This is information on a product in full production.
September 2019 DS13048 Rev 2 1/29
STSPIN32F0251, STSPIN32F0252
250 V three-phase controller with MCU
Datasheet - production data
Features
Three-phase gate drivers
High voltage rail up to 250 V
Driver current capability:
STSPIN32F0251:
200/350 mA source/sink current
STSPIN32F0252:
1/0.85 A source/sink current
dV/dt transient immunity ±50 V/ns
Gate driving voltage range from 9V to 20V
32-bit ARM® Cortex®-M0 core:
Up to 48 MHz clock frequency
4-Kbyte SRAM with HW parity
32-Kbyte Flash memory with option bytes
used for write/readout protection
21 general-purpose I/O ports (GPIO)
6 general-purpose timers
12-bit ADC converter (up to 10 channels)
I2C, USART and SPI interfaces
Matched propagation delay for all channels
Integrated bootstrap diodes
Comparator for fast over current protection
UVLO, Interlocking and deadtime functions
Smart shutdown (smartSD) function
Standby mode for low power consumption
On-chip debug support via SWD
Extended temperature range: -40 to +125 °C
Applications
Battery operated and 110 Vac supplied power
and garden tools
Industrial fans and pumps
Home appliances
Industrial and home automation
Description
The STSPIN32F025x system-in-package is an
extremely integrated solution for driving three-
phase applications, helping designers to reduce
PCB area and overall bill-of-material.
It embeds an STM32F031x6x7 featuring an
ARM® 32-bit Cortex®-M0 CPU and a 250 V triple
half-bridge gate driver, able to drive N-channel
power MOSFETs or IGBTs.
A comparator featuring advanced smartSD
function is integrated, ensuring fast and effective
protection against overload and overcurrent.
The high-voltage bootstrap diodes are also
integrated, as well as anti cross-conduction,
deadtime and UVLO protection on both the lower
and upper driving sections, which prevents the
power switches from operating in low efficiency or
dangerous conditions. Matched delays between
low and high-side sections guarantee no cycle
distortion.
The integrated MCU allows performing FOC,
6-step sensorless and other advanced driving
algorithms including the speed control loop.
TQFP 10x10 64L pitch 0.5
Product label
www.st.com
Contents STSPIN32F0251, STSPIN32F0252
2/29 DS13048 Rev 2
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Pin description and connection diagram . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 Gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 Inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 Deadtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.3 VCC UVLO protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.4 VBO UVLO protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.5 Comparator and Smart shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Microcontroller unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.1 Memories and boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.3 High-speed external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 TQFP 10x10 64L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Suggested land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DS13048 Rev 2 3/29
STSPIN32F0251, STSPIN32F0252 Block diagram
29
1 Block diagram
Figure 1. STSPIN32F025x SiP block diagram
^dDϯϮ&Ϭϯϭ
Wϭϯ
Wϭϰ
Wϭϱ
W&Ϭ
W&ϭ
EZ^d
WϮ
Wϯ
s^^
zW^^Z'ϭ
WϬ
Wϭ
s
W&ϳ
W&ϲ
Wϭϯ
WϭϮ
Wϭϭ
WϭϬ
WϭϮ
sϭϴ
Wϵ
Wϴ
Wϭϰ
Wϭϯ
Wϭϱ
ƌĞƐĞƌǀĞĚ
sd
s
sϭϴ
s^^
Wϵ
Wϰ
Wϴ
KKdϬ
Wϲ
Wϱ
Wϭϱ
Wϭϰ
Wϳ
Wϯ
WϮ
Wϯ
s
WϬ
Wϭ
Wϱ
Wϰ
Wϭ
Wϲ
/E
,s'ϭ
Khdϭ
KKdϭ
Wϳ
s
Wϲ
s
Wϰ
Wϱ
Wϲ
Wϳ
WϬ
Wϭ
s^^Ϯ
zW^^Z'Ϯ
s
EWKZ
WϭϬ
Wϭϭ
WϮ
s^^
s
,s'Ϯ
KhdϮ
KKdϮ
,s'ϯ
Khdϯ
KKdϯ
>s'ϯ
>s'Ϯ
>s'ϭ
W'E
^'E
K
Wϳ
s
EZ^d
W&ϭ
W&Ϭ
Wϭϰ
WϭϮ
67-0
67-0
%&5&$5*0/
7
$$
7
$$
-0(* $
4)005
5)306()
13&7&/5*0/
%&"%5*.&
7
3&'
$*/
7
$$
7$$
7$$
0%
-M/
-*/
-*/
67
-FWFM4IJGUFS
'MPBUJOHTUSVDUVSF
%
67-0
7$$
67
-FWFM4IJGUFS
'MPBUJOHTUSVDUVSF
%
7$$
67
-FWFM4IJGUFS
'MPBUJOHTUSVDUVSF
%
)*/
)M/
'"6 -5
7
*
0%
&/
)*/
7
7
7
7
7
4."35
4%
7
Wϭϯ
Wϭϱ
Wϯ
Wϰ
Wϱ
Wϴ
KKdϬ
s^^
Wϭϯ
Wϭϰ
Wϭϱ
WϬ
s^^
s^^
Pin description and connection diagram STSPIN32F0251, STSPIN32F0252
4/29 DS13048 Rev 2
2 Pin description and connection diagram
Figure 2. STSPIN32F025x pin connection (Top view)




 

1&
5(6
9&&
5(6
5(6
5(6
3$
3$
3$
3$
3%
3%
3%
3%
3%
%227
1&
5(6
/9*
/9*
/9*
3*1'
*1'
&,1
2'
966
9''
3%
3%
3$
3$
3$
3%
966
9''
3&
3&
3&
3)
3)
1567
966$
9''$
3$
3$
3$
3$
3$
%227
+9*
287
1&
1&
1&
%227
+9*
287
1&
1&
1&
1&
%227
+9*
287
DS13048 Rev 2 5/29
STSPIN32F0251, STSPIN32F0252 Pin description and connection diagram
29
Table 1. Legend/abbreviations used in the pin description table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
Pin type
AO Gate Driver Analog Output
P Gate Driver Supply \ GND pin
S Supply pin
I Input-only pin
I/O Input / output pin
I/O structure
FT 5 V-tolerant I/O
FTf 5 V-tolerant I/O, FM+ capable
TTa 3.3 V-tolerant I/O directly connected to ADC
TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up
resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Pin functions
Alternate functions Functions selected through GPIOx_AFR registers
Additional functions Functions directly selected/enabled through peripheral
registers
Table 2. Pin description
N. Name Type Function
1 PB8 I/O - FTf MCU PB8
2 VSS Supply MCU digital ground
3 VDD Supply MCU digital power supply
4 PC13 I/O - TC MCU PC13
5 PC14 I/O - TC MCU PC14
6 PC15 I/O - TC MCU PC15
7 PF0 I/O - FT MCU PF0
8 PF1 I/O - FT MCU PF1
9 NRST I/O - RST MCU Reset pin
10 VSSA Supply MCU analog ground
11 VDDA Supply MCU analog power supply
12 PA0 I/O - TTa MCU PA0
13 PA1 I/O - TTa MCU PA1
Pin description and connection diagram STSPIN32F0251, STSPIN32F0252
6/29 DS13048 Rev 2
14 PA2 I/O - TTa MCU PA2
15 PA3 I/O - TTa MCU PA3
16 PA4 I/O - TTa MCU PA4
17 PA5 I/O - TTa MCU PA5
18 PA6 I/O - TTa MCU PA6
19 PA7 I/O - TTa MCU PA7
20 PB0 I/O - TTa MCU PB0
21 PB1 I/O - TTa MCU PB1
22 VDD Supply MCU digital power supply
23 VSS Supply MCU digital ground
24 OD Analog OD Output Open Drain comparator output
25 CIN Analog Input Comparator positive input
26 SGND Power Driver signal ground
27 PGND Power Driver power ground
28 LVG1(1) Analog Out Phase 1 low-side driver output
29 LVG2 Analog Out Phase 2 low-side driver output
30 LVG3 Analog Out Phase 3 low-side driver output
31 RES4 Reserved Pin must be left floating
33 OUT1 Power Phase 1 high-side (floating) common
voltage
34 HVG1(1) Analog Out Phase 1 high-side driver output
35 BOOT1 Power Phase 1 bootstrap supply voltage
40 OUT2 Power Phase 2 high-side (floating) common
voltage
41 HVG2(1) Analog Out Phase 2 high-side driver output
42 BOOT2 Power Phase 2 bootstrap supply voltage
46 OUT3 Power Phase 3 high-side (floating) common
voltage
47 HVG3(1) Analog Out Phase 3 high-side driver output
48 BOOT3 Power Phase 3 bootstrap supply voltage
50 RES5 Reserved Pin must be left floating
51 VCC Power Driver low-side and logic supply voltage
52 RES1 Reserved Pin must be left floating
53 RES2 Reserved Pin must be left floating
54 RES3 Reserved Pin must be left floating
55 PA12 I/O - FT MCU PA12
Table 2. Pin description (continued)
N. Name Type Function
DS13048 Rev 2 7/29
STSPIN32F0251, STSPIN32F0252 Pin description and connection diagram
29
Note: Each unused GPIO inside the SiP should be configured in OUTPUT mode low level after
startup by software.
56 PA13 I/O - FT MCU PA13/SWDIO (System debug data)
57 PA14 I/O - FT MCU PA14/SWDCLK (System debug
clock)
58 PA15 I/O - FT MCU PA15
59 PB3 I/O - FT MCU PB3
60 PB4 I/O - FT MCU PB4
61 PB5 I/O - FT MCU PB5
62 PB6 I/O - FTf MCU PB6
63 PB7 I/O - FTf MCU PB7
64 BOOT0 I - B Boot memory selection
32, 36, 37, 38,
39, 43, 44, 45,
49
NC Not Connected
1. The circuit guarantees less than 1 V on the LVG and HVG pins (at Isink = 10 mA), with VCC > 3 V. This
allows omitting the “bleeder” resistor connected between the gate and the source of the external
MOSFETs normally used to hold the pin low. When the EN is set low, gate driver outputs are forced low
and assure low impedance.
Table 3. STSPIN32F025x MCU-Driver internal connections
MCU pad Type Controller pad Function
PB12 I/O - FT FAULT Gate Driver Fault output
PB13 I/O - FT LIN1 Gate Driver Low-Side input driver 1
PB14 I/O - FT LIN2 Gate Driver Low-Side input driver 2
PB15 I/O - FT LIN3 Gate Driver Low-Side input driver 3
PA8 I/O - FT HIN1 Gate Driver High-Side input driver 1
PA9 I/O - FTf HIN2 Gate Driver High-Side input driver 2
PA10 I/O - FTf HIN3 Gate Driver High-Side input driver 3
PA11 I/O - FT EN Gate Driver shutdown input
Table 2. Pin description (continued)
N. Name Type Function
Electrical data STSPIN32F0251, STSPIN32F0252
8/29 DS13048 Rev 2
3 Electrical data
3.1 Absolute maximum ratings
Table 4. Absolute maximum ratings(1)
Symbol Parameter Test condition Min. Max. Unit
VCC Power supply voltage -0.3 21 V
VPGND Low-side driver ground VCC - 21 VCC + 0.3 V
VPS(2) Low-side driver ground -21 21 V
VOUT Output voltage VBOOT - 21 VBOOT + 0.3 V
VBOOT Bootstrap voltage -0.3 270 V
VHVG High-side gate output voltage VOUT - 0.3 VBOOT + 0.3 V
VLVG Low-side gate output voltage VPGND - 0.3 VCC + 0.3 V
VCIN Comparator input voltage -0.3 20 V
VOD Open-drain voltage (OD, FAULT) -0.3 21 V
dVOUT/dt Common mode transient Immunity 50 V/ns
VIO
MCU logic input voltage TTa type(3) -0.3 4 V
Logic input voltage FT, FTf type(3) -0.3 VDD + 4(4) V
IIO MCU I/O output current (3) -25 25 mA
ΣIIO MCU I/O total output current (3) -80 80 mA
VDD MCU digital supply voltage (3) -0.3 4 V
VDDA MCU analog supply voltage (3) -0.3 4 V
Tstg Storage temperature -50 150 °C
TJJunction temperature -40 150 °C
PTOT Total power dissipation 4.5 W
ESD Human Body Model 2(5) kV
1. Each voltage referred to SGND unless otherwise specified.
2. VPS = VPGND - VSGND
3. For details see Table 15 and 16 in the STM32F031x6x7 datasheet.
4. Valid only if the internal pull-up/pull-down resistors are disabled. If the internal pull-up or pull-down resistor is enabled, the
maximum limit is 4 V.
5. Pins 33 to 48 have HBM ESD rating 1C conforming to ANSI/ESDA/JEDEC JS-001-2014.
DS13048 Rev 2 9/29
STSPIN32F0251, STSPIN32F0252 Electrical data
29
3.2 Thermal data
3.3 Recommended operating conditions
Table 5. Thermal data
Symbol Parameter Value Unit
Rth(JA) Thermal resistance junction to ambient(1) 27.6 °C/W
1. JEDEC 2s2p PCB in still air.
Table 6. Recommended operating conditions
Symbol Parameter Test Condition Min. Typ. Max. Unit
VCC Power supply voltage (VCCthON)MAX 20 V
VLS(1) Low-side driver supply
voltage 420V
VPS(2) Low-side driver ground -5 5 V
VBO(3) Floating supply voltage (VBOthON)MAX 20 V
VCIN
Comparator input
voltage 015V
VOUT DC Output voltage -10(4) 230 V
FSW
Maximum switching
frequency(5) 800 kHz
VDD Standard MCU
operating voltage 3.0 3.3 3.6 V
VDDA
MCU analog operating
voltage (ADC not used) Must have a potential
equal to or higher than
VDD
VDD 3.6 V
MCU analog operating
voltage (ADC used) VDD 3.6 V
TJ
Operating junction
temperature -40 125 °C
1. VLS = VCC - VPGND
2. VPS = VPGND - VSGND
3. VBO = VBOOT - VOUT
4. LVG off. VCC = 9 V. Logic is operational if VBOOT > 5 V.
5. Actual maximum FSW depends on power dissipation.
Electrical characteristics STSPIN32F0251, STSPIN32F0252
10/29 DS13048 Rev 2
4 Electrical characteristics
(VCC=15 V; VDD=3.3 V; PGND = SGND; TJ = +25 °C, unless otherwise specified.)
Table 7. Electrical characteristics
Symbol Parameter Test Condition Min. Typ. Max. Unit
Power supply and standby mode
IQCCU
VCC undervoltage
quiescent supply
current
VCC = 7 V;
EN = 5 V; CIN = SGND 430 744 μA
IQCC
VCC quiescent
supply current
EN = 5 V; CIN = SGND
LVG & HVG: OFF 950 1450 μA
VCCthON
VCC UVLO turn-on
threshold 8 8.5 9 V
VCCthOFF
VCC UVLO turn-off
threshold 7.5 8 8.5 V
VCChys
VCC UVLO
threshold hysteresis 0.4 0.5 0.6 V
IDD(1)
VDD current
consumption
(Supply current in
Run mode, code
executing from
Flash memory)
VDD = 3.6 V
HSE bypass, PLL off
fHCLK = 1 MHz
0.8
mA
VDD = 3.6 V
HSI clock, PLL on
fHCLK = 48 MHz
18.9
IDDA(1) VDDA current
consumption
VDD = 3.6 V
HSE bypass, PLL off
fHCLK = 1 MHz
2.0
μA
VDD = 3.6 V
HSI clock, PLL on
fHCLK = 48 MHz
220
VPOR
VDD Power on reset
threshold Rising edge 1.84(2) 1.92 2.00 V
VPDR
VDD Power down
reset threshold Falling edge 1.80 1.88 1.96(2) V
VPDRhyst
VDD PDR
hysteresis 40 mV
High-side floating section supply(3)
IQBOU
VBO under-voltage
quiescent supply
current
VCC = VBO = 6.5 V;
EN = 5 V; CIN = SGND 25 62 μA
IQBO
VBO quiescent
supply current
VBO = 15 V
EN = 5 V; CIN = SGND
LVG OFF; HVG = ON
84 150 μA
DS13048 Rev 2 11/29
STSPIN32F0251, STSPIN32F0252 Electrical characteristics
29
VBOthON
VBO UVLO turn-on
threshold 7.5 8 8.5 V
VBOthOff
VBO UVLO turn-off
threshold 7 7.5 8 V
VBOhys
VBO UVLO threshold
hysteresis 0.4 0.5 0.6 V
ILK
High voltage
leakage current BOOT = HVG = OUT = 270 V 15 μA
RDboot
Bootstrap diode on
resistance TJ = 25 °C
LVG ON 215 240 Ω
LVG OFF 215 250
Output driving buffers
ISO
Source peak current
STSPIN32F0251
TJ = 25 °C 160 200 300 mA
Full temperature range(3) 130 350 mA
STSPIN32F0252
TJ = 25 °C 0.88 1.0 1.33 A
Full temperature range(3) 0.72 1.48 A
ISI
Sink peak current
STSPIN32F0251
TJ = 25 °C 230 350 430 mA
Full temperature range(3) 200 500 mA
STSPIN32F0252
TJ = 25 °C 0.71 0.85 1.02 A
Full temperature range(3) 0.51 1.15 A
RDSonON
Source RDSon I = 10mA
STSPIN32F0251
TJ = 25 °C 24 35 46 Ω
Full temperature range(3) 20 56 Ω
STSPIN32F0252
TJ = 25 °C 5 6.4 7.6 Ω
Full temperature range(3) 4.2 10.3 Ω
RDSonOFF
Sink RDSon I = 10mA
STSPIN32F0251
TJ = 25 °C 11 16 21 Ω
Full temperature range(3) 827Ω
STSPIN32F0252
TJ = 25 °C 5.5 6.7 8 Ω
Full temperature range(3) 4.5 11.2 Ω
Table 7. Electrical characteristics (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
Electrical characteristics STSPIN32F0251, STSPIN32F0252
12/29 DS13048 Rev 2
Logic Inputs
Vil
Low level logic
threshold voltage
TTa type(4)
0.3·VDD
+
0.07
V
FT, FTf type(4)
0.475
·VDD -
0.2
V
Vih
High level logic
threshold voltage
TTa type(4)
0.45
·VDDIOx
+0.398
V
FT, FTf type(4)
0.5
·VDDIOx
+0.2
V
Vhyst
Schmitt trigger
hysteresis
TTa type(4) 200 mV
FT, FTf type(4) 100 mV
Ilkg
Input leakage
current
TC, FT and FTf I/O TTa in digital mode
VSS VIN VDDIOx ± 0.1
μA
TTa in digital mode
VDDIOx VIN VDDA 1
TTa in analog mode
VSS VIN VDDA ± 0.1
FT and FTf I/O
VDDIOx VIN 5 V 10
VSSDlh
SmartSD restart
threshold 3.5 3.8 4.3 V
VSSDl
SmartSD unlatch
threshold 0.56 0.75 V
Sense Comparator and FAULT(5)
VREF
Internal voltage
reference 410 460 510 mV
CINhyst
Comparator input
hysteresis 40 70 mV
CINPD
Comparator input
pull-down current VCIN = 1 V 7 10 13 μA
IOD
OD internal current
source 2.5 5 7.5 μA
RON_OD OD On resistance IOD = 16 mA 19 25 36
ISAT_OD
OD saturation
current VOD = 5 V 95 mA
VFLOAT_OD
OD floating voltage
level
OD connected only to an external
capacitance 4.2 4.8 5.2 V
Table 7. Electrical characteristics (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
DS13048 Rev 2 13/29
STSPIN32F0251, STSPIN32F0252 Electrical characteristics
29
IOL_OD
OD low level sink
current VOD = 400 mV 11 16 21 mA
RON_F
FAULT On
resistance IFAULT = 8 mA 50 100
IOL_F
FAULT low level sink
current VFAULT = 400 mV 4 8 12 mA
tOD
Comparator
propagation delay
Rpu = 1 k to 5 V;
0 to 3.3 V voltage step on CIN
50% CIN to 90% OD
350 500 ns
tCIN-F
Comparator
triggering to FAULT
0 to 3.3 V voltage step on CIN;
50% CIN to 90% FAULT 350 500 ns
tCINoff
Comparator
triggering to
high/low-side driver
propagation delay
0 to 3.3 V voltage step on CIN 50% CIN to
90% LVG/HVG 360 510 ns
tFCIN
Comparator input
filter time 200 300 400 ns
SR Slew rate
CL = 1 nF;
Rpu = 1 kΩ to 5 V;
90% to 10% OD
4 7.7 10.3 V/μs
Driver dynamic characteristics
ton
High/Low-side driver
turn-on propagation
delay OUT = 0 V
BOOT = VCC
CL = 10 nF
Vin = 0 to 3.3 V
See Figure 3
45 85 120 ns
toff
High/Low-side driver
turn-off propagation
delay
45 85 120 ns
tEN
Enable to high/low-
side driver
propagation delay
245 345 520 ns
tr
Rise time CL= 1 nF
STSPIN32F0251 120
ns
STSPIN32F0252 19
tf
Fall time CL= 1 nF
STSPIN32F0251 50
ns
STSPIN32F0252 17
MT
Delay matching
high/low-side turn-
on/off(6)
030ns
DT Deadtime CL= 1 nF 200 300 400 ns
MDT Matching
deadtime(7) CL= 1 nF 0 50 ns
Table 7. Electrical characteristics (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
Electrical characteristics STSPIN32F0251, STSPIN32F0252
14/29 DS13048 Rev 2
Figure 3. Propagation delay timing definition
1. The current consumption depends on the firmware loaded in the microcontroller. See STM32F031x6x7 datasheet.
2. Data based on characterization results, not tested in production.
3. Values provided by characterization, not tested.
4. Data based on design simulation only. Not tested in production.
5. Comparator is disabled when VCC is in UVLO condition.
6. MT = max. (|ton(LVG) - toff(LVG)|, |ton(HVG) - toff(HVG)|, |toff(LVG) - ton(HVG)|, |toff(HVG) - ton(LVG)|)
7. MDT = | DTLH - DTHL |, refer to Figure 3.




W
U
W
I
W
RQ
W
RII


 



W
U
W
I
W
RQ
W
RII


+9*
/9*
W!'7 W!'7


W
(1
/9*+9*
(1
+,1
/,1


W
(1
DS13048 Rev 2 15/29
STSPIN32F0251, STSPIN32F0252 Electrical characteristics
29
Figure 4. Deadtime timing definitions
Figure 5. Deadtime and interlocking waveforms definition




W
U
W
I
W
RII


+,1
+9*

W
I
W
RII

/9*
'7
/+
'7
+/

 
/,1
W!'7
/,1
+,1
/9*
+9*
/,1
+,1
/9*
+9*
/,1
+,1
/9*
+9*
/,1
+,1
/9*
+9*
'7
/+
'7
+/
'7
/+
'7
+/
'7
/+
'7
+/
'7
/+
'7
+/
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
*/5&3-0$,*/(
'7
/
/
*/5&3-0$,*/(
$,
/
/
/
&21752/6,*1$/('*(6
29(5/$33('
,17(5/2&.,1*'($'7,0(
&21752/6,*1$/6('*(6
6<1&+521286
'($'7,0(
&21752/6,*1$/6('*(6
12729(5/$33('
%87,16,'(7+('($'7,0(
'($'7,0(
&21752/6,*1$/6('*(6
12729(5/$33('
2876,'(7+('($'7,0(
',5(&7'5,9,1*
*/5&3-0$,*/(
'
7
+
+
$
+
+
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
/,1
+,1
/9*
+9*
'7
/+
'7
+/
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
&21752/6,*1$/('*(6
29(5/$33(')25
025(7+$1'($'7,0(
,17(5/2&.,1*
JDWHGULYHURXWSXWV2))
+$/)%5,'*(75,67$7(
,17(5/2&.,1* ,17(5/2&.,1*
Device description STSPIN32F0251, STSPIN32F0252
16/29 DS13048 Rev 2
5 Device description
The STSPIN32F025x is a system-in-package providing an integrated solution suitable for
driving high-voltage 3-phase applications.
5.1 Gate driver
The STSPIN32F025x integrates a triple half-bridge gate driver able to drive N-channel
power MOSFETs or IGBTs. The high-side section is supplied by a bootstrapped voltage
technique with integrated bootstrap diode.
All the inputs lines are connected to a pull-down resistor with typical value of 60 kΩ.
The high- and low-side outputs of same half-bridge cannot be simultaneously driven high
thanks to an integrated interlocking function.
5.1.1 Inputs and outputs
The device is controlled through the following logic inputs:
EN: enable input, active high;
LIN: low-side driver inputs, active low;
HIN: high-side driver inputs, active low.
1. X: don’t care
The FAULT and OD pins are open-drain outputs. The FAULT signal is set low in case VCC
UVLO is detected, or in case the SmartShutDown comparator triggers an event. It is only
used to signal a UVLO or SmartSD activation to external circuits, and its state does not
affect the behavior of other functions or circuits inside the driver. The OD behavior is
explained in Section 5.1.5.
5.1.2 Deadtime
The deadtime feature, in companion with the interlocking feature, guarantees that driver
outputs of the same channel are not high simultaneously and at least a DT time passes
between the turn-off of one driver's output and the turn-on of the companion output of the
same channel. If a deadtime longer than the internal DT is applied to LIN and HIN inputs by
Table 8. Inputs truth table (applicable when device is not in UVLO or SmartSD protection)
Input pins Output pins
EN LIN HIN LVG HVG
L X X Low Low
H H H Low Low
HLHHIGH Low
H H L Low HIGH
Interlocking H L L Low Low
DS13048 Rev 2 17/29
STSPIN32F0251, STSPIN32F0252 Device description
29
the external controller, the internal DT is ignored and the outputs follow the deadtime
determined by the inputs. Refer to Figure 4 for the deadtime and interlocking waveforms.
5.1.3 VCC UVLO protection
Undervoltage protection is available on VCC and BOOT supply pins. In order to avoid
intermittent operation, a hysteresis sets the turn-off threshold with respect to the turn-on
threshold.
When VCC voltage goes below the VCCthOFF threshold all the outputs are switched off, both
LVG and HVG. When VCC voltage reaches the VCCthON threshold the driver returns to
normal operation and sets the LVG outputs according to actual input pins status; HVG is
also set according to input pin status if the corresponding VBO section is not in UVLO
condition. The FAULT output is kept low when VCC is in UVLO condition. The following
figures show some examples of typical operation conditions.
Figure 6. VCC power ON and UVLO, LVG timing
Device description STSPIN32F0251, STSPIN32F0252
18/29 DS13048 Rev 2
Figure 7. VCC power ON and UVLO, HVG timing
5.1.4 VBO UVLO protection
Dedicated undervoltage protection is available on each bootstrap section between BOOTx
and OUTx supply pins. In order to avoid intermittent operation, a hysteresis sets the turn-off
threshold with respect to the turn-on threshold.
When VBO voltage goes below the VBOthOFF threshold, the HVG output of the
corresponding bootstrap section is switched off. When VBO voltage reaches the VBOthON
threshold the device returns to normal operation and the output remains off up to the next
input pins transition that requests HVG to turn on.
7$$
7
$$UI0/
7
$$UI0''
7
7
'"6-5
-*/
7
7
/9*
67-07$$
DS13048 Rev 2 19/29
STSPIN32F0251, STSPIN32F0252 Device description
29
Figure 8. VBO Power-ON and UVLO timing
5.1.5 Comparator and Smart shutdown
The STSPIN32F025x integrates a comparator committed to the fault protection function,
thanks to the SmartShutDown (SmartSD) circuit.
The SmartSD architecture allows immediate turn-off of the gate driver outputs in the case of
overload or overcurrent condition, by minimizing the propagation delay between the fault
detection event and the actual output switch-off. In fact, the time delay between the fault
detection and the output turn-off is not dependent on the value of the external components
connected to the OD pin, which are only used to set the duration of disable time after the
fault.
This provides the possibility to increase the duration of the output disable time after the fault
event up to very large values without increasing the delay time of the protection. The
duration of the disable time is determined by the values of the external capacitor COD and of
the optional pull-up resistor connected to the OD pin.
The comparator has an internal voltage reference VREF connected to the inverting input,
while the non-inverting input is available on the CIN pin. The comparator's CIN input can be
connected to an external shunt resistor in order to implement a fast and simple overcurrent
protection function. The output signal of the comparator is filtered from glitches shorter than
tFCIN and then fed to the SmartSD logic.
If the impulse on the CIN pin is higher than VREF and wider than tFCIN, the SmartSD logic is
triggered and immediately sets all of the driver outputs to low-level (OFF).
At the same time, FAULT is forced low to signal the event (for example to a MCU input) and
OD starts to discharge the external COD capacitor used to set the duration of the output
disable time of the fault event.
The FAULT pin is released and driver outputs restart following the input pins as soon as the
output disable time expires.
9&&
7
$$UI0/
7
$$UI0''
7
7
7
%2
#0UI0/
9
#0UI0''
7
7
)$8/7
+,1
+9*287
9
67-07$$
Device description STSPIN32F0251, STSPIN32F0252
20/29 DS13048 Rev 2
The overall disable time is composed of two phases:
The OD unlatch time (t1 in Figure 9), which is the time required to discharge the COD
capacitor down to the VSSDl threshold. The discharge starts as soon as the SSD
comparator is triggered.
The OD Restart time (t2 in Figure 9), which is the time required to recharge the COD
capacitor up to the VSSDh threshold. The recharge of COD starts when the OD internal
MOSFET is turned-off, which happens when the fault condition has been removed (CIN
< VREF - CINhyst) and the voltage on OD reaches the VSSDl threshold. This time normally
covers most of the overall output disable time.
If no external pull-up is connected to OD, the external COD capacitor is discharged with a
time constant defined by COD and the internal MOSFET's characteristic (Equation 1), and
the Restart time is determined by the internal current source IOD and by COD (Equation 2).
Equation 1
Equation 2
Where VOD = VFLOAT_OD
In case the OD pin is connected to VCC by an external pull-up resistor ROD_ext, the OD
discharge time is determined by the external network ROD_ext COD and by the internal
MOSFET's RON_OD (Equation 3), while the Restart time is determined by current in ROD_ext
(Equation 4).
Equation 3
Equation 4
where
t1RON _OD COD In VOD
VSSDl
--------------



t2
COD VSSDh
IOD
-------------------------------In VSSDl VOD
VSSDh VOD
---------------------------------


t1COD ROD_ext // RON _OD
In VOD Von
VSSDl Von
-------------------------------



t2COD ROD_ext In VSSDl VOD
VSSDh VOD
---------------------------------



V
on RON _OD
ROD_ext RON _OD
+
----------------------------------------------VCC V OD= VCC ;=
DS13048 Rev 2 21/29
STSPIN32F0251, STSPIN32F0252 Device description
29
Figure 9. Smart shutdown timing waveforms
5.2 Microcontroller unit
The integrated MCU is the STM32F031x6 with the following main characteristics:
Core: ARM® 32-bit Cortex® -M0 CPU, frequency up to 48 MHz
Memories: 4kB of SRAM, 32 kB of Flash Memory
CRC calculation unit
Up to 21 fast I/Os
Advanced-control timer dedicated for PWM generation
Up to 6 general purpose timers
12-bit ADC (up to 10 channels)
60$576+87'2:1&,5&8,7
/9*+9*
2'JDWH
LQWHUQDO
&,1
)DVWVKXWGRZQ
WKHGULYHURXWSXWVDUHVZLWFKHGRII
GLVDEOHWLPH
2'
)$8/7
9
5()
U'$*/ U'$*/
U$*/PGG
744%I
744%M
70%
UU
2'
&
2'
60$57
6'
/2*,&
5
21B2'
*
0%
7
9&&
2'
&
2'
60$57
6'
/2*,&
5
21B2'
*
0%
7
5
2'BH[W
H[WHUQDOSXOOXS
LPPHGLDWHO\DIWHUWKHFRPSDUDWRUWULJJHULQJ
Device description STSPIN32F0251, STSPIN32F0252
22/29 DS13048 Rev 2
Communication interfaces: I2C, USART, SPI
Serial Wire Debug (SWD)
Extended temperature range: -40 to 125°C
Note: For more details refer to the STM32F031x6 datasheet on www.st.com.
5.2.1 Memories and boot mode
The device has the following features:
4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states
and featuring embedded parity checking with exception generation for fail-critical
applications.
The non-volatile memory is divided into two arrays:
32 Kbytes of embedded Flash memory for programs and data
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or written
to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Cortex®-M0 serial wire) and boot in
RAM selection disabled.
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
boot from User Flash memory
boot from System Memory
boot from embedded SRAM
The boot loader is located in System Memory, programmed by ST during production. It is
used to reprogram the Flash memory by using USART on pins PA14/PA15.
5.2.2 Power management
The VDD pin is the power supply for I/Os and the internal regulator.
The VDDA pin is power supply for ADC, Reset blocks, RCs and PLL. The VDDA voltage is
provided externally through VDDA pin.
Note: The VDDA voltage level must be always greater or equal to the VDD voltage level and must
be established first.
The MCU has integrated power-on reset (POR) and power-down reset (PDR) circuits. They
are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the
DS13048 Rev 2 23/29
STSPIN32F0251, STSPIN32F0252 Device description
29
power consumption if the application design ensures that VDDA is higher than or equal to
VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
The MCU supports three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake
up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal
or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines (one of the 16
external lines, the PVD output, RTC, I2C1 or USART1).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage
regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI
RC and the HSE crystal oscillators are also switched off. After entering Standby mode,
SRAM and register contents are lost except for registers in the RTC domain and Standby
circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC event occurs.
5.2.3 High-speed external clock source
The high-speed external (HSE) clock can be generated from external clock signal or
supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator (see Figure 10). In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time.
Figure 10. Typical application with 8 MHz crystal
Device description STSPIN32F0251, STSPIN32F0252
24/29 DS13048 Rev 2
1. The REXT value depends on the crystal characteristics (refer to the crystal resonator
manufacturer for more details on them).
2. The external clock signal has to respect the I/O characteristics and follows
recommended clock input waveform (refer to Figure 11).
Figure 11. HSE clock source timing diagram
5.3 Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted deadtimes.
This timer is used to generate the PWM signal for the three half-bridge gate drivers as
shown in Table 9.
Table 9. TIM1 channel configuration
MCU I/O ASIC input TIM1 channel
PB13 LIN1 TIM1_CH1N
PB14 LIN2 TIM1_CH2N
PB15 LIN3 TIM1_CH3N
PA8 HIN1 TIM1_CH1
PA9 HIN2 TIM1_CH2
PA10 HIN3 TIM1_CH3
DS13048 Rev 2 25/29
STSPIN32F0251, STSPIN32F0252 Package information
29
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.1 TQFP 10x10 64L package information
Figure 12. TQFP mechanical data
Package information STSPIN32F0251, STSPIN32F0252
26/29 DS13048 Rev 2
Table 10. TQFP package dimensions(1)
Symbol Min. Nom. Max.
TOTAL THICKNESS A --- --- 1.2
STAND OFF A1 0.05 --- 0.15
MOLD THICKNESS A2 0.95 --- 1.05
LEAD WIDTH(PLATING) b 0.17 0.22 0.27
LEAD WIDTH b1 0.17 0.2 0.23
L/F THICKNESS(PLATING) c 0.09 --- 0.2
L/F THICKNESS c1 0.09 --- 0.16
X D --- 12 ---
Y E --- 12 ---
BODY SIZE
X D1 --- 10 ---
Y E1 --- 10 ---
LEAD PITCH e --- 0.5 ---
L 0.45 0.6 0.75
θ 3.5°
θ1 --- ---
θ2 1 12° 13°
θ3 1 12° 13°
R1 0.08 --- ---
R2 0.08 --- 0.2
S 0.2 --- ---
EP SIZE
X M 5.85 5.95 6.05
Y N 5.85 5.95 6.05
PACKAGE LEAD TOLERANCE aaa 0.2
LEAD EDGE TOLERANCE bbb 0.2
COPLANARITY ccc 0.08
LEAD OFFSET ddd 0.08
MOLD FLATNESS eee 0.05
1. All dimensions are mm unless otherwise stated.
DS13048 Rev 2 27/29
STSPIN32F0251, STSPIN32F0252 Package information
29
6.2 Suggested land pattern
Figure 13. TQFP 10x10 64L suggested land pattern
1. All dimensions are mm unless otherwise stated.







Ordering information STSPIN32F0251, STSPIN32F0252
28/29 DS13048 Rev 2
7 Ordering information
8 Revision history
Table 11. Order codes
Order code Package Package marking Packaging
STSPIN32F0251 TQFP 10x10 64L STSPIN32F0 251 Tray
STSPIN32F0251TR TQFP 10x10 64L STSPIN32F0 251 Tape and Reel
STSPIN32F0252 TQFP 10x10 64L STSPIN32F0 252 Tray
STSPIN32F0252TR TQFP 10x10 64L STSPIN32F0 252 Tape and Reel
Table 12. Document revision history
Date Revision Changes
29-Aug-2019 1 Initial release.
04-Sept-2019 2 Changed Figure 2 and 11.
DS13048 Rev 2 29/29
STSPIN32F0251, STSPIN32F0252
29
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved