K4C89183AF
- 1 - REV. 0.7 Jan. 2005
288Mb x18 Network-DRAM2 Specification
Version 0.7
K4C89183AF
- 2 - REV. 0.7 Jan. 2005
Revision History
Version 0.0 (Oct. 2002)
- First Release
Version 0.01 (Nov. 2002)
- Changed die revision from D-die to F-die
- Corrected typo
- Corrected DQS to DS and QS(DQS -> DS and QS) in AC timing table and timing diagram.
Version 0.1 (Apr. 2003)
- Added 800Mbps(400Mhz) product
- Changed operating temperature from Ta to Tc.
- Changed capacitance of ADDR/CMD/CLK
- Changed tDSS(DS input Falling Edge to Clock Setup Time)
- Added CL7 for 800Mbps
- Deleted TSOP package outline
Version 0.11 (Apr. 2003)
- Corrected typo in page 3.(Deleted bi-directional strobe)
- Corrected min. Vref to VDDQ/2x95% in page 7
Version 0.2 (Aug. 2003)
- Added package physical dimension
- Extracted 800Mbps(G7) binning from target spec ( G7 will be added in the future)
- Changed DC test condition
- Changed low frequency spec like below
- Changed AC test load picture
Version 0.3 (Nov. 2003)
- Changed Packge type from die-exposed to full molded
- Changed Package code in Partnumber
From To
Min Max Min Max
Addr/CMD/CLK 1.5 2.5 1.5 3.0
From To
F6 FB F5 G7 F6 FB F5
CL4 0.9 0.9 1.0 0.75 0.75 0.8 1.0
CL5 0.9 0.9 1.0 0.75 0.75 0.8 1.0
CL6 0.9 0.9 1.0 0.75 0.75 0.8 1.0
CL7 - - - 0.75 - - -
From To Changed point
IDD1S,IDD2N,IDD2P,IDD5,IDD6 IDD1S,IDD2N,IDD2P,IDD5B,IDD6 Changed condition
- IDD4W, IDD4R newly inserted
From To
Unit : ns F6 FB F5 F6 FB F5
tCK max@CL=4 7.5 7.5 7.5 6.0 6.0 6.0
tCK max@CL=5 7.5 7.5 7.5 6.0 6.0 6.0
tCK max@CL=6 7.5 7.5 7.5 6.0 6.0 6.0
K4C89183AF
- 3 - REV. 0.7 Jan. 2005
Version 0.31 (Mar., 2004)
- Corrected typo. in page 7 (Changed operating Temperature to 85’C, case temperature)
Version 0.4 (Jun., 2004)
- Changed from "target" to "Preliminary"
- Changed min. tCK@CL5 to 3.5ns in "-F6"
Version 0.5 (Aug., 2004)
- Deleted self-refresh function and BL2 from spec
Version 0.51 (Aug., 2004)
- Corrected error in page 54, "Package Out line Drawing". (Just 4 balls were missing in drawing)
Version 0.6 (Nov., 2004)
- Deleted "preliminary"
- Changed current value in page 9
Version 0.7 (Jan., 2005)
- Deleted the tDQSQA in page 11
- Deleted the tSSK in page 11
From To
F6 F6
tCK Clock Cycle Time (min) CL = 4 4.0 ns 4.0 ns
CL = 5 3.33 ns 3.5 ns
CL = 6 3.0ns 3.0ns
K4C89183AF
- 4 - REV. 0.7 Jan. 2005
4,194,304-WORDS x 4 BANKS x 18-BITS DOUBLE DATA RATE Network-DRAM
DESCRIPTION
K4C89183AF is a CMOS Double Data Rate Network-DRAM containing 301,989,888 memory cells. K4C89183AF is organized as
4,194,304-words x 4 banks x18 bits. K4C89183AF feature a fully synchronous operation referenced to clock edge whereby all opera-
tions are synchronized at a clock input which enables high performance and simple user interface coexistence. K4C89183AF can oper-
ate fast core cycle compared with regular DDR SDRAM.
K4C89183AF is suitable for Server, Network and other applications where large memory density and low power consumption are
required. The Output Driver for Network-DRAM is capable of high quality fast data transfer under light loading condition.
FEATURES
Parameter K4C89183AF
F6 FB F5
tCK Clock Cycle Time (min) CL = 4 4.0 ns 4.5 ns 5.0 ns
CL = 5 3.5 ns 3.75 ns 4.5 ns
CL = 6 3.0ns 3.33 ns 4.0 ns
tRC Random Read/Write Cycle Time (min) 20.0 ns 22.5 ns 25 ns
tRAC Random Access Time (min) 20.0 ns 22.5 ns 25 ns
IDD1S Operating Current (single bank) (max) 320mA 300mA 280mA
IDD2P Power Down Current (max) 70mA 65mA 60mA
• Fully Synchronous Operation
- Double Data Rate (DDR)
- Data input/output are synchronized with both edges of DS / QS.
- Differential Clock (CLK and CLK) inputs
- CS, FN and all address input signals are sampled on the positive edge of CLK.
- Output data (DQs and QS) is aligned to the crossings of CLK and CLK.
• Fast clock cycle time of 3.0 ns minimum
- Clock : 333 MHz maximum
- Data : 666 Mbps/pin maximum
• Quad Independent Banks operation
• Fast cycle and Short Latency
• Uni-directional Data St robe
• Distributed Auto-Refresh cycle in 3.9us
• Power Down Mode
• Variable Write Length Control
• Write Latency = CAS Latency-1
• Programable CAS Latency and Burst Length
- CAS Laatency = 4, 5, 6
- Burst Length = 4
• Organization : 4,194,304 words x 4 banks x 18 bits
• Power Supply Voltage VDD : 2.5V ± 0.125V
VDDQ : 1.4V 1.9V
• 1.8V CMOS I/O comply with SSTL - 1.8 (half strength driver) and HSTL
• Package : 60Ball BGA, 1.0mm x 1.0mm Ball pitch
• Notice : Network-DRAM is tradema rk of Samsung Electronics., Co LTD
K4C89183AF
- 5 - REV. 0.7 Jan. 2005
Pin Names
Pin Name
A0 ~ A14 Address Input
BA0, BA1 Bank Address
DQ0 ~ DQ17 Data Input/Output
CS Chip Select
FN Function Control
PD Power Down Control
CLK, CLK Clock Input
DS/QS Write/Read data strobe
VDD Power (+2.5V)
VSS Ground
VDDQ Power (+1.8V)
(for I/O buffer)
VSSQ Ground
(for I/O buffer)
VREF Reference Voltage
NC No Connection
ball pitch=1.0 x 1.0mm
PIN ASSIGNMENT (TOP VIEW)
x18
Index
Vss
DQ16
DQ15
DQ14
DQ12
DQ11
DQ10
DQ9
VREF
CLK
A12
A11
A8
A5
VSS
DQ17
VssQ
VDDQ
DQ13
VssQ
VDDQ
VssQ
DS
Vss
CLK
PD
A9
A7
A6
A4
DQ0
VDDQ
VssQ
DQ4
VDDQ
VssQ
VDDQ
QS
VDD
FN
CS
BA1
A0
A2
A3
VDD
DQ1
DQ2
DQ3
DQ5
DQ6
DQ7
DQ8
A14
A13
NC
BA0
A10
A1
VDD
123456
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
K4C89183AF
- 6 - REV. 0.7 Jan. 2005
Block Diagram
CLK
CLK
PD
DLL
CLOCK
BUFFER
COMMAND
DECODER
CS
FN
CONTROL
GENERATOR
SIGNAL
ADDRESS
BUFFER
MODE
REGISTER
UPPER ADDRESS
LATCH
LOWER ADDRESS
LATCH
COLUMN DECODER
ROW DECODER
BANK #3
BANK #2
BANK #1
BANK #0
MEMORY
CELL
ARRAY
DATA
CONTROL AND LATCH
CIRCUIT
BURST
COUNTER
READ
DATA
BUFFER
WRITE
DATA
BUFFER
DQ BUFFER
A0 ~ A14
BA0, BA1
REFRESH
COUNTER
WRITE ADDRESS
LATCH
ADDRESS
COMPARATOR
DS
DQ0 ~ DQ17
To Each Block
Note : The K4C89183AD configuration is 4 Bank of 32768 x 128 x 18 of cell array with the DQ pins numbered DQ0~DQ17.
QS
K4C89183AF
- 7 - REV. 0.7 Jan. 2005
Absolute Maximum Ratings
Caution : Conditions outside the limits listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device.
The device is not meant to be operated under conditions outside the limits described in the operational section of this specifi-
cation. Exposure to "ABSOLUTE MAXIMUM RATINGS" conditions for extended periods may affect device reliability.
Recommended DC,AC Operating Conditions (Notes : 1) (Tcase = 0 ~ 85 OC)
Symbol Parameter Rating Units Notes
VDD Power Supply Voltage -0.3 ~ 3.3 V
VDDQ Power Supply Voltage (for I/O buffer) -0.3 ~ VDD + 0.3 V
VIN Input Voltage -0.3 ~ VDD + 0.3 V
VOUT DQ pin Voltage -0.3 ~ VDDQ + 0.3 V
VREF Input Reference Voltage -0.3 ~ VDDQ + 0.3 V
TOPR Operating Temperature 0 ~ 85 OCCase Temp.
TSTG Storage Temperature -55 ~ 150 OC
TSOLDER Soldering Temperature(10s) 260 OC
PDPower Dissipation 2 W
IOUT Short Circuit Output Current ± 50 mA
Symbol Parameter Min Typ Max Units Notes
VDD Power Supply V oltage 2.375 2.5 2.625 V
VDDQ Power Supply Voltage (for I/O Buffer) 1.7 1.8 1.9 V
VREF Input Reference Voltage VDDQ/2x95% VDDQ/2 VDDQ/2x105% V 2
VIH (DC) Input DC high Voltage VREF+0.125 - VDDQ+0.2 V 5
VIL(DC) Input DC Low Voltage -0.1 - VREF-0.125 V 5
VICK (DC) Differential Clock DC Input Voltage -0.1 - VDDQ+0.1 V 10
VID (DC) Input Differential Voltage. CLK and CLK Inputs (DC) 0.4 - VDDQ+0.2 V 7,10
VIH (AC) Input AC High Voltage VREF+0.2 - VDDQ+0.2 V 3,6
VIL (AC) Input AC Low Voltage -0.1 - VREF-0.2 V 4,6
VID (AC) Input Differential Voltage. CLK and CLK Inputs (AC) 0.55 - VDDQ+0.2 V 7,10
VX (AC) Differential AC Input Cross Point Voltage VDDQ/2-0.125 - VDDQ/2+0.125 V 8,10
VISO (AC) Differential Clock AC Middle Level VDDQ/2-0.125 - VDDQ/2+0.125 V 9,10
K4C89183AF
- 8 - REV. 0.7 Jan. 2005
1. All voltages are referenced to Vss, VssQ.
2. VREF is expected to track variations in VddQ DC level of the transmitting device.
Peak to peak AC noise on VREF may not exceed ± 2% of VREF (DC).
3. Overshoot Iimit : VIH(max.) = VddQ + 0.7V with a pulse width <= 5ns
4. Undershoot Iimit : VIL(min.) = -0.7V with a pulse width <= 5ns
5. VIH(DC) and VIL(DC) are levels to maintain the current logic state.
6. VIH(AC) and VIL(AC) are levels to change to the new logic state.
7. VID is magnitude of the difference between CLK input level and CLK input level.
8. The value of Vx(AC) is expected to equal VddQ/2 of the transmitting device.
9. VISO means [VICK(CLK) + VICK(CLK)]/2
10. Refer to the figure below.
Notes:
11. In the case of external termination, VTT(Termination Voltage) should be gone in the range of VREF(DC) ± 0.04V.
Pin Capacitance (VDD= 2.5V, VDDQ = 1.8V, f = 1 MHz, Ta = 25oC)
Note : These parameters are periodically sampled and not 100% tested.
Symbol Parameter Min Max Delts Units
CIN Input Pin Capacitance 1.5 3.0 0.25 pF
CINC Clock Pin (CLK, CLK) Capacitance 1.5 3.0 0.25 pF
CI/O DQ, DS, QS Capacitance 2.5 3.5 0.5 pF
CNC NC Pin Capacitance - 1.5 - pF
CLK
CLK
VSS
VID(AC)
0 V Differential
VISO
VSS
VICK
VISO(min)
VXVX
VXVX
VICK VICK VICK
VISO(max)
VXVID(AC)
K4C89183AF
- 9 - REV. 0.7 Jan. 2005
DC Characteristics and Operating Conditions (VDD = 2.5V ± 0 .12 5V, VDDQ = 1.8V ± 0.1V, Tcase = 0~85 °C)
Parameter Symbol Max Units Notes
F6 FB F5
Operating Current
One bank Read or Write operation;
tCK = min, IRC = min, IOUT = 0mA;
Burst Length = 4, CAS Latency = 6, Free running QS mode;
0V VIN VIL(AC) (max.), VIH(AC)(min.) VIN VDDQ;
Address inputs change up to 2 times during minimum IRC,
Read data change twice per clock cycle
IDD1S 320 300 280
mA
1, 2
Standby Current
All Banks : inactive state;
tCK=min, CS = VIH, PD = VIH;
0V VIN VIL(AC)(max.), V IH(AC)(min.) VIH VDDQ;
Other input signals change one time during 4*tCK,
DQ and DS inputs change twice per clock cycle
IDD2N 100 95 90 1
Standby (Power Down) Current
All Banks : inactive state;
tCK=min, PD = VIL (Power Down);
CAS Latency = 6, Free running QS mode;
0V VIN VIL(AC)(max), VIH(AC)(min) VIN VDDQ;
Other input signals change one time during 4*tCK,
DQ and DS inputs are floating(VDDQ/2)
IDD2P 70 65 60 1
Write Operating Current(4 Banks)
4 Bank intereaved continuous burst write operation;
tCK = min, IRC = min;
Burst Length = 4, CAS Latency = 6, Free running QS mode;
0V VIN VIL(AC) (max.), VIH(AC)(min.) VIN VDDQ;
Address inputs change once per clock cycle,
DQ and DS inputs change twice per clock cycle
IDD4W 650 600 550 1
Read Operating Current(4 Banks)
4 Bank intereaved continuous burst write operation;
tCK = min, IRC = min, IOUT = 0mA;
Burst Length = 4, CAS Latency = 6, Free running QS mode;
0V VIN VIL(AC) (max.), VIH(AC)(min.) VIN VDDQ;
Address inputs change once per clock cycle,
Read data change twice per clock cycle
IDD4R 650 600 550 1,2
Burst Auto-Refresh Current
Refresh command at every IREFC interval;
tCK = min, IREFC= min;
CAS Latency = 6, Free running QS mode;
0V VIN VIL(AC) (max.), VIH(AC) (min.) VIN VDDQ;
Address change up to 2 times during minimum IREFC,
DQ and DS inputs change twice per clock cycle
IDD5B 250 235 210 1,3
K4C89183AF
- 10 - REV. 0.7 Jan. 2005
DC Characteristics and Operating Conditions (VDD = 2.5V ± 0.125V, VDDQ = 1.8V ± 0.1V, Tcase = 0~85 °C)
Notes : 1. These parameters depend on the cycle rate and these values are measured at a cycle rate with the minimum values of
tCK, tRC and IRC.
2. These parameters depend on the output loading. The specified va lues are obtained with the output open.
3. IDD5B is specified under burst refresh condition. Actual system should use distributed refresh that meet to tREFI specification
4. Refer to output driver characteristics for the detail. Output Driver Strength is selected by Extended Mode Register.
Parameter Symbol Min Max Unit Notes
Input Leakage Current (0V<=VIN<=VddQ, All other pins not under test = 0V) ILI -5 5 uA
Output Leakage Current (Output disabled, 0V<=VOUT<=VddQ) ILO -5 5 uA
VREF Current IREF -5 5 uA
Normal O utput
Driver
Output DC Current
(VDDQ = 1.7 ~ 1.9V)
VOH = 1.420V IOH(DC) -5.6 -
mA
4
VOL = 0.280V IOL(DC) 5.6 - 4
Strong Output
Driver VOH = 1.420V IOH(DC) -9.8 - 4
VOL = 0.280V IOL(DC) 9.8 - 4
Weak Output
Driver VOH = 1.420V IOH(DC) -2.8 - 4
VOL = 0.280V IOL(DC) 2.8 -
Normal O utput
Driver
Output DC Current
(VDDQ = 1.4 ~ 1.6V)
VOH = VDDQ - 0.4 IOH(DC) -4 -
mA
3
VOL = 0.4V IOL(DC) -4 - 3
Strong Output
Driver VOH = VDDQ - 0.4 IOH(DC) -8 - 3
VOL = 0.4V IOL(DC) -8 - 3
Weak Output
Driver Not defined IOH(DC) --
Not defined IOL(DC) --
K4C89183AF
- 11 - REV. 0.7 Jan. 2005
AC Characteristics and Operating Conditions (Notes : 1, 2)
Symbol Parameter F6 FB F5 Units Notes
Min Max Min Max Min Max
tRC Random Cycle Time 20.0 - 22.5 - 25 -
ns
3
tCK Clock Cycle Time
CL = 4 4.0 6.0 4.5 6.0 5.0 6.0 3
CL = 5 3.33 6.0 3.75 6.0 4.5 6.0 3
CL = 6 3.0 6.0 3.33 6.0 4.0 6.0 3
tRAC Random Access Time - 20.0 - 22.5 - 25 3
tCH Clock High Time 0.45*tCK -0.45*tCK -0.45*tCK -3
tCL Clock Low Time 0.45*tCK -0.45*tCK -0.45*tCK -3
tCKQS QS Access Time from CLK -0.45 0.45 -0.45 0.45 -0.5 0.5 3, 8
tQSQ Data Output Skew from QS - 0.2 - 0.25 - 0.3 4
tAC Data Access Time from CLK -0.5 0.5 -0.5 0.5 -0.6 0.6 3, 8
tOH Data Output Hold Time from CLK -0.5 0.5 -0.5 0.5 -0.6 0.6 3, 8
tHP CLK half period ( minium of Actual tCH, tCL)min(tCH,
tCL)-min(tCH,
tCL)-min(tCH,
tCL)-3
tQSP QS(Read) Pulse Widt h tHP-tQHS -tHP-tQHS -tHP-tQHS -4, 8
tQSQV Data Output Valid Time from QS tHP-tQHS -tHP-tQHS -tHP-tQHS -4, 8
tQHS DQ, QS Hold skew factor - 0.055x
tCK+0.17 -0.055x
tCK+0.17 -0.055x
tCK+0.17
tDQSS DS(Write) Low to High Setup Time 0.8*tCK 1.2*tCK 0.8*tCK 1.2*tCK 0.8*tCK 1.2*tCK 3
tDSPRE DS(Write) Preamble Pulse Width 0.4*tCK -0.4*tCK -0.4*tCK -4
tDSPRES DS First Input Setup Time 0 - 0 - 0 - 3
tDSPREH DS First Low Input Hold Time 0.3*tCK -0.3*tCK -0.3*tCK -3
tDSP DS High or Low Input Pulse Width 0.45*tCK 0.55*tCK 0.45*tCK 0.55*tCK 0.45*tCK 0.55*tCK 4
tDSS DS Input Falling Edge to Clock Setup
Time
CL = 4 0. 75 - 0.8 - 1.0 - 3, 4
CL = 5 0. 75 - 0.8 - 1.0 - 3, 4
CL = 6 0. 75 - 0.8 - 1.0 - 3, 4
CL = 7 ------ 3, 4
tDSPST DS(Wri te) Postamble Pulse Width 0.45*tCK -0.45*tCK 0.45*tCK -4
tDSPSTH DS(Write) Postamble Hold Time
CL = 4 0. 75 - 0.8 - 1.0 - 3, 4
CL = 5 0. 75 - 0.8 - 1.0 - 3, 4
CL = 6 0.75 - 0.8 - 1.0 3, 4
CL = 7 ------ 3, 4
tDS Data Input Setup Time from DS 0.3 - 0.35 - 0.4 - 4
tDH Data Input Hold Time from DS 0.3 - 0.35 - 0.4 - 4
tIS Command / Address Input Setup Time 0.6 - 0.6 - 0.7 - 3
tIH Command / Address Input Hold Time 0.6 - 0.6 - 0.7 - 3
K4C89183AF
- 12 - REV. 0.7 Jan. 2005
AC Characteristics and Operating Conditions (Notes : 1, 2) (Continued)
Symbol Parameter F6 FB F5 Units Notes
Min Max Min Max Min Max
tLZ Data-out Low Impedance Time from CLK -0.5 - -0.5 - -0.6 - 3, 6, 8
tHZ Data-out High Impedance Time from CLK - 0.5 - 0.5 - 0.6 3, 7, 8
tQPDH Last Output to PD High Hold Time 0 - 0 - 0 -
tPDEX Power Down Exit Time 0.6 - 0.6 - 0.7 - 3
tTInput Transition Time 0.1 1 0.1 1 0.1 1
tFPDL PD Low Input Window for Self-Refres h Entry -0.5*tCK 5-0.5*tCK 5-0.5*tCK 53
tREFI Auto-Refresh Average Interval 0.4 3.9 0.4 3.9 0.4 3. 9 us 5
tPAUSE Pause Time after Power-up 200 - 200 - 200 -
IRC Random Read/Write Cycle Time
(Applicable to Same Bank)
CL = 4 5-5-5-
Cycle
CL = 5 6-6-6-
CL = 6 7-7-7-
CL = 7 ------
IRCD RDA/WRA to LAL Command Input Delay
(Applicable to Same Bank) 111111
IRAS LAL to RDA/WRA Command Input Delay
(Applicable to Same Bank)
CL = 4 4-4-4-
CL = 5 5-5-5-
CL = 6 6-6-6-
CL = 7 ------
IRBD Random Bank Access Delay
(Applicable to Other Bank) 2-2-2-
IRWD LAL following RDA to WRA Delay
(Applicable to Other Bank) BL = 4 3 - 3 - 3 -
IWRD LAL following WRA to RDA Delay
(Applicable to Other Bank) 1-1-1-
IRSC Mode Register Set Cycle Time
CL = 4 7-7-7-
CL = 5 7-7-7-
CL = 6 7-7-7-
CL = 7
IPD PD Low to Inactive State of Input Buffer - 2 - 2 - 2
IPDA PD High to Active State of Inp ut Buffer 1 - 1 - 1 -
IPDV Power down mode valid from REF com-
mand
CL = 4 19 - 19 - 19 -
CL = 5 23 - 23 - 23 -
CL = 6 25 - 25 - 25 -
CL = 7
IREFC Auto-Refresh Cycle Time
CL = 4 19 - 19 - 19 -
CL = 5 23 - 23 - 23 -
CL = 6 25 - 25 - 25 -
CL = 7
ILOCK DLL Lock-on Time (Applicable to RDA command) 200 - 200 - 200 -
K4C89183AF
- 13 - REV. 0.7 Jan. 2005
AC Test Conditions
Symbol Parameter Value Units Notes
VIH(min) Input high voltage (minimum) VREF + 0.2 V
VIL (max) Input low voltage (maximum) VREF - 0.2 V
VREF Input re ference volt ag e VddQ/2 V
VTT Termination voltage VREF V
VSWING Input signal peak to peak swing 0.7 V
VRDifferential clock input reference level VX(AC) V
VID(AC) Input differential voltage 1.0 V
SLEW Input signal minimum slew rate 2.5 V/ns
VOTR Output timing measurement reference voltage VddQ/2 V 9
VIH min(AC)
VREF
VIL max(AC)
VSWING
VddQ
Vss
VTT
Output
Slew=(VIHmin(AC) - VILmax(AC))/T
TT
Notes : 1. Transition times are measured between VIH min(DC) and VIL max(DC).
Transition (rise and fall) of input signals have a fixed slope.
2. If the result of nominal calculation with regard to tCK contains more than
one decimal place, the result is rounded up to the nearest decimal place.
(i.e., tDQSS = 0.8*tCK, tCK = 3.3ns, 0.8*3.3 ns = 2.64 ns is rounded up to 2.7 ns.)
3. These parameters are measured from the differential clock (CLK and CLK) AC cross point.
4. These parameters are measured from signal transition poin t of DS crossing VREF level.
5. The tREFI (MAX.) applies to equally distributed refresh method.
The tREFI (MIN.) applies to both burst refresh method and distributed refresh method.
In such case, the average interval of eight consecutive Auto-Refresh commands has to be more than 400ns always . In
other words, the number of Auto- Refresh cycles which can be performed within 3.2us (8X400ns) is to 8 times in the
maximum.
6. Low Impedance State is speified at VddQ/2± 0.2V fro m stead y state.
7. High Impedance State is specified where output buffer is no longer driven.
8. These parameters depend on the clock jitter. These parameters are measured at stable clock.
9. Output timing is measured by using Normal driver strength at VDDQ = 1.7V ~ 1.9V.
Output timing is measured by using Strong driver strength at VDDQ = 1.4V ~ 1.6V
AC Test Load
25
Measurement Point
K4C89183AF
- 14 - REV. 0.7 Jan. 2005
Power Up Sequence
1. As for PD, being maintained by the low state (<0.2V) is desirable before a power-supply injection.
2. Apply VDD before or at the same time as VDDQ.
3. Apply VDDQ before or at the same time as VREF.
4. Start clock (CLK, CLK) and maintain stable condition for 200us (min.).
5. After stable power and clock, apply DESL and take PD = H.
6. Issue EMRS to enable DLL and to define driver strength and data strobe type. (Note : 1)
7. Issue MRS for set CAS Latency (CL), Burst Ty pe (BT), and Burst Length (BL). (Note : 1)
8. Issue two or more Auto-Refresh commands. (Note:1)
9. Ready for normal operation after 200 clocks from Extended Mode Register programming.
Note : 1. Sequence 6, 7 and 8 can be issued in random order.
2. L=Logic Low, H = Logic High
DESL RDA MRS DESL RDA MRS DESL WRA REF WRA REFDESL DESL
EMRS MRS
op-code op-code
VDD
VDDQ
VREF
CLK
CLK
PD
Command
Address
DQ
DS
200 µs(min) IPDA lRSC lRSC lREFC
2.5V(TYP)
1.8V(TYP)
0.9V(TYP)
lREFC
tPDEX
200 clock cycle(min)
QS
EMRS
Hi-Z
QS
(Free Running mode)
(Uni-QS mode)
MRS Auto Refresh cycle Normal Operation
Low
K4C89183AF
- 15 - REV. 0.7 Jan. 2005
tCK
tCK tCH tCL
tIS tIH
tIPW
1st
tIS tIH
2nd
tIS tIH
1st
tIS tIH
2nd
tIPW
tIS tIH
UA, BA
tIS tIH
LA
tDS tDH
CLK
CK
CS
FN
A0-A14
BA0.BA1
DS
DQn (Input)
~
~
Basic Timing Diagrams
Timing of the CLK, CLK
Input Timing
tCH tCL
tCK
tTtT
VIH
VIH(AC)
VIL(AC)
VIL
CLK
CLK
CLK
VIH
VIL
VID(AC)
CK
VXVXVX
~
~
~
~~
~~
~~
~~
~~
~~
~~
~
Command and Address
tDH
tDS
tDS tDH
DQm (Input)
~
~~
~
tDH
tDS
Data
Refer to the Command Truth Table.
K4C89183AF
- 16 - REV. 0.7 Jan. 2005
Q0
LAL
(after RDA)
tIS tIH
tCH tCL tCK
tCKQS
tCKQS tQSP tQSP
tCKQS
tQSQ
tLZ tQSQV
tAC
tQSQV
tQSQ
tHZ
tQSQ
Low
High-Z
CK
CK
Input
(Control &
Addresses)
CAS latency = 4
LQS/UQS
(Output)
DQ
(Output)
Read Timing (Burst Length = 4)
Low
DESL
LDS/UDS
(Input)
Q1 Q2 Q3
tAC tAC tOH
0123456789101112131415161718
Q0
tCKQS
tCKQS tQSP tQSP
tCKQS
tQSQ
tLZ tQSQV
tAC
tQSQV
tQSQ
tHZ
tQSQ
Low
High-Z
CAS latency = 5
LQS/UQS
(Output)
DQ
(Output)
Low
Q1 Q2 Q3
tAC tAC tOH
Note : DQ0 to DQ17 are aligned with LQS.
Unidirectional DS/QS mode
DQ18 to DQ35 are aligned with UQS.
Q0
tCKQS
tCKQS tQSP tQSP
tCKQS
tQSQ
tLZ tQSQV
tAC
tQSQV
tQSQ
tHZ
tQSQ
Low
High-Z
CAS latency = 6
LQS/UQS
(Output)
DQ
(Output)
Low
Q1 Q2 Q3
tAC tAC tOH
K4C89183AF
- 17 - REV. 0.7 Jan. 2005
Q0
LAL
(after RDA)
tIS tIH
tCH tCL tCK
tCKQS
tCKQS tQSP tQSP
tCKQS
tQSQ
tLZ tQSQV
tAC
tQSQV
tQSQ
tHZ
tQSQ
High-Z
CK
CK
Input
(Control &
Addresses)
CAS latency = 4
LQS/UQS
(Output)
DQ
(Output)
Read Timing (Burst Length = 4)
DESL
LDS/UDS
(Input)
Q1 Q2 Q3
tAC tAC tOH
0123456789101112131415161718
Q0
tCKQS
tCKQS tQSP tQSP
tCKQS
tQSQ
tLZ tQSQV
tAC
tQSQV
tQSQ
tHZ
tQSQ
High-Z
CAS latency = 5
LQS/UQS
(Output)
DQ
(Output) Q1 Q2 Q3
tAC tAC tOH
Note : DQ0 to DQ17 are aligned with LQS.
LQS/UQS is always asserted in Free Running QS mode.
Unidirectional DS/Free Running QS mode
DQ18 to DQ35 are aligned with UQS.
Q0
tCKQS
tCKQS tQSP tQSP
tCKQS
tQSQ
tLZ tQSQV
tAC
tQSQV
tQSQ
tHZ
tQSQ
High-Z
CAS latency = 6
LQS/UQS
(Output)
DQ
(Output) Q1 Q2 Q3
tAC tAC tOH
K4C89183AF
- 18 - REV. 0.7 Jan. 2005
tDSPSTH
LAL
(after RDA)
tIS tIH
tCH tCL tCK
CK
CK
Input
(Control &
Addresses)
Write Timing (Burst Length = 4)
DESL
0123456789101112131415161718
Q0
tDSP
tDQSS
tDSP tDSP
tDSS
tDH
Q1 Q2 Q3
tDSPREStDSPREH tDSPST
tDSS
tDSPSTH
PostamblePreamble
tDSPRE tDS tDS
tDH
tDQSS
tDH
tDS
CAS latency = 4
LDS/UDS
(Input)
DQ
(Input)
Q0
tDSP tDSP tDSP
tDH
Q1 Q2 Q3
tDSPREStDSPREH tDSPST
tDSS
PostamblePreamble tDSPRE
tDS tDS
tDH tDH
tDS
CAS latency = 5
LDS/UDS
(Input)
DQ
(Input)
tDSS
LQS/UQS
(Uni-QS)
LQS/UQS
(Free Runninig)
Low
Unidirectional DS/QS mode, Unidirectional DS/Free Running QS mode
Note : DQ0 to DQ17 are sampled at both edges of LDS.
DQ18 to DQ35 are sampled at both edges of UDS.
tDSPSTH
tDQSS
Q0
tDSP tDSP tDSP
tDH
Q1 Q2 Q3
tDSPREStDSPREH tDSPST
tDSS
PostamblePreamble tDSPRE
tDS tDS
tDH tDH
tDS
CAS latency = 6
LDS/UDS
(Input)
DQ
(Input)
tDSS
K4C89183AF
- 19 - REV. 0.7 Jan. 2005
Command
CLK
CLK
Input
(Control &
Addresses)
tIS tIH
tREFI, tPAUSE, Ixxxx Timing
tIS tIH
Command
tREFI,tPAUSE,IXXXX
Note. "IXXXX"means "IRC", "IRCD", "IRAS", etc.
~
~
~
~
K4C89183AF
- 20 - REV. 0.7 Jan. 2005
Function Truth Table (Notes : 1,2,3)
Command Truth Table (Notes : 4)
•The First Command
Symbol Function CS FN BA1-BA0 A14-A9 A8 A7 A6-A0
DESL Device Dese lect H X X X X X X
RDA Read with Auto-close L H BA UA UA UA UA
WRA Write with Auto-close L L BA UA UA UA UA
•The Second Command (The next clock of RDA or WRA command)
Notes : 1. L = Logic Low, H = Logic High, X = either L or H, V = Valid (Specified Value), BA = Bank Address, UA = Upper Address,
LA = Lower Address.
2. All commands are assumed to issue at a valid state.
3. All inputs for command (excluding SELFX and PDEX) are latched on the crossing point of differential clock input where
CLK goes to High.
4. Operation mode is decided by the comination of 1st command and 2nd command refer to "STATE DIAGRAM" and the
command table below.
Symbol Function CS FN BA1-BA0 A14-A13 A12-A11 A10-A9 A8 A7 A6-A0
LAL Lower Address Latch H X X V X X X X LA
REF Auto-Refresh L X X X X X X X X
MRS Mode Register Set L X V L L L L V V
Read Command Table
Command (Symbol) CS FN BA1-BA0 A14-A9 A8 A7 A6-A0 Notes
RDA (1st) L H BA UA UA UA UA
LAL (2nd) H X X X X X LA
Write Command Table
Notes : 5. A14~A13 are used for Variable Write Length (VW) control at Write Operation.
Command (Symbol) CS FN BA1-
BA0 A14 A13 A12 A11 A10~
A9 A8 A7 A6-A0
WRA (1st) L L BAUAUAUAUAUAUAUAUA
LAL (2nd) HXXVW0VW1XXXXXLA
VW Truth Table
Function VW0 VW1
BL = 4
Reserved L L
Write All Words H L
Write First Two Words L H
Write First One Word H H
K4C89183AF
- 21 - REV. 0.7 Jan. 2005
Auto-Refresh Command Table
Function Command
(Symbol) Current
State
PD CS FN BA1-BA0 A14-A9 A8 A7 A6-A0 Notes
n-1 n
Active WRA(1st) Standby H H L L X X X X X
Auto-Refresh REF(2nd) Active H H L X X X X X X
Power Down Table
Notes : 7. PD has to be brought to Low within tFPDL from REF command.
8. PD should be brought to Low after DQ’s state turned high impedance.
9. When PD is brought to High from Low, this function is executed asynchronously.
Function Command
(Symbol) Current
State
PD CS FN BA1-
BA0 A14-A9 A8 A7 A6-A0 Notes
n-1 n
Power Down Entry PDEN Standby H L H X X X X X X 8
Power Down Continue - Power Down L L X X X X X X X
Power Down Exit PDEX Power Down L H H X X X X X X 9
Mode Register Set Command Truth Table
Note : 6. Refer to "Mode Register Table".
Command (Symbol) CS FN BA1-BA0 A14-A9 A8 A7 A6-A0 Notes
RDA (1st) L H X X X X X
MRS (2nd) L X V L L V V 6
Function Truth Table (Continued)
K4C89183AF
- 22 - REV. 0.7 Jan. 2005
Function Truth Table (Continued)
Notes : 10. Illegal if any bank is not idle.
11. Illegal to bank in specified states : Function may be Legal in the bank indicated by bank Address (BA).
12. Illegal if tFPDL is not Stisfied.
Current State PD CS FN Address Command Action Notes
n-1 n
Idle
H H H X X DESL NOP
H H L H BA, UA RDA Row activate for Read
H H L L BA, UA WRA Row activate for Write
H L H X X PDEN Power Down Entry 10
H L L X X - Illegal
L X X X X - Refer to Power Down state
Row Active for Read
H H H X LA LAL Begin read
H H L X Op-Code MRS/EMRS Access to Mode Register
H L H X X PDEN Illegal
H L L X X MRS/EMRS Illegal
L X X X X - Invalid
Row Active for Write
H H H X LA LAL Begin Write
H H L X X REF Auto-Refresh
H L H X X PDEN Illegal
H L L X X REF (Self) Self-Refresh entry
L X X X X - Invalid
Read
H H H X X DESL Continue burst read to end
H H L H BA, UA RDA Illegal 11
H H L L BA, UA WRA Illegal 11
H L H X X PDEN Illegal
H L L X X - Illegal
L X X X X - Invalid
Write
H H H X X DESL Data write & continue burst write to end
H H L H BA, UA RDA Illegal 11
H H L L BA, UA WRA Illegal 11
H L H X X PDEN Illegal
H L L X X - Illegal
L X X X X - Invalid
Auto-Refreshing
H H H X X DESL NOP-> Idle after IREFC
H H L H BA, UA RDA Illegal
H H L L BA, UA WRA Illegal
H L H X X PDEN Self-Refresh entry 12
H L L X X - Illegal
L X X X X - Refer to Self-Refreshing state
Mode Register Accessing
H H H X X DESL Nop-> Idle af ter IRSC
H H L H BA, UA RDA Illegal
H H L L BA, UA WRA Illegal
H L H X X PDEN Illegal
H L L X X - Illegal
L X X X X - Invalid
Power Down
H X X X X - Invalid
L L X X X - Maintain Power Down Mode
L H H X X RDEX Exit Power Down Mode->Idle after tPDEX
L H L X X - Illegal
K4C89183AF
- 23 - REV. 0.7 Jan. 2005
Mode Register Table
Regular Mode Register (Notes : 1)
Address BA1*1 BA0*1 A14-A8 A7*3 A6-A4 A3 A2-A0
Register 0 0 0 TM CL BT BL
A7 Test Mo de (TE)
0 Regular (Default)
1 Test Mode Entry
A3 Burst Type (BT)
0 Sequential
1 Interleave
A6 A5 A4 CAS Latency (CL)
00X Reserved *2
010 Reserved *2
011 Reserved *2
100 4
101 5
110 6
111 Reserved *2
A2 A1 A0 Burst Length (BL)
000 Reserved *2
001 Reserved *2
010 4
011 Reserved *2
1XX
Extended Mode Register (Notes : 4)
Address BA1*4 BA0*4 A14-A7 A6~A5 A4-A3 A2~A1 A0*5
Register 0 1 0 SS DIC(QS) DIC(DQ) DS
QS DQ Output Driver Impedance Control
(DIC)
A4 A3 A2 A1
0000 Normal Output Driver
0101 Strong Output Driver
1010 Weak Output Driver
1111 Reserved
A0 DLL Switch (DS)
0 D LL Enable
1 DLL Disable
Note : 1. Regular Mode Register Is Chosen Using the combination of BA0 = 0 and BA1 = 0.
2. "Reserved" places in Regular Mode Register should not be set.
3. A7 in Regular Mode Register must be set to "0"(Low state).
Because Test Mode is specific mode for supplier.
4. Extended Mode Register is chosen using the Combination of BA0 = 1 and BA1 = 0.
5. A0 in Extended Mode Register must be set to "0" to enable DLL for normal operation.
A6 A5 Strobe Select
00 Reserved*2
01 Reserved*2
1 0 Unidirectional DS/QS
1 1 Unidire ctional DS/Free Running QS
K4C89183AF
- 24 - REV. 0.7 Jan. 2005
State Diagram
Power
Down
Standby
(Idle)
Mode
Register
Auto-
Refresh
Active
(Restore) Active
Write
(Buffer) Read
PDEX
(PD = H)
PD = H
LALLAL
REF MRS
RDAWRA
PDEN
(PD = L)
The second command at Active
state must be issued 1clock after
RDA or WRA command input
Command Input
Automatic Return
- 25 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Timing Diagrams
Single Bank Read Timing (CL=4)
CLK
CLK
Command
Address
RDA DESLLAL RDA DESLLAL RDA DESLLAL RDA
LAUA LAUA LAUA UA
#0 #0 #0 #0
Unidirectional DS/QS mode
Bank Add.
(Output)
QS
(Output)
DQ
(Input)
DS
Unidirectional DS/Free Running QS mode
Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0
Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0
lRC=5cycles lRC=5cycles lRC=5cycles
lRCD=1cycle lRAS=4cycles lRCD=1cycle lRAS=4cycles lRCD=1cycle lRAS=4cycles
Low
CL=4
Hi-Z
CL=4 CL=4
CL=4
Hi-Z
CL=4 CL=4
(Output)
QS
(Output)
DQ
(Input)
DS
- 26 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Single Bank Read Timing (CL=5)
Command
Address
RDA DESLLAL
#0
Unidirectional DS/QS mode
Bank Add.
Unidirectional DS/Free Running QS mode
Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3
lRC=6cycles
Low
Hi-Z
RDA DESLLAL
lRC=6cycles
RDA DESLLAL
UA LA
lRAS=5cycleslRCD=1cycle lRAS=5cycleslRCD=1cycle
UA LA
lRCD=1cycle
UA LA
#0 #0
CL=5 CL=5
Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3
Hi-Z
CL=5 CL=5
CLK
CLK
(Output)
QS
(Output)
DQ
(Input)
DS
(Output)
QS
(Output)
DQ
(Input)
DS
- 27 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Single Bank Read Timing (CL=6)
Command
Address
RDA DESLLAL
#0
Unidirectional DS/QS mode
Bank Add.
Unidirectional DS/Free Running QS mode
Q0 Q1 Q2 Q3 Q0 Q1 Q2
lRC=7cycles
Low
Hi-Z
UA LA
lRAS=6cycleslRCD=1cycle
CL=6 CL=6
RDA DESLLAL
lRC=7cycles
RDA LAL
UA LA
lRAS=6cycleslRCD=1cycle
UA LA
#0 #0
Q0 Q1 Q2 Q3 Q0 Q1 Q2
Hi-Z
CL=6 CL=6
lRCD=1cycle
CLK
CLK
(Output)
QS
(Output)
DQ
(Input)
DS
(Output)
QS
(Output)
DQ
(Input)
DS
- 28 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Single Bank Write Timing (CL=4)
Command
Address
WRA DESLLAL WRA DESLLAL WRA DESLLAL WRA
LAUA LAUA LAUA UA
#0 #0 #0 #0
Unidirectional DS/QS mode
Bank Add.
Unidirectional DS/Free Running QS mode
(Output)
QS
(Input)
DQ
(Input)
DS
lRC=5cycles lRC=5cycles lRC=5cycles
lRCD=1cycle lRAS=4cycles lRCD=1cycle lRAS=4cycles lRCD=1cycle lRAS=4cycles
(Output)
QS
(Input)
DQ
(Input)
DS
D0 D1
Low
WL=3 WL=3
D2 D3 D0 D1 D2 D3
WL=3
D0 D1 D2 D3
D0 D1
WL=3 WL=3
D2 D3 D0 D1 D2 D3
WL=3
D0 D1 D2 D3
CLK
CLK
- 29 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Single Bank Write Timing (CL=5)
Command
Address
WRA DESLLAL
LAUA
#0
Unidirectional DS/QS mode
Bank Add.
Unidirectional DS/Free Running QS mode
lRC=6cycles
lRCD=1cycle lRAS=5cycles
(Output)
QS
(Input)
DQ
(Input)
DS
D0 D1
Low
D2 D3
WRA DESLLAL
lRC=6cycles
WRA DESLLAL
LAUA
lRCD=1cycle lRAS=5cycles
LAUA
lRCD=1cycle
#0 #0
D0 D1 D2 D3
WL=4 WL=4
D0 D1 D2 D3 D0 D1 D2 D3
WL=4 WL=4
CLK
CLK
(Output)
QS
(Input)
DQ
(Input)
DS
- 30 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Single Bank Write Timing (CL=6)
Command
Address
WRA DESLLAL
LAUA
#0
Unidirectional DS/QS mode
Bank Add.
Unidirectional DS/Free Running QS mode
(Output)
QS
(Input)
DQ
(Input)
DS
lRC=7cycles
lRCD=1cycle lRAS=6cycles
(Output)
QS
(Input)
DQ
(Input)
DS
D0 D1
Low
D2 D3
WRA DESLLAL
LAUA
lRC=7cycles
lRCD=1cycle lRAS=6cycles
WRA LAL
LAUA
lRCD=1cycle
#0 #0
D0 D1 D2 D3
WL=5 WL=5
D0 D1 D2 D3 D0 D1 D2 D3
WL=5 WL=5
CLK
CLK
- 31 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Single Bank Read-Write Timing (CL=4)
Command
Address
RDA DESLLAL WRA DESLLAL RDA DESLLAL WRA
LAUA LAUA LAUA UA
#0 #0 #0 #0
Unidirectional DS/QS mode
Bank Add.
Unidirectional DS/Free Running QS mode
(Output)
QS
DQ
(input)
DS
lRC=5cycles lRC=5cycles lRC=5cycles
(Output)
QS
DQ
(input)
DS
Q0 Q1 Q2 Q3
CL=4 CL=4WL=3
Low
D0 D1 D2 D3 Q0
Q0 Q1 Q2 Q3
CL=4 CL=4WL=3
D0 D1 D2 D3 Q0
Hi-Z
Hi-Z
CLK
CLK
- 32 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Single Bank Read-Write Timing (CL=5)
Unidirectional DS/QS mode
Bank Add.
Unidirectional DS/Free Running QS mode
(Output)
QS
DQ
(input)
DS
(Output)
QS
DQ
(input)
DS
Q0 Q1 Q2 Q3
Low
D0 D1 D2 D3
Hi-Z
Command
Address
RDA DESLLAL
LAUA
lRC=6cycles
WRA DESLLAL
lRC=6cycles
RDA DESLLAL
LAUA LAUA
#0 #0 #0
CL=5 WL=4
Q0 Q1 Q2 Q3 D0 D1 D2 D3
Hi-Z
CL=5 WL=4
Read data Write data
CLK
CLK
- 33 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Single Bank Read-Write Timing (CL=6)
Unidirectional DS/QS mode
Unidirectional DS/Free Running QS mode
Q0 Q1 Q2 Q3
Low
D0 D1 D2 D3
Hi-Z
CL=6 WL=5
Read data Write data
Command
Address
RDA DESLLAL
LAUA
#0
Bank Add.
lRC=7cycles
WRA DESLLAL
LAUA
lRC=7cycles
RDA LAL
LAUA
#0 #0
(Output)
QS
DQ
(input)
DS
(Output)
QS
DQ
(input)
DS
Q0 Q1 Q2 Q3 D0 D1 D2 D3
Hi-Z
CL=6 WL=5
CLK
CLK
- 34 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Multiple Bank Read Timing (CL=4)
Unidirectional DS/QS mode
Unidirectional DS/Free Running QS mode
Command
Address
RDA LAL
LAUA
Bank
Bank Add.
RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL RDA
LAUA LAUA LAUA LAUA LAUA LAUA UA
"a" Bank
"b" Bank
"a" Bank
"b" Bank
"c" Bank
"d" Bank
"a" Bank
"b"
lRBD=2cycles
Qa0Qa1
CL=4
Low
Hi-Z
(Output)
QS
DQ
(input)
DS
Qb0Qb1 Qa0Qa1 Qb0 Qb1 Qc0 Qc1
CL=4
(Output) Qa2Qa3 Qb2Qb3 Qa2 Qa3 Qb2Qb3 Qc2
Qa0Qa1
CL=4
Hi-Z
(Output)
QS
DQ
(input)
DS
Qb0Qb1 Qa0Qa1 Qb0 Qb1 Qc0 Qc1
CL=4
(Output) Qa2Qa3 Qb2Qb3 Qa2 Qa3 Qb2Qb3 Qc2
lRBD=2cycles lRBD=2cycles lRBD=2cycles lRBD=2cycles
lRC(Bank"a")=5cycles
lRC(Bank"b")=5cycles
CLK
CLK
Note : lRC to the same bank must be satisfied
- 35 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Multiple Bank Read Timing (CL=5)
Unidirectional DS/QS mode
Unidirectional DS/Free Running QS mode
Command
Address
RDA LAL
LAUA
Bank
Bank Add.
RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL
LAUA LAUA LAUA LAUA LAUA LAUA
"a" Bank
"b" Bank
"a" Bank
"b" Bank
"c" Bank
"d" Bank
"a"
lRBD=2cycles
Qa0Qa1
Low
Hi-Z
(Output)
QS
DQ
(input)
DS
Qb0Qb1 Qa0Qa1 Qb0Qb1
(Output) Qa2Qa3 Qb2Qb3 Qa2Qa3 Qb2
(Output)
QS
DQ
(input)
DS
(Output)
lRBD=2cycles lRBD=2cycles lRBD=2cycles lRBD=2cycles
lRC(Bank"a")=6cycles
lRC(Bank"6")=6cycles
CL=5
CL=5
Qa0Qa1
Hi-Z Qb0Qb1 Qa0Qa1 Qb0Qb1Qa2Qa3 Qb2Qb3 Qa2Qa3 Qb2
CL=5
CL=5
CLK
CLK
Note : lRC to the same bank must be satisfied
- 36 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Multiple Bank Read Timing (CL=6)
Unidirectional DS/QS mode
Unidirectional DS/Free Running QS mode
Command
Address
RDA LAL
LAUA
Bank
Bank Add.
RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA
LAUA LAUA LAUA LAUA LAUA UA
"a" Bank
"b" Bank
"a" Bank
"b" Bank
"c" Bank
"d" Bank
"a"
lRBD=2cycles
Qa0 Qa1
Low
Hi-Z
(Output)
QS
DQ
(input)
DS
Qb0Qb1 Qa0 Qa1
(Output) Qa2Qa3 Qb2Qb3 Qa2
(Output)
QS
DQ
(input)
DS
(Output)
lRBD=2cycles lRBD=2cycles lRBD=2cycles lRBD=2cycles
lRC(Bank"a")=7cycles
lRC(Bank"b")=7cycles
CL=6
CL=6
Qa0 Qa1
Hi-Z Qb0Qb1 Qa0 Qa1Qa2Qa3 Qb2 Qb3 Qa2
CL=6
CL=6
CLK
CLK
Note : lRC to the same bank must be satisfied
- 37 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Multiple Bank Write T iming (CL=4)
Unidirectional DS/QS mode
Unidirectional DS/Free Running QS mode
Command
Address
WRA LAL
LAUA
Bank
Bank Add.
WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL WRA
LAUA LAUA LAUA LAUA LAUA LAUA UA
"a" Bank
"b" Bank
"a" Bank
"b" Bank
"c" Bank
"d" Bank
"a" Bank
"b"
lRBD=2cycles
Da0 Da1
Low
(Output)
QS
DQ
(input)
DS
Db0 Db1 Da0 Da1 Db0 Db1 Dc0 Dc1
(Input) Da2 Da3 Db2 Db3 Da2 Da3 Db2 Db3 Dc2
(Output)
QS
DQ
(input)
DS
(Input)
lRBD=2cycles lRBD=2cycles lRBD=2cycles lRBD=2cycles
lRC(Bank"a")=5cycles
lRC(Bank"b")=5cycles
Dc3 Dd0 Dd1
WL=3
WL=3
Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1 Dc0 Dc1Da2 Da3 Db2 Db3 Da2 Da3 Db2 Db3 Dc2 Dc3 Dd0 Dd1
WL=3
WL=3
CLK
CLK
Note : lRC to the same bank must be satisfied
- 38 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Multiple Bank Write T iming (CL=5)
Unidirectional DS/QS mode
Unidirectional DS/Free Running QS mode
Command
Address
Bank Add.
Da0 Da1
Low
(Output)
QS
DQ
(input)
DS
Db0 Db1 Da0 Da1 Db0 Db1 Dc0 Dc1
(input) Da2 Da3 Db2 Db3 Da2 Da3 Db2 Db3
(Output)
QS
DQ
(input)
DS
(input)
WRA LAL
LAUA
Bank
WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL
LAUA LAUA LAUA LAUA LAUA LAUA
"a" Bank
"b" Bank
"a" Bank
"b" Bank
"c" Bank
"d" Bank
"a"
lRBD=2cycles lRBD=2cycles lRBD=2cycles lRBD=2cycles lRBD=2cycles
lRC(Bank"a")=6cycles
lRC(Bank"b")=6cycles
WL=4
WL=4
Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1 Dc0 Dc1Da2 Da3 Db2 Db3 Da2 Da3 Db2 Db3
WL=4
WL=4
Note :IRC to the same bank must be satisfied.
CLK
CLK
- 39 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Multiple Bank Write T iming (CL=6)
Unidirectional DS/QS mode
Unidirectional DS/Free Running QS mode
Command
Address
Bank Add.
Da0 Da1
Low
(Output)
QS
DQ
(input)
DS
Db0 Db1 Da0 Da1 Db0 Db1
(input) Da2 Da3 Db2 Db3 Da2 Da3
(Output)
QS
DQ
(input)
DS
(input)
WL=5
WL=5
Note :IRC to the same bank must be satisfied.
WRA LAL
LAUA
Bank
WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA
LAUA LAUA LAUA LAUA LAUA UA
"a" Bank
"b" Bank
"a" Bank
"b" Bank
"c" Bank
"d" Bank
"a"
lRBD=2cycles lRBD=2cycles lRBD=2cycles lRBD=2cycles lRBD=2cycles
lRC(Bank"a")=7cycles
lRC(Bank"a")=7cycles
Da0 Da1 Db0 Db1 Da0 Da1 Db0 Db1Da2 Da3 Db2 Db3 Da2 Da3
WL=5
WL=5
CLK
CLK
- 40 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
WL=3 CL=4
Low
Unidirectional DS/QS mode
Da0 Da1 Qb0Qb1
Hi-Z Da2 Da3 Qb2Qb3 Da0 Da1 Qb0Qb1Da2 Da3 Qb2Qb3
Low
Da0 Da1 Qb0Qb1
Hi-Z Da2 Da3 Qb2Qb3 Da0 Da1 Qb0Qb1Da2 Da3 Qb2Qb3
Low
Da0 Da1 Qb0 Qb1
Hi-Z Da2 Da3 Qb2Qb3 Da0 Da1 Qb0Qb1
Da2 Da3
WL=4 CL=5
WL=5 CL=6
CL =4
(Output)
QS
DQ
(Input)
DS
(Output)
CL =5
(Output)
QS
DQ
(Input)
DS
(Output)
CL =6
(Output)
QS
DQ
(Input)
DS
(Output)
Multiple Bank Read-Write Timing (BL=4)
Command
Address
WRA LAL
LAUA
Bank
Bank Add.
RDA LAL DESL WRA LAL RDA LAL DESL WRA LAL RDA LAL
LAUA LAUA LAUA UA UALA LA
"a" Bank
"b" Bank
"c" Bank
"d"
lRBD=2cycles
Bank
"a" Bank
"b"
lRC(Bank"a")
lRC(Bank"a")
lWRD=1cycle lRWD=3cycles lWRD=1cycle lRWD=3cycles lWRD=1cycle
Note :IRC to the same bank must be satisfied.
CLK
CLK
- 41 -
K4C89183AF
0 234567891011112 13 14 15
REV. 0.7 Jan. 2005
Multiple Bank Read-Write Timing (BL=4)
Command
Address
WRA LAL
LAUA
Bank
Bank Add.
RDA LAL DESL WRA LAL RDA LAL DESL WRA LAL RDA LAL
LAUA LAUA LAUA UA UALA LA
"a" Bank
"b" Bank
"c" Bank
"d"
lRBD=2cycles
Bank
"a" Bank
"b"
lRC(Bank"a")
lRC(Bank"a")
Unidirectional DS/Free Running QS mode
lWRD=1cycle lRWD=3cycles lWRD=1cycle lRWD=3cycles lWRD=1cycle
WL=3 CL=4
Da0 Da1 Qb0 Qb1
Hi-Z Da2 Da3 Qb2 Qb3 Da0 Da1 Qb0 Qb1Da2 Da3 Qb2 Qb3
Da0 Da1 Qb0Qb1
Hi-Z Da2 Da3 Qb2Qb3 Da0 Da1 Qb0Qb1Da2 Da3 Qb2Qb3
Da0 Da1 Qb0 Qb1
Hi-Z Da2 Da3 Qb2Qb3 Da0 Da1 Qb0Qb1Da2 Da3
WL=4 CL=5
WL=5 CL=6
Note :IRC to the same bank must be satisfied.
CLK
CLK
CL =4
(Output)
QS
DQ
(Input)
DS
(Output)
CL =5
(Output)
QS
DQ
(Input)
DS
(Output)
CL =6
(Output)
QS
DQ
(Input)
DS
(Output)
K4C89183AF
- 42 - REV. 0.7 Jan. 2005
Write with Variable Write Length (VW) Control(CL=4)
Command WRA LAL DESL WRA LAL
BL=2, SEQUENTIAL MODE
DESL
Address UA LA=#3 UA
VW=All LA=#1
VW=1
Bank Add. Bank Bank
"a"
(Input)
DQ
(Input)
DS
D0 D1 D0
Lower Address #3 #2 #1 (#0)
Last one data is masked.
Command WRA LAL DESL WRA LAL
BL=4, SEQUENTIAL MODE
DESL
Address UA LA=#3 UA
VW=All LA=#1
VW=1
Bank Add. Bank
"a"
(Input)
DQ
(Input)
DS
D0 D1 D0
Lower Address #3 #0 #1 #2 #1 (#2) (#3) (#0)
Last three data are masked.
Bank
"a"
DESL WRA LAL
UA LA=#2
VW=2
Bank
"a"
D2 D3 D0 D1
#2 #3 (#0) (#1)
Last two data are masked.
Note : DS input must be continued till end of burst count even if some of laster data is masked.
0 234567891011112 13 14 15
CLK
CLK
VW0 = Low
VW1 = don’t care VW0 = High
VW1 = don’t care
"a"
VW0 = High
VW1 = Low VW0 = High
VW1 = High VW0 = Low
VW1 = High
K4C89183AF
- 43 - REV. 0.7 Jan. 2005
Power Down Timing (CL=4, BL=4)
Command RDA LAL RDA
BL=2, SEQUENTIAL MODE
Address UA UA
DESL or
WRA
LA
Unidirectional DS/Free Running QS mode
Unidirectional DS/QS mode
PD
tIH
tQPDH tPDEX
tIS IPD=2 cycle
IRC(min), tREFI(max)
Q0 Q1
Low
Hi-Z
(Output)
QS
DQ
(input)
DS
(Output)
CL=4
Q2 Q3
Q0 Q1
Hi-Z
(Output)
QS
DC
(input)
DS
(Output)
CL=4
Q2 Q3
Hi-Z
Hi-Z
PD must be kept "High" level until end of Burst data output.
PD should be brought to "High" within t REFI(max.) to maintain the data written into cell.
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.
When PD is brought to "High", a valid executable command may be applied IPDA cycles later.
Note :
Power Down Entry Power Down Exit
0 2345678910n-11nn+1n+2n+3
CLK
CLK
Read cycle to Power Down Mode
DESL
IPDA
K4C89183AF
- 44 - REV. 0.7 Jan. 2005
Power Down Timing (CL=4, BL=4)
Command WRA LAL
Address UA
DESL
LA
Unidirectional DS/Free Running QS mode
Unidirectional DS/QS mode
PD
tIH
tPDEX
tIS IPD=2 cycle
IRC(min), tREFI(max)
Low
(Output)
QS
DC
(input)
DS
(Output)
WL=3
(Output)
QS
DC
(input)
DS
(Output)
D0 D1 D2 D3
WL=3 IPD=2 cycle
D0 D1 D2 D3
WL=3
PD must be kept "High" level until end of Burst data output.
PD should be brought to "High" within t REFI(max.) to maintain the data written into cell.
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.
When PD is brought to "High", a valid executable command may be applied IPDA cycles later.
Note :
0 2345678910n-11nn+1n+2n+3
IPDA
Write cycle to Power Down Mode
CLK
CLK
RDA
UA
or
WRA
DESL
K4C89183AF
- 45 - REV. 0.7 Jan. 2005
0 234567891011112 13 14 15
Mode Register Set Timing (CL=4, BL=4)
Command
A14~A0
WRA DESLLAL
LAUA
BA
BA0, BA1
RDA DESLMRS
lRC=7cycles
LAL
LAUA
BA1="0" BA
RDA
or
WRA
BA0="0"
(opcode)
Valid
From Write operation to Mode Register Set operation
Unidirectional DS/Free Running QS mode
(Output)
QS
DC
(input)
DS
(input)
(Output)
QS
DC
(input)
DS
Low
(Output)
QS
DC
(input)
DS
(Output)
QS
DC
(input)
DS
D0 D1 D2 D3
D0 D1 D2 D3
Unidirectional DS/QS mode
(input)
Note : Minimum delay from LAL following WRA to RDA of MRS operation is WL+BL/2.
CLK
CLK
WL + BL/2
K4C89183AF
- 46 - REV. 0.7 Jan. 2005
Extended Mode Register Set Timing (CL=4, BL=4)
Command
A14~A0
WRA DESLLAL
LAUA
BA
BA0, BA1
RDA DESLMRS
lRC=7cycles
LAL
LAUA
BA1="0" BA
RDA
or
WRA
BA0="0"
(opcode)
Valid
From Write operation to Extended Mode Register Set operation
When DQ strobe mode is changed by EMRS, QS output is invalid for IRSC period.
DLL switch in Extended Mode Register must be set to enable mode for normal operation.
DLL lock-on time is ne ed ed after initi al EMR S ope ration. See Power Up Sequen ce .
Minimum delay from LAL following WRA to RDA of EMRS operation is WL+BL/2.
Note :
Unidirectional DS/Free Running QS mode
(Output)
QS
DC
(input)
DS
(input)
(Output)
QS
DQ
(input)
DS
Low
(Output)
QS
DQ
(input)
DS
(Output)
QS
(input)
DS
D0 D1 D2 D3
D0 D1 D2 D3
Unidirectional DS/QS mode
(input)
0 234567891011112 13 14 15
CLK
CLK
WL + BL/2
K4C89183AF
- 47 - REV. 0.7 Jan. 2005
0 234567n-1nn+1n+21
Auto-Refresh Timing (CL=4, BL=4)
RDA LAL DESL WRA REF DESL RDA
Bank, LA
Command
Bank, Address
or
WRA LAL or
MRS or
REF
UA
Q0 Q1 Q2 Q3
QS
(output)
DQ
(output)
Unidirectional DS/Free Running QS mode
CL=4
lRC=5cycles lREFC=19cycles
lRCD=1cycle lRAS=4cycles lRCD=1cycle
Low
Hi-Z
Low
Hi-Z
RDA LAL DESL WRA REF DESL RDA
Bank, LA
Command
Bank, Address
or
WRA LAL or
MRS or
REF
UA
Q0 Q1 Q2 Q3
QS
(output)
DQ
(output)
CL=4
lRC=5cycles lREFC=19cycles
lRCD=1cycles lRAS=4cycles lRCD=1cycles
Hi-Z Hi-Z
In case of CL=4, IREFC must be meet 19 clock cycles.
When the Auto-Refresh operation is perfomed, the synthetic average interva l of Auto-Refresh command
specified by tREFI must be satisfied.
tREFI is average interval time in 8 Refresh cycles that is sampled randomly.
Note :
Unidirecti ona l DS /Q S mode
WRA REF
WRA REF
WRA REF
WRA REF
WRA REF
t1t2t3t7t8
8 Refresh cycle
Total time of 8 Refresh cycle
8
t1+t2+t3+t4+t5+t6+t7+t8
8
=
tREFI =
tREFI is specified to avoid partly concentrated current of Refresh operation that is acivated
larger are than Read/Write operation.
CLK
CLK
CLK
CLK
CLK
K4C89183AF
- 48 - REV. 0.7 Jan. 2005
Function Description
Network - DRAM
Network - DRAM is an acronym of Double Data Rate Network - DRAM.
Network - DRAM is competent to perform fast random core access, low latency and high-speed data transfer.
Pin Functions
Clock Inputs : CLK & CLK
The CLK and CLK inputs are used as the reference for synchronous operation. CLK is master clock input. The CS, FN and all
address input signals are sampled on the crossing of the positive edge of CLK and th e negative edge of CLK. The QS and DQ output
data are aligned to the crossing point of CLK and CLK. The timing reference poin t for the differential clock is when the CLK and CLK
signals cross during a transition.
Power Down : PD
The PD input controls the entry to the Power Down or Self-Refresh modes. The PD input does not have a Clock Suspend function like
a CKE input of a standard SDRAMs, therefore it is illega l to bring PD pin into low state if any Read or Write operation is being per-
formed.
Chip Select & Function Control : CS & FN
The CS and FN inputs are a control signal for forming the operation commands on Network-DRAM. Each operation mode is decided
by the combination of the two consecutive operation commands using the CS and FN inputs.
Bank Addresses : BA0 & BA1
The BA0 and BA1 inputs are latched at the time of assertion of the RDA or WRA command and are selected the bank to be used for
the operation. BA0 and BA1 also define which mode register is loaded during the Mode Register Set command (MRS or EMRS).
Address Inputs : A0 to A14
Address inputs are used to access the arbitrary address of the memory cell array within each bank. The Upper Addresses with Bank
address are latched at the RDA or WRA command and the Lower Addresses are latch ed at the LAL command. The A0 to A14 inputs
are also used for setting the data in the Regular or Extended Mode Register set cycle.
BA0 BA1
Bank #0 0 0
Bank #1 1 0
Bank #2 0 1
Bank #3 1 1
Upper Address Lower Address
K4C89183AF A0 to A14 A0 to A6
K4C89183AF
- 49 - REV. 0.7 Jan. 2005
Functional Description (Continued)
Data Input/Output : DQ0 ~ DQ17
The input data of DQ0 to DQ17 are taken in synchronizing with the both edges of DS input signal.
The output data of DQ0 to DQ17 are outputted synchronizing with the both edges of QS output signal.
Data Strobe : DS or QS
Method of data strobe is chosen by Extended mode register.
(1) Unidirectional DS/QS mode
DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write operation. Both edges of QS
are used for trigger signal of all DQs at Read operation. During Write. Auto-Refresh and NOP cycle, QS assert always "Low"
level. QS is Hi-Z in Self-Refresh mode.
(2) Unidirectional DS/Free running QS mode
DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write operation. Both edges of QS
are used for trigger signal of all DQs at Read operation. QS assert always toggle signal except Self-Refresh mode. This strobe
type is easy to use for pin to pin connect application.
Power Supply : VDD, VDDQ, VSS, VSSQ
VDD and VSS are supply pins for memory core and peripheral circuits.
VDDQ and VSSQ are power supply pins for the output buffer.
Reference Voltage : VREF
VREF is reference voltage for all input signals.
K4C89183AF
- 50 - REV. 0.7 Jan. 2005
Command Functions and Operations
K4C89093AF is introduced the two consecutive command input method. Therefore, except for Power Down mode, each operation
mode decided by the combination of the first command and the second command from stand-by states of the bank to be accessed.
Read Operation (1st command + 2nd command = RDA + LAL)
Issuing the RDA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated by Bank Address in
a read mode. When the LAL command with Lower Addresses is issued at the next clock of the RDA command, the data is read out
sequentially synchronizing with the both edges of QS output signal (Burst Read Operation). The initial valid read data appears after
CAS latency, the burst length of read data and the burst type must be set in the Mode Register beforehand. The read operated bank
goes back automatically to the idle state after IRC.
Write Operation (1st command + 2nd command = WRA + LAL)
Issuing the WRA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated by Bank Address in
a write mode. When the LAL command with Lower Addresses is issued at the next clock of the WRA command, the input data is
latched sequentially synchronizing with the both edges of DS input signal (Burst Write Operation). The data and DS inputs have to be
asserted in keeping with clock input after CAS latency-1 from the issuing of the LAL command. The DS have to be provided for a burst
length. The CAS latency and the burst type must be set in the Mode Register beforehand. The write operated bank goes back automat-
ically to the idle state after IRC. Write Burst Length is controlled by VW0 and VW1 inputs with LAL command. See VW truth table.
Auto-Refresh Operation (1st command + 2nd command = WRA + REF)
K4C89093AF is required to refresh like a standard SDRAM. The Auto-Refresh operation is begun with the REF command following to
the WRA command. The Auto-Refresh mode can be effective only when all banks are in the idle state and all DQ are in Hi-Z states. In
a point to notice, the write mode started with the WRA command is canceled by the REF command having gone into the next clock of
the WRA command instead of the LAL command. The minimum period between the Auto-Refresh command and the next command is
specified by IREFC. However , about a synthetic average interval of Auto-Refresh command, it must be careful. In case of equally distrib-
uted refresh, Auto-Refresh command has to be issued within once for every 3.9 us by the maximum In case of burst refresh or random
distributed refresh, the average interval of eight consecutive Auto-Refresh command has to be more than 400ns always. In other words,
the number of Auto-Refresh cycles which can be performed within 3.2 us (8x400ns) is to 8 times in the maximum.
Power Down Mode( PD="L" )
When all banks are in the idle state a nd all DQ outputs are in Hi-Z states, the K4C89183AF become Power Down Mode by asserting
PD is "Low". When the device enters the Power Down Mode, all input and output buffers except for PD, CLK, CLK and QS. Therefore,
the power dissipation lowers. To exit the Power Down Mode, PD has to be brought to "High" and the DESL command has to be issued
for IPDA cycle after PD goes high. The Power Down exit function is asynchronous operation.
Mode Register Set (1st command + 2nd command = RDA + MRS)
When all banks are in the idle state, issuing the MRS command following to the RDA command can program the Mode Register. In a
point to notice, the read mode started with the RDA command is canceled by the MRS command having gone into the next clock of the
RDA command instead of the LAL command. The data to be set in the Mode Reg i ster is transferred using A0 to A14, BA0 and BA1
address inputs. The K4C89183AF have two mode registers. These are Regular and Extended Mode Register . The Regular or Extended
Mode Register is chosen by BA0 and BA1 in the MRS command.The Regular Mode Register designates the operation mode for a read
or write cycle. The Regular Mode Register has four function fields.
K4C89183AF
- 51 - REV. 0.7 Jan. 2005
The four fields are as follows :
(R-1) Burst Length field to set the length of burst data
(R-2) Burst Type field to designate the lower address access sequence in a burst cycle
(R-3) CAS Latency field to set the access time in clock cycle
(R-4) Test Mode field to use for supplier only.
The Extended Mode Register has two function fields.
The two fields are as follows:
(E-1) DLL Switch field to choose either DLL enable or DLL disable
(E-2) Output Driver Impedance Control field.
(E-3) Data St robe Select
Once these fields in the Mode Register are set up, the register contents are maintained until the Mode Register is set up again by
another MRS command or power supply is lost. The initial value of the Regular or Extended Mode Register after power-up is unde-
fined, therefore the Mode Register Set command must be issued before proper operation.
• Regular Mode Register/Extended Mode Register change bits (BA0, BA1)
These bits are used to choose either Regular MRS or Extended MRS
Regular Mode Register Fields
(R-1) Burst Length field (A2 to A0)
This field specifies the data length for column access using the A2 to A0 pins and sets the Burst Length to be 4 words.
(R-2) Burst Type field (A3)
This Burst Type can be chosen Interleave mode or Sequential mode. When the A3 bit is " 0", Sequential mode is
selected. When the A3 bit is "1", Interleave mode is selected. Both burst types support burst length of 2 and 4 words.
• Addressing sequence of Sequential mode (A3)
A column access is started from the inputted lower address and is performed by incrementing the lower address input to
the device.
BA1 BA0 A14~A0
0 0 Regular MRS cycle
0 1 Extended MRS cycle
1XReserved
A2 A1 A0 Burst Length
000Reserved
001Reserved
010 4 words
011Reserved
1 X X Reserved
A3 Burst Type
0 Sequential
1 Interleave
K4C89183AF
- 52 - REV. 0.7 Jan. 2005
RDA LAL
Data 0 Data 1 Data 2 Data 3
Addressing sequence for Sequential mode
Data Access Address Burst Length
Data 0 n
4 words(Address bits is LA1, LA0)
not carried from LA1~LA2
Data 1 n + 1
Data 2 n + 2
Data 3 n + 3
CAS Latency = 4 (Free Running QS mode)
CK
CK
Command
QS
DQ
Functional Description (Continued)
• Addressing sequence of Inteleave mode
A column access is started from the inputted lower address and is performed by interleaving the address bits in the
sequence shown as the following.
Addressing sequence for Interleave mode
(R-3) CAS Latency field (A6 to A4)
This field specifies the number of clock cycles from the assertion of the LAL command following the RDA command to
the first dat a read. The min imum value s of CAS Lat ency depen ds on the frequ ency of CL K. In a write mode , the pla ce of
clock which shou ld input write data is CAS Latency cycles - 1.
Data Access Address Burst Length
Data 0 ...A8 A7 A6 A5 A4 A3 A2 A1 A0
4 words
Data 1 ...A8 A7 A6 A5 A4 A3 A2 A1 A0
Data 2 ...A8 A7 A6 A5 A4 A3 A2 A1 A0
Data 3 ...A8 A7 A6 A5 A4 A3 A2 A1 A0
Addressing sequence for Interleave mode
A6 A5 A4 CAS Latency
000 Reserved
001 Reserved
010 Reserved
011 Reserved
100 4
101 5
110 6
111 7
K4C89183AF
- 53 - REV. 0.7 Jan. 2005
(R-4) Test Mode field (A7)
This bit is used to en ter Test Mode for supp lier only and must be set to "0" for normal operation.
(R-5) Reserved field in the Regular Mode Register
• Reserved bits (A8 to A14)
These bits are reserved for future operations. They must be set to "0" for normal operation.
Extended Mode Register Fields
(E-1) DLL Switch field (A0)
This bit is used to enable DLL. When the A0 bit is set "0", DLL is enabled.
(E-2) Output Driver Impedance Control field (A1 to A4)
This field is used to choose Output Driver Strength. Four types of Driver Strength are supported. QS and DQ Driver
Strength can be chosen separately. A2-A1 specified the DQ Driver Strength. A4-A3 specified the QS Driver Strength.
(E-3) Strobe Select (A6/A5)
Two types of strobe are supported. This field is used to choose the type of data strobe.
(1) Unidirectional DS/QS mode
Data strobe is separated DS for wr ite strobe and QS for read strobe.
DS is used to sample write data at write operation. QS is aligned with read data at Read operation.
(2) Unidirectional DS/F ree running QS mode
Data strobe is separated DS for wr ite strobe and QS for read strobe.
DS is used to sample write data at write operation. QS is aligned with read data and always clocking
(E-4)Reserved fied (A7 to A14)
These bits are reserved for future operations and must be set to "0" for normal operation.
QS DQ Output Driver Impedance Control
A4 A3 A2 A1
0000 Normal Output Driver
0101 Strong Output Driver
1010 Weaker Output Driver
1111 Reserved
A6 A5 Strobe Select
00 Reserved
01 Reserved
1 0 Unidirectional DS/QS mode
1 1 Unidirectional DS/Free running QS mode
K4C89183AF
- 54 - REV. 0.7 Jan. 2005
Package Outline Drawing (FBGA 60ball, 1.0 x 1.0 mm)
10.50
±
0.10
15.50 ± 0.10
15.50
±
0.10
0.10 Max
0.5 ± 0.05
0.35
±
0.05
1.10
±
0.10
Window Mold Area
TOP VIEW
1
3
4
56
10.50
±
0.10
A
B
C
D
E
F
G
H
J
K
L
M
7.00
1.00 x 14 = 14.00
15.50
±
0.10
7.00
1.00 x 5 = 5.00
BOTTOM VIEW
1.00 1.00
P
R
1.50 1.50
2
1.00
60 -
0.45 solder ball
2.50
#A1 Mark (Option)
#A1
N
K4C89183AF
- 55 - REV. 0.7 Jan. 2005
General Information
F6 : 667Mbps/pin (333MHz, CL=6)
FB : 600Mbps /pin (300MHz, CL=6)
F5 : 500Mbps/pin (250MHz, CL=6)
C : (Commercial, Normal)
I : (Industrial, Normal)
08 : x8
09 : x9
16 : x16
18 : x18
89 : 288M 8K/32ms
C : Network-DRAM
F : 7th Generation
K 4 C XX XX X X X - X X
Memory
DRAM
Small Classification
Density and Refresh
Temperat ure & Power
Package
Organization Version
Interface (VDD & VDDQ)
1. SAMSUNG Memory : K
2. DRAM : 4
3. Small Classification
4. Density & Refresh
5. Organization
8. Version
9. Package
10. Temperature & Power
11. Speed
3 : 4 Bank
6. Bank
1 2 3 4 5 6 7 8 9 10 11
XX
A: SSTL-2(2.5V, 1.8V)
7. Interface (VDD & VDDQ)
Speed
Bank
Organization F6 (667Mbps@CL6) FB (600Mbps@CL6 ) F5 (500Mbps@CL6 )
288M(x9) K4C89093AF-ACF6 K4C89093AF-ACFB K4C89093AF-AC(I)F5
288M(x18) K4C89183AF-ACF6 K4C89183AF-ACFB K4C89183AF-AC(I)F5
288M(x36) K4C89363AF-GCF6 K4C89363AF-GCFB K4C89363AF-GC(I)F5
A : 60 FBGA
G : 144 FBGA