJ = 25°C
tfFall time 65
td(on) Turn-On delay time 30 IC = 25A, VCC = 196V
trRise time 33 ns RG = 10Ω, L=200μH, LS= 200nH
td(off) Turn-Off delay time 145 TJ = 150°C
tfFall time 98
tst Shoot Through Blocking Time 100 ––– ––– ns
EPULSE Energy per Pulse μJ
Ciss Input Capacitance ––– 2250 –––
Coss Output Capacitance ––– 110 ––– pF
Crss Reverse Transfer Capacitance ––– 58 –––
LCInternal Collector Inductance ––– 5.0 ––– Between lead,
nH 6mm (0.25in.)
LEInternal Emitter Inductance ––– 13 ––– from package
VCE = 30V
VGE = 0V
L = 220nH, C= 0.40μF, VGE = 15V
Conditions
VGE = 0V, ICE = 1 mA
Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 120A e
VGE = 15V, ICE = 25A e
VGE = 15V, ICE = 70A e
VGE = 15V, ICE = 40A e
VCE = 300V, VGE = 0V, TJ = 100°C
and center of die contact
VGE = 30V
VGE = -30V
ƒ = 1.0MHz, See Fig.13
––– 1432 –––
VCE = 25V, ICE = 25A
VCE = 200V, IC = 25A, VGE = 15Ve
VCC = 240V, VGE = 15V, RG= 5.1Ω
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40μF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Static Collector-to-Emitter Voltage
VCE(on)
VGE = 15V, ICE = 70A, TJ = 150°C
––– 1075 –––
VCE = VGE, ICE = 500μA
VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 150°C
IRGP4086PbF
www.irf.com 3
Fig 1. Typical Output Characteristics @ 25°C
Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C
Fig 2. Typical Output Characteristics @ 75°C
Fig 5. Typical Transfer Characteristics Fig 6. VCE(ON) vs. Gate Voltage
0 4 8 12 16
VCE (V)
0
40
80
120
160
200
240
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0481216
VCE (V)
0
40
80
120
160
200
240
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0481216
VCE (V)
0
40
80
120
160
200
240
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0481216
VCE (V)
0
40
80
120
160
200
240
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
2 4 6 8 10 12 14 16
VGE (V)
0
40
80
120
160
200
240
ICE (A)
TJ = 25°C
TJ = 150°C
5101520
VGE (V)
0
2
4
6
8
10
VCE (V)
TJ = 25°C
TJ = 150°C
IC = 25A
IRGP4086PbF
4www.irf.com
Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
Fig 9. Typical EPULSE vs. Collector Current
Fig 11. EPULSE vs. Temperature Fig 12. Forward Bias Safe Operating Area
0 25 50 75 100 125 150
TC, Case Temperature (°C)
0
10
20
30
40
50
60
70
80
IC, Collector Current (A)
25 50 75 100 125 150
Case Temperature (°C)
0
100
200
300
Repetitive Peak Current (A)
ton= 2μs
Duty cycle = 0.1
Half Sine Wave
1 10 100 1000
VCE (V)
1
10
100
1000
IC (A)
10 μs
100 μs
1ms
25 50 75 100 125 150
TJ, Temperature (ºC)
0
400
800
1200
1600
2000
Energy per Pulse (μJ)
VCC = 240V
L = 220nH
t = 1μs half sine C= 0.4μF
C= 0.3μF
C= 0.2μF
150 160 170 180 190 200 210 220 230 240
VCE, Collector-to-Emitter Voltage (V)
200
400
600
800
1000
1200
1400
1600
Energy per Pulse (μJ)
L = 220nH
C = 0.4μF100°C
25°C
160 170 180 190 200 210 220 230
IC, Peak Collector Current (A)
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
Energy per Pulse (μJ)
VCC = 240V
L = 220nH
C = variable 100°C
25°C
IRGP4086PbF
www.irf.com 5
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
0100 200 300
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 20406080100
QG Total Gate Charge (nC)
0
5
10
15
20
25
VGE, Gate-to-Source Voltage (V)
VDS= 240V
VDS= 200V
VDS= 150V
ID= 25A
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W)
τι (sec)
0.084697 0.000038
0.374206 0.001255
0.341867 0.013676
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
τ
τ
C
Ci= τi/Ri
Ci= τi/Ri
IRGP4086PbF
6www.irf.com
Fig 16a. tst and EPULSE Test Circuit Fig 16b. tst Test Waveforms
Fig 16c. EPULSE Test Waveforms
1K
VCC
DUT
0
L
Fig. 17 - Gate Charge Circuit (turn-off)
DRIVER
DUT
L
C
VCC
RG
RG
B
A
Ipulse
Energy
V
CE
I
C
Current
PULSE A
PULSE B
t
ST
IRGP4086PbF
www.irf.com 7
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/08
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational
performance or safety. Please contact your IR representative if
you have specific design or use requirements or for further
information.
TO-247AC package is not recommended for Surface Mount Application.
TO-247AC Part Marking Information
TO-247AC Package Outline Dimensions are shown in millimeters (inches)
YEAR 1 = 2001
DAT E CODE
PART NUMBER
INT ERNAT IONAL
LOGO
RECTIFIER
ASSEMBLY
56 57
IRFPE30
135H
LINE H
indi cates "L ead-F r ee" WEEK 35LOT CODE
IN THE ASSEMBLY LINE "H"
AS S E MB LED ON WW 35, 2001
Note: "P" in assembly line position
EXAMPLE:
WI T H AS S E MB L Y
THIS IS AN IRFPE30
LOT CODE 5657
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/