1
Case Styles
MUR1620CT
TO-220AB
MURB1620CT
D2PAK
MURB1620CT-1
TO-262
VRRM Peak Repetitive Peak Reverse Voltage 200 V
IF(AV) Average Rectified Forward Current Per Leg 8.0 A
Total Device, (Rated VR ), TC = 150°C Total Device 16
IFSM Non Repetitive Peak Surge Current Per Leg 100
IFM Peak Repetitive Forward Current Per Leg 16
(Rated VR , Square wave, 20 KHz), TC = 150°C
TJ, TSTG Operating Junction and Storage Temperatures -65 to 175 °C
Parameters Max Units
MUR1620CT
MURB1620CT
MURB1620CT-1
Bulletin PD-20718 rev. C 12/03
trr = 25ns
IF(AV) = 16Amp
VR = 200V
Ultrafast Recovery Time
Low Forward Voltage Drop
Low Leakage Current
175°C Operating Junction Temperature
Features
Description/ Applications
International Rectifier's MUR.. series are the state of the art Ultra fast recovery rectifiers specifically designed with
optimized performance of forward voltage drop and ultra fast recovery time.
The planar structure and the platinum doped life time control, guarantee the best overall performance, ruggedness and
reliability characteristics.
These devices are intended for use in the output rectification stage of SMPS, UPS, DC-DC converters as well as free-
wheeling diode in low voltage inverters and chopper motor drives.
Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over
dissipation in the switching element and snubbers.
Absolute Maximum Ratings
Ultrafast Rectifier
www.irf.com
MUR1620CT, MURB1620CT, MURB1620CT-1
Bulletin PD-20718 rev. C 12/03
2www.irf.com
trr Reverse Recovery Time --35 ns IF = 1.0A, diF/dt = 50A/µs, VR = 30V
--25 I
F = 0.5A, IR = 1.0A, IREC = 0.25A
-20- T
J = 25°C
34 TJ = 125°C
IRRM Peak Recovery Current - 1.7 - A TJ = 25°C
- 4.2 - TJ = 125°C
Qrr Reverse Recovery Charge - 23 - nC TJ = 25°C
-75- T
J = 125°C
Parameters Min Typ Max Units
TJMax. Junction Temperature Range - - - 65 to 175 °C
TStg Max. Storage Temperature Range - - - 65 to 175
RthJC Thermal Resistance, Junction to Case Per Leg - - 3.0
RthJA Thermal Resistance, Junction to Ambient Per Leg - - 50
RthCS Thermal Resistance, Case to Heatsink - 0.5 -
Wt Weight - 2.0 - g
- 0.07 - (oz)
Mounting Torque 6.0 - 12 Kg-cm
5.0 - 10 lbf.in
VBR, VrBreakdown Voltage, 200 - - V IR = 100µA
Blocking Voltage
VFForward Voltage - - 0.975 V IF = 8A
- - 0.895 V IF = 8A, TJ = 150°C
IRReverse Leakage Current - - 5 µA VR = VR Rated
- - 250 µA TJ = 150°C, VR = VR Rated
CTJunction Capacitance - 25 - pF VR = 200V
LSSeries Inductance - 8.0 - nH Measured lead to lead 5mm from package body
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Thermal - Mechanical Characteristics
Dynamic Recovery Characteristics @ TJ = 25°C (unless otherwise specified)
IF = 8A
VR = 160V
diF /dt = 200A/µs
c Mounting Surface, Flat, Smooth and Greased
c
°C/W
Parameters Min Typ Max Units Test Conditions
Parameters Min Typ Max Units Test Conditions
Bulletin PD-20718 rev. C 12/03
3
MUR1620CT, MURB1620CT, MURB1620CT-1
www.irf.com
Fig. 2 - Typical Values Of Reverse Current
Vs. Reverse Voltage
Fig. 1 - Typical Forward Voltage Drop Characteristics
Fig. 4 - Max. Thermal Impedance Z thJC Characteristics
Forward Voltage Drop - VFM (V)
Instantaneous Forward Current - I F
(A)
Reverse Voltage - VR (V)
Reverse Voltage - VR (V)
Junction Capacitance - C T (pF)
t1, Rectangular Pulse Duration (Seconds)
Thermal Impedance Z thJC (°C/W)
Fig. 3 - Typical Junction Capacitance
Vs. Reverse Voltage
0.1
1
10
100
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
T = 175˚C
T = 150˚C
T = 25˚C
J
J
J
0.001
0.01
0.1
1
10
100
0 50 100 150 200 250
150˚C
125˚C
100˚C
25˚C
T = 175˚C
J
10
100
1000
1 10 100 1000
T = 25˚C
J
Reverse Current - I R
(µA)
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1
Single Pulse
(Thermal Resistance)
D = 0.50
D = 0.20
D = 0.10
D = 0.05
D = 0.02
D = 0.01
2
t
1
t
P
DM
Notes:
1. Duty factor D = t1/t 2
2. Peak Tj = Pdm x ZthJC + Tc
MUR1620CT, MURB1620CT, MURB1620CT-1
Bulletin PD-20718 rev. C 12/03
4www.irf.com
Fig. 5 - Max. Allowable Case Temperature
Vs. Average Forward Current
Fig. 6 - Forward Power Loss Characteristics
(2) Formula used: TC = TJ - (Pd + PdREV) x RthJC ;
Pd = Forward Power Loss = IF(AV) x VFM @ (IF(AV) / D) (see Fig. 6);
PdREV = Inverse Power Loss = VR1 x IR (1 - D); IR @ VR1 = rated VR
Average Forward Current - IF(AV)
(A) Average Forward Current - IF(AV) (A)
Allowable Case Temperature (°C)
Average Power Loss ( Watts )
trr ( ns )
Qrr ( nC )
di
F
/dt (A/µs )
di F
/dt (A/µs )
0
40
80
120
160
200
100 1000
I
F
= 30 A
I
F
= 15 A
I
F
= 8 A
V = 160V
T = 125˚C
T = 25˚C
R
J
J
10
20
30
40
50
60
100 1000
I
F
= 30 A
I
F
= 15 A
I
F
= 8 A
V = 160V
T = 125˚C
T = 25˚C
R
J
J
130
140
150
160
170
180
036912
DC
Square wave (D = 0.50)
Rated Vr applied
see note (2)
0
2
4
6
8
10
036912
DC
RMS Limit
D = 0.01
D = 0.02
D = 0.05
D = 0.10
D = 0.20
D = 0.50
Fig. 8 - Typical Stored Charge vs. di F /dt
Fig. 7 - Typical Reverse Recovery vs. di F /dt
Bulletin PD-20718 rev. C 12/03
5
MUR1620CT, MURB1620CT, MURB1620CT-1
www.irf.com
IRFP250
D.U.T.
L = 70µH
V = 200V
R
0.01
G
D
S
dif/dt
ADJUST
t
a
t
b
t
rr
Q
rr
I
F
I
RRM
I
RRM
0.5
di(rec)M/dt
0.75 I
RRM
5
4
3
2
0
1
di /dt
f
Fig. 10 - Reverse Recovery Waveform and Definitions
Fig. 9- Reverse Recovery Parameter Test Circuit
Reverse Recovery Circuit
di F /dt
di F /dt
4. Qrr - Area under curve defined by t rr
and IRRM
5. di (rec) M / dt - Peak rate of change of
current during t b portion of t rr
1. diF/dt - Rate of change of current through zero
crossing
2. IRRM - Peak reverse recovery current
3. trr - Reverse recovery time measured from zero
crossing point of negative going IF to point where
a line passing through 0.75 IRRM and 0.50 IRRM
extrapolated to zero current
Q rr = t rr x I RRM
2
MUR1620CT, MURB1620CT, MURB1620CT-1
Bulletin PD-20718 rev. C 12/03
6www.irf.com
3.78 (0.15)
3.54 (0.14)
10.54 (0.41)
MAX.
DIA.
15.24 (0.60)
14.84 (0.58)
2.92 (0.11)
2.54 (0.10)
1
TERM 2
14.09 (0.55)
13.47 (0.53)
3.96 (0.16)
3.55 (0.14)
0.94 (0.04)
0.69 (0.03)
4.57 (0.18)
4.32 (0.17)
30.61 (0.02) MAX.
5.08 (0.20) REF.
1.32 (0.05)
1.22 (0.05)
6.48 (0.25)
6.23 (0.24)
0.10 (0.004)
1.40 (0.05)
1.15 (0.04)
2.89 (0.11)
2.64 (0.10)
1
3
2.04 (0.080) MAX.
2
2
2
BASE
COMMON
CATHODE
123
ANODE
COMMON
CATHODE
A
NODE
12
Conforms to JEDEC Outline TO-220AB
Dimensions in millimeters and (inches)
Outline Table
Dimensions in millimeters and (inches)
Modified JEDEC outline TO-262
Bulletin PD-20718 rev. C 12/03
7
MUR1620CT, MURB1620CT, MURB1620CT-1
www.irf.com
10.16 (0.40)
REF.
8.89 (0.35)
4.57 (0.18)
4.32 (0.17)
0.61 (0.02) MAX.
5.08 (0.20) REF.
1.32 (0.05)
1.22 (0.05)
13
6.47 (0.25)
6.18 (0.24)
93°
REF.
2.61 (0.10)
2.32 (0.09)
5.28 (0.21)
4.78 (0.19)
4.69 (0.18)
4.20 (0.16)
0.55 (0.02)
0.46 (0.02)
14.73 (0.58)
15.49 (0.61)
1.40 (0.055)
1.14 (0.045)
3X
0.93 (0.37)
0.69 (0.27)
2X
11.43 (0.45)
17.78 (0.70)
8.89 (0.35)
3.81 (0.15)
2.08 (0.08)
2X
2.54 (0.10)
2X
MINIMUM RECOMMENDED FOOTPRINT
2
Conforms to JEDEC Outline D 2 PAK
Dimensions in millimeters and (inches)
2
BASE
COMMON
CATHODE
123
ANODE
COMMON
CATHODE
A
NODE
12
Outline Table
Ordering Information Table
Device Code
15
24
3
1- Ultrafast MUR Series
2-B = D
2Pak / TO-262
None = TO-220AB
3- Current Rating (16 = 16A)
4- Voltage Rating (20 = 200V)
5- CT = Center Tap (Dual) TO-220 /D2PAK/ TO-262
6- "-1" = TO-262 Option
MUR B 16 20 CT -1
6
MUR1620CT, MURB1620CT, MURB1620CT-1
Bulletin PD-20718 rev. C 12/03
8www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 12/03
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level.
Qualification Standards can be found on IR's Web site.