February 2006 1 M9999-022706
MIC860 Micrel, Inc.
MIC860
Teeny™ Ultra Low Power Op Amp
General Description
The MIC860 is a rail-to-rail output, operational amplifier
in TeenySC70 packaging. The MIC860 provides 4MHz
gain-bandwidth product while consuming an incredibly low
30µA supply current.
The SC70 packaging achieves significant board space savings
over devices packaged in SOT-23 or MSOP-8 packaging.
The SC70 occupies approximately half the board area of a
SOT-23 package.
Features
Teeny™ SC70 packaging
4MHz gain-bandwidth product
30µA supply current
Rail-to-Rail output
Ground sensing at input common mode to GND
Common mode to GND
Drive large capactive loads
Applications
Portable equipment
PDAs
Pagers
Cordless Phones
Consumer Electronics
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
Teeny is a trademark of Micrel, Inc.
Ordering Information
Part Number Ambient
Temp. Range Package
Standard Marking Pb-Free Marking*
MIC860BC5 A32 MIC860YC5 A32 –40ºC to +85ºC SC-70-5
* Underbar marking may not be to scale.
Pin Configuration
OUT V+
IN− IN+
13
4 5
2
V−
A32
Part
Identification
SC-70
Functional Pinout
OUT V+
IN− IN+
13
4 5
2
V−
MIC860 Micrel, Inc.
M9999-022706 2 February 2006
Absolute Maximum Ratings (Note 1)
Supply Voltage (VV+ – V–) ..........................................+6.0V
Differentail Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V
Input Voltage (VIN+ – VIN–) ...................V+ + 0.3V, V –0.3V
Lead Temperature (soldering, 5 sec.) ........................ 260°C
Output Short Circuit Current Duration ...................Indefinite
Storage Temperature (TS) ......................................... 150°C
ESD Rating, Note 3
Operating Ratings (Note 2)
Supply Voltage (V+ – V–) ........................ +2.43V to +5.25V
Ambient Temperature Range ...................... –40°C to +85°C
Package Thermal Resistance ................................ 450°C/W
Electrical Characteristics
V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
Symbol Parameter Condition Min Typ Max Units
VOS Input Offset Voltage –20 –5 15 mV
–25 20 mV
Input Offset Voltage Temp Coefficient
20 µV/°C
IB Input Bias Current 20 pA
IOS Input Offset Current 10 pA
VCM Input Voltage Range CMRR > 60dB 1 1.8 V
CMRR Common-Mode Rejection Ratio 0 < VCM < 1.35V 38 76 dB
PSRR Power Supply Rejection Ratio Supply voltage change of 3V 40 78 dB
AVOL Large-Signal Voltage Gain RL = 5k, VOUT 2V peak to peak 50 66 dB
RL = 100k, VOUT 2V peak to peak 66 81 dB
RL = 500k, VOUT 2V peak to peak 76 91 dB
VOUT Maximum Output Voltage Swing RL = 5k
V+–70mV V+–34mV
V
RL = 500k
V+–2mV V+–0.7mV
V
VOUT Minimum Output Voltage Swing RL = 5k
V–+11mV V–+ 50mV
mV
RL = 500k
V–+0.2mV V–+ 2mV
mV
GBW Gain-Bandwidth Product 4 MHz
SR Slew Rate 3 V/µs
ISC Short-Circuit Output Current Source 4.5 6 mA
Sink 10 16 mA
IS Supply Current No Load 30 50 µA
V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS Input Offset Voltage –20 –5 20 mV
Input Offset Voltage Temp Coefficient
20 µV/°C
IB Input Bias Current 20 pA
IOS Input Offset Current 10 pA
VCM Input Voltage Range CMRR > 60dB 3.5 4.2 V
CMRR Common-Mode Rejection Ratio 0 < VCM < 3.5V 44 77 dB
PSRR Power Supply Rejection Ratio Supply voltage change of 1V 40 79 dB
AVOL Large-Signal Voltage Gain RL = 5k, VOUT 4.8V peak to peak 52 66 dB
RL = 100k, VOUT 4.8V peak to peak 67 80 dB
RL = 500k, VOUT 4.8V peak to peak 75 90 dB
February 2006 3 M9999-022706
MIC860 Micrel, Inc.
Symbol Parameter Condition Min Typ Max Units
VOUT Maximum Output Voltage Swing RL = 5k
V+–75mV V+–37mV
V
RL = 500k
V+–35mV V+–4mV
V
VOUT Minimum Output Voltage Swing RL = 5k
V–+14mV V–+ 40mV
mV
RL = 500k
V–+0.4mV V–+ 5mV
mV
GBW Gain-Bandwidth Product 4 MHz
SR Slew Rate 3 V/µs
ISC Short-Circuit Output Current Source 15 23 mA
Sink 30 47 mA
IS Supply Current No Load 33 55 µA
Note 1. Exceeding the absolute maximum rating may damage the device.
Note 2. The device is not guaranteed to function outside its operating rating.
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensetive
Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase.
MIC860 Micrel, Inc.
M9999-022706 4 February 2006
Test Circuits
Test Circuit 1. AV = 10 Test Circuit 2. AV = 2
Test Circuit 3. AV= 1
170k
48k
10k 10k
10µF
0.1µF
10µF
50Ω
50Ω
100µF
0.1µF
10µF
100µF
All resistors:
1% metal film
Output
Input
V+
V—
MIC860
1
2
4
3
5
BNC
BNC
Test Circuit 5. Positive Power Supply Rejection Ratio Measurement
Test Circuit 4. AV = –1
February 2006 5 M9999-022706
MIC860 Micrel, Inc.
Typical Characteristics
25
27
29
31
33
35
37
39
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Supply Current
vs. Temperature
5V
2.7V
-60
-50
-40
-30
-20
-10
0
-40 -20 0 20 40 60 80 100
Short Circuit Current (sink)
vs. Temperature
5V
2.7V
0
5
10
15
20
25
30
-40 -20 0 20 40 60 80 100
Short Circuit Current (source)
vs. Temperature
5V
2.7V
-6
-5.5
-5
-4.5
-4
-3.5
-3
-40 -20 0 20 40 60 80 100
Offset Voltage
vs. Temperature
5V
2.7V
25
27
29
31
33
35
37
39
41
0.5 1 1.5 2 2.5 3
SUPPLY VOLTAGE (±V)
Supply Current vs.
Supply Voltage
-40°C
+85°C
+25°C
V+ = 5V 0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0 5 10 15 20 25 30
OUTPUT CURRENT (mA)
Output Voltage vs.
Output Current (Sourcing)
-40°C
+85°C
+25°C
V+ = 5V
0
1
2
3
4
5
6
0 10 20 30 40 50 60
OUTPUT CURRENT (mA)
Output Voltage vs.
Output Current (Sinking)
-40°C
+85°C
+25°C
V+ = 5V 0
5
10
15
20
25
30
0 0.5 1 1.5 2 2.5 3
Short Circuit Current vs.
Supply Voltage (Sourcing)
-40°C
+85°C
+25°C
V+ = 5V 0
10
20
30
40
50
60
0 0.5 1 1.5 2 2.5 3
Short Circuit Current vs.
Supply Voltage (Sinking)
-40°C
+85°C
+25°C
V+ = 5V
0
0.5
1
1.5
2
2.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
COMMON-MODE VOLTAGE (V)
Offset Voltage vs.
Common-Mode Voltage
-40°C
+85°C
+25°C
V+ = 5V
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0 0.54 1.08 1.62 2.16 2.7
COMMON-MODE VOLTAGE (V)
Offset Voltage vs.
Common-Mode Voltage
-40°C
+85°C
+25°C
Supply = 2.7V -0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0.1 1 10 100 1000 10000
RESISTIVE LOAD (kΩ)
Output Voltage Swing vs.
Resistive Load (Sinking)
VCC = 5V
VCC = 2.7V
TEMPERATURE (°C) TEMPERATURE (°C)
TEMPERATURE (°C)
SUPPLY VOLTAGE (±V)SUPPLY VOLTAGE (±V)
MIC860 Micrel, Inc.
M9999-022706 6 February 2006
60
80
100
1 10 100 1000 10000
RESISTIVE LOAD (kΩ)
Open Loop Gain vs.
Resistive Load
V
CC
= 2.7V
V
CC
= 5.0V
-0.5
0.5
1.5
2.5
3.5
4.5
5.5
0.1 1 10 100 1000 10000
RESISTIVE LOAD (kΩ)
Output Voltage Swing vs.
Resistive Load (Sourcing)
VCC = 5V
VCC = 2.7V
February 2006 7 M9999-022706
MIC860 Micrel, Inc.
Functional Characteristics
-225
-180
-135
-90
-45
0
45
90
135
180
225
0
1x
14
0
1x1 5
0
1x
16
0
1
x
17
01x2 7
Unity Gain Frequency
Response
-25
-20
-15
-10
-5
0
5
10
15
20
25
V
CC
= 5V
R
L
= 5k
C
L
= 2pF
A
V
= 1
-225
-180
-135
-90
-45
0
45
90
135
180
225
0
1x
1
4
0
1
x
1
5
0
1x
1
6
01x
1
7
01x
2
7
Gain Bandwidth and
Phase Margin
-50
-40
-30
-20
-10
0
10
20
30
40
50
VCC = 5V
AV = 10
RL = 1M
CL = 2pF
-225
-180
-135
-90
-45
0
45
90
135
180
225
0
1x
14
0
1
x
15
01x
16
01x
17
01x2 7
Gain Frequency Response
-25
-20
-15
-10
-5
0
5
10
15
20
25
V
CC
= 5V
A
V
= 2
C
L
= 2pF
R
L
= 5k
-225
-180
-135
-90
-45
0
45
90
135
180
225
01
x1
4
01x
1
5
01
x
1
6
01
x1
7
01x2
7
Unity Gain Frequency
Response
-25
-20
-15
-10
-5
0
5
10
15
20
25
VCC = 2.7V
RL = 5k
CL = 2pF
AV = 1
0
0.5
1
1.5
2
2.5
3
3.5
4
1 10 100 1000
CAPACITIVE LOAD (pF)
Gain Bandwidth vs.
Capacitve Load
V
CC
= 5.0V
V
CC
= 2.7V
Note: To drive
capacitive load,
a 500 series
resistor would
help stablize
the circuit
0
10
20
30
40
50
60
70
80
90
01x1
0
01x1
1
01x1
2
01x1
3
01x1
4
01x1
5
01x1
6
FREQUENCY (Hz)
PSRR vs. Frequency
V
CC
= 2.7V
0
10
20
30
40
50
60
70
80
90
0
1x
1
0
0
1x
1
1
01x1
2
01x1
3
01x1
4
0
1x
1
5
01x1
6
FREQUENCY (Hz)
PSRR vs. Frequency
V
CC
= 5V
MIC860 Micrel, Inc.
M9999-022706 8 February 2006
Smal Signal Response
Test Circuit 3: AV = 1
TIME 500ns/div
AV = 1
V+ = 2.7V
CL = 50pF
RL = 500Ω
TIME 500ns/div
AV = 1
V+ = 5V
CL = 50pF
RL = 500Ω
Smal Signal Response
Test Circuit 3: AV = 1
Small Signal Response
Test Circuit 3: AV = 1
TIME 500ns/div
AV = 1
V+ = 2.7V
CL = 2 pF
RL = 5kΩ
Small Signal Response
Test Circuit 3: AV = 1
TIME 500ns/div
AV = 1
V+ = 5V
CL = 2 pF
RL = 5kΩ
Small Signal Response
Test Circuit 3: AV = 1
TIME 500ns/div
AV = 1
V+ = 5V
CL = 50pF
RL = 5kΩ
Small Signal Response
Test Circuit 3: AV = 1
TIME 500ns/div
AV = 1
V+ = 2.7V
CL = 50pF
RL = 5kΩ
February 2006 9 M9999-022706
MIC860 Micrel, Inc.
TIME 500ns/div
AV = 1
V+ = 2.7V
CL = 2pF
RL = 1MΩ
Smal Signal Response
Test Circuit 3: AV = 1
Small Signal Response
Test Circuit 4: AV = −1
AV = −1
V+= 2.7V
CL = 2pF
RL = 5kΩ
TIME 500ns/div
Small Signal Response
Test Circuit 4: AV = −1
AV = −1
V+= 5V
CL = 2pF
RL = 1MΩ
TIME 500ns/div
TIME 500ns/div
Small Signal Response
Test Circuit 4: AV = −1
AV = −1
V+= 5V
CL = 2pF
RL = 5kΩ
Small Signal Response
Test Circuit 4: AV = −1
AV = −1
V+= 2.7V
CL = 2pF
RL = 1MΩ
TIME 500ns/div
OUTPUT
50mV/div
MIC860 Micrel, Inc.
M9999-022706 10 February 2006
TIME 250µs/div
Rail to Rail Output Operation
Test Circuit 2: AV = 2
AV = 2
V+ = 5V
CL = 2pF
RL = 1MΩ
∆VP-P = 5V
TIME 250µs/div
Rail to Rail Output Operation
Test Circuit 2: AV = 2
AV = 2
V+ = 2.7V
CL = 2pF
RL = 1MΩ
∆VP-P = 2.7V
∆V = 730mV
∆t = 300ns
Rise Slew Rate = 2.4V/µs
Fall Slew Rate = 4.7V/µs
Large Signal Pulse Response
Test Circuit 3: AV = 1
TIME 5µs/div
OUTPUT
50mV/div
AV = 1
CL = 50pF
RL = 5kΩ
V+ = 2.7V
∆V = 2.84V
∆t = 700ns
Rise Slew Rate = 4.1V/µs
Fall Slew Rate = 2.9V/µs
Large Signal Pulse Response
Test Circuit 3: AV = 1
TIME 5µs/div
AV = 1
CL = 2pF
RL = 5kΩ
V+ = 5V
TIME 250µs/div
Rail to Rail Output Operation
Test Circuit 2: AV = 2
AV = 2
V+ = 5V
CL = 2pF
RL = 5kΩ
∆VP-P = 5V
TIME 250µs/div
Rail to Rail Output Operation
Test Circuit 2: AV = 2
AV = 2
V+ = 2.7V
CL = 2pF
RL = 5kΩ
∆VP-P = 2.7V
February 2006 11 M9999-022706
MIC860 Micrel, Inc.
Applications Information
Power Supply Bypassing
Regular supply bypassing techniques are recommended.
A 10µF capacitor in parallel with a 0.1µF capacitor on both
the positive and negative supplies are ideal. For best perfor-
mance all bypassing capacitors should be located as close
to the op amp as possible and all capacitors should be low
ESL (equivalent series inductance), ESR (equivalent series
resistance). Surface-mount ceramic capacitors are ideal.
Supply and Loading Considerations
The MIC860 is intended for single supply applications con-
figured with a grounded load. It is not advisable to operate
the MIC860 with either:
1). A grounded load and split supplies (+/-V) or
2). A single supply where the load is terminated above
ground.
Under the above conditions, if the load is less than 20kOhm
and the output swing is greater than 1V(peak), there may be
some instability when the output is sinking current.
MIC860 Micrel, Inc.
M9999-022706 12 February 2006
Package Information
SC70-5
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2002 Micrel, Inc.