

FDC2612

200V N-Channel PowerTrench® MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$ and fast switching speed.

Applications

DC/DC converter

Features

- 1.1 A, 200 V. $R_{DS(ON)} = 725 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$
- High performance trench technology for extremely low $R_{\mbox{\scriptsize DS(ON)}}$
- High power and current handling capability
- Fast switching speed
- Low gate charge (8nC typical)

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		200	V	
V _{GSS}	Gate-Source Voltage		± 20	V	
I _D	Drain Current - Continuous	(Note 1a)	1.1	A	
	- Pulsed		4		
P _D	Maximum Power Dissipation	(Note 1a)	1.6	W	
		(Note 1b)	0.8		
T_J, T_{STG}	Operating and Storage Junction Tem	perature Range	-55 to +150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	30	°C/W

Package Marking and Ordering Information

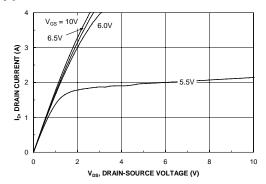
Device Marking	Device	Reel Size	Tape width	Quantity	
.612	FDC2612	7"	8mm	3000 units	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	200			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		246		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 160 V, V _{GS} = 0 V			1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}$, $V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	4	4.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-8.7		mV/°C
R _{DS(on)}	Static Drain–Source On Resistance	$V_{GS} = 10 \text{ V}, \qquad I_D = 1.1 \text{ A} $ $V_{GS} = 10 \text{ V}, I_D = 1.1 \text{ A}, T_J = 125 ^{\circ}\text{C}$		605 1133	725 1430	mΩ
$I_{D(on)}$	On-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 10 \text{ V}$	4			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 1.1 \text{ A}$		4.4		S
Dynami	c Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 100 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		234		pF
Coss	Output Capacitance	f = 1.0 MHz		18		рF
C _{rss}	Reverse Transfer Capacitance]		8		pF
Switchii	ng Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 100 \text{ V}, \qquad I_D = 1 \text{ A},$		6	12	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		6	12	ns
$t_{d(off)}$	Turn-Off Delay Time	7		17	30	ns
t _f	Turn-Off Fall Time	7		8	16	ns
Q _g	Total Gate Charge	$V_{DS} = 100 \text{ V}, \qquad I_{D} = 1.1 \text{ A},$		8	11	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		1.6		nC
Q_{gd}	Gate-Drain Charge	<u>1</u>		2.2		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source				1.3	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{S} = 1.3 \text{ A(Note 2)}$		0.8	1.2	V

Notes:

^{1.}R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,UC} is guaranteed by design while R_{0,CA} is determined by the user's board design.

a) 78°C/W when mounted on a 1in² pad of 2 oz copper



b) 156°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300μs, Duty Cycle < 2.0%

Typical Characteristics

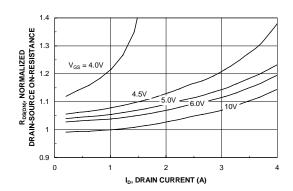
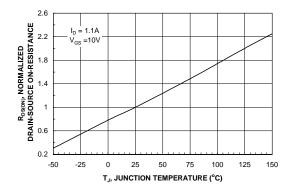



Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

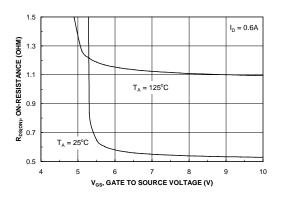
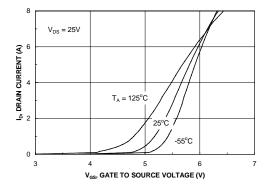



Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

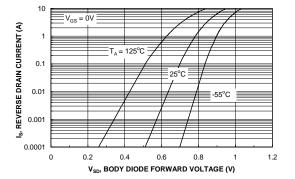



Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

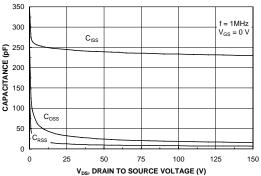


Figure 7. Gate Charge Characteristics.

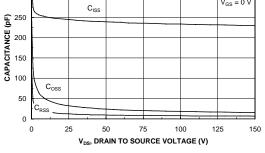


Figure 8. Capacitance Characteristics.

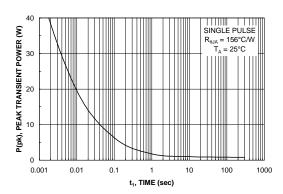
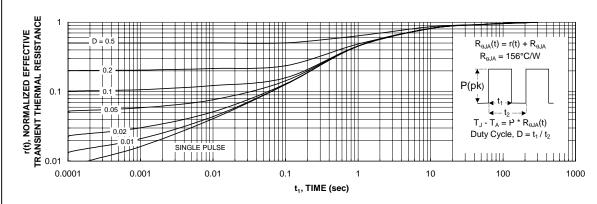
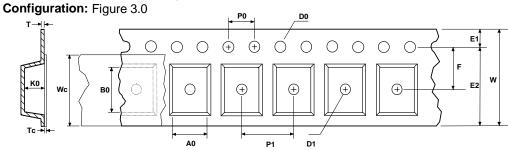


Figure 9. Maximum Safe Operating Area.

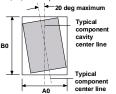



Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

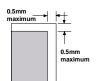
SuperSOT[™]-6 Tape and Reel Data FAIRCHILD SEMICONDUCTOR® SSOT-6 Packaging Configuration: Figure 1.0 Packaging Description: Customize Label Fackaging Description: SSOT-6 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 3,000 units per T or 177cm diameter reel. The reels are dark blue in color and is made of polystyren plastic (anti-static coated). Other option comes in 10,000 units per 13" or 330cm diameter reel. This and some other options are described in the Packaging Information table. Antistatic Cover Tape These full reels are individually barcode labeled and These full reels are individually barcode labeled and placed inside a pizza box (illustrated in figure 1.0) made of recyclable corrugated brown paper with a Fairchild logo printing. One pizza box contains five reels maximum. And these pizza boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped. Embossed F63TNR Carrier Tape Label 631 631 SSOT-6 Packaging Information Standard Packaging Option D87Z o flow code **SSOT-6 Unit Orientation** TNR Packaging type TNR 3,000 10,000 Qty per Reel/Tube/Bag Reel Size 7" Dia 13" Barcode Label Box Dimension (mm) 193x183x80 355x333x40 Max qty per Box 15,000 30,000 Weight per unit(am) 0.0158 0.0158 Weight per Reel (kg) 0.1440 0.4700 Note/Comments Barcode Label Barcode Label 355mm x 333mm x 40mm Intermediate container for 13" reel option Barcode Label sample 193mm x 183mm x 80mm Pizza Box for Standard Option LOT: CBVK741B019 QTY: 3000 **SSOT-6 Tape Leader and Trailer** D/C1: D9842AB QTY1: SPEC REV: D/C2: QTY2: CPN: FAIRCHILD SEMICONDUCTOR CORPORATION (F63T Configuration: Figure 2.0 0 0 0 0 0 0 \circ 0 , , , Components Cover Tape Trailer Tape 300mm minimum or Leader Tape 500mm minimum or 75 empty pockets 125 empty pockets

SSOT-6 Embossed Carrier Tape

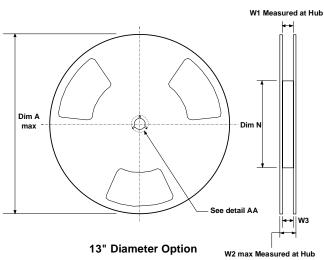


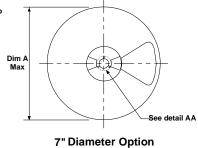
	Dimensions are in millimeter													
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
SSOT-6 (8mm)	3.23 +/-0.10	3.18 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.125 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.37 +/-0.10	0.255 +/-0.150	5.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).



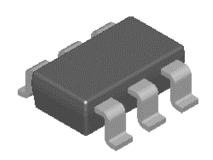
Sketch A (Side or Front Sectional View)
Component Rotation

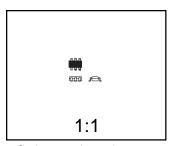

Sketch B (Top View)


Component Rotation

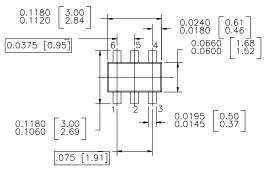
Sketch C (Top View)
Component lateral movement

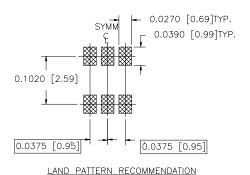
SSOT-6 Reel Configuration: Figure 4.0


Dim C Dim D DETAIL AA

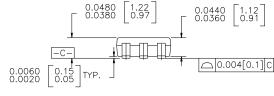

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9

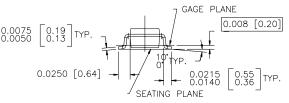
SuperSOT[™]-6 Package Dimensions


SuperSOT™-6 (FS PKG Code 31, 33)



Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]


Part Weight per unit (gram): 0.0158



LAND FAITERN RECOMME

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

NOTES: UNLESS OTHERWISE SPECIFIED

1.0 STANDARD LEAD FINISH : 150 MICROINCHES 93.81 MICROMETERS) MINIMUM TIN / LEAD (SOLDER) ON COPPER.

 $2.0\ \mathsf{NO}\ \mathsf{JEDEC}\ \mathsf{REGISTRATION}\ \mathsf{AS}\ \mathsf{OF}\ \mathsf{JULY}\ 1996$

SUPER SOT 6 LEADS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM}

EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™
FACT™ MicroPak™ Quiet Series™ UHC™
FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER® UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.				

Rev. H4