International Rectifier HEXFET Power MOSFET e Surface Mount Available in Tape & Reel Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching @ Ease of Paralleling Simple Drive Requirements Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low PD-9.899 IRF610S Voss = 200V Rosen) = 1.52 Ip = 3.3A on-resistance and cost-effectiveness. The SMD-220 is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the fowest possible on-resistance in any existing surface mount package. The SMD-220 is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. SMD-220 Absolute Maximum Ratings Parameter Max. Units Ip @ Te = 25C Continuous Drain Current, Ves @ 10 V 3.3 Ib @ To = 100C | Continuous Drain Current, Ves @ 10 V 2.1 A lpm Pulsed Drain Current 10 Pp @ Tc =25C_| Power Dissipation 36 Ww Pp @ Ta=25C_ | Power Dissipation (PCB Mount)** 3.0 Linear Derating Factor 0.29 WrC Linear Derating Factor (PCB Mount)** 0.025 Vas Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche Energy 64 mJ eG Avalanche Current 3.3 A Ear Repetitive Avalanche Energy 3.6 mJ dv/dt Peak Diode Recovery dv/dt 5.0 Vins Ti, Tsta Junction and Storage Temperature Range -55 to +150 C Soldering Temperature, for 10 seconds I 300 (1.6mm from case) Thermal Resistance Parameter Min. Typ. Max. Units Rasc Junction-to-Case 3.5 Rea Junction-to-Ambient (PCB mount)** _ _ 40 Chw Rosa dunction-to-Ambient _ _ 62 ** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. 167IRF610S | Electrical Characteristics @ Ty = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Test Conditions Viprypss Drain-to-Source Breakdown Voltage 200 _ _ V__| Vas=0V, Ip= 250A AV (arypss/ATy| Breakdown Voltage Temp. Coefficient _ 0.30 | | V/C | Reference to 25C, lp= 1mA Rosvon} Static Drain-to-Source On-Resistance _ _ 1.5 Q | Ves=10V, Ip=2.0A @ Vash) Gate Threshold Voltage 2.0 4.0 V_ | Vps=Ves, lp= 250nA Ots Forward Transconductance 0.80 | _ S | Vps=50V, Ip=2.0A @- lpss Drain-to-Source Leakage Current 2 pA Vos=200V, Vas=0V _ | 250 Vps=160V, Vas=0V, Ty=125C lass Gate-to-Source Forward Leakage _ _ 100 nA Vas=20V Gate-to-Source Reverse Leakage _ | -100 Ves=-20V Qg Total Gate Charge _ _ 8.2 Ip=3.3A Qas Gate-to-Source Charge _ _ 1.8 nC | Vps=160V Qga Gate-to-Drain ("Miller") Charge _ _ 4.5 Vas=10V See Fig. 6 and 13 ta(on) Turn-On Delay Time _ 8.2 _ Vpp=100V tr Rise Time _ 17 _ ns [p=3.3A taiott) Turn-Off Delay Time _ 14 Re=242 tr Fall Time _ 8.9 _ Rp=30Q See Figure 10 Lp Internal Drain inductance _ 45 _ B mn ped & nH | from package ol Ls Internal Source Inductance |75)/ and center of die contact 8 Ciss Input Capacitance _ 140 _ Ves=0V Coss Output Capacitance _ 53 _ PF | Vps=25V Ciss Reverse Transfer Capacitance _ 15 f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. | Units Test Conditions Is Continuous Source Current _ _ 33 MOSFET symbol 5 (Body Diode) . A showing the ism Pulsed Source Current ~!1| | 4 integral reverse (Body Diode) p-n junction diode. s Vsp Diode Forward Voltage _ _ 2.0 V_ | Ty=25C, Is=3.3A, Vas=OV tre Reverse Recovery Time | 150 | 310 | ns_ | Ty=25C, Ir=3.3A Qr Reverse Recovery Charge | 0.60) 1.4 | uC | di/dt=100A/is ton Forward Turn-On Time Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp) Notes: @ Repetitive rating; pulse width limited by Isps3.3A, di/dts70A/us, VpD a L = 10 c 2,5 RS Om = 39 o N 2.0 E aa 6 1 HAE 10 56 1.6 23 a Qo 10 s a Z om 0.5 Vog = 50V g 20us PULSE WIDTH a 0.0 Vos = 10V 4 10 -60 -40 -20 0 20 40 60 60 100 120 140 160 Ves, Gate-to-Source Voltage (volts) Ty, Junction Temperature (C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature 169IRF610S Cgs + Cgg. Cag Cod + Capacitance (pF) Ves, Gate-to-Source Voltage (volts) SEE FIGUAE 13 10! Vps, Drain-to-Source Voltage (volts) Qg, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage tot OPERATION IN THIS AAEA LIMITED eS Pps (ON) & = = A 10 5 & 5 = o 3 So 5 oO & 40 3 5 5 Q g a 3 Ao. i L a Tc =25C vf Ty=1509C 4 Veg = OV SINGLE 10 10 0.4 . . 0 O.41 2 Ss 4 2 5 40 2 5 10? 2 5 103 Vsp, Source-to-Drain Voltage (volts) Vos, Drain-to-Source Voltage (volts) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 170Ip, Drain Current (Amps) IRF610S Vps D.U.T. ="Vop YP toVv Pulse Width < 1us Duty Factor s 0.1% L 25 50 76 100 125 160 Ves asl ' Tc, Case Temperature (C) ta(on) tr tavort) tf Fig 9. Maximum Drain Current Vs. Fig 10b. Switching Time Waveforms Case Temperature 10 Oo oe N o 1 ip) Cc 9 a Q c @ & SINGLE PULSE 50.4 (THERMAL RESPONSE) 7 - Pow lat 1-4 ere NOTES: 1. DUTY FACTOR, D=t4/t2 ; 2. PEAK Ty=Pom x Zthyc + Te 4 105 10-4 103 19? o.4 4 10 ty, Rectangular Pulse Duration (seconds) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 171IRF610S Vary tp to obtain Vps > required las 140 120 100 BO 60 40 20 Eas, Single Pulse Energy (mu) = 0V , Vos 0 25 50 75 100 125 150 Starting Ty, Junction Temperature(C) as -- Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Current Regulator 7 | 2 i : ! a gq Oo zw 4 8 2 a a. we Vas Ve Ig * | Charge Current Gaming hestators Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1505 Appendix B: Package Outline Mechanical Drawing See page 1507 Appendix C: Part Marking Information See page 1515 International Appendix D: Tape & Reel Information See page 1519 Rectifier 172