www.irf.com 1
03/25/09
IRG6I320UPbF
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
l Low VCE(on) and Energy per Pulse (EPULSETM)
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
PDP TRENCH IGBT
E
C
G
n-channel
GC E
Gate Collector Emitter
TO-220AB
Full-Pak
G
CE
PD - 97351A
Absolute Maximum Ratings
Parameter Units
V
GE
Gate-to-Emitter Voltage V
I
C
@ T
C
= 25°C Continuous Collector Current, V
GE
@ 15V A
I
C
@ T
C
= 100°C Continuous Collector, V
GE
@ 15V
I
RP
@ T
C
= 25°C Repetitive Peak Current
c
P
D
@T
C
= 25°C Power Dissipation W
P
D
@T
C
= 100°C Power Dissipation
Linear Derating Factor W/°C
T
J
Operating Junction and °C
T
STG
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw N
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
Junction-to-Case
d
––– 3.2 °C/W
Max.
12
160
24
±30
300
-40 to + 150
10lb
x
in (1.1N
x
m)
39
16
0.31
V
CE
min 330 V
V
CE(ON)
typ. @ I
C
= 24A 1.45 V
I
RP
max @ T
C
= 25°C 160 A
T
J
max 150 °C
Key Parameters
IRG6I320UPbF
2www.irf.com
Notes:
Half sine wave with duty cycle <= 0.05, ton=2µsec.
Rθ is measured at TJ of approximately 90°C.
Pulse width 400µs; duty cycle 2%.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
CES
Collector-to-Emitter Breakdown Voltage 330 ––– ––– V
V
(BR)ECS
Emitter-to-Collector Breakdown Voltage
e
30 ––– ––– V
∆ΒV
CES
/T
J
Breakdown Voltage Temp. Coefficient ––– 0.30 ––– V/°C
––– 1.20 –––
––– 1.45 1.65
1.95 ––– V
––– 2.20 –––
––– 2.26 –––
V
GE(th)
Gate Threshold Voltage 2.6 ––– 5.0 V
V
GE(th)
/T
J
Gate Threshold Voltage Coefficient ––– -10 ––– mV/°C
I
CES
Collector-to-Emitter Leakage Current ––– 1.0 10
––– 5.0 –––
20 100
––– 75 –––
I
GES
Gate-to-Emitter Forward Leakage ––– ––– 100 nA
Gate-to-Emitter Reverse Leakage ––– ––– -100
g
fe
Forward Transconductance ––– 28 ––– S
Q
g
Total Gate Charge ––– 46 ––– nC
Q
gc
Gate-to-Collector Charge ––– 7.7 –––
t
d(on)
Turn-On delay time ––– 24 ––– I
C
= 12A, V
CC
= 196V
t
r
Rise time ––– 20 ––– ns R
G
= 10, L=210µH, L
S
= 150nH
t
d(off)
Turn-Off delay time ––– 89 ––– T
J
= 25°C
t
f
Fall time ––– 70 –––
t
d(on)
Turn-On delay time ––– 23 ––– I
C
= 12A, V
CC
= 196V
t
r
Rise time ––– 52 ––– ns R
G
= 10, L=200µH, L
S
= 150nH
t
d(off)
Turn-Off delay time ––– 130 ––– T
J
= 150°C
t
f
Fall time ––– 140 –––
t
st
Shoot Through Blocking Time 100 ––– ––– ns
E
PULSE
Energy per Pulse µJ
Human Body Model
Machine Model
C
ies
Input Capacitance ––– 1160 –––
C
oes
Output Capacitance ––– 61 ––– pF
C
res
Reverse Transfer Capacitance ––– 38 –––
L
C
Internal Collector Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
L
E
Internal Emitter Inductance ––– 7.5 ––– from package
V
CE
= 330V, V
GE
= 0V, T
J
= 125°C
Static Collector-to-Emitter Voltage
V
CE(on)
V
GE
= 15V, I
CE
= 48A, T
J
= 150°C
e
V
GE
= 15V, I
CE
= 48A
e
––– 280 –––
V
CE
= 25V, I
CE
= 12A
V
CE
= 200V, I
C
= 12A, V
GE
= 15V
e
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 25°C
––– 240 –––
V
CC
= 240V, V
GE
= 15V, R
G
= 5.1
V
CE
= V
GE
, I
CE
= 250µA
V
CE
= 330V, V
GE
= 0V
V
CE
= 330V, V
GE
= 0V, T
J
= 150°C
V
GE
= 30V
V
GE
= -30V
V
CE
= 330V, V
GE
= 0V, T
J
= 100°C
µA
ƒ = 1.0MHz, See Fig.13
and center of die contact
L = 220nH, C= 0.10µF, V
GE
= 15V
L = 220nH, C= 0.10µF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 100°C
Conditions
V
GE
= 0V, I
CE
= 500µA
Reference to 25°C, I
CE
= 1mA
V
GE
= 15V, I
CE
= 60A
e
V
GE
= 15V, I
CE
= 12A
e
V
GE
= 15V, I
CE
= 24A
e
V
GE
= 0V, I
CE
= 1 A
ESD
Class 2
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
V
CE
= 30V
V
GE
= 0V
IRG6I320UPbF
www.irf.com 3
Fig 1. Typical Output Characteristics @ 25°C
Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C
Fig 2. Typical Output Characteristics @ 75°C
Fig 5. Typical Transfer Characteristics Fig 6. VCE(ON) vs. Gate Voltage
0 5 10 15 20
VGE, Voltage Gate-to-Emitter (V)
0
5
10
15
20
25
VCE, Voltage Collector-to-Emitter (V)
TJ = 25°C
TJ = 150°C
IC = 12A
012345678910
VCE (V)
0
20
40
60
80
100
120
140
160
180
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
012345678910
VCE (V)
0
20
40
60
80
100
120
140
160
180
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
012345678910
VCE (V)
0
20
40
60
80
100
120
140
160
180
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
012345678910
VCE (V)
0
20
40
60
80
100
120
140
160
180
200
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
2468101214
VGE, Gate-to-Emitter Voltage (V)
0
20
40
60
80
100
120
140
160
ICE, Collector-to-Emitter Current (A)
TJ = 25°C
TJ = 150°C
IRG6I320UPbF
4www.irf.com
Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
Fig 9. Typical EPULSE vs. Collector Current
Fig 11. EPULSE vs. Temperature Fig 12. Forrward Bias Safe Operating Area
180 190 200 210 220 230 240
VCE, Collector-to-Emitter Voltage (V)
500
1000
1500
2000
2500
3000
Energy per Pulse (µJ)
L = 220nH
C = 0.4µF
100°C
25°C
100 120 140 160 180 200 220
IC, Peak Collector Current (A)
0
500
1000
1500
2000
2500
3000
Energy per Pulse (µJ)
VCC
= 240V
L = 220nH
C = variable 100°C
25°C
25 50 75 100 125 150
TJ, Temperature (ºC)
0
500
1000
1500
2000
2500
3000
3500
4000
Energy per Pulse (µJ)
VCC
= 240V
L = 220nH
t = 1µs half sine C= 0.4µF
C= 0.1µF
C= 0.2µF
25 50 75 100 125 150
TC, Case Temperature C)
0
5
10
15
20
25
IC, Collector Current (A)
25 50 75 100 125 150
Case Temperature (°C)
0
20
40
60
80
100
120
140
160
Repetitive Peak Current (A)
PW= 2µs
Duty cycle <= 0.05
Half Sine Wave
1 10 100 1000
VCE (V)
0.1
1
10
100
1000
IC (A)
10µsec
100µsec
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
IRG6I320UPbF
www.irf.com 5
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
050 100 150 200
VCE, Collector-toEmitter-Voltage(V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
VGS = 0V, f = 1 MHZ
Cies = Cge + Cgd, Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
0 1020304050
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
IC = 12A
VCES
= 240V
VCES
= 150V
VCES
= 60V
1E-006 1E-005 0.0001 0.001 0.01 0.1 110
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.1937 0.000114
0.5877 0.001905
1.0534 0.096764
1.3665 2.1458
IRG6I320UPbF
6www.irf.com
Fig 16a. tst and EPULSE Test Circuit Fig 16b. tst Test Waveforms
Fig 16c. EPULSE Test Waveforms
1K
VCC
DUT
0
L
Fig. 17 - Gate Charge Circuit (turn-off)
DRIVER
DUT
L
C
VCC
RG
RG
B
A
Ipulse
Energy
V
CE
I
C
Current
PU LSE A
PU LSE B
t
ST
IRG6I320UPbF
www.irf.com 7
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/09
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
/2*2,17+($66(0%/</,1(.
$66(0%/('21::
(;$03/(
/27&2'(
7+,6,6$1,5),*
:,7+$66(0%/< 3$57180%(5
,17(51$7,21$/
5(&7,),(5
.
,5),*
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH /,1(.
:((.
<($5
'$7(&2'(
/27&2'(
$66(0%/<

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/