File Number 1894 N-Channel Enhancement-Mode Power Field-Effect Transistors 2.25A and 2.75A, 450V - 500V lpsion = 1.50 and 2.00 Features: a SOA is power-dissipation limited mw Nanosecond switching speeds m Linear transter characteristics @ High input impedance m Majority carrier device The IRFF430, IRFF431, IRFF432 and IRFF433 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The iIRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. Standard Power MOSFETs IRFF430, IRFF431, IRFF432, IRFF433 N-CHANNEL ENHANCEMENT MODE s 92CS-3374} TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE DRAIN (CASE) JEDEC TO-205AF Absolute Maximum Ratings Parameter IRFF430 IRFF431 IRFF432 IRFF433 Units Vos Drain Source Voltage @ 500 450 500 450 v VDGR Orain Gate Voltage (Rgg = 20 kak) 500 450 500 450 v Ip @ Te = 26C Continuous Brain Current 2.75 2.75 2.25 2.25 A lom Pulsed Drain Current @ 1 "1 EX 9.0 A VG Gate Source Voltage +20 v Pp @Te = 25C Max. Power Dissipation 25 (See Fig. 14} Ww Linear Derating Factor 0.2 (See Fig. 14) w/?C IL Inductive Current, Clamped (See Fig. 15 and 16) L = 100uH A 1 WW l 9.0 | 9.0 Ty Operating Junction and . Tstg Storage Temperature Range 55 to 150 c Lead Temperature 300 (0.063 in. (1.6mm) from case for 108} C 3-299Standard Power MOSFETs IRFF430, IRFF431, IRFF432, IRFF433 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. Units Test Conditions BVogss _ Drain Source Breakdown Voltage IRFF430 _ - tarrag2 | 600 | v Vas = OV IRFF431 _ IRFE433 450 - - ip = 25024 Vosith) Gate Threshold Voltage ALL 2.0 = 4.0 Vv Vos = Vgs- Ip = 250nA \gss__ Gate Source Leakage Forward ALL = _ 100 nA Ves = 20V \ggg ___ Gate Source Leakage Reverse ALL = - ~400 nA Vos = -20V Ipsg Zero Gate Voltage Drain Current ALL = - 250 BA Vos = Max. Rating, Vgg = OV = - 4000 BA Vps = Max. Rating x 0.8, Vgg = OV, Tc = 125C Ipton} On-State Drain Current @ IRFF430 | 5 75 _ _ A YDS > !Dion) X RDSion) max. VGs = 10V inFrag3 | 225 | ~ 4 Rosion) Static Drain Source On-State IRFF430 _ Resistance @ IRFF431 137) 15 2 y IOV. In = 1.5A meras2( Te | oy 2 os Sees IRFF433 . . Ofs Forward Transconductance @) ALL 1.5 2.5 - S$ w) Vos > Ipien) * Rosion) max.: |p = 1-54 Ciss Input Capacitance ALL = 600 = pF Vgg = OV, Vpg = 25V. f = 1.0 MHz Coss __ Output Capacitance ALL = 100 _ pF See Fig. 10 Crss Reverse Transfer Capacitance ALL = 30 _ pr tdjon)___ Turn-On Delay Time ALL = = 30 ns Vop = 225V, Ip = 1.5A.Zy = 152 tr Rise Time ALL = ~ 30 ns See Fig. 17 tgoff) Turn-Off Delay Time ALL ~ - 55 ns {MOSFET switching times are essentially tf Fall Time ALL _ _ 30 nS independent of operating temperature.) Q, Total Gate Charge _ Veg = 10V, Ip =6.0A, Vpg = 0.8V Max. Rating. 9 {Gate-Source Plus Gate-Drain} ALL 22 30 ne See Fig. 18 for test circuit. (Gate charge is essentially independent of operating temperature.) Qgs Gate-Source Charge ALL ~ " 17 ac Qgg Gate-Drain (Miller) Charge ALL - "1 v7 ac Lp Internal Drain Inductance ALL - 5.0 > nH Measured from the Modified MOSFET drain lead, 5mm symbol showing the {0.2 in.) from header internal device to center of die. inductances. o Lo ls internal Source inductance ALL _ 15 - aH Measured from the source lead, 5mm @ (0.2 in.) from header bs to source bonding pad. s Thermal Resistance [ Rinse Junction-to-Case ] ALL L = I > T 5.0 [ C/W | RihJA _Junction-to-Ambient {at [ - [ - [175 [ ecw | Free air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRFF430 _ _ 2.75 A Modified MOSFET symbol (Body Diode) IRFF431 * showing the integral 2 IRFF432 reverse P-N junction rectifier. inFF4g3 | | ~ | 228] A Isiy Pulse Source Current IRFF430 _ _ eT A a {Bady Diode) @ IAFF431 IRFF432 inFrags | ~ | ~ | & | A . Vsp Diode Forward Voltage @ IREFA30 _ _ 14 v To = 25C, Ig = 2.750, Vgg = OV ieerass] - | - | 13 v To = 25C, Ig = 2.254, Vgg = OV tre Reverse Recovery Time ALL = 800 | ns Ty = 160C, Ip = 2.75A, dig/dt = 100A/ys Qar Raverse Recovered Charge ALL ~ 4.6 - uc Ty = 180C, Ip = 2.754, dip/dt = 100A/ps ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Ty = 28C to 150C. 3-300 @Pulse Test: Pulse width < 300ys, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).Standard Power MOSFETs IRFF430, IRFF431, IRFF432, IRFF433 BD es Vos > tofon) * B = & 2 z = < 2 & = Ty: asec = s Ty = 250 oc a I 3 z Ty = -650C z & = 3 2 2 0 1 2 3 4 5 7 Yas. GATE TO-SOURCE VOLTAGE IVOLTS) 0 too 200 300 Vas, ORAIN-TO SQURCE VOLTAGE (VOLTS) . : ge . Fig. 2 - Typical transfer characteristics. Fig. 1 - Typical output characteristics. OPERATION IN THES AREA IS LIMITED BY Rosion) 4 4 g = & 3 a x = = = = -b o a 2 n L bene td fra 2 a o = s 1. DUTY FACTOR, B= 7 0.02 2. PER UNIT BASE = Rtnjc .0 DEG. C/W. THEAMAL IMPEDANCE} 3. Tym Te Pom Ztnacttl ZenscltY/ Benge. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) 0.01 10-82 5 tod 2 5 193 2 5 2 2 wt 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig, 5 - Maximum effective transient thermal impedance, junction-to-case vs. pulse duration. 3-301Standard Power MOSFETs IRFF430, IRFF431, IRFF432, IRFF433 Ty = 150C Ty 12596 fs, TRANSCONDUCTANCE (SIEMENS) ion, REVERSE ORAIN CURRENT (AMPERES) Vins > 'Dton) * RDSton) max. us PULSE Ty = 25C 0 1 2 3 4 5 0 1 2 3 4 Ip, ORAIN CURRENT (AMPERES) Vsp. SOURCE.TO-ORAIN VOLTAGE (VOLTS) Fig. 6 - Typical transconductance vs. drain current. Fig. 7 - Typical source-drain diode forward voltage. 22 ~ Rpsion). ORAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 6 08 BVpss, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) -40 a 40 80 120 160 02 40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 - Breakdown voltage vs. temperature. Fig. 9 - Normalized on-resistance vs. temperature. 2000 0 s 1 MH 1600 Cigg * Gy + Cg, Cup SHORTED ge Cray " Cog 2 Cos 5 Com Co tt 3 w 1200 5 os * 3 z > < 8 < 3 & 200 8 . So e = < s 400 8 Ip =a FOR TEST CIRCUIT F 0 10 20 30 40 50 9 8 16 24 2 40 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS} Oy. TOTAL GATE CHARGE (nC) Fig. 10 - Typical capacitance vs. drain-to-source voltage. Fig. 11 - Typical gate charge vs. gate-to-source voltage. 3-302Standard Power MOSFETs IRFF430, IRFF431, IRFF432, IRFF433 3.0 Agsion) ) MEASURED MSOURATION. INITIAL Ty = 25C, PMEATING EFFECT OF 2.0 us PULSE IS MINIMAL.) g = 24 ws Z _ = Z & = S18 : 2 3 3 z 12 - < z 3 = s 5 s 8 i Q 0 5 10 1 20 25 28 50 15 100 125 150 Ip, ORAIN CURRENT (AMPERES) Te, CASE TEMPERATURE (9C) Fig. 12 - Typical on-resistance vs. drain current. Fig. 13 - Maximum drain current vs. case temperature. VARY tp TO OBTAIN REQUIRED PEAK 1, Vgg* 10V fot _ L. 3 E,*O0.58Vpsg Ec = 0.75 BVogs S Fig. 15 - Clamped inductive test circuit. a a = 2 & 0 20 40 60 80 100 120 140 Tr, CASE TEMPERATURE (C) Fig. 14 - Power vs. temperature derating curve. Fig. 16 - Clamped inductive waveforms. o os CURRENT USOLATEO REGULATOR SUPPLY) | SAME TYPE T O.2uf BATTERY Vpp = 225 75 2 PAF = tkHe Vo TO SCOPE CURRENT = CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 17 - Switching time test circuit. Fig. 18 - Gate charge test circuit. 3-303