www.irf.com 1
09/10/07
IRFB4227PbF
Notes through are on page 8
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
S
D
G
TO-220AB
D
S
D
G
GDS
Gate Drain Source
VDS max 200 V
VDS (Avalanche) typ. 240 V
RDS(ON) typ. @ 10V 19.7 m
:
IRP max @ TC= 100°C 130 A
TJ max 175 °C
Key Parameters
Absolute Maximum Ratings
Parameter Units
VGS Gate-to-Source Voltage V
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
IDM Pulsed Drain Current
c
IRP @ TC = 100°C Repetitive Peak Current
g
PD @TC = 25°C Power Dissipation W
PD @TC = 100°C Power Dissipation
Linear Derating Factor W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw N
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case
f
––– 0.45
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient
f
––– 62
Max.
46
260
65
±30
130
300
-40 to + 175
10lb
x
in (1.1N
x
m)
330
190
2.2
Features
l Advanced Process Technology
l Key Parameters Optimized for PDP Sustain,
Energy Recovery and Pass Switch Applications
l Low EPULSE Rating to Reduce Power
Dissipation in PDP Sustain, Energy Recovery
and Pass Switch Applications
l Low QG for Fast Response
l High Repetitive Peak Current Capability for
Reliable Operation
l Short Fall & Rise Times for Fast Switching
l175°C Operating Junction Temperature for
Improved Ruggedness
l Repetitive Avalanche Capability for Robustness
and Reliability
l Class-D Audio Amplifier 300W-500W
(Half-bridge)
PD - 97035D
IRFB4227PbF
2www.irf.com
S
D
G
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 200 ––– ––– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 170 ––– mV/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 19.7 24 m
VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V
VGS(th)/TJGate Threshold Voltage Coefficient ––– -13 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 1.0 mA
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 49 ––– ––– S
QgTotal Gate Charge ––– 70 98 nC
Qgd Gate-to-Drain Charge ––– 23 –––
td(on) Turn-On Delay Time ––– 33 ––– ns
trRise Time ––– 20 –––
td(off) Turn-Off Delay Time ––– 21 –––
tfFall Time ––– 31 –––
tst Shoot Through Blocking Time 100 ––– ––– ns
EPULSE Energy per Pulse µJ
Ciss Input Capacitance ––– 4600 –––
Coss Output Capacitance ––– 460 ––– pF
Crss Reverse Transfer Capacitance ––– 91 –––
Coss eff. Effective Output Capacitance ––– 360 –––
LDInternal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 ––– from package
Avalanche Characteristics
Parameter Units
EAS Single Pulse Avalanche Energy
d
mJ
EAR Repetitive Avalanche Energy
c
mJ
VDS(Avalanche) Repetitive Avalanche Voltage
c
V
IAS Avalanche Current
d
A
Diode Characteristics
Parameter Min. Typ. Max. Units
IS @ TC = 25°C Continuous Source Current ––– ––– 65
(Body Diode) A
ISM Pulsed Source Current ––– ––– 260
(Body Diode)
c
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 100 150 ns
Qrr Reverse Recovery Charge ––– 430 640 nC
VDD = 100V
ID = 46A
RG = 2.5
VGS = 10V
e
––– 570 –––
––– 910 –––
33
39
–––
–––
240 –––
Typ. Max.
ƒ = 1.0MHz,
––– 140
TJ = 25°C, IF = 46A, VDD = 50V
di/dt = 100A/µs
e
TJ = 25°C, IS = 46A, VGS = 0V
e
showing the
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 46A
e
VDS = VGS, ID = 250µA
VDS = 200V, VGS = 0V
VGS = 0V, VDS = 0V to 160V
VDS = 200V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS = 0V
L = 220nH, C= 0.4µF, VGS = 15V
MOSFET symbol
VDS = 25V, ID = 46A
VDD = 100V, ID = 46A, VGS = 10V
e
Conditions
and center of die contact
VDD = 160V, VGS = 15V, RG= 4.7
VDS = 160V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.4µF, VGS = 15V
VDS = 160V, RG= 4.7Ω, TJ = 100°C
VDS = 25V
IRFB4227PbF
www.irf.com 3
Fig 6. Typical EPULSE vs. Drain Current
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ID, Drain-to-Source Current
(Α)
VDS = 25V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.0
1.0
2.0
3.0
4.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 46A
VGS = 10V
130 140 150 160 170 180 190
ID, Peak Drain Current (A)
0
200
400
600
800
1000
Energy per pulse (µJ)
L = 220nH
C = Variable
100°C
25°C
110 120 130 140 150 160 170
VDS, Drain-to -Source Voltage (V)
100
200
300
400
500
600
700
800
900
1000
Energy per pulse (µJ)
L = 220nH
C = 0.4µF
100°C
25°C
0.1 110
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 175°C
7.0V
VGS
TOP 15V
10V
8.0V
BOTTOM 7.0V
0.1 110
VDS, Drain-to-Source Voltage (V)
10
100
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
7.0V
VGS
TOP 15V
10V
8.0V
BOTTOM 7.0V
IRFB4227PbF
4www.irf.com
Fig 11. Maximum Drain Current vs. Case Temperature
Fig 8. Typical Source-Drain Diode Forward Voltage
Fig 12. Maximum Safe Operating Area
Fig 7. Typical EPULSE vs.Temperature
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
25 50 75 100 125 150
Temperature (°C)
0
200
400
600
800
1000
1200
1400
Energy per pulse (µJ)
L = 220nH
C= 0.4µF
C= 0.3µF
C= 0.2µF
0.2 0.4 0.6 0.8 1.0 1.2
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
110 100 1000
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 20 40 60 80 100 120
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 160V
VDS= 100V
VDS= 40V
ID= 46A
25 50 75 100 125 150 175
TC , CaseTemperature (°C)
0
10
20
30
40
50
60
70
ID , Drain Current (A)
1 10 100 1000
VDS , Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1µsec
10µsec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
IRFB4227PbF
www.irf.com 5
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 15. Threshold Voltage vs. Temperature
Fig 14. Maximum Avalanche Energy Vs. Temperature
Fig 13. On-Resistance Vs. Gate Voltage
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Ri (°C/W) τi (sec)
0.08698 0.000074
0.2112 0.001316
0.1506 0.009395
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
25 50 75 100 125 150 175
Case Temperature (°C)
0
40
80
120
160
200
Repetitive Peak Current (A)
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
5678910
VGS, Gate-to-Source Voltage (V)
0.00
0.04
0.08
0.12
0.16
RDS(on), Drain-to -Source On Resistance (
)
TJ = 25°C
TJ = 125°C
ID = 46A
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
100
200
300
400
500
600
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 8.6A
14A
BOTTOM 39A
IRFB4227PbF
6www.irf.com
Fig 20a. Switching Time Test Circuit Fig 20b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
Fig 19b. Unclamped Inductive Waveforms
Fig 19a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 21a. Gate Charge Test Circuit Fig 21b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
1K
VCC
DUT
0
L
S
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
IRFB4227PbF
www.irf.com 7
Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms
Fig 21c. EPULSE Test Waveforms
IRFB4227PbF
8www.irf.com
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/2007
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.18mH, RG = 25, IAS = 39A.
Pulse width 400µs; duty cycle 2%.
Rθ is measured at TJ of approximately 90°C.
Half sine wave with duty cycle = 0.25, ton=1µsec.
/27&2'(
(;$03/( 7+,6,6$1,5)
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17+($66(0%/</,1(&
$66(0%/('21:: ,17(51$7,21$/ 3$57180%(5
5(&7,),(5
/27&2'(
$66(0%/<
/2*2
<($5 
'$7(&2'(
:((.
/,1(&
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/