PD - 95432A IRF1503SPbF IRF1503LPbF Typical Applications HEXFET(R) Power MOSFET l Industrial Motor Drive D VDSS = 30V Benefits l l l l l Advanced Process Technology Ultra Low On-Resistance 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax RDS(on) = 3.3m G ID = 75A S Description This Stripe Planar design of HEXFET(R) Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. D2Pak IRF1503SPbF TO-262 IRF1503LPbF Absolute Maximum Ratings Parameter ID @ TC ID @ TC ID @ TC IDM PD @TC = 25C = 100C = 25C = 25C VGS EAS EAS (tested) IAR EAR TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon limited) Continuous Drain Current, V GS @ 10V (See Fig.9) Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Units 190 130 75 960 200 1.3 20 510 980 See Fig.12a, 12b, 15, 16 -55 to + 175 A W W/C V mJ A mJ C 300 (1.6mm from case ) 10 lbf*in (1.1N*m) Thermal Resistance Parameter RJC RCS RJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units --- 0.50 --- 0.75 --- 62 C/W 1 07/14/10 IRF1503S/LPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 30 --- --- 2.0 75 --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.028 2.6 --- --- --- --- --- --- 130 36 41 17 130 59 48 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance --- 5.0 LS Internal Source Inductance --- 13 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance --- --- --- --- --- --- 5730 2250 290 7580 2290 3420 V(BR)DSS V(BR)DSS/TJ IGSS Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 3.3 m VGS = 10V, ID = 140A 4.0 V VDS = 10V, ID = 250A --- S VDS = 25V, ID = 140A 20 VDS = 30V, VGS = 0V A 250 VDS = 24V, VGS = 0V, TJ = 150C 200 VGS = 20V nA -200 VGS = -20V 200 ID = 140A 54 nC VDS = 24V 62 VGS = 10V --- VDD = 15V --- ID = 140A ns --- RG = 2.5 --- VGS = 10V D Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact S --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz, See Fig. 5 --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 24V, = 1.0MHz --- VGS = 0V, VDS = 0V to 24V Source-Drain Ratings and Characteristics IS ISM Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time VSD trr Qrr ton Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Starting TJ = 25C, L = 0.049mH RG = 25, IAS = 140A. (See Figure 12). ISD 140A, di/dt 110A/s, VDD V(BR)DSS, TJ 175C Pulse width 400s; duty cycle 2%. 2 Min. Typ. Max. Units Conditions D MOSFET symbol --- --- 190 showing the A G integral reverse --- --- 960 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 140A, VGS = 0V --- 71 110 ns TJ = 25C, IF = 140A --- 110 170 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. www.irf.com IRF1503S/LPbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 4.5V 10 20s PULSE WIDTH Tj = 25C 1 100 4.5V 20s PULSE WIDTH Tj = 175C 10 0.1 1 10 100 0.1 1 VDS, Drain-to-Source Voltage (V) 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 200 1000 Gfs, Forward Transconductance (S) T J = 25C ID, Drain-to-Source Current () 10 T J = 175C 100 VDS = 25V 20s PULSE WIDTH 10 4.0 5.0 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com T J = 175C 160 120 T J = 25C 80 40 VDS = 25V 20s PULSE WIDTH 0 10.0 0 40 80 120 160 200 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRF1503S/LPbF 10000 Crss Coss ID= 140A VGS , Gate-to-Source Voltage (V) 8000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd , C ds SHORTED = Cgd = Cds + Cgd Ciss 6000 4000 Coss 2000 Crss 16 12 8 4 0 0 1 10 0 100 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 100.0 T J = 175C 10.0 T J = 25C VGS = 0V 0.1 0.0 0.4 0.8 1.2 80 120 160 200 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1.6 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 40 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 1.0 VDS= 24V 1000 100sec 100 1msec 10 1 2.0 OPERATION IN THIS AREA LIMITED BY RDS(on) 10msec Tc = 25C Tj = 175C Single Pulse 1 10 100 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF1503S/LPbF 200 2.0 LIMITED BY PACKAGE I D = 240A 120 80 40 0 25 50 75 100 125 150 175 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance ID , Drain Current (A) 160 1.0 0.5 V GS = 10V 0.0 -60 -40 TC , Case Temperature ( C) -20 0 20 40 60 80 100 120 140 160 180 ( C) TJ, Junction Temperature Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature (Z thJC ) 1 D = 0.50 Thermal Response 0.20 0.1 0.10 P DM 0.05 t1 0.02 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1/ t 2 J = P DM x Z thJC +T C 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1503S/LPbF DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS A 0.01 tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 1400 15V 1200 1000 800 600 400 200 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50K 12V .2F .3F D.U.T. + V - DS VGS VGS(th) Gate threshold Voltage (V) 10 V 3.0 ID = 250A 2.0 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF1503S/LPbF 10000 Avalanche Current (A) Duty Cycle = Single Pulse 1000 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 100 0.05 0.10 10 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 600 TOP Single Pulse BOTTOM 50% Duty Cycle ID = 140A 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav 7 IRF1503S/LPbF D.U.T Driver Gate Drive + - * D.U.T. ISD Waveform Reverse Recovery Current + RG V DD * dv/dt controlled by R G * Driver same type as D.U.T. * I SD controlled by Duty Factor "D" * D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - D= Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width 1 s Duty Factor 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF1503S/LPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER F530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L OR INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER F530S DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) YEAR 0 = 2000 WEEK 02 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRF1503S/LPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE AS SEMBLY LINE "C" INTERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNATIONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER DAT E CODE P = DE SIGNAT ES LE AD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = ASSE MBLY SIT E CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRF1503S/LPbF D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 www.irf.com 11