DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 1
© 2006–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trade-
marks are the property of their respective owners. PowerPC is a trademark of IBM, Inc. All specifications are subject to change without notice.
Virtex-5 Electrical Characteristics
Virtex™-5 FPGAs are available in -3, -2, -1 speed grades,
with -3 having the highest performance.
Virtex-5 DC and AC characteristics are specified for both
commercial and industrial grades. Except the operating
temperature range or unless otherwise noted, all the DC
and AC electrical parameters are the same for a particular
speed grade (that is, the timing characteristics of a -1 speed
grade industrial device are the same as for a -1 speed grade
commercial device). However, only selected speed grades
and/or devices might be available in the industrial range.
All supply voltage and junction temperature specifications
are representative of worst-case conditions. The parame-
ters included are common to popular designs and typical
applications.
This Virtex-5 data sheet, part of an overall set of documen-
tation on the Virtex-5 family of FPGAs, is available on the
Xilinx website:
Virtex-5 Family Overview
Virtex-5 User Guide
Virtex-5 Configuration Guide
Virtex-5 XtremeDSP™ Design Considerations
Virtex-5 Packaging and Pinout Specification
Virtex-5 RocketIO™ GTP Transceiver User Guide
Virtex-5 Tri-mode Ethernet MAC User Guide
Virtex-5 Integrated Endpoint Block User Guide for
PCI Express® Designs
Virtex-5 System Monitor User Guide
Virtex-5 PCB Designer’s Guide
All specifications are subject to change without notice.
Virtex-5 DC Characteristics
0
Virtex-5 Data Sheet:
DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 00Advance Product Specification
R
Table 1: Absolute Maximum Ratings
Symbol Description Units
VCCINT Internal supply voltage relative to GND –0.5 to 1.1 V
VCCAUX Auxiliary supply voltage relative to GND –0.5 to 3.0 V
VCCO Output drivers supply voltage relative to GND –0.5 to 3.75 V
VBATT Key memory battery backup supply –0.5 to 4.05 V
VREF Input reference voltage –0.5 to 3.75 V
VIN(3) 3.3V I/O input voltage relative to GND(4) (user and dedicated I/Os) –0.75 to 4.05 V
2.5V or below I/O input voltage relative to GND (user and dedicated I/Os) –0.75 to VCCO + 0.5 V
VTS Voltage applied to 3-state 3.3V output(4) (user and dedicated I/Os) –0.75 to 4.05 V
Voltage applied to 3-state 2.5V or below output (user and dedicated I/Os) –0.75 to VCCO + 0.5 V
TSTG Storage temperature (ambient) –65 to 150 °C
TSOL Maximum soldering temperature(2) +220 °C
TJMaximum junction temperature(2) +125 °C
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to
Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
2. For soldering guidelines and thermal considerations, see UG195: Virtex-5 Packaging and Pinout Specification on the Xilinx website.
3. 3.3V I/O absolute maximum limit applied to DC and AC signals.
4. For 3.3V I/O operation, refer to UG190: Virtex-5 User Guide, Chapter 6, 3.3V I/O Design Guidelines.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 2
R
Table 2: Recommended Operating Conditions
Symbol Description Temperature Range Min Max Units
VCCINT
Internal supply voltage relative to GND, TJ = 0°C to +85°C Commercial 0.95 1.05 V
Internal supply voltage relative to GND, TJ = –40°C to +100°C Industrial 0.95 1.05 V
VCCAUX(1) Auxiliary supply voltage relative to GND, TJ = 0°C to +85°C Commercial 2.375 2.625 V
Auxiliary supply voltage relative to GND, TJ = –40°C to +100°C Industrial 2.375 2.625 V
VCCO(2,4,5) Supply voltage relative to GND, TJ = 0°C to +85°C Commercial 1.14 3.45 V
Supply voltage relative to GND, TJ = –40°C to +100°C Industrial 1.14 3.45 V
VIN
3.3V supply voltage relative to GND, TJ = 0°C to +85°C Commercial GND – 0.20 3.45 V
3.3V supply voltage relative to GND, TJ = –40°C to +100°C Industrial GND – 0.20 3.45 V
2.5V and below supply voltage relative to GND,
TJ = 0°C to +85°C
Commercial GND – 0.20 VCCO + 0.2 V
2.5V and below supply voltage relative to GND,
TJ = –40°C to +100°C
Industrial GND – 0.20 VCCO + 0.2 V
IIN
Maximum current through any pin in a powered or unpowered
bank when forward biasing the clamp diode.
Commercial 10 mA
Industrial 10 mA
VBATT(3) Battery voltage relative to GND, TJ = 0°C to +85°C Commercial 1.0 3.6 V
Battery voltage relative to GND, TJ = –40°C to +100°C Industrial 1.0 3.6 V
Notes:
1. Recommended maximum voltage drop for VCCAUX is 10 mV/ms.
2. Configuration data is retained even if VCCO drops to 0V.
3. VBATT is required only when using bitstream encryption. If battery is not used, connect VBATT to either ground or VCCAUX.
4. Includes VCCO of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
5. The configuration supply voltage VCC_CONFIG is also known as VCCO_0
Table 3: DC Characteristics Over Recommended Operating Conditions
Symbol Description Data Rate Min Typ Max Units
VDRINT Data retention VCCINT voltage (below which configuration data might be lost) 0.75 V
VDRI Data retention VCCAUX voltage (below which configuration data might be lost) 2.0 V
IREF VREF leakage current per pin 10 µA
ILInput or output leakage current per pin (sample-tested) 10 µA
CIN Input capacitance (sample-tested) 8pF
IRPU(1) Pad pull-up (when selected) @ VIN = 0V, VCCO = 3.3V 20 150 µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 2.5V 10 90 µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.8V 5 45 µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.5V 3 30 µA
Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.2V 2 15 µA
IRPD(1) Pad pull-down (when selected) @ VIN = 2.5V 5 110 µA
IBATT(2) Battery supply current 150 nA
n Temperature diode ideality factor 1.0002 n
r Series resistance 5.0 Ω
Notes:
1. Typical values are specified at nominal voltage, 25°C.
2. Maximum value specified for worst case process at 25°C.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 3
R
Important Note
Typical values for queiscent supply current are now specified at nominal voltage, 85ºC junction temperatures (Tj). Xilinx
recommends analyzing static power consumption at Tj = 85ºC because the majority of designs operate near the high end of
the commercial temperature range. Data sheets for older products (e.g., Virtex-4 devices) still specify typical quiescent
supply current at Tj = 25ºC. Queiscent supply current is specified by speed grade for Virtex-5 devices. Use the XPOWER™
Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for
conditions other than those specified in Ta bl e 4.
Table 4: Typical Quiescent Supply Current
Symbol Description Device
Speed and Temperature Grade Units
-3 (C) -2 (C & I) -1 (C & I)
ICCINTQ Quiescent VCCINT supply current XC5VLX30 480 480 300 mA
XC5VLX30T 507 507 317 mA
XC5VLX50 651 651 449 mA
XC5VLX50T 689 689 475 mA
XC5VLX85 1072 1072 883 mA
XC5VLX85T 1115 1115 866 mA
XC5VLX110 1391 1391 1109 mA
XC5VLX110T 1448 1448 1154 mA
XC5VLX220 N/A 2783 2278 mA
XC5VLX220T N/A 2844 2328 mA
XC5VLX330 N/A 4193 3432 mA
XC5VLX330T N/A 4267 3492 mA
XC5VSX35T 720 720 554 mA
XC5VSX50T 1092 1092 840 mA
XC5VSX95T N/A 1924 1475 mA
ICCOQ Quiescent VCCO supply current XC5VLX30 1.5 1.5 1.5 mA
XC5VLX30T 1.5 1.5 1.5 mA
XC5VLX50 2 2 2 mA
XC5VLX50T 2 2 2 mA
XC5VLX85 3 3 3 mA
XC5VLX85T 3 3 3 mA
XC5VLX110 4 4 4 mA
XC5VLX110T 4 4 4 mA
XC5VLX220 N/A 8 8 mA
XC5VLX220T N/A 8 8 mA
XC5VLX330 N/A 12 12 mA
XC5VLX330T N/A 12 12 mA
XC5VSX35T 1.5 1.5 1.5 mA
XC5VSX50T 2 2 2 mA
XC5VSX95T N/A 4 4 mA
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 4
R
Power-On Power Supply Requirements
Xilinx FPGAs require a certain amount of supply current
during power-on to insure proper device initialization. The
actual current consumed depends on the power-on ramp
rate of the power supply.
The power supplies can be can be turned on in any
sequence, though the specifications shown in Ta bl e 5 are
for the recommended power-on sequence of VCCINT
,
VCCAUX, and VCCO. Xilinx does not specify the current for
other power-on sequences.
Table 5 shows the minimum current required by Virtex-5
devices for proper power-on and configuration.
If the current minimums shown in Tabl e 5 are met, the
device powers on properly after all three supplies have
passed through their power-on reset threshold voltages.
The FPGA must be configured after VCCINT is applied.
Once initialized and configured, use the XPOWER tools to
estimate current drain on these supplies.
ICCAUXQ Quiescent VCCAUX supply current XC5VLX30 38 38 38 mA
XC5VLX30T 43 43 43 mA
XC5VLX50 57 57 57 mA
XC5VLX50T 62 62 62 mA
XC5VLX85 93 93 93 mA
XC5VLX85T 98 98 98 mA
XC5VLX110 125 125 125 mA
XC5VLX110T 130 130 130 mA
XC5VLX220 N/A 229 229 mA
XC5VLX220T N/A 236 236 mA
XC5VLX330 N/A 345 345 mA
XC5VLX330T N/A 353 353 mA
XC5VSX35T 49 49 49 mA
XC5VSX50T 74 74 74 mA
XC5VSX95T N/A 131 131 mA
Notes:
1. Typical values are specified at nominal voltage, 85°C junction temperatures (Tj). Industrial(I) grade devices have the same typical values as
commercial (C) grade devices at 85°C, but higher values at 100°C. Use the XPE tool to calculate 100°C values.
2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
3. If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE) or
XPOWER Analyzer (XPA) tools.
Table 4: Typical Quiescent Supply Current (Continued)
Symbol Description Device
Speed and Temperature Grade Units
-3 (C) -2 (C & I) -1 (C & I)
Table 5: Power-On Current for Virtex-5 Devices
Device
ICCINTMIN ICCAUXMIN ICCOMIN
UnitsTyp(1) Max Typ(1) Max Typ(1) Max
XC5VLX30 235 76 50 mA
XC5VLX30T 246 86 50 mA
XC5VLX50 320 114 50 mA
XC5VLX50T 336 124 50 mA
XC5VLX85 492 186 100 mA
XC5VLX85T 515 196 100 mA
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 5
R
SelectIO™ DC Input and Output Levels
Values for VIL and VIH are recommended input voltages.
Values for IOL and IOH are guaranteed over the recom-
mended operating conditions at the VOL and VOH test
points. Only selected standards are tested. These are cho-
sen to ensure that all standards meet their specifications.
The selected standards are tested at a minimum VCCO with
the respective VOL and VOH voltage levels shown. Other
standards are sample tested.
XC5VLX110 623 250 100 mA
XC5VLX110T 651 260 100 mA
XC5VLX220 1023 458 150 mA
XC5VLX220T 1056 472 150 mA
XC5VLX330 1470 690 150 mA
XC5VLX330T 1509 706 150 mA
XC5VSX35T 307 98 50 mA
XC5VSX50T 472 148 50 mA
XC5VSX95T 804 262 100 mA
Notes:
1. Typical values are specified at nominal voltage, 25°C.
Table 5: Power-On Current for Virtex-5 Devices (Continued)
Device
ICCINTMIN ICCAUXMIN ICCOMIN
UnitsTyp(1) Max Typ(1) Max Typ(1) Max
Table 6: Power Supply Ramp Time
Symbol Description Ramp Time Units
VCCINT Internal supply voltage relative to GND 0.20 to 50.0 ms
VCCO Output drivers supply voltage relative to GND 0.20 to 50.0 ms
VCCAUX Auxiliary supply voltage relative to GND 0.20 to 50.0 ms
Table 7: SelectIO DC Input and Output Levels
I/O Standard VIL VIH VOL VOH IOL IOH
V, Min V, Max V, Min V, Max V, Max V, Min mA mA
LVTTL –0.3 0.8 2.0 3.45 0.4 2.4 Note(3) Note(3)
LVCMOS33,
LVDCI33
–0.3 0.8 2.0 3.45 0.4 VCCO – 0.4 Note(3) Note(3)
LVCMOS25,
LVDCI25
–0.3 0.7 1.7 VCCO + 0.3 0.4 VCCO – 0.4 Note(3) Note(3)
LVCMOS18,
LVDCI18
–0.3 35% VCCO 65% VCCO VCCO + 0.3 0.45 VCCO – 0.45 Note(4) Note(4)
LVCMOS15,
LVDCI15
–0.3 35% VCCO 65% VCCO VCCO + 0.3 25% VCCO 75% VCCO Note(4) Note(4)
LVCMOS12 –0.3 35% VCCO 65% VCCO VCCO + 0.3 25% VCCO 75% VCCO Note(6) Note(6)
PCI33_3(5) –0.2 30% VCCO 50% VCCO VCCO 10% VCCO 90% VCCO Note(5) Note(5)
PCI66_3(5) –0.2 30% VCCO 50% VCCO VCCO 10% VCCO 90% VCCO Note(5) Note(5)
PCI-X(5) –0.2 35% VCCO 50% VCCO VCCO 10% VCCO 90% VCCO Note(5) Note(5)
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 6
R
GTLP –0.3 VREF – 0.1 VREF + 0.1 0.6 N/A 36 N/A
GTL –0.3 VREF – 0.05 VREF + 0.05 0.4 N/A 32 N/A
HSTL I_12 –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 25% VCCO 75% VCCO 6.3 6.3
HSTL I(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 8 –8
HSTL II(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 16 –16
HSTL III(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 24 –8
HSTL IV(2) –0.3 VREF – 0.1 VREF + 0.1 VCCO + 0.3 0.4 VCCO – 0.4 48 –8
DIFF HSTL I(2) –0.3 50%
VCCO – 0.1
50%
VCCO + 0.1
VCCO + 0.3
DIFF HSTL II(2) –0.3 50%
VCCO – 0.1
50%
VCCO + 0.1
VCCO + 0.3
SSTL2 I –0.3 VREF – 0.15 VREF + 0.15 VCCO + 0.3 VTT 0.61 VTT + 0.61 8.1 –8.1
SSTL2 II –0.3 VREF – 0.15 VREF + 0.15 VCCO + 0.3 VTT – 0.81 VTT + 0.81 16.2 –16.2
DIFF SSTL2 I –0.3 50%
VCCO – 0.15
50%
VCCO + 0.15
VCCO + 0.3
DIFF SSTL2 II –0.3 50%
VCCO – 0.15
50%
VCCO + 0.15
VCCO + 0.3
SSTL18 I –0.3 VREF – 0.125 VREF + 0.125 VCCO + 0.3 VTT – 0.47 VTT + 0.47 6.7 –6.7
SSTL18 II –0.3 VREF – 0.125 VREF + 0.125 VCCO + 0.3 VTT – 0.60 VTT + 0.60 13.4 –13.4
DIFF SSTL18 I –0.3 50%
VCCO – 0.125
50%
VCCO + 0.125
VCCO + 0.3
DIFF SSTL18 II –0.3 50%
VCCO – 0.125
50%
VCCO + 0.125
VCCO + 0.3
Notes:
1. Tested according to relevant specifications.
2. Applies to both 1.5V and 1.8V HSTL.
3. Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA.
4. Using drive strengths of 2, 4, 6, 8, 12, or 16 mA.
5. For more information on PCI33_3, PCI66_3, and PCI-X, refer to refer to UG190: Virtex-5 User Guide, Chapter 6, 3.3V I/O Design Guidelines.
6. Supported drive strengths of 2, 4, 6, or 8 mA.
Table 7: SelectIO DC Input and Output Levels (Continued)
I/O Standard VIL VIH VOL VOH IOL IOH
V, Min V, Max V, Min V, Max V, Max V, Min mA mA
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 7
R
HT DC Specifications (HT_25)
LVDS DC Specifications (LVDS_25)
Extended LVDS DC Specifications (LVDSEXT_25)
Table 8: HT DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
VCCO Supply Voltage 2.38 2.5 2.63 V
VOD Differential Output Voltage RT = 100 Ω across Q and Q signals 495 600 715 mV
Δ VOD Change in VOD Magnitude –15 15 mV
VOCM Output Common Mode Voltage RT = 100 Ω across Q and Q signals 495 600 715 mV
Δ VOCM Change in VOCM Magnitude –15 15 mV
VID Input Differential Voltage 200 600 1000 mV
Δ VID Change in VID Magnitude –15 15 mV
VICM Input Common Mode Voltage 440 600 780 mV
Δ VICM Change in VICM Magnitude –15 15 mV
Table 9: LVDS DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
VCCO Supply Voltage 2.38 2.5 2.63 V
VOH Output High Voltage for Q and Q RT = 100 Ω across Q and Q signals 1.675 V
VOL Output Low Voltage for Q and Q RT = 100 Ω across Q and Q signals 0.825 V
VODIFF Differential Output Voltage (Q – Q),
Q = High (Q – Q), Q = High
RT = 100 Ω across Q and Q signals 247 350 600 mV
VOCM Output Common-Mode Voltage RT = 100 Ω across Q and Q signals 1.125 1.250 1.375 V
VIDIFF Differential Input Voltage (Q – Q),
Q = High (Q – Q), Q = High
100 350 600 mV
VICM Input Common-Mode Voltage 0.3 1.2 2.2 V
Table 10: Extended LVDS DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
VCCO Supply Voltage 2.38 2.5 2.63 V
VOH Output High Voltage for Q and Q RT = 100 Ω across Q and Q signals 1.785 V
VOL Output Low Voltage for Q and Q RT = 100 Ω across Q and Q signals 0.715 V
VODIFF Differential Output Voltage (Q – Q),
Q = High (Q – Q), Q = High
RT = 100 Ω across Q and Q signals 350 820 mV
VOCM Output Common-Mode Voltage RT = 100 Ω across Q and Q signals 1.125 1.250 1.375 V
VIDIFF Differential Input Voltage (Q – Q),
Q = High (Q – Q), Q = High
Common-mode input voltage = 1.25V 100 1000 mV
VICM Input Common-Mode Voltage Differential input voltage = ±350 mV 0.3 1.2 2.2 V
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 8
R
LVPECL DC Specifications (LVPECL_25)
These values are valid when driving a 100Ω differential load
only, i.e., a 100Ω resistor between the two receiver pins.
The VOH levels are 200 mV below standard LVPECL levels
and are compatible with devices tolerant of lower com-
mon-mode ranges. Table 11 summarizes the DC output
specifications of LVPECL. For more information on using
LVPECL, see UG190: Virtex-5 User Guide, Chapter 6,
SelectIO Resources.
Table 11: LVPECL DC Specifications
Symbol DC Parameter Min Typ Max Units
VOH Output High Voltage VCC – 1.025 1.545 VCC – 0.88 V
VOL Output Low Voltage VCC – 1.81 0.795 VCC – 1.62 V
VICM Input Common-Mode Voltage 0.6 2.2 V
VIDIFF Differential Input Voltage(1,2) 0.100 1.5 V
Notes:
1. Recommended input maximum voltage not to exceed VCCAUX + 0.2V.
2. Recommended input minimum voltage not to go below –0.5V.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 9
R
RocketIO GTP Transceiver Specifications
RocketIO GTP Transceiver DC Characteristics
Table 12: Absolute Maximum Ratings
Symbol Description Units
MGTAVCCPLL Analog supply voltage for the GTP_DUAL shared PLL relative to GND –0.5 to 1.32 V
MGTAVTTTX Analog supply voltage for the GTP_DUAL transmitters relative to GND –0.5 to 1.32 V
MGTAVTTRX Analog supply voltage for the GTP_DUAL receivers relative to GND –0.5 to 1.32 V
MGTAVCC Analog supply voltage for the GTP_DUAL common circuits relative to GND –0.5 to 1.32 V
MGTAVTTRXC Analog supply voltage for the resistor calibration circuit of the GTP_DUAL
column
–0.5 to 1.32 V
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to
Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
Table 13: Recommended Operating Conditions(1)(2)
Symbol Description Min Max Units
MGTAVCCPLL(1) Analog supply voltage for the GTP_DUAL shared PLL relative to GND 1.14 1.26 V
MGTAVTTTX(1) Analog supply voltage for the GTP_DUAL transmitters relative to GND 1.14 1.26 V
MGTAVTTRX(1) Analog supply voltage for the GTP_DUAL receivers relative to GND 1.14 1.26 V
MGTAVCC(1) Analog supply voltage for the GTP_DUAL common circuits relative to GND 0.95 1.05 V
MGTAVTTRXC(1) Analog supply voltage for the resistor calibration circuit of the GTP_DUAL
column
1.14 1.26 V
Notes:
1. Each voltage listed requires the filter circuit described in UG196: Virtex-5 RocketIO GTP Transceiver User Guide.
2. Voltages are specified for the temperature range of TJ = –40°C to +100°C.
Table 14: DC Characteristics Over Recommended Operating Conditions(2)
Symbol Description Min Typ Max Units
IMGTAVTTTX GTP_DUAL tile transmitter termination supply current(3) 71 90 mA
IMGTAVCCPLL GTP_DUAL tile shared PLL supply current 36 60 mA
IMGTAVTTRXC GTP_DUAL tile resistor termination calibration supply current 0.1 0.5 mA
IMGTAVTTRX GTP_DUAL tile receiver termination supply current(3) 0.1 0.5 mA
IMGTAVCC GTP_DUAL tile internal analog supply current 56 110 mA
RREF Precision reference resistor for internal calibration termination 49.5 50 50.5 Ω
Notes:
1. Typical values are specified at nominal voltage, 25°C, with a 3.2 Gb/s line rate.
2. ICC numbers are given per GTP_DUAL tile with both GTP devices operating with default settings.
3. AC coupled TX/RX link.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 10
R
Table 15: Quiescent Supply Current
Symbol Description Device Typ(1) Max Units
ICCINTQ Quiescent internal supply current XC5VLX30T mA
XC5VLX50T mA
XC5VLX85T mA
XC5VLX110T mA
XC5VLX220T mA
XC5VLX330T mA
XC5VSX35T mA
XC5VSX50T mA
XC5VSX95T mA
IVTTTXQ Quiescent transmitter supply current XC5VLX30T mA
XC5VLX50T mA
XC5VLX85T mA
XC5VLX110T mA
XC5VLX220T mA
XC5VLX330T mA
XC5VSX35T mA
XC5VSX50T mA
XC5VSX95T mA
IAVCCPLLQ Quiescent GTP_DUAL PLL supply current XC5VLX30T mA
XC5VLX50T mA
XC5VLX85T mA
XC5VLX110T mA
XC5VLX220T mA
XC5VLX330T mA
XC5VSX35T mA
XC5VSX50T mA
XC5VSX95T mA
IVTTRXCQ Quiescent receiver termination switching supply current XC5VLX30T mA
XC5VLX50T mA
XC5VLX85T mA
XC5VLX110T mA
XC5VLX220T mA
XC5VLX330T mA
XC5VSX35T mA
XC5VSX50T mA
XC5VSX95T mA
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 11
R
ITTRXQ Quiescent receiver termination supply current XC5VLX30T mA
XC5VLX50T mA
XC5VLX85T mA
XC5VLX110T mA
XC5VLX220T mA
XC5VLX330T mA
XC5VSX35T mA
XC5VSX50T mA
XC5VSX95T mA
IVCCQ Quiescent internal analog supply current XC5VLX30T mA
XC5VLX50T mA
XC5VLX85T mA
XC5VLX110T mA
XC5VLX220T mA
XC5VLX330T mA
XC5VSX35T mA
XC5VSX50T mA
XC5VSX95T mA
Notes:
1. Typical values are specified at nominal voltage, 25°C.
2. Given for entire die. Powered and unconfigured.
3. Unconnected (if channel is driven to voltage).
4. More accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools.
Table 15: Quiescent Supply Current (Continued)
Symbol Description Device Typ(1) Max Units
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 12
R
RocketIO GTP Transceiver DC Input and Output Levels
Table 16 summarizes the DC output specifications of the
Virtex-5 RocketIO GTP Transceivers. Figure 1 shows the
single-ended output voltage swing. Figure 2 shows the
peak-to-peak differential output voltage. Consult UG196:
Virtex-5 RocketIO GTP Transceiver User Guide for further
details.
Table 16: GTP Transceiver DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
DVPPIN
Differential peak-to-peak input
voltage
External AC coupled 3.2 Gb/s 150 2000 mV
External AC coupled > 3.2 Gb/s 180 2000 mV
VIN Absolute input voltage DC coupled
MGTAVTTRX = 1.2V –400 1200 mV
VCMIN Common mode input voltage DC coupled
MGTAVTTRX = 1.2V 800 mV
DVPPOUT
Differential peak-to-peak
output voltage (1)
TXBUFDIFFCTRL = 000,
TX_DIFF_BOOST = ON 1400 mV
VSEOUT
Single-ended output voltage
swing (1)
TXBUFDIFFCTRL = 000,
TX_DIFF_BOOST = ON 700 mV
VCMOUT
Common mode output voltage Equation based
MGTAVTTTX = 1.2V 1200Amplitude/2 mV
RIN Differential input resistance 90 100 120 Ω
ROUT Differential output resistance 90 100 120 Ω
TOSKEW Transmitter output skew 15 ps
CEXT Recommended external AC coupling capacitor(2) 75 100 200 nF
Notes:
1. The output swing and preemphasis levels are programmable using the attributes discussed in UG196:Virtex-5 RocketIO GTP Transceiver User
Guide and can result in values lower than reported in this table.
2. Values outside of this range can be used as appropriate to conform to specific protocols and standards.
Figure 1: Single-Ended Output Voltage Swing
Figure 2: Peak-to-Peak Differential Output Voltage
0
+V P
N
VSEOUT
ds202_01_051607
0
+V
V
P–N
DVPPOUT
DVPPIN
ds202_02_051607
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 13
R
Table 17 summarizes the DC input specifications of the
Virtex-5 RocketIO GTP Transceivers. Figure 3 shows the
single-ended input voltage swing. Figure 4 shows the
peak-to-peak differential clock input voltage swing. Consult
UG196: Virtex-5 RocketIO GTP Transceiver User Guide for
further details.
Table 17: RocketIO GTP Clock DC Input Level Specification(1)
Symbol DC Parameter Conditions Min Typ Max Units
DVPPIN Differential peak-to-peak input voltage 200 800 2000 mV
VSEIN Single-ended input voltage 100 400 1000 mV
RIN Differential input resistance 80 105 130 Ω
CEXT Required external AC coupling capacitor 75 100 200 nF
Notes:
1. VMIN = 0V and VMAX = 1200mV
Figure 3: Single-Ended Clock Input Voltage Swing Peak-to-Peak
Figure 4: Differential Clock Input Voltage Swing Peak-to-Peak
0
+V P
N
VSEIN
ds202_03_051607
0
+V
V
P – N
DVPPIN
ds202_04_051607
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 14
R
RocketIO GTP Switching Characteristics
Consult UG196:Virtex-5 RocketIO GTP Transceiver User Guide for further information.
Table 18: GTP Transceiver Performance
Symbol Description
Speed Grade
Units-3 -2 -1
FGTPMAX Maximum GTP transceiver data rate 3.75 3.75 3.2 Gb/s
FGPLLMAX Maximum PLL frequency 2.0 2.0 2.0 GHz
FGPLLMIN Minimum PLL frequency 1.0 1.0 1.0 GHz
Table 19: CRC Block Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
FCRC CRCCLK maximum frequency 320 320 250 MHz
Table 20: GTP Transceiver Reference Clock Switching Characteristics
All Speed Grades
UnitsSymbol Description Conditions Min Typ Max
FGCLK Reference clock frequency range(1) CLK 60 350 MHz
TRCLK Reference clock rise time 20% – 80% 200 400 ps
TFCLK Reference clock fall time 80% – 20% 200 400 ps
TDCREF Reference clock duty cycle CLK 45 50 55 %
TGJTT Reference clock total jitter, peak-peak (2) CLK 40 ps
TLOCK Clock recovery frequency acquisition
time
Initial PLL lock 1 ms
TPHASE Clock recovery phase acquisition time Lock to data after PLL has
relocked to the reference clock.
Includes lock to reference time.
200 µs
Notes:
1. The clock from the GTP_DUAL differential clock pin pair can be used for all serial bit rates. GREFCLK can be used for serial bit rates up to 1 Gb/s.
2. Measured at the package pin.
Figure 5: Reference Clock Timing Parameters
ds202_05_100506
80%
20%
T
FCLK
T
RCLK
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 15
R
Table 21: GTP User Clock Switching Characteristics(1)
Speed Grade
Units
Symbol Description Conditions -3 -2 -1
FTXOUT TXOUTCLK maximum frequency 375 375 320 MHz
FRXREC RXRECCLK maximum frequency 375 375 320 MHz
TRX RXUSRCLK maximum frequency 375 375 320 MHz
TRX2 RXUSRCLK2 maximum frequency RXDATAWIDTH = 0 350 350 320 MHz
RXDATAWIDTH = 1 187.5 187.5 160 MHz
TTX TXUSRCLK maximum frequency 375 375 320 MHz
TTX2 TXUSRCLK2 maximum frequency TXDATAWIDTH = 0 350 350 320 MHz
TXDATAWIDTH = 1 187.5 187.5 160 MHz
Notes:
1. Clocking must be implemented as described in UG196: Virtex-5 RocketIO GTP Transceiver User Guide
Table 22: GTP Transmitter Switching Characteristics
Symbol Description Min Typ Max Units
FGTX Serial data rate range 0.1 FGTPMAX Gb/s
TRTX TX Rise time 140 ps
TFTX TX Fall time 120 ps
TLLSKEW TX lane-to-lane skew(1) 2 + 500 ps UI
VTXOOBVDPP Electrical idle amplitude 20 mV
TTXOOBTRANS Electrical idle transition time 40 ns
TJ3.75 Total Jitter(2) 3.75 Gb/s 0.35 UI
DJ3.75 Deterministic Jitter(2) 0.19 UI
TJ3.2 Total Jitter(2) 3.20 Gb/s 0.35 UI
DJ3.2 Deterministic Jitter(2) 0.19 UI
TJ2.5 Total Jitter(2) 2.50 Gb/s 0.30 UI
DJ2.5 Deterministic Jitter(2) 0.14 UI
TJ2.0 Total Jitter(2) 2.00 Gb/s 0.30 UI
DJ2.0 Deterministic Jitter(2) 0.14 UI
TJ1.25 Total Jitter(2) 1.25 Gb/s 0.20 UI
DJ1.25 Deterministic Jitter(2) 0.10 UI
TJ1.00 Total Jitter(2) 1.00 Gb/s 0.20 UI
DJ1.00 Deterministic Jitter(2) 0.10 UI
TJ500 Total Jitter(2) 500 Mb/s 0.10 UI
DJ500 Deterministic Jitter(2) 0.04 UI
TJ100 Total Jitter(2) 100 Mb/s 0.02 UI
DJ100 Deterministic Jitter(2) 0.01 UI
Notes:
1. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to four consecutive GTP_DUAL sites.
2. Using PLL_DIVSEL_FB = 2, INTDATAWIDTH = 1.
3. All jitter values are based on a Bit-Error Ratio of 1e–12.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 16
R
Ethernet MAC Switching Characteristics
Consult UG194:Virtex-5 Tri-mode Ethernet Media Access Controller User Guide for further information.
Table 23: GTP Receiver Switching Characteristics
Symbol Description Min Typ Max Units
FGRX Serial data rate RX oversampler not enabled 0.5 FGTPMAX Gb/s
RX oversampler enabled 0.1 0.5 Gb/s
RXOOBVDPP
OOB detect threshold
peak-to-peak
OOBDETECT_THRESHOLD = 100 60 105 165 mV
RXSST
Receiver spread-spectrum
tracking(1)
Modulated @ 33 KHz –5000 0 ppm
RXRL Run length (CID) Internal AC capacitor bypassed 150 UI
RXPPMTOL Data/REFCLK PPM offset
tolerance
ACDR 2nd-order loop enabled –1000 1000 ppm
SJ Jitter Tolerance
JT_SJ3.75 Sinusoidal Jitter(2) 3.75 Gb/s 0.30 UI
JT_SJ3.2 Sinusoidal Jitter(2) 3.20 Gb/s 0.40 UI
JT_SJ2.50 Sinusoidal Jitter(2) 2.50 Gb/s 0.40 UI
JT_SJ2.00 Sinusoidal Jitter(2) 2.00 Gb/s 0.40 UI
JT_SJ1.00 Sinusoidal Jitter(2) 1.00 Gb/s 0.30 UI
JT_SJ500 Sinusoidal Jitter(2) 500 Mb/s 0.30 UI
JT_SJ500 Sinusoidal Jitter(2) 500 Mb/s OS 0.30 UI
JT_SJ100 Sinusoidal Jitter(2) 100 Mb/s OS 0.30 UI
SJ Jitter Tolerance with Stressed Eye
JT_TJSE3.2 Total Jitter with Stressed
Eye(3) 3.20 Gb/s 0.87 UI
JT_SJSE3.2 Sinusoidal Jitter with
Stressed Eye(3) 3.20 Gb/s 0.30 UI
Notes:
1. Using PLL_RX_DIVSEL_OUT = 1.
2. Using 80 MHz sinusoidal jitter only in the absence of deterministic and random jitter.
3. Stimulus signal includes 0.4UI of DJ and 0.17UI of RJ. RX equalizer is enabled.
4. All jitter values are based on a Bit Error Ratio of 1e–12.
Table 24: Maximum Ethernet MAC Performance
Description
Speed Grade
Units-3 -2 -1
Ethernet MAC Maximum Performance 10/100/1000 Mb/s
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 17
R
System Monitor Analog-to-Digital Converter Specification
Table 25: Analog-to-Digital Specifications
Parameter Symbol Comments/Conditions Min Typ Max Units
AVDD = 2.5V ± 2%, VREFP = 2.5V, VREFN = 0V, ADCCLK = 5.2 MHz, TA = TMIN to TMAX, Typical values at TA=+25°C
DC Accuracy: All external input channels such as VP/VN and VAUXP[15:0]/VAUXN[15:0], Unipolar Mode,
and Common Mode = 0V
Resolution 10 Bits
Integral Nonlinearity INL ±2 LSBs
Differential Nonlinearity DNL No missing codes (TMIN to TMAX)
Guaranteed Monotonic
±0.9 LSBs
Unipolar Offset Error(1) Uncalibrated ±2 ±30 LSBs
Bipolar Offset Error(1) Uncalibrated measured in bipolar mode ±2 ±30 LSBs
Gain Error(1) Uncalibrated ±0.2 ±2 %
Bipolar Gain Error(1) Uncalibrated measured in bipolar mode ±0.2 ±2 %
Total Unadjusted Error
(Uncalibrated)
TUE Deviation from ideal transfer function.
VREFP – VREFN = 2.5V
±10 LSBs
Total Unadjusted Error
(Calibrated)
TUE Deviation from ideal transfer function.
VREFP – VREFN = 2.5V
±1 ±2 LSBs
Calibrated Gain Temperature
Coefficient
Variation of FS code with temperature ±0.01 LSB/°C
DC Common-Mode Reject CMRRDC V
N = VCM = 0.5V ± 0.5V,
VP – VN = 100mV
70 dB
Conversion Rate(2)
Conversion Time - Continuous tCONV Number of CLK cycles 26 32
Conversion Time - Event tCONV Number of CLK cycles 21
T/H Acquisition Time tACQ Number of CLK cycles 4
DRP Clock Frequency DCLK DRP clock frequency 8 250 MHz
ADC Clock Frequency ADCCLK Derived from DCLK 1 5.2 MHz
CLK Duty cycle 40 60 %
Analog Inputs(3)
Dedicated Analog Inputs
Input Voltage Range
VP - VN
Unipolar Operation 0 1 Volts
Differential Inputs –0.25 +0.25
Unipolar Common Mode Range (FS input) 0 +0.5
Differential Common Mode Range (FS input) +0.3 +0.7
Bandwidth 20 MHz
Auxiliary Analog Inputs
Input Voltage Range
VAUXP[0] /VAUXN[0] to VAUXP[15]
/VAUXN[15]
Unipolar Operation 0 1 Volts
Differential Operation 0.25 +0.25
Unipolar Common Mode Range (FS input) 0 +0.5
Differential Common Mode Range (FS input) +0.3 +0.7
Bandwidth 10 kHz
Input Leakage Current A/D not converting, ADCCLK stopped ±1.0 µA
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 18
R
Input Capacitance 10 pF
On-chip Supply Monitor Error VCCINT and VCCAUX with calibration enabled ±1.0 % Reading
On-chip Temperature Monitor
Error
–40°C to +125°C with calibration enabled ±4 °C
External Reference Inputs(4)
Positive Reference Input
Voltage Range
VREFP Measured Relative to VREFN 2.45 2.5 2.55 Volts
Negative Reference Input
Voltage Range
VREFN Measured Relative to AGND –50 0 100 mV
Input current IREF ADCCLK = 5.2 MHz 100 µA
Power Requirements
Analog Power Supply AVDD Measured Relative to AVSS 2.45 2.5 2.55 Volts
Analog Supply Current AIDD ADCCLK = 5.2 MHz 5 8 mA
Notes:
1. Offset and gain errors are removed by enabling the System Monitor automatic gain calibration feature. See UG192: Virtex-5 System Monitor User
Guide.
2. See "System Monitor Timing" in UG192: Virtex-5 System Monitor User Guide.
3. See "Analog Inputs" in UG192: Virtex-5 System Monitor User Guide for a detailed description.
4. Any variation in the reference voltage from the nominal VREFP = 2.5V and VREFN = 0V will result is a deviation from the ideal transfer function.This
also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type
applications allowing the supply voltage and reference to vary by ±2% is permitted.
Table 25: Analog-to-Digital Specifications (Continued)
Parameter Symbol Comments/Conditions Min Typ Max Units
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 19
R
Performance Characteristics
This section provides the performance characteristics of some common functions and designs implemented in
Virtex-5 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are
subject to the same guidelines as the Switching Characteristics, page 21. Ta ble 26 shows internal (register-to-register)
performance.
Table 26: Register-to-Register Performance
Description
Register-to-Register (with I/O Delays)
Units
Speed Grade
-3 -2 -1
Basic Functions
16:1 Multiplexer 550 500 450 MHz
32:1 Multiplexer 550 500 450 MHz
64:1 Multiplexer 511 467 407 MHz
9 x 9 Logic Multiplier with 4 pipe stages 468 438 428 MHz
9 x 9 Logic Multiplier with 5 pipe stages 550 500 428 MHz
16-bit Adder 550 500 450 MHz
32-bit Adder 550 500 447 MHz
64-bit Adder 423 377 323 MHz
Register to LUT to Register 550 500 450 MHz
16-bit Counter 550 500 450 MHz
32-bit Counter 550 500 450 MHz
64-bit Counter 428 381 333 MHz
Memory
Cascaded block RAM (64K) 500 450 400 MHz
Block RAM Pipelined
Single-Port 512 x 36 bits 550 500 450 MHz
Single-Port 4096 x 4 bits 550 500 450 MHz
Dual-Port A: 4096 x 4 bits and B: 1024 x 18 bits 550 500 450 MHz
Distributed RAM
Single-Port 16 x 8 550 500 450 MHz
Single-Port 32 x 8 550 500 450 MHz
Single-Port 64 x 8 550 500 450 MHz
Dual-Port 16 x 8 MHz
Shift Register Chain
16-bit 550 500 450 MHz
32-bit 550 500 450 MHz
64-bit 550 500 438 MHz
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 20
R
Dedicated Arithmetic Logic
DSP48E Quad 12-bit Adder/Subtracter 550 500 450 MHz
DSP48E Dual 24-bit Adder/Subtracter 550 500 450 MHz
DSP48E 48-bit Adder/Subtracter 550 500 450 MHz
DSP48E 48-bit Counter 550 500 450 MHz
DSP48E 48-bit Comparator 550 500 450 MHz
DSP48E 25 x 18 bit Pipelined Multiplier 550 500 450 MHz
DSP48E Direct 4-tap FIR Filter Pipelined 510 458 397 MHz
DSP48E Systolic n-tap FIR Filter Pipelined 550 500 450 MHz
Notes:
1. Deviced used is the XC5VLX50T- FF1136
Table 26: Register-to-Register Performance (Continued)
Description
Register-to-Register (with I/O Delays)
Units
Speed Grade
-3 -2 -1
Table 27: Interface Performances
Description
Speed Grade
-3 -2 -1
Networking Applications
SFI-4.1 (SDR LVDS Interface) 710 MHz 710 MHz 645 MHz
SPI-4.2 (DDR LVDS Interface) 1.25 Gb/s 1.0 Gb/s 1.0 Gb/s
Memory Interfaces
DDR 200 MHz 200 MHz 200 MHz
DDR2 333 MHz 300 MHz 267 MHz
QDR II SRAM 300 MHz 300 MHz 250 MHz
RLDRAM II 333 MHz 300 MHz 250 MHz
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 21
R
Switching Characteristics
All values represented in this data sheet are based on
speed specification version 1.57. Switching characteristics
are specified on a per-speed-grade basis and can be desig-
nated as Advance, Preliminary, or Production. Each desig-
nation is defined as follows:
Advance
These specifications are based on simulations only and are
typically available soon after device design specifications
are frozen. Although speed grades with this designation are
considered relatively stable and conservative, some
under-reporting might still occur.
Preliminary
These specifications are based on complete ES (engineer-
ing sample) silicon characterization. Devices and speed
grades with this designation are intended to give a better
indication of the expected performance of production sili-
con. The probability of under-reporting delays is greatly
reduced as compared to Advance data.
Production
These specifications are released once enough production
silicon of a particular device family member has been char-
acterized to provide full correlation between specifications
and devices over numerous production lots. There is no
under-reporting of delays, and customers receive formal
notification of any subsequent changes. Typically, the slow-
est speed grades transition to Production before faster
speed grades.
All specifications are always representative of worst-case
supply voltage and junction temperature conditions.
Since individual family members are produced at different
times, the migration from one category to another depends
completely on the status of the fabrication process for each
device.
Table 28 correlates the current status of each Virtex-5
device on a per speed grade basis.
Testing of Switching Characteristics
All devices are 100% functionally tested. Internal timing
parameters are derived from measuring internal test pat-
terns. Listed below are representative values.
For more specific, more precise, and worst-case guaran-
teed data, use the values reported by the static timing ana-
lyzer and back-annotate to the simulation net list. Unless
otherwise noted, values apply to all Virtex-5 devices.
Table 28: Virtex-5 Device Speed Grade Designations
Device
Speed Grade Designations
Advance Preliminary Production
XC5VLX30 -3, -2, -1
XC5VLX30T -3, -2, -1
XC5VLX50 -3, -2, -1
XC5VLX50T -3, -2, -1
XC5VLX85 -3, -2, -1
XC5VLX85T -3, -2, -1
XC5VLX110 -3, -2, -1
XC5VLX110T -3, -2, -1
XC5VLX220 -2, -1
XC5VLX220T -2, -1
XC5VLX330 -2, -1
XC5VLX330T -2, -1
XC5VSX35T -3, -2, -1
XC5VSX50T -3, -2, -1
XC5VSX95T -2, -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 22
R
Production Silicon and ISE Software Status
In some cases, a particular family member (and speed
grade) is released to production before a speed specifica-
tion is released with the correct label (Advance, Preliminary,
Production). Any labeling discrepancies are corrected in
subsequent speed specification releases. Table 29 lists the
production released Virtex-5 family member, speed grade,
and the corresponding supported speed specification ver-
sion and ISE software revisions.
Table 29: Virtex-5 Production Software
and Speed Specification Release
Device
Speed Grade Designations
-3 -2 -1
XC5VLX30 ISE 9.2i SP2 v1.56
XC5VLX30T ISE 9.2i SP2 v1.56
XC5VLX50 ISE 9.2i SP2 v1.56 ISE 9.2i SP1 v1.55
XC5VLX50T ISE 9.2i SP2 v1.56 ISE 9.2i SP1 v1.55
XC5VLX85 ISE 9.2i SP2 v1.56 ISE 9.2i SP1 v1.55
XC5VLX85T ISE 9.2i SP2 v1.56 ISE 9.2i SP1 v1.55
XC5VLX110 ISE 9.2i SP2 v1.56
XC5VLX110T ISE 9.2i SP2 v1.56
XC5VLX220 N/A ISE 9.2i SP3 v1.57
XC5VLX220T N/A ISE 9.2i SP3 v1.57
XC5VLX330 N/A ISE 9.2i SP3 v1.57
XC5VLX330T N/A ISE 9.2i SP3 v1.57
XC5VSX35T ISE 9.2i SP3 v1.57
XC5VSX50T ISE 9.2i SP3 v1.57 ISE 9.2i SP2 v1.56
XC5VSX95T N/A ISE 9.2i SP3 v1.57
Notes:
1. Blank entries indicate a device and/or speed grade in advance or
preliminary status.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 23
R
IOB Pad Input/Output/3-State Switching Characteristics
Table 30 summarizes the values of standard-specific data
input delay adjustments, output delays terminating at pads
(based on standard) and 3-state delays.
TIOPI is described as the delay from IOB pad through the
input buffer to the I-pin of an IOB pad. The delay varies
depending on the capability of the SelectIO input buffer.
TIOOP is described as the delay from the O pin to the IOB
pad through the output buffer of an IOB pad. The delay var-
ies depending on the capability of the SelectIO output
buffer.
TIOTP is described as the delay from the T pin to the IOB
pad through the output buffer of an IOB pad, when 3-state is
disabled. The delay varies depending on the SelectIO capa-
bility of the output buffer.
Table 31 summarizes the value of TIOTPHZ. TIOTPHZ is
described as the delay from the T pin to the IOB pad
through the output buffer of an IOB pad, when 3-state is
enabled (i.e., a high impedance state).
Table 30: IOB Switching Characteristics
I/O Standard
TIOPI TIOOP TIOTP
Units
Speed Grade Speed Grade Speed Grade
-3 -2 -1 -3 -2 -1 -3 -2 -1
LVDS_25 0.80 0.90 1.06 1.13 1.29 1.44 1.13 1.29 1.44 ns
LVDSEXT_25 1.01 1.16 1.30 1.17 1.34 1.49 1.17 1.34 1.49 ns
HT_25 0.80 0.90 1.06 1.10 1.26 1.40 1.10 1.26 1.40 ns
BLVDS_25 0.80 0.90 1.06 1.24 1.38 1.58 1.24 1.38 1.58 ns
RSDS_25 (point to point) 0.80 0.90 1.06 1.13 1.29 1.44 1.13 1.29 1.44 ns
ULVDS_25 0.80 0.90 1.06 1.10 1.27 1.41 1.10 1.27 1.41 ns
PCI33_3 0.62 0.70 0.82 1.85 2.06 2.38 1.85 2.06 2.38 ns
PCI66_3 0.62 0.70 0.82 1.85 2.06 2.38 1.85 2.06 2.38 ns
PCI-X 0.62 0.70 0.82 1.40 1.56 1.80 1.40 1.56 1.80 ns
GTL 0.76 0.85 1.00 1.47 1.63 1.86 1.47 1.63 1.86 ns
GTLP 0.76 0.85 1.00 1.51 1.68 1.93 1.51 1.68 1.93 ns
HSTL_I 0.76 0.85 1.00 1.42 1.57 1.79 1.42 1.57 1.79 ns
HSTL_II 0.76 0.85 1.00 1.39 1.53 1.74 1.39 1.53 1.74 ns
HSTL_III 0.76 0.85 1.00 1.44 1.60 1.85 1.44 1.60 1.85 ns
HSTL_IV 0.76 0.85 1.00 1.44 1.60 1.83 1.44 1.60 1.83 ns
HSTL_I _18 0.76 0.85 1.00 1.40 1.55 1.77 1.40 1.55 1.77 ns
HSTL_II _18 0.76 0.85 1.00 1.36 1.51 1.72 1.36 1.51 1.72 ns
HSTL_III _18 0.76 0.85 1.00 1.45 1.61 1.85 1.45 1.61 1.85 ns
HSTL_IV_18 0.76 0.85 1.00 1.41 1.57 1.81 1.41 1.57 1.81 ns
SSTL2_I 0.76 0.85 1.00 1.48 1.64 1.87 1.48 1.64 1.87 ns
SSTL2_II 0.76 0.85 1.00 1.40 1.55 1.76 1.40 1.55 1.76 ns
LVTTL, Slow, 2 mA 0.62 0.70 0.82 4.10 4.47 5.01 4.10 4.47 5.01 ns
LVTTL, Slow, 4 mA 0.62 0.70 0.82 2.87 3.09 3.41 2.87 3.09 3.41 ns
LVTTL, Slow, 6 mA 0.62 0.70 0.82 2.66 2.91 3.29 2.66 2.91 3.29 ns
LVTTL, Slow, 8 mA 0.62 0.70 0.82 2.09 2.30 2.61 2.09 2.30 2.61 ns
LVTTL, Slow, 12 mA 0.62 0.70 0.82 1.94 2.15 2.46 1.94 2.15 2.46 ns
LVTTL, Slow, 16 mA 0.62 0.70 0.82 1.84 2.04 2.34 1.84 2.04 2.34 ns
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 24
R
LVTTL, Slow, 24 mA 0.62 0.70 0.82 1.87 2.07 2.38 1.87 2.07 2.38 ns
LVTTL, Fast, 2 mA 0.62 0.70 0.82 3.32 3.61 4.05 3.32 3.61 4.05 ns
LVTTL, Fast, 4 mA 0.62 0.70 0.82 2.32 2.55 2.90 2.32 2.55 2.90 ns
LVTTL, Fast, 6 mA 0.62 0.70 0.82 2.10 2.31 2.63 2.10 2.31 2.63 ns
LVTTL, Fast, 8 mA 0.62 0.70 0.82 1.65 1.82 2.09 1.65 1.82 2.09 ns
LVTTL, Fast, 12 mA 0.62 0.70 0.82 1.47 1.63 1.89 1.47 1.63 1.89 ns
LVTTL, Fast, 16 mA 0.62 0.70 0.82 1.41 1.57 1.81 1.41 1.57 1.81 ns
LVTTL, Fast, 24 mA 0.62 0.70 0.82 1.36 1.52 1.74 1.36 1.52 1.74 ns
LVCMOS33, Slow, 2 mA 0.62 0.70 0.82 3.63 3.96 4.44 3.63 3.96 4.44 ns
LVCMOS33, Slow, 4 mA 0.62 0.70 0.82 2.82 3.09 3.49 2.82 3.09 3.49 ns
LVCMOS33, Slow, 6 mA 0.62 0.70 0.82 2.61 2.86 3.24 2.61 2.86 3.24 ns
LVCMOS33, Slow, 8 mA 0.62 0.70 0.82 2.06 2.26 2.57 2.06 2.26 2.57 ns
LVCMOS33, Slow, 12 mA 0.62 0.70 0.82 1.95 2.14 2.42 1.95 2.14 2.42 ns
LVCMOS33, Slow, 16 mA 0.62 0.70 0.82 1.86 2.04 2.31 1.86 2.04 2.31 ns
LVCMOS33, Slow, 24 mA 0.62 0.70 0.82 1.87 2.07 2.35 1.87 2.07 2.35 ns
LVCMOS33, Fast, 2 mA 0.62 0.70 0.82 2.94 3.20 3.59 2.94 3.20 3.59 ns
LVCMOS33, Fast, 4 mA 0.62 0.70 0.82 2.27 2.50 2.84 2.27 2.50 2.84 ns
LVCMOS33, Fast, 6 mA 0.62 0.70 0.82 2.06 2.27 2.59 2.06 2.27 2.59 ns
LVCMOS33, Fast, 8 mA 0.62 0.70 0.82 1.61 1.79 2.05 1.61 1.79 2.05 ns
LVCMOS33, Fast, 12 mA 0.62 0.70 0.82 1.45 1.61 1.86 1.45 1.61 1.86 ns
LVCMOS33, Fast, 16 mA 0.62 0.70 0.82 1.40 1.56 1.80 1.40 1.56 1.80 ns
LVCMOS33, Fast, 24 mA 0.62 0.70 0.82 1.35 1.51 1.74 1.35 1.51 1.74 ns
LVCMOS25, Slow, 2 mA 0.61 0.70 0.82 3.67 3.97 4.42 3.67 3.97 4.42 ns
LVCMOS25, Slow, 4 mA 0.61 0.70 0.82 2.37 2.60 2.94 2.37 2.60 2.94 ns
LVCMOS25, Slow, 6 mA 0.61 0.70 0.82 2.19 2.41 2.74 2.19 2.41 2.74 ns
LVCMOS25, Slow, 8 mA 0.61 0.70 0.82 2.05 2.26 2.56 2.05 2.26 2.56 ns
LVCMOS25, Slow, 12 mA 0.61 0.70 0.82 2.10 2.31 2.63 2.10 2.31 2.63 ns
LVCMOS25, Slow, 16 mA 0.61 0.70 0.82 1.84 2.02 2.30 1.84 2.02 2.30 ns
LVCMOS25, Slow, 24 mA 0.61 0.70 0.82 1.83 2.04 2.34 1.83 2.04 2.34 ns
LVCMOS25, Fast, 2 mA 0.61 0.70 0.82 3.14 3.41 3.82 3.14 3.41 3.82 ns
LVCMOS25, Fast, 4 mA 0.61 0.70 0.82 1.89 2.08 2.37 1.89 2.08 2.37 ns
LVCMOS25, Fast, 6 mA 0.61 0.70 0.82 1.74 1.92 2.20 1.74 1.92 2.20 ns
LVCMOS25, Fast, 8 mA 0.61 0.70 0.82 1.66 1.83 2.09 1.66 1.83 2.09 ns
LVCMOS25, Fast, 12 mA 0.61 0.70 0.82 1.52 1.69 1.94 1.52 1.69 1.94 ns
LVCMOS25, Fast, 16 mA 0.61 0.70 0.82 1.43 1.60 1.85 1.43 1.60 1.85 ns
LVCMOS25, Fast, 24 mA 0.61 0.70 0.82 1.40 1.54 1.76 1.40 1.54 1.76 ns
Table 30: IOB Switching Characteristics (Continued)
I/O Standard
TIOPI TIOOP TIOTP
Units
Speed Grade Speed Grade Speed Grade
-3 -2 -1 -3 -2 -1 -3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 25
R
LVCMOS18, Slow, 2 mA 0.67 0.76 0.89 4.20 4.56 5.09 4.20 4.56 5.09 ns
LVCMOS18, Slow, 4 mA 0.67 0.76 0.89 3.03 3.32 3.75 3.03 3.32 3.75 ns
LVCMOS18, Slow, 6 mA 0.67 0.76 0.89 2.37 2.61 2.97 2.37 2.61 2.97 ns
LVCMOS18, Slow, 8 mA 0.67 0.76 0.89 2.15 2.37 2.69 2.15 2.37 2.69 ns
LVCMOS18, Slow, 12 mA 0.67 0.76 0.89 1.95 2.16 2.47 1.95 2.16 2.47 ns
LVCMOS18, Slow, 16 mA 0.67 0.76 0.89 1.93 2.14 2.45 1.93 2.14 2.45 ns
LVCMOS18, Fast, 2 mA 0.67 0.76 0.89 3.41 3.71 4.16 3.41 3.71 4.16 ns
LVCMOS18, Fast, 4 mA 0.67 0.76 0.89 2.36 2.61 2.98 2.36 2.61 2.98 ns
LVCMOS18, Fast, 6 mA 0.67 0.76 0.89 1.87 2.06 2.35 1.87 2.06 2.35 ns
LVCMOS18, Fast, 8 mA 0.67 0.76 0.89 1.69 1.87 2.13 1.69 1.87 2.13 ns
LVCMOS18, Fast, 12 mA 0.67 0.76 0.89 1.51 1.68 1.93 1.51 1.68 1.93 ns
LVCMOS18, Fast, 16 mA 0.67 0.76 0.89 1.44 1.61 1.86 1.44 1.61 1.86 ns
LVCMOS15, Slow, 2 mA 0.73 0.83 0.98 3.50 3.84 4.34 3.50 3.84 4.34 ns
LVCMOS15, Slow, 4 mA 0.73 0.83 0.98 2.17 2.40 2.74 2.17 2.40 2.74 ns
LVCMOS15, Slow, 6 mA 0.73 0.83 0.98 1.99 2.20 2.52 1.99 2.20 2.52 ns
LVCMOS15, Slow, 8 mA 0.73 0.83 0.98 1.91 2.12 2.43 1.91 2.12 2.43 ns
LVCMOS15, Slow, 12 mA 0.73 0.83 0.98 1.74 1.95 2.25 1.74 1.95 2.25 ns
LVCMOS15, Slow, 16 mA 0.73 0.83 0.98 1.71 1.91 2.20 1.71 1.91 2.20 ns
LVCMOS15, Fast, 2 mA 0.73 0.83 0.98 2.80 3.07 3.48 2.80 3.07 3.48 ns
LVCMOS15, Fast, 4 mA 0.73 0.83 0.98 1.76 1.95 2.23 1.76 1.95 2.23 ns
LVCMOS15, Fast, 6 mA 0.73 0.83 0.98 1.62 1.80 2.06 1.62 1.80 2.06 ns
LVCMOS15, Fast, 8 mA 0.73 0.83 0.98 1.57 1.74 2.00 1.57 1.74 2.00 ns
LVCMOS15, Fast, 12 mA 0.73 0.83 0.98 1.43 1.60 1.86 1.43 1.60 1.86 ns
LVCMOS15, Fast, 16 mA 0.73 0.83 0.98 1.37 1.53 1.77 1.37 1.53 1.77 ns
LVCMOS12, Slow, 2 mA 0.84 0.96 1.14 3.58 3.98 4.58 3.58 3.98 4.58 ns
LVCMOS12, Slow, 4 mA 0.84 0.96 1.14 2.10 2.33 2.66 2.10 2.33 2.66 ns
LVCMOS12, Slow, 6 mA 0.84 0.96 1.14 2.00 2.18 2.45 2.00 2.18 2.45 ns
LVCMOS12, Slow, 8 mA 0.84 0.96 1.14 1.91 2.14 2.48 1.91 2.14 2.48 ns
LVCMOS12, Fast, 2 mA 0.84 0.96 1.14 3.05 3.38 3.87 3.05 3.38 3.87 ns
LVCMOS12, Fast, 4 mA 0.84 0.96 1.14 1.71 1.91 2.20 1.71 1.91 2.20 ns
LVCMOS12, Fast, 6 mA 0.84 0.96 1.14 1.58 1.78 2.08 1.58 1.78 2.08 ns
LVCMOS12, Fast, 8 mA 0.84 0.96 1.14 1.52 1.70 1.97 1.52 1.70 1.97 ns
Table 30: IOB Switching Characteristics (Continued)
I/O Standard
TIOPI TIOOP TIOTP
Units
Speed Grade Speed Grade Speed Grade
-3 -2 -1 -3 -2 -1 -3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 26
R
LVDCI_33 0.62 0.70 0.82 1.50 1.66 1.90 1.50 1.66 1.90 ns
LVDCI_25 0.61 0.70 0.82 1.55 1.71 1.93 1.55 1.71 1.93 ns
LVDCI_18 0.67 0.76 0.89 1.65 1.78 1.99 1.65 1.78 1.99 ns
LVDCI_15 0.73 0.83 0.98 1.58 1.75 2.02 1.58 1.75 2.02 ns
LVDCI_DV2_25 0.61 0.70 0.82 1.36 1.51 1.74 1.36 1.51 1.74 ns
LVDCI_DV2_18 0.67 0.76 0.89 1.43 1.60 1.85 1.43 1.60 1.85 ns
LVDCI_DV2_15 0.73 0.83 0.98 1.48 1.65 1.91 1.48 1.65 1.91 ns
GTL_DCI 0.76 0.85 1.00 1.36 1.47 1.65 1.36 1.47 1.65 ns
GTLP_DCI 0.76 0.85 1.00 1.37 1.52 1.76 1.37 1.52 1.76 ns
LVPECL_25 0.80 0.90 1.06 1.28 1.42 1.62 1.28 1.42 1.62 ns
HSTL_I_12 0.76 0.85 1.00 1.45 1.61 1.85 1.45 1.61 1.85 ns
HSTL_I_DCI 0.76 0.85 1.00 1.41 1.56 1.77 1.41 1.56 1.77 ns
HSTL_II_DCI 0.76 0.85 1.00 1.34 1.48 1.69 1.34 1.48 1.69 ns
HSTL_II_T_DCI 0.76 0.85 1.00 1.41 1.56 1.77 1.41 1.56 1.77 ns
HSTL_III_DCI 0.76 0.85 1.00 1.57 1.72 1.95 1.57 1.72 1.95 ns
HSTL_IV_DCI 0.76 0.85 1.00 1.34 1.46 1.64 1.34 1.46 1.64 ns
HSTL_I_DCI_18 0.76 0.85 1.00 1.36 1.50 1.70 1.36 1.50 1.70 ns
HSTL_II_DCI_18 0.76 0.85 1.00 1.30 1.43 1.64 1.30 1.43 1.64 ns
HSTL_II _T_DCI_18 0.76 0.85 1.00 1.36 1.50 1.70 1.36 1.50 1.70 ns
HSTL_III_DCI_18 0.76 0.85 1.00 1.55 1.69 1.91 1.55 1.69 1.91 ns
HSTL_IV_DCI_18 0.76 0.85 1.00 1.31 1.44 1.62 1.31 1.44 1.62 ns
DIFF_HSTL_I_18 0.80 0.90 1.06 1.40 1.55 1.77 1.40 1.55 1.77 ns
DIFF_HSTL_I_DCI_18 0.80 0.90 1.06 1.36 1.50 1.70 1.36 1.50 1.70 ns
DIFF_HSTL_I 0.80 0.90 1.06 1.42 1.57 1.79 1.42 1.57 1.79 ns
DIFF_HSTL_I_DCI 0.80 0.90 1.06 1.41 1.56 1.77 1.41 1.56 1.77 ns
DIFF_HSTL_II_18 0.80 0.90 1.06 1.36 1.51 1.72 1.36 1.51 1.72 ns
DIFF_HSTL_II_DCI_18 0.80 0.90 1.06 1.30 1.43 1.64 1.30 1.43 1.64 ns
DIFF_HSTL_II 0.80 0.90 1.06 1.39 1.53 1.74 1.39 1.53 1.74 ns
DIFF_HSTL_II_DCI 0.80 0.90 1.06 1.34 1.48 1.69 1.34 1.48 1.69 ns
Table 30: IOB Switching Characteristics (Continued)
I/O Standard
TIOPI TIOOP TIOTP
Units
Speed Grade Speed Grade Speed Grade
-3 -2 -1 -3 -2 -1 -3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 27
R
SSTL2_I_DCI 0.76 0.85 1.00 1.42 1.56 1.78 1.42 1.56 1.78 ns
SSTL2_II_DCI 0.76 0.85 1.00 1.34 1.48 1.70 1.34 1.48 1.70 ns
SSTL2_II_T_DCI 0.76 0.85 1.00 1.42 1.56 1.78 1.42 1.56 1.78 ns
SSTL18_I 0.76 0.85 1.00 1.46 1.61 1.84 1.46 1.61 1.84 ns
SSTL18_II 0.76 0.85 1.00 1.39 1.53 1.75 1.39 1.53 1.75 ns
SSTL18_I_DCI 0.76 0.85 1.00 1.39 1.53 1.74 1.39 1.53 1.74 ns
SSTL18_II_DCI 0.76 0.85 1.00 1.30 1.44 1.64 1.30 1.44 1.64 ns
SSTL18_II_T_DCI 0.76 0.85 1.00 1.39 1.53 1.74 1.39 1.53 1.74 ns
DIFF_SSTL2_I 0.80 0.90 1.06 1.48 1.64 1.87 1.48 1.64 1.87 ns
DIFF_SSTL2_I_DCI 0.80 0.90 1.06 1.42 1.56 1.78 1.42 1.56 1.78 ns
DIFF_SSTL18_I 0.80 0.90 1.06 1.46 1.61 1.84 1.46 1.61 1.84 ns
DIFF_SSTL18_I_DCI 0.80 0.90 1.06 1.39 1.53 1.74 1.39 1.53 1.74 ns
DIFF_SSTL2_II 0.80 0.90 1.06 1.40 1.55 1.76 1.40 1.55 1.76 ns
DIFF_SSTL2_II_DCI 0.80 0.90 1.06 1.34 1.48 1.70 1.34 1.48 1.70 ns
DIFF_SSTL18_II 0.80 0.90 1.06 1.39 1.53 1.75 1.39 1.53 1.75 ns
DIFF_SSTL18_II_DCI 0.80 0.90 1.06 1.30 1.44 1.64 1.30 1.44 1.64 ns
Table 30: IOB Switching Characteristics (Continued)
I/O Standard
TIOPI TIOOP TIOTP
Units
Speed Grade Speed Grade Speed Grade
-3 -2 -1 -3 -2 -1 -3 -2 -1
Table 31: IOB 3-state ON Output Switching Characteristics (TIOTPHZ)
Symbol Description
Speed Grade
Units-3 -2 -1
TIOTPHZ T input to Pad high-impedance 0.88 1.01 1.12 ns
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 28
R
I/O Standard Adjustment Measurement Methodology
Input Delay Measurements
Ta bl e 32 shows the test setup parameters used for measuring input delay.
Table 32: Input Delay Measurement Methodology
Description
I/O Standard
Attribute VL (1,2) VH (1,2)
VMEAS
(1,4,5)
VREF
(1,3,5)
LVTTL (Low-Voltage Transistor-Transistor Logic) LVTTL 0 3.0 1.4
LVCMOS (Low-Voltage CMOS), 3.3V LVCMOS33 0 3.3 1.65
LVCMOS, 2.5V LVCMOS25 0 2.5 1.25
LVCMOS, 1.8V LVCMOS18 0 1.8 0.9
LVCMOS, 1.5V LVCMOS15 0 1.5 0.75
PCI (Peripheral Component Interface),
33 MHz, 3.3V
PCI33_3 Per PCI Specification
PCI, 66 MHz, 3.3V PCI66_3 Per PCI Specification
PCI-X, 133 MHz, 3.3V PCIX Per PCI-X Specification
GTL (Gunning Transceiver Logic) GTL VREF – 0.2 VREF + 0.2 VREF 0.80
GTL Plus GTLP VREF – 0.2 VREF + 0.2 VREF 1.0
HSTL (High-Speed Transceiver Logic),
Class I & II
HSTL_I, HSTL_II VREF – 0.5 VREF + 0.5 VREF 0.75
HSTL, Class III & IV HSTL_III, HSTL_IV VREF – 0.5 VREF + 0.5 VREF 0.90
HSTL, Class I & II, 1.8V HSTL_I_18,
HSTL_II_18
VREF – 0.5 VREF + 0.5 VREF 0.90
HSTL, Class III & IV, 1.8V HSTL_III_18,
HSTL_IV_18
VREF – 0.5 VREF + 0.5 VREF 1.08
SSTL (Stub Terminated Transceiver Logic),
Class I & II, 3.3V
SSTL3_I, SSTL3_II VREF – 1.00 VREF + 1.00 VREF 1.5
SSTL, Class I & II, 2.5V SSTL2_I, SSTL2_II VREF – 0.75 VREF + 0.75 VREF 1.25
SSTL, Class I & II, 1.8V SSTL18_I, SSTL18_II VREF – 0.5 VREF + 0.5 VREF 0.90
AGP-2X/AGP (Accelerated Graphics Port) AGP VREF
(0.2 x VCCO)
VREF +
(0.2 x VCCO)
VREF AGP
Spec
LVDS (Low-Voltage Differential Signaling), 2.5V LVDS_25 1.2 – 0.125 1.2 + 0.125 1.2
LVDSEXT (LVDS Extended Mode), 2.5V LVDSEXT_25 1.2 – 0.125 1.2 + 0.125 1.2
LDT (HyperTransport), 2.5V LDT_25 0.6 – 0.125 0.6 + 0.125 0.6
LVPECL (Low-Voltage Positive Electron-Coupled
Logic), 2.5V
LVPECL_25 1.15 – 0.3 1.15 – 0.3 1.15
Notes:
1. Input delay measurement methodology parameters for LVDCI and HSLVDCI are the same as for LVCMOS standards of the same voltage.
Parameters for all other DCI standards are the same as for the corresponding non-DCI standards.
2. Input waveform switches between VLand VH.
3. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF values
listed are typical.
4. Input voltage level from which measurement starts.
5. This is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 6.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 29
R
Output Delay Measurements
Output delays are measured using a Tektronix P6245
TDS500/600 probe (< 1 pF) across approximately 4" of FR4
microstrip trace. Standard termination was used for all test-
ing. The propagation delay of the 4" trace is characterized
separately and subtracted from the final measurement, and
is therefore not included in the generalized test setup shown
in Figure 6.
Measurements and test conditions are reflected in the IBIS
models except where the IBIS format precludes it. Parame-
ters VREF , RREF , CREF , and VMEAS fully describe the test
conditions for each I/O standard. The most accurate predic-
tion of propagation delay in any given application can be
obtained through IBIS simulation, using the following
method:
1. Simulate the output driver of choice into the generalized
test setup, using values from Ta b l e 33.
2. Record the time to VMEAS .
3. Simulate the output driver of choice into the actual PCB
trace and load, using the appropriate IBIS model or
capacitance value to represent the load.
4. Record the time to VMEAS .
5. Compare the results of steps 2 and 4. The increase or
decrease in delay yields the actual worst-case
propagation delay (clock-to-input) of the PCB trace.
Figure 6: Generalized Test Setup
VREF
RREF
VMEAS
(voltage level when taking
delay measurement)
CREF
(probe capacitance)
FPGA Output
ds202_06_041107
Table 33: Output Delay Measurement Methodology
Description
I/O Standard
Attribute
RREF
( Ω)
CREF(1)
( pF )
VMEAS
( V )
VREF
( V )
LVTTL (Low-Voltage Transistor-Transistor Logic) LVTTL (all) 1M 0 1.4 0
LVCMOS (Low-Voltage CMOS ), 3.3V LVCMOS33 1M 0 1.65 0
LVCMOS, 2.5V LVCMOS25 1M 0 1.25 0
LVCMOS, 1.8V LVCMOS18 1M 0 0.9 0
LVCMOS, 1.5V LVCMOS15 1M 0 0.75 0
LVCMOS, 1.2V LVCMOS12 1M 0 0.75 0
PCI (Peripheral Component Interface), 33 MHz, 3.3V PCI33_3 (rising edge) 25 10 (2) 0.94 0
PCI33_3 (falling edge) 25 10 (2) 2.03 3.3
PCI, 66 MHz, 3.3V PCI66_3 (rising edge) 25 10 (2) 0.94 0
PCI66_3 (falling edge) 25 10 (2) 2.03 3.3
PCI-X, 133 MHz, 3.3V PCIX (rising edge) 25 10 (3) 0.94
PCIX (falling edge 25 10 (3) 2.03 3.3
GTL (Gunning Transceiver Logic) GTL 25 0 0.8 1.2
GTL Plus GTLP 25 0 1.0 1.5
HSTL (High-Speed Transceiver Logic), Class I HSTL_I 50 0 VREF 0.75
HSTL, Class II HSTL_II 25 0 VREF 0.75
HSTL, Class III HSTL_III 50 0 0.9 1.5
HSTL, Class IV HSTL_IV 25 0 0.9 1.5
HSTL, Class I, 1.8V HSTL_I_18 50 0 VREF 0.9
HSTL, Class II, 1.8V HSTL_II_18 25 0 VREF 0.9
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 30
R
HSTL, Class III, 1.8V HSTL_III_18 50 0 1.1 1.8
HSTL, Class IV, 1.8V HSTL_IV_18 25 0 1.1 1.8
SSTL (Stub Series Terminated Logic), Class I, 1.8V SSTL18_I 50 0 VREF 0.9
SSTL, Class II, 1.8V SSTL18_II 25 0 VREF 0.9
SSTL, Class I, 2.5V SSTL2_I 50 0 VREF 1.25
SSTL, Class II, 2.5V SSTL2_II 25 0 VREF 1.25
LVDS (Low-Voltage Differential Signaling), 2.5V LVDS_25 50 0 VREF 1.2
LVDSEXT (LVDS Extended Mode), 2.5V LVDS_25 50 0 VREF 1.2
BLVDS (Bus LVDS), 2.5V BLVDS_25 1M 0 1.2 0
LDT (HyperTransport), 2.5V LDT_25 50 0 VREF 0.6
LVPECL (Low-Voltage Positive Emitter-Coupled
Logic), 2.5V
LVPECL_25 1M 0 0.90 0
LVDCI/HSLVDCI
(Low-Voltage Digitally Controlled Impedance), 3.3V
LVDCI_33, HSLVDCI_33 1M 0 1.65 0
LVDCI/HSLVDCI, 2.5V LVDCI_25, HSLVDCI_25 1M 0 1.25 0
LVDCI/HSLVDCI, 1.8V LVDCI_18, HSLVDCI_18 1M 0 0.9 0
LVDCI/HSLVDCI, 1.5V LVDCI_15, HSLVDCI_15 1M 0 0.75 0
HSTL (High-Speed Transceiver Logic), Class I & II,
with DCI
HSTL_I_DCI, HSTL_II_DCI 50 0 VREF 0.75
HSTL, Class III & IV, with DCI HSTL_III_DCI, HSTL_IV_DCI 50 0 0.9 1.5
HSTL, Class I & II, 1.8V, with DCI HSTL_I_DCI_18,
HSTL_II_DCI_18
50 0 VREF 0.9
HSTL, Class III & IV, 1.8V, with DCI HSTL_III_DCI_18,
HSTL_IV_DCI_18
50 0 1.1 1.8
SSTL (Stub Series Termi.Logic), Class I & II, 1.8V,
with DCI
SSTL18_I_DCI,
SSTL18_II_DCI
50 0 VREF 0.9
SSTL, Class I & II, 2.5V, with DCI SSTL2_I_DCI, SSTL2_II_DCI 50 0 VREF 1.25
GTL (Gunning Transceiver Logic) with DCI GTL_DCI 50 0 0.8 1.2
GTL Plus with DCI GTLP_DCI 50 0 1.0 1.5
Notes:
1. CREF is the capacitance of the probe, nominally 0 pF.
2. Per PCI specifications.
3. Per PCI-X specifications.
Table 33: Output Delay Measurement Methodology (Continued)
Description
I/O Standard
Attribute
RREF
( Ω)
CREF(1)
( pF )
VMEAS
( V )
VREF
( V )
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 31
R
Input/Output Logic Switching Characteristics
Table 34: ILOGIC Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Setup/Hold
TICE1CK/TICKCE1 CE1 pin Setup/Hold with respect to CLK 0.43
–0.24
0.49
–0.24
0.59
–0.24
ns
TISRCK/TICKSR SR/REV pin Setup/Hold with respect to CLK 0.85
–0.20
1.00
–0.20
1.22
–0.20
ns
TIDOCK/TIOCKD D pin Setup/Hold with respect to CLK without Delay 0.34
–0.12
0.37
–0.12
0.39
–0.12
ns
TIDOCKD/TIOCKDD DDLY pin Setup/Hold with respect to CLK (using IODELAY) 0.31
–0.09
0.33
–0.09
0.36
–0.08
ns
Combinatorial
TIDI D pin to O pin propagation delay, no Delay 0.24 0.26 0.30 ns
TIDID DDLY pin to O pin propagation delay (using IODELAY) 0.20 0.22 0.26 ns
Sequential Delays
TIDLO D pin to Q1 pin using flip-flop as a latch without Delay 0.44 0.50 0.58 ns
TIDLOD DDLY pin to Q1 pin using flip-flop as a latch (using IODELAY) 0.41 0.46 0.55 ns
TICKQ CLK to Q outputs 0.47 0.52 0.60 ns
TRQ SR/REV pin to OQ/TQ out 1.12 1.28 1.53 ns
TGSRQ Global Set/Reset to Q outputs 7.30 7.30 10.10 ns
Set/Reset
TRPW Minimum Pulse Width, SR/REV inputs 0.78 0.95 1.20 ns,
Min
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 32
R
Table 35: OLOGIC Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Setup/Hold
TODCK/TOCKD D1/D2 pins Setup/Hold with respect to CLK 0.30
–0.21
0.36
–0.21
0.44
–0.21
ns
TOOCECK/TOCKOCE OCE pin Setup/Hold with respect to CLK 0.16
–0.07
0.19
–0.07
0.23
–0.07
ns
TOSRCK/TOCKSR SR/REV pin Setup/Hold with respect to CLK 0.93
–0.20
1.02
–0.20
1.16
–0.20
ns
TOTCK/TOCKT T1/T2 pins Setup/Hold with respect to CLK 0.28
–0.18
0.34
–0.18
0.41
–0.18
ns
TOTCECK/TOCKTCE TCE pin Setup/Hold with respect to CLK 0.20
–0.06
0.23
–0.06
0.29
–0.06
ns
Combinatorial
TDOQ D1 to OQ out or T1 to TQ out 0.62 0.70 0.83 ns
Sequential Delays
TOCKQ CLK to OQ/TQ out 0.61 0.62 0.62 ns
TRQ SR/REV pin to OQ/TQ out 1.63 1.89 2.27 ns
TGSRQ Global Set/Reset to Q outputs 7.30 7.30 10.10 ns
Set/Reset
TRPW Minimum Pulse Width, SR/REV inputs 0.80 0.98 1.25 ns,
Min
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 33
R
Input Serializer/Deserializer Switching Characteristics
Table 36: ISERDES Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Setup/Hold for Control Lines
TISCCK_BITSLIP/ TISCKC_BITSLIP BITSLIP pin Setup/Hold with respect to CLKDIV 0.10
0.00
0.11
0.00
0.12
0.00
ns
TISCCK_CE / TISCKC_CE(2) CE pin Setup/Hold with respect to CLK (for CE1) 0.43
–0.24
0.49
–0.24
0.59
–0.24
ns
TISCCK_CE2 / TISCKC_CE2(2) CE pin Setup/Hold with respect to CLKDIV (for CE2) 0.03
0.11
0.04
0.13
0.06
0.15
ns
Setup/Hold for Data Lines
TISDCK_D /TISCKD_D D pin Setup/Hold with respect to CLK 0.34
–0.12
0.37
–0.12
0.39
–0.12
ns
TISDCK_DDLY /TISCKD_DDLY DDLY pin Setup/Hold with respect to CLK (using
IODELAY)
0.31
–0.09
0.33
–0.09
0.36
–0.08
ns
TISDCK_DDR /TISCKD_DDR D pin Setup/Hold with respect to CLK at DDR mode 0.34
–0.12
0.37
–0.12
0.39
–0.12
ns
TISDCK_DDLY_DDR
TISCKD_DDLY_DDR
D pin Setup/Hold with respect to CLK at DDR mode
(using IODELAY)
0.31
–0.09
0.33
–0.09
0.36
–0.08
ns
Sequential Delays
TISCKO_Q CLKDIV to out at Q pin 0.46 0.51 0.60 ns
Propagation Delays
TISDO_DO D input to DO output pin 0.20 0.22 0.26 ns
Notes:
1. Recorded at 0 tap value.
2. TISCCK_CE2 and TISCKC_CE2 are reported as TISCCK_CE/TISCKC_CE in TRACE report.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 34
R
Output Serializer/Deserializer Switching Characteristics Input Delay Switching Characteristics
Table 37: OSERDES Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Setup/Hold
TOSDCK_D/TOSCKD_D D input Setup/Hold with respect to CLKDIV 0.21
–0.02
0.24
–0.02
0.30
–0.02
ns
TOSDCK_T/TOSCKD_T(1) T input Setup/Hold with respect to CLK 0.28
–0.18
0.34
–0.18
0.41
–0.18
ns
TOSDCK_T2/TOSCKD_T2(1) T input Setup/Hold with respect to CLKDIV 0.21
–0.03
0.24
–0.03
0.28
–0.03
ns
TOSCCK_OCE/TOSCKC_OCE OCE input Setup/Hold with respect to CLK 0.16
–0.07
0.19
–0.07
0.23
–0.07
ns
TOSCCK_S SR (Reset) input Setup with respect to CLKDIV 0.52 0.58 0.70 ns
TOSCCK_TCE/TOSCKC_TCE TCE input Setup/Hold with respect to CLK 0.20
–0.06
0.23
–0.06
0.29
–0.06
ns
Sequential Delays
TOSCKO_OQ Clock to out from CLK to OQ 0.59 0.60 0.61 ns
TOSCKO_TQ Clock to out from CLK to TQ 0.61 0.62 0.62 ns
Combinatorial
TOSDO_TTQ T input to TQ Out 0.62 0.70 0.83 ns
TOSCO_OQ Asynchronous Reset to OQ 1.57 1.82 2.19 ns
TOSCO_TQ Asynchronous Reset to TQ 1.63 1.89 2.27 ns
Notes:
1. TOSDCK_T2 and TOSCKD_T2 are reported as TOSDCK_T/TOSCKD_T in TRACE report.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 35
R
CLB Switching Characteristics
Table 38: Input/Output Delay Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
TIDELAYRESOLUTION IODELAY Chain Delay Resolution 1/(64 x FREF x 1e6)(1) ps
TIDELAYCTRLCO_RDY Reset to Ready for IDELAYCTRL 3.00 3.00 3.00 µs
FIDELAYCTRL_REF REFCLK frequency 200.00 200.00 200.00 MHz
IDELAYCTRL_REF_PRECISION REFCLK precision ±10 ±10 ±10 MHz
TIDELAYCTRL_RPW Minimum Reset pulse width 50.00 50.00 50.00 ns
TIDELAYPAT_JIT Pattern dependent period jitter in delay chain
for clock pattern
000
Note 2
Pattern dependent period jitter in delay chain
for randon data pattern (PRBS 23)
±5 ±5 ±5 Note 2
TIODELAY_CLK_MAX Maximum frequency of CLK input to IODELAY 300 250 250 MHz
TIODCCK_CE / TIODCKC_CE CE pin Setup/Hold with respect to CK 0.29
–0.06
0.34
–0.06
0.42
–0.06
ns
TIODCK_INC/ TIODCKC_INC INC pin Setup/Hold with respect to CK 0.18
0.02
0.20
0.04
0.24
0.06
ns
TIODCK_RST/ TIODCKC_RST RST pin Setup/Hold with respect to CK 0.25
–0.12
0.28
–0.12
0.33
–0.12
ns
Notes:
1. Average Tap Delay at 200 MHz = 78 ps.
2. Units in ps, peak-to-peak per tap, in High Performance mode.
Table 39: CLB Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Combinatorial Delays
TILO
An – Dn LUT address to A 0.08 0.09 0.10 ns, Max
An – Dn LUT address to AMUX/CMUX 0.20 0.22 0.25 ns, Max
An – Dn LUT address to BMUX_A 0.31 0.35 0.40 ns, Max
TITO An – Dn inputs to A – D Q outputs 0.67 0.77 0.90 ns, Max
TAXA AX inputs to AMUX output 0.39 0.44 0.53 ns, Max
TAXB AX inputs to BMUX output 0.46 0.52 0.61 ns, Max
TAXC AX inputs to CMUX output 0.31 0.36 0.42 ns, Max
TAXD AX inputs to DMUX output 0.55 0.62 0.73 ns, Max
TBXB BX inputs to BMUX output 0.36 0.41 0.48 ns, Max
TBXD BX inputs to DMUX output 0.45 0.51 0.59 ns, Max
TCXB CX inputs to CMUX output 0.33 0.36 0.42 ns, Max
TCXD CX inputs to DMUX output 0.37 0.42 0.49 ns, Max
TDXD DX inputs to DMUX output 0.38 0.42 0.49 ns, Max
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 36
R
TOPCYA An input to COUT output 0.43 0.50 0.59 ns, Max
TOPCYB Bn input to COUT output 0.39 0.44 0.51 ns, Max
TOPCYC Cn input to COUT output 0.33 0.37 0.43 ns, Max
TOPCYD Dn input to COUT output 0.30 0.34 0.40 ns, Max
TAXCY AX input to COUT output 0.36 0.42 0.50 ns, Max
TBXCY BX input to COUT output 0.26 0.30 0.37 ns, Max
TCXCY CX input to COUT output 0.20 0.22 0.26 ns, Max
TDXCY DX input to COUT output 0.20 0.22 0.26 ns, Max
TBYP CIN input to COUT output 0.09 0.10 0.11 ns, Max
TCINA CIN input to AMUX output 0.24 0.27 0.31 ns, Max
TCINB CIN input to BMUX output 0.27 0.30 0.35 ns, Max
TCINC CIN input to CMUX output 0.29 0.32 0.36 ns, Max
TCIND CIN input to DMUX output 0.31 0.35 0.41 ns, Max
Sequential Delays
TCKO Clock to AQ – DQ outputs 0.35 0.40 0.47 ns, Max
Setup and Hold Times of CLB Flip-Flops Before/After Clock CLK
TDICK/TCKDI A – D input to CLK on A – D Flip Flops 0.36
0.19
0.41
0.21
0.49
0.24
ns, Min
TRCK DX input to CLK when used as REV 0.37 0.42 0.51 ns, Min
TCECK/TCKCE CE input to CLK on A – D Flip Flops 0.18
–0.04
0.20
–0.04
0.23
–0.04
ns, Min
TSRCK/TCKSR SR input to CLK on A – D Flip Flops 0.41
–0.19
0.49
–0.19
0.59
–0.19
ns, Min
TCINCK/TCKCIN CIN input to CLK on A – D Flip Flops 0.14
0.14
0.16
0.16
0.18
0.19
ns, Min
Set/Reset
TSRMIN SR input minimum pulse width 0.90 0.90 0.90 ns, Min
TRQ Delay from SR or REV input to AQ – DQ flip-flops 0.74 0.86 1.03 ns, Max
TCEO Delay from CE input to AQ – DQ flip-flops 0.46 0.52 0.63 ns, Max
FTOG Toggle frequency (for export control) 1412 1265 1098 MHz
Notes:
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed,
there is no positive hold time.
2. These items are of interest for Carry Chain applications.
Table 39: CLB Switching Characteristics (Continued)
Symbol Description
Speed Grade
Units-3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 37
R
CLB Distributed RAM Switching Characteristics (SLICEM Only)
CLB Shift Register Switching Characteristics (SLICEM Only)
Table 40: CLB Distributed RAM Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Sequential Delays
TSHCKO Clock to A – B outputs 1.08 1.26 1.54 ns, Max
TSHCKO_1 Clock to AMUX – BMUX outputs 1.19 1.38 1.68 ns, Max
Setup and Hold Times Before/After Clock CLK
TDS/TDH A – D inputs to CLK 0.72
0.20
0.84
0.22
1.03
0.26
ns, Min
TAS/TAH Address An inputs to clock 0.41
0.20
0.46
0.22
0.54
0.27
ns, Min
TWS/TWH WE input to clock 0.34
–0.06
0.39
–0.04
0.46
–0.02
ns, Min
TCECK/TCKCE CE input to CLK 0.36
–0.08
0.42
–0.07
0.51
–0.06
ns, Min
Clock CLK
TMPW Minimum pulse width 0.70 0.82 1.00 ns, Min
TMCP Minimum clock period 1.40 1.64 2.00 ns, Min
Notes:
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is listed,
there is no positive hold time.
2. TSHCKO also represents the CLK to XMUX output. Refer to TRACE report for the CLK to XMUX path.
Table 41: CLB Shift Register Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Sequential Delays
TREG Clock to A – D outputs 1.23 1.43 1.73 ns,
Max
TREG_MUX Clock to AMUX – DMUX output 1.33 1.55 1.87 ns,
Max
TREG_M31 Clock to DMUX output via M31 output 0.99 1.15 1.38 ns,
Max
Setup and Hold Times Before/After Clock CLK
TWS/TWH WE input 0.21
–0.06
0.24
–0.04
0.29
–0.02
ns,
Min
TCECK/TCKCE CE input to CLK 0.23
–0.08
0.27
–0.07
0.33
–0.06
ns,
Min
TDS/TDH A – D inputs to CLK 0.57
0.07
0.66
0.09
0.78
0.11
ns,
Min
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 38
R
Block RAM and FIFO Switching Characteristics
Clock CLK
TMPW Minimum pulse width 0.60 0.70 0.85 ns,
Min
Notes:
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is listed,
there is no positive hold time.
Table 42: Block RAM and FIFO Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Block RAM and FIFO Clock to Out Delays
TRCKO_DO and TRCKO_DOR(1) Clock CLK to DOUT output (without output
register)(2)(3)
1.79 1.92 2.19 ns, Max
Clock CLK to DOUT output (with output register)(4)(5) 0.61 0.69 0.82 ns, Max
Clock CLK to DOUT output with ECC (without output
register)(2)(3)
2.64 3.03 3.61 ns, Max
Clock CLK to DOUT output with ECC (with output
register)(4)(5)
0.66 0.77 0.93 ns, Max
Clock CLK to DOUT output with Cascade (without
output register)(2)
2.10 2.44 2.94 ns, Max
Clock CLK to DOUT output with Cascade (with output
register)(4)
0.91 1.07 1.30 ns, Max
TRCKO_FLAGS Clock CLK to FIFO flags outputs(6) 0.76 0.87 1.02 ns, Max
TRCKO_POINTERS Clock CLK to FIFO pointer outputs(7) 1.10 1.26 1.48 ns, Max
TRCKO_ECCR Clock CLK to BITERR (with output register) 0.66 0.77 0.93 ns, Max
TRCKO_ECC
Clock CLK to BITERR (without output register) 2.48 2.85 3.41 ns, Max
Clock CLK to ECCPARITY in standard ECC mode 1.29 1.47 1.74 ns, Max
Clock CLK to ECCPARITY in ECC encode only mode 0.77 0.89 1.05 ns, Max
Table 41: CLB Shift Register Switching Characteristics (Continued)
Symbol Description
Speed Grade
Units-3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 39
R
Setup and Hold Times Before/After Clock CLK
TRCCK_ADDR/TRCKC_ADDR ADDR inputs 0.34
0.30
0.40
0.32
0.48
0.36
ns, Min
TRDCK_DI/TRCKD_DI DIN inputs(8) 0.27
0.28
0.30
0.28
0.35
0.29
ns, Min
TRDCK_DI_ECC/TRCKD_DI_ECC
DIN inputs with ECC in standard mode(8) 0.33
0.32
0.37
0.33
0.42
0.36
ns, Min
DIN inputs with ECC encode only(8) 0.68
0.32
0.72
0.33
0.77
0.36
ns, Min
TRCCK_EN/TRCKC_EN Block RAM Enable (EN) input 0.32
0.15
0.36
0.15
0.42
0.15
ns, Min
TRCCK_REGCE/TRCKC_REGCE CE input of output register 0.15
0.22
0.16
0.24
0.18
0.27
ns, Min
TRCCK_SSR/TRCKC_SSR Synchronous Set/ Reset (SSR) input 0.17
0.23
0.21
0.25
0.26
0.28
ns, Min
TRCCK_WE/TRCKC_WE Write Enable (WE) input 0.44
0.16
0.51
0.17
0.63
0.18
ns, Min
TRCCK_WREN/TRCKC_WREN WREN/RDEN FIFO inputs(9) 0.36
0.30
0.41
0.34
0.48
0.40
ns, Min
Reset Delays
TRCO_FLAGS Reset RST to FIFO Flags/Pointers(10) 1.10 1.26 1.48 ns, Max
Maximum Frequency
FMAX Block RAM in all modes 550 500 450 MHz
FMAX_CASCADE Block RAM in Cascade mode 500 450 400 MHz
FMAX_FIFO FIFO in all modes 550 500 450 MHz
FMAX_ECC Block RAM in ECC mode 415 375 325 MHz
Notes:
1. Trace will report all of these parameters as TRCKO_DO.
2. TRCKO_DOR includes TRCKO_DOW, TRCKO_DOPR, and TRCKO_DOPW as well as the B port equivalent timing parameters.
3. These parameters also apply to synchronous FIFO with DO_REG = 0.
4. TRCKO_DO includes TRCKO_DOP as well as the B port equivalent timing parameters.
5. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1.
6. TRCKO_FLAGS includes the following parameters: TRCKO_AEMPTY
, TRCKO_AFULL, TRCKO_EMPTY
, TRCKO_FULL, TRCKO_RDERR, TRCKO_WRERR.
7. TRCKO_POINTERS includes both TRCKO_RDCOUNT and TRCKO_WRCOUNT.
8. TRCKO_DI includes both A and B inputs as well as the parity inputs of A and B.
9. These parameters also apply to RDEN.
10. TRCO_FLAGS includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
Table 42: Block RAM and FIFO Switching Characteristics (Continued)
Symbol Description
Speed Grade
Units-3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 40
R
DSP48E Switching Characteristics
Table 43: DSP48E Switching Characteristics
Symbol Description Speed Units
-3 -2 -1
Setup and Hold Times of Data/Control Pins to the Input Register Clock
TDSPDCK_{AA, BB, ACINA, BCINB}/
TDSPCKD_{AA, BB, ACINA, BCINB}
{A, B, ACIN, BCIN} input to {A, B}
register CLK
0.17
0.17
0.21
0.23
0.26
0.30
ns
TDSPDCK_CC/TDSPCKD_CC C input to C register CLK 0.14
0.26
0.16
0.31
0.20
0.37
ns
Setup and Hold Times of Data Pins to the Pipeline Register Clock
TDSPDCK_{AM, BM, ACINM, BCINM}/
TDSPCKD_{AM, BM, ACINM, BCINM}
{A, B, ACIN, BCIN} input to M register
CLK
1.30
0.19
1.44
0.19
1.71
0.19
ns
Setup and Hold Times of Data/Control Pins to the Output Register Clock
TDSPDCK_{AP, BP, ACINP, BCINP}_M/
TDSPCKD_{AP, BP, ACINP, BCINP}_M
{A, B, ACIN, BCIN} input to P register
CLK using multiplier
2.39
–0.30
2.74
–0.30
3.25
–0.30
ns
TDSPDCK_{AP, BP, ACINP, BCINP}_NM/
TDSPCKD_{AP, BP, ACINP, BCINP}_NM
{A, B, ACIN, BCIN} input to P register
CLK not using multiplier
1.35
–0.10
1.54
–0.10
1.83
–0.10
ns
TDSPDCK_CP/TDSPCKD_CP C input to P register CLK 1.30
–0.13
1.42
–0.13
1.70
–0.13
ns
TDSPDCK_{PCINP, CRYCINP, MULTSIGNINP}/
TDSPCKD_{PCINP, CRYCINP, MULTSIGNINP}
{PCIN, CARRYCASCIN, MULTSIGNIN}
input to P register CLK
1.06
0.11
1.17
0.11
1.31
0.11
ns
Setup and Hold Times of the CE Pins
TDSPCCK_{CEA1A, CEA2A, CEB1B, CEB2B}/
TDSPCKC_{CEA1A, CEA2A, CEB1A, CEB2B}
{CEA1, CEA2A, CEB1B, CEB2B} input
to {A, B} register CLK
0.24
0.21
0.28
0.25
0.33
0.31
ns
TDSPCCK_CECC/TDSPCKC_CECC CEC input to C register CLK 0.19
0.17
0.21
0.21
0.26
0.28
ns
TDSPCCK_CEMM/TDSPCKC_CEMM CEM input to M register CLK 0.25
0.18
0.29
0.21
0.36
0.26
ns
TDSPCCK_CEPP/TDSPCKC_CEPP CEP input to P register CLK 0.56
0.01
0.63
0.01
0.73
0.01
ns
Setup and Hold Times of the RST Pins
TDSPCCK_{RSTAA, RSTBB}/
TDSPCKC_{RSTAA, RSTBB}
{RSTA, RSTB} input to {A, B} register
CLK
0.24
0.23
0.28
0.26
0.33
0.31
ns
TDSPCCK_RSTCC/ TDSPCKC_RSTCC RSTC input to C register CLK 0.19
0.17
0.21
0.21
0.26
0.28
ns
TDSPCCK_RSTMM/ TDSPCKC_RSTMM RSTM input to M register CLK 0.25
0.18
0.29
0.21
0.36
0.26
ns
TDSPCCK_RSTPP/TDSPCKC_RSTPP RSTP input to P register CLK 0.56
0.01
0.63
0.01
0.73
0.01
ns
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 41
R
Combinatorial Delays from Input Pins to Output Pins
TDSPDO_{AP, ACRYOUT, BP, BCRYOUT}_M {A, B} input to {P, CARRYOUT} output
using multiplier
2.78 3.22 3.84 ns
TDSPDO_{AP, ACRYOUT, BP, BCRYOUT}_NM {A, B} input to {P, CARRYOUT} output
not using multiplier
1.59 1.77 2.22 ns
TDSPDO_{CP, CCRYOUT, CRYINP,
CRYINCRYOUT}
{C, CARRYIN} input to
{P, CARRYOUT} output
1.50 1.67 2.08 ns
Combinatorial Delays from Input Pins to Cascading Output Pins
TDSPDO_{AACOUT, BBCOUT} {A, B} input to
{ACOUT, BCOUT} output
1.00 1.12 1.31 ns
TDSPDO_{APCOUT, ACRYCOUT,
AMULTSIGNOUT, BPCOUT, BCRYCOUT,
BMULTSIGNOUT}_M
{A, B} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output using multiplier
2.78 3.22 3.84 ns
TDSPDO_{APCOUT, ACRYCOUT,
AMULTSIGNOUT, BPCOUT, BCRYCOUT,
BMULTSIGNOUT}_NM
{A, B} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output not using multiplier
1.72 1.92 2.42 ns
TDSPDO_{CPCOUT, CCRYCOUT,
CMULTSIGNOUT, CRYINPCOUT, CRYINCRYCOUT,
CRYINMULTSIGNOUT}
{C, CARRYIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output
1.63 1.82 2.28 ns
Combinatorial Delays from Cascading Input Pins to All Output Pins
TDSPDO_{ACINP, ACINCRYOUT, BCINP,
BCINCRYOUT}_M
{ACIN, BCIN} input to {P, CARRYOUT}
output using multiplier
2.78 3.22 3.84 ns
TDSPDO_{ACINP, ACINCRYOUT, BCINP,
BCINCRYOUT}_NM
{ACIN, BCIN} input to {P, CARRYOUT}
output not using multiplier
1.59 1.77 2.22 ns
TDSPDO_{ACINACOUT, BCINBCOUT} {ACIN, BCIN} input to {ACOUT,
BCOUT} output
1.00 1.12 1.31 ns
TDSPDO_{ACINPCOUT, ACINCRYCOUT,
ACINMULTSIGNOUT, BCINPCOUT,
BCINCRYCOUT, BCINMULTSIGNOUT}_M
{ACIN, BCIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output using multiplier
2.78 3.22 3.84 ns
TDSPDO_{ACINPCOUT, ACINCRYCOUT,
ACINMULTSIGNOUT, BCINPCOUT,
BCINCRYCOUT, BCINMULTSIGNOUT}_NM
{ACIN, BCIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output not using multiplier
1.72 1.92 2.42 ns
TDSPDO_{PCINP, CRYCINP, MULTSIGNINP,
PCINCRYOUT, CRYCINCRYOUT,
MULTSIGNINCRYOUT}
{PCIN, CARRYCASCIN, MULTSIGNIN}
input to {P, CARRYOUT} output
1.30 1.45 1.82 ns
TDSPDO_{PCINPCOUT, CRYCINPCOUT,
MULTSIGNINPCOUT, PCINCRYCOUT,
CRYCINCRYCOUT, MULTSIGNINCRYCOUT,
PCINMULTSIGNOUT, CRYCINMULTSIGNOUT,
MULTSIGNINMULTSIGNOUT}
{PCIN, CARRYCASCIN, MULTSIGNIN}
input to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output
1.43 1.60 2.02 ns
Clock to Outs from Output Register Clock to Output Pins
TDSPCKO_{PP, CRYOUTP} CLK (PREG) to {P, CARRYOUT} output 0.45 0.48 0.56 ns
TDSPCKO_{CRYCOUTP, PCOUTP,
MULTSIGNOUTP}
CLK (PREG) to {CARRYCASCOUT,
PCOUT, MULTSIGNOUT} output
0.48 0.53 0.62 ns
Table 43: DSP48E Switching Characteristics (Continued)
Symbol Description Speed Units
-3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 42
R
Clock to Outs from Pipeline Register Clock to Output Pins
TDSPCKO_{PM, CRYOUTM} CLK (MREG) to {P, CARRYOUT} output 1.81 2.10 2.47 ns
TDSPCKO_{PCOUTM, CRYCOUTM,
MULTSIGNOUTM}
CLK (MREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output
1.91 2.13 2.66 ns
Clock to Outs from Input Register Clock to Output Pins
TDSPCKO_{PA, CRYOUTA, PB, CRYOUTB}_M CLK (AREG, BREG) to {P, CARRYOUT}
output using multiplier
3.09 3.57 4.23 ns
TDSPCKO_{PA, CRYOUTA, PB, CRYOUTB}_NM CLK (AREG, BREG) to {P, CARRYOUT}
output not using multiplier
1.90 2.11 2.63 ns
TDSPCKO_{PC, CRYOUTC} CLK (CREG) to {P, CARRYOUT} output 1.89 2.11 2.62 ns
Clock to Outs from Input Register Clock to Cascading Output Pins
TDSPCKO_{ACOUTA, BCOUTB} CLK (AREG, BREG) to {ACOUT,
BCOUT}
0.61 0.68 0.79 ns
TDSPCKO_{PCOUTA, CRYCOUTA,
MULTSIGNOUTA, PCOUTB, CRYCOUTB,
MULTSIGNOUTB}_M
CLK (AREG, BREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output using multiplier
3.09 3.57 4.23 ns
TDSPCKO_{PCOUTA, CRYCOUTA,
MULTSIGNOUTA, PCOUTB, CRYCOUTB,
MULTSIGNOUTB}_NM
CLK (AREG, BREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output not using multiplier
2.03 2.27 2.82 ns
TDSPCKO_{PCOUTC, CRYCOUTC,
MULTSIGNOUTC}
CLK (CREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
output
2.03 2.26 2.82 ns
Maximum Frequency
FMAX With all registers used 550 500 450 MHz
FMAX_PATDET With pattern detector 515 465 410 MHz
FMAX_MULT_NOMREG Two register multiply without MREG 374 324 275 MHz
FMAX_MULT_NOMREG_PATDET Two register multiply without MREG
with pattern detect
345 300 254 MHz
Table 43: DSP48E Switching Characteristics (Continued)
Symbol Description Speed Units
-3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 43
R
Configuration Switching Characteristics
Table 44: Configuration Switching Characteristics
Symbol Description
Speed Grade
Units-3 -2 -1
Power-up Timing Characteristics
TPL Program Latency 3 3 3 ms, Max
TPOR Power-on-Reset 10
50
10
50
10
50
ms,
Min/Max
TICCK CCLK (output) delay 400 400 400 ns, Min
TPROGRAM Program Pulse Width 250 250 250 ns, Min
Master/Slave Serial Mode Programming Switching(1)
TDCCK/TCCKD DIN Setup/Hold, slave mode 4.0
0.0
4.0
0.0
4.0
0.0
ns, Min
TDSCCK/TSCCKD DIN Setup/Hold, master mode 4.0
0.0
4.0
0.0
4.0
0.0
ns, Min
TCCO DOUT 7.5 7.5 7.5 ns, Max
FMCCK Maximum Frequency, master mode with
respect to nominal CCLK.
100 100 100 MHz,
Max
FMCCKTOL Frequency Tolerance, master mode with
respect to nominal CCLK.
±50 ±50 ±50 %
FMSCCK Slave mode external CCLK 100 100 100 MHz
SelectMAP Mode Programming Switching(1)
TSMDCCK/TSMCCKD SelectMAP Data Setup/Hold 3.0
0.5
3.0
0.5
3.0
0.5
ns, Min
TSMCSCCK/TSMCCKCS CS_B Setup/Hold 3.0
0.5
3.0
0.5
3.0
0.5
ns, Min
TSMCCKW/TSMWCCK RDWR_B Setup/Hold 8.0
0.5
8.0
0.5
8.0
0.5
ns, Min
TSMCKBY BUSY Propagation Delay 7.5 7.5 7.5 ns, Max
TSMCKCSO CSO_B clock to out
(330 Ω pull-up resistor required)
10 10 10 ns, Min
TSMCO CCLK to DATA out in readback 9.0 9.0 9.0 ns, Max
TSMCKBY CCLK to BUSY out in readback 7.5 7.5 7.5 ns, Max
FSMCCK Maximum Frequency, master mode with
respect to nominal CCLK.
100 100 100 MHz,
Max
FMCCKTOL Frequency Tolerance, master mode with
respect to nominal CCLK.
±50 ±50 ±50 %
Boundary-Scan Port Timing Specifications
TTAPTCK TMS and TDI Setup time before TCK 1.0 1.0 1.0 ns, Min
TTCKTAP TMS and TDI Hold time after TCK 2.0 2.0 2.0 ns, Min
TTCKTDO TCK falling edge to TDO output valid 6 6 6 ns, Max
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 44
R
FTCK Maximum configuration TCK clock frequency 66 66 66 MHz,
Max
FTCKB Maximum boundary-scan TCK clock
frequency
66 66 66 MHz,
Max
BPI Master Flash Mode Programming Switching
TBPICCO(4) ADDR[25:0], RS[1:0], FCS_B, FOE_B,
FWE_B outputs valid after CCLK rising edge
10 10 10 ns
TBPIDCC/TBPICCD Setup/Hold on D[15:0] data input pins 3.0
0.5
3.0
0.5
3.0
0.5
ns
TINITADDR Minimum period of initial ADDR[25:0]
address cycles
3.0 3.0 3.0 CCLK
cycles
SPI Master Flash Mode Programming Switching
TSPIDCC/TSPIDCCD DIN Setup/Hold before/after the rising CCLK
edge
4.0
0.0
4.0
0.0
4.0
0.0
ns
TSPICCM MOSI clock to out 10 10 10 ns
TSPICCFC FCS_B clock to out 10 10 10 ns
TFSINIT/TFSINITH FS[2:0] to INIT_B rising edge Setup and Hold 2 2 2 µs
CCLK Output (Master Modes)
TMCCKL Master CCLK clock minimum Low time 3.0 3.0 3.0 ns, Min
TMCCKH Master CCLK clock minimum High time 3.0 3.0 3.0 ns, Min
CCLK Input (Slave Modes)
TSCCKL Slave CCLK clock minimum Low time 2.0 2.0 2.0 ns, Min
TSCCKH Slave CCLK clock minimum High time 2.0 2.0 2.0 ns, Min
Dynamic Reconfiguration Port (DRP) for DCM and PLL Before and After DCLK
FDCK Maximum frequency for DCLK 500 450 400 MHz
TDMCCK_DADDR/TDMCKC_DADDR DADDR Setup/Hold 1.2
0.0
1.35
0.0
1.56
0.0
ns
TDMCCK_DI/TDMCKC_DI DI Setup/Hold 1.2
0.0
1.35
0.0
1.56
0.0
ns
TDMCCK_DEN/TDMCKC_DEN DEN Setup/Hold time 1.2
0.0
1.35
0.0
1.56
0.0
ns
TDMCCK_DWE/TDMCKC_DWE DWE Setup/Hold time 1.2
0.0
1.35
0.0
1.56
0.0
ns
TDMCKO_DO CLK to out of DO(3) 1.0 1.12 1.3 ns
TDMCKO_DRDY/TDMCKCO_DRDY CLK to out of DRDY 1.0 1.12 1.3 ns
Notes:
1. Maximum frequency and setup/hold timing parameters are for 3.3V and 2.5V configuration voltages.
2. To support longer delays in configuration, use the design solutions described in UG190: Virtex-5 User Guide.
3. DO will hold until next DRP operation.
4. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.
Table 44: Configuration Switching Characteristics (Continued)
Symbol Description
Speed Grade
Units-3 -2 -1
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 45
R
Clock Buffers and Networks
Table 45: Global Clock Switching Characteristics (Including BUFGCTRL)
Symbol Description
Speed Grade
Units-3 -2 -1
TBCCCK_CE/TBCCKC_CE(1) CE pins Setup/Hold 0.27
0.00
0.27
0.00
0.31
0.00
ns
TBCCCK_S/TBCCKC_S(1) S pins Setup/Hold 0.27
0.00
0.27
0.00
0.31
0.00
ns
TBCCKO_O BUFGCTRL delay from I0/I1 to O 0.19 0.22 0.25 ns
TBGCKO_O BUFG delay from I0 to O 0.19 0.22 0.25 ns
Maximum Frequency
FMAX Global clock tree (BUFG) for LX30, LX30T, LX50, LX50T,
LX85, LX85T, LX110, LX110T, SX35T, and SX50T devices
710 650 600 MHz
FMAX Global clock tree (BUFG) for LX220, LX220T, LX330,
LX330T, and SX95T devices
N/A 500 450 MHz
Notes:
1. TBCCCK_CE and TBCCKC_CE must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These parameters
do not apply to the BUFGMUX_VIRTEX4 primitive that assures glitch-free operation. The other global clock setup and hold times are optional; only
needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between clocks.
Table 46: Input/Output Clock Switching Characteristics (BUFIO)
Symbol Description
Speed Grade
Units-3 -2 -1
TBUFIOCKO_O Clock to out delay from I to O 1.08 1.16 1.29 ns
Maximum Frequency
FMAX I/O clock tree (BUFIO) 710 710 644 MHz
Table 47: Regional Clock Switching Characteristics (BUFR)
Symbol Description
Speed Grade
Units-3 -2 -1
TBRCKO_O Clock to out delay from I to O 0.56 0.59 0.67 ns
TBRCKO_O_BYP Clock to out delay from I to O with Divide Bypass attribute
set
0.23 0.24 0.26 ns
TBRDO_CLRO Propagation delay from CLR to O 0.61 0.70 0.82 ns
Maximum Frequency
FMAX Regional clock tree (BUFR) 300 250 250 MHz
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 46
R
PLL Specification
Table 48: PLL Specification
Symbol Description
Speed Grade
Units-3 -2 -1
FINMAX Maximum Input Clock Frequency 710 710 645 MHz
FINMIN Minimum Input Clock Frequency 19 19 19 MHz
FINJITTER Maximum Input Clock Period Jitter <20% of clock input period or 1 ns Max
FINDUTY Allowable Input Duty Cycle: 19—49 MHz 25/75 %
Allowable Input Duty Cycle: 50—199 MHz 30/70 %
Allowable Input Duty Cycle: 200—399 MHz 35/65 %
Allowable Input Duty Cycle: 400—499 MHz 40/60 %
Allowable Input Duty Cycle: >500 MHz 45/55 %
FVCOMIN Minimum PLL VCO Frequency 400 400 400 MHz
FVCOMAX Maximum PLL VCO Frequency 1440 1200 1000 MHz
FBANDWIDTH Low PLL Bandwidth at Typical 1 1 1 MHz
High PLL Bandwidth at Typical 4 4 4 MHz
TSTAPHAOFFSET Static Phase Offset of the PLL Outputs 120 120 120 ps
TOUTJITTER PLL Output Jitter(1) Note 1
TOUTDUTY PLL Output Clock Duty Cycle Precision(2) 150 200 200 ps
TLOCKMAX PLL Maximum Lock Time(4) 100 100 100 µs
FOUTMAX PLL Maximum Output Frequency for LX30, LX30T,
LX50, LX50T, LX85, LX85T, LX110, LX110T, SX35T,
and SX50T devices
710 650 600 MHz
PLL Maximum Output Frequency for LX220, LX220T,
LX330, LX330T, and SX95T devices
N/A 500 450 MHz
FOUTMIN PLL Minimum Output Frequency(3) 3.125 3.125 3.125 MHz
TEXTFDVAR External Clock Feedback Variation <20% of clock input period or 1 ns Max
RSTMINPULSE Minimum Reset Pulse Width 5 5 5 ns
FPFDMAX Maximum Frequency at the Phase Frequency Detector 550 500 450 MHz
FPFDMIN Minimum Frequency at the Phase Frequency Detector 19 19 19 MHz
TFBDELAY Maximum Delay in the Feedback Path 3 ns Max or one CLKIN cycle
Notes:
1. Values for this parameter are available in the Architecture Wizard.
2. Includes global clock buffer.
3. Calculated as FVCO/128 assuming output duty cycle is 50%.
4. The LOCK signal must be sampled after TLOCKMAX. The LOCK signal is invalid after configuration or reset until the TLOCKMAX time has expired.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 47
R
DCM Switching Characteristics
Table 49: Operating Frequency Ranges for DCM in Maximum Speed (MS) Mode
Symbol Description
Speed Grade
Units-3 -2 -1
Outputs Clocks (Low Frequency Mode)
F1XLFMSMIN CLK0, CLK90, CLK180, CLK270 32.00 32.00 32.00 MHz
F1XLFMSMAX 150.00 135.00 120.00 MHz
F2XLFMSMIN CLK2X, CLK2X180 64.00 64.00 64.00 MHz
F2XLFMSMAX 300.00 270.00 240.00 MHz
FDVLFMSMIN CLKDV 2.0 2.0 2.0 MHz
FDVLFMSMAX 100.00 90.00 80.00 MHz
FFXLFMSMIN CLKFX, CLKFX180 32.00 32.00 32.00 MHz
FFXLFMSMAX 180.00 160.00 140.00 MHz
Input Clocks (Low Frequency Mode)
FDLLLFMSMIN CLKIN (using DLL outputs)(1, 3, 4) 32.00 32.00 32.00 MHz
FDLLLFMSMAX 150.00 135.00 120.00 MHz
FCLKINLFFXMSMIN CLKIN (using DFS outputs only)(2, 3, 4) 1.00 1.00 1.00 MHz
FCLKINLFFXMSMAX 180.00 160.00 140.00 MHz
FPSCLKLFMSMIN PSCLK 1.00 1.00 1.00 KHz
FPSCLKLFMSMAX 550.00 500.00 450.00 MHz
Outputs Clocks (High Frequency Mode)
F1XHFMSMIN CLK0, CLK90, CLK180, CLK270 120.00 120.00 120.00 MHz
F1XHFMSMAX 550.00 500.00 450.00 MHz
F2XHFMSMIN CLK2X, CLK2X180 240.00 240.00 240.00 MHz
F2XHFMSMAX 550.00 500.00 450.00 MHz
FDVHFMSMIN CLKDV 7.5 7.5 7.5 MHz
FDVHFMSMAX 366.67 333.34 300.00 MHz
FFXHFMSMIN CLKFX, CLKFX180 140.00 140.00 140.00 MHz
FFXHFMSMAX 400.00 375.00 350.00 MHz
Input Clocks (High Frequency Mode)
FDLLHFMSMIN CLKIN (using DLL outputs)(1, 3, 4) 120.00 120.00 120.00 MHz
FDLLHFMSMAX 550.00 500.00 450.00 MHz
FCLKINHFFXMSMIN CLKIN (using DFS outputs only)(2, 3, 4) 25.00 25.00 25.00 MHz
FCLKINHFFXMSMAX 400.00 375.00 350.00 MHz
FPSCLKHFMSMIN PSCLK 1.00 1.00 1.00 KHz
FPSCLKHFMSMAX 550.00 500.00 450.00 MHz
Notes:
1. DLL outputs are used in these instances to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. DFS outputs are used in these instances to describe the outputs: CLKFX and CLKFX180.
3. When using the DCMs CLKIN_DIVIDE_BY_2 attribute these values should be doubled. Other resources can limit the maximum input frequency.
4. When using a CLKIN frequency > 400 MHz and the DCMs CLKIN_DIVIDE_BY_2 attribute, the CLKIN duty cycle must be within ±5% (45/55 to 55/45).
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 48
R
Table 50: Operating Frequency Ranges for DCM in Maximum Range (MR) Mode
Symbol Description
Speed Grade
Units-3 -2 -1
Outputs Clocks (Low Frequency Mode)
F1XMRMIN CLK0, CLK90, CLK180, CLK270 19.00 19.00 19.00 MHz
F1XMRMAX 32.00 32.00 32.00 MHz
F2XMRMIN CLK2X, CLK2X180 38.00 38.00 38.00 MHz
F2XMRMAX 64.00 64.00 64.00 MHz
FDLLMRMIN CLKDV 1.19 1.19 1.19 MHz
FDLLMRMAX 21.34 21.34 21.34 MHz
FFXMRMIN CLKFX, CLKFX180 19.00 19.00 19.00 MHz
FFXMRMAX 40.00 40.00 40.00 MHz
Input Clocks (Low Frequency Mode)
FCLKINDLLMRMIN CLKIN (using DLL outputs)(1, 3, 4) 19.00 19.00 19.00 MHz
FCLKINDLLMRMAX 32.00 32.00 32.00 MHz
FCLKINFXMRMIN CLKIN (using DFS outputs only)(2, 3, 4) 1.00 1.00 1.00 MHz
FCLKINFXMRMAX 40.00 40.00 40.00 MHz
FPSCLKMRMIN PSCLK 1.00 1.00 1.00 KHz
FPSCLKMRMAX 300.00 270.00 240.00 MHz
Notes:
1. DLL Outputs are used in these instances to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. DFS Outputs are used in these instances to describe the outputs: CLKFX and CLKFX180.
3. When using the DCMs CLKIN_DIVIDE_BY_2 attribute these values should be doubled. Other resources can limit the maximum input frequency.
4. When using a CLKIN frequency > 400 MHz and the DCMs CLKIN_DIVIDE_BY_2 attribute, the CLKIN duty cycle must be within ±5% (45/55 to 55/45).
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 49
R
Table 51: Input Clock Tolerances
Symbol Description Frequency Range Value Units
Duty Cycle Input Tolerance (in %)
TDUTYCYCRANGE_1 PSCLK only < 1 MHz 25 - 75 %
TDUTYCYCRANGE_1_50
PSCLK and CLKIN
1 - 50 MHz 25 - 75 %
TDUTYCYCRANGE_50_100 50 - 100 MHz 30 - 70 %
TDUTYCYCRANGE_100_200 100 - 200 MHz 40 - 60 %
TDUTYCYCRANGE_200_400 200 - 400 MHz(4) 45 - 55 %
TDUTYCYCRANGE_400 > 400 MHz 45 - 55 %
Input Clock Cycle-Cycle Jitter (Low Frequency Mode)
Speed Grade
Units-3 -2 -1
TCYCLFDLL CLKIN (using DLL outputs)(1) 300.00 300.00 345.00 ps
TCYCLFFX CLKIN (using DFS outputs)(2) 300.00 300.00 345.00 ps
Input Clock Cycle-Cycle Jitter (High Frequency Mode)
TCYCHFDLL CLKIN (using DLL outputs)(1) 150.00 150.00 173.00 ps
TCYCHFFX CLKIN (using DFS outputs)(2) 150.00 150.00 173.00 ps
Input Clock Period Jitter (Low Frequency Mode)
TPERLFDLL CLKIN (using DLL outputs)(1) 1.00 1.00 1.15 ns
TPERLFFX CLKIN (using DFS outputs)(2) 1.00 1.00 1.15 ns
Input Clock Period Jitter (High Frequency Mode)
TPERHFDLL CLKIN (using DLL outputs)(1) 1.00 1.00 1.15 ns
TPERHFFX CLKIN (using DFS outputs)(2) 1.00 1.00 1.15 ns
Feedback Clock Path Delay Variation
TCLKFB_DELAY_VAR CLKFB off-chip feedback 1.00 1.00 1.15 ns
Notes:
1. DLL Outputs are used in these instances to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. DFS Outputs are used in these instances to describe the outputs: CLKFX and CLKFX180.
3. If both DLL and DFS outputs are used, follow the more restrictive specifications.
4. This duty cycle specification does not apply to the GTP_DUAL to DCM connection. The GTP transceivers drive the DCMs at the following
frequencies: 320 MHz for -1 speed grade devices, 375 MHz for -2 speed grade devices, or 375 MHz for -3 speed grade devices.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 50
R
Output Clock Jitter
Output Clock Phase Alignment
Table 52: Output Clock Jitter
Symbol Description Constraints
Speed Grade
Units-3 -2 -1
Clock Synthesis Period Jitter
TPERJITT_0 CLK0 ±120 ±120 ±120 ps
TPERJITT_90 CLK90 ±120 ±120 ±120 ps
TPERJITT_180 CLK180 ±120 ±120 ±120 ps
TPERJITT_270 CLK270 ±120 ±120 ±120 ps
TPERJITT_2X CLK2X, CLK2X180 ±200 ±200 ±230 ps
TPERJITT_DV1 CLKDV (integer division) ±150 ±150 ±180 ps
TPERJITT_DV2 CLKDV (non-integer division) ±300 ±300 ±345 ps
TPERJITT_FX CLKFX, CLKFX180 Note 1 Note 1 Note 1 ps
Notes:
1. Values for this parameter are available in the Architecture Wizard.
Table 53: Output Clock Phase Alignment
Symbol Description Constraints
Speed Grade
Units
-3 -2 -1
Phase Offset Between CLKIN and CLKFB
TIN_FB_OFFSET CLKIN/CLKFB ±50 ±50 ±60 ps
Phase Offset Between Any DCM Outputs(4)
TOUT_OFFSET_1X CLK0, CLK90, CLK180, CLK270 ±140 ±140 ±160 ps
TOUT_OFFSET_2X CLK2X, CLK2X180, CLKDV ±150 ±150 ±200 ps
TOUT_OFFSET_FX CLKFX, CLKFX180 ±160 ±160 ±220 ps
Duty Cycle Precision
TDUTY_CYC_DLL(3) DLL outputs(1) ±150 ±150 ±180 ps
TDUTY_CYC_FX DFS outputs(2) ±150 ±150 ±180 ps
Notes:
1. DLL Outputs are used in these instances to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. DFS Outputs are used in these instances to describe the outputs: CLKFX and CLKFX180.
3. CLKOUT_DUTY_CYCLE_DLL applies to the 1X clock outputs (CLK0, CLK90, CLK180, and CLK270) only if
DUTY_CYCLE_CORRECTION = TRUE.
4. All phase offsets are in respect to group CLK1X.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 51
R
Table 54: Miscellaneous Timing Parameters
Symbol Description
Speed Grade
-3 -2 -1 Units
Time Required to Achieve LOCK
TDLL_240 DLL output – Frequency range > 240 MHz (1) 80.00 80.00 80.00 µs
TDLL_120_240 DLL output – Frequency range 120 - 240 MHz (1) 250.00 250.00 250.00 µs
TDLL_60_120 DLL output – Frequency range 60 - 120 MHz (1) 900.00 900.00 900.00 µs
TDLL_50_60 DLL output – Frequency range 50 - 60 MHz(1) 1300.00 1300.00 1300.00 µs
TDLL_40_50 DLL output – Frequency range 40 - 50 MHz (1) 2000.00 2000.00 2000.00 µs
TDLL_30_40 DLL output – Frequency range 30 - 40 MHz (1) 3600.00 3600.00 3600.00 µs
TDLL_24_30 DLL output – Frequency range 24 - 30 MHz(1) 5000.00 5000.00 5000.00 µs
TDLL_30 DLL output – Frequency range < 30 MHz (1) 5000.00 5000.00 5000.00 µs
TFX_MIN DFS outputs(2) 10.00 10.00 10.00 ms
TFX_MAX 10.00 10.00 10.00 ms
TDLL_FINE_SHIFT Multiplication factor for DLL lock time with Fine Shift 2.00 2.00 2.00
Fine Phase Shifting
TRANGE_MS Absolute shifting range in maximum speed mode 7.00 7.00 7.00 ns
TRANGE_MR Absolute shifting range in maximum range mode 10.00 10.00 10.00 ns
Delay Lines
TTAP_MS_MIN Tap delay resolution (Min) in maximum speed mode 7.00 7.00 7.00 ps
TTAP_MS_MAX Tap delay resolution (Max) in maximum speed mode 30.00 30.00 30.00 ps
TTAP_MR_MIN Tap delay resolution (Min) in maximum range mode 10.00 10.00 10.00 ps
TTAP_MR_MAX Tap delay resolution (Max) in maximum range mode 40.00 40.00 40.00 ps
Notes:
1. DLL Outputs are used in these instances to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. DFS Outputs are used in these instances to describe the outputs: CLKFX and CLKFX180.
Table 55: Frequency Synthesis
Attribute Min Max
CLKFX_MULTIPLY 2 33
CLKFX_DIVIDE 1 32
Table 56: DCM Switching Characteristics
Symbol Description Speed Grade Units
-3 -2 -1
TDMCCK_PSEN/ TDMCKC_PSEN PSEN Setup/Hold 1.20
0.00
1.35
0.00
1.56
0.00
ns
TDMCCK_PSINCDEC/ TDMCKC_PSINCDEC PSINCDEC Setup/Hold 1.20
0.00
1.35
0.00
1.56
0.00
ns
TDMCKO_PSDONE Clock to out of PSDONE 1.00 1.12 1.30 ns
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 52
R
Virtex-5 Pin-to-Pin Output Parameter Guidelines
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are
listed in Ta bl e 57. Values are expressed in nanoseconds unless otherwise noted.
Table 57: Global Clock Input to Output Delay Without DCM or PLL
Symbol Description Device Speed Grade Units
-3 -2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, without DCM or PLL
TICKOF Global Clock and OUTFF without DCM or PLL XC5VLX30 5.54 6.04 6.73 ns
XC5VLX30T 5.54 6.04 6.73 ns
XC5VLX50 5.59 6.09 6.79 ns
XC5VLX50T 5.59 6.09 6.79 ns
XC5VLX85 5.78 6.28 6.99 ns
XC5VLX85T 5.78 6.28 6.99 ns
XC5VLX110 5.84 6.35 7.06 ns
XC5VLX110T 5.84 6.35 7.06 ns
XC5VLX220 N/A 6.99 7.71 ns
XC5VLX220T N/A 6.99 7.71 ns
XC5VLX330 N/A 7.17 7.91 ns
XC5VLX330T N/A 7.17 7.91 ns
XC5VSX35T 5.72 6.22 6.92 ns
XC5VSX50T 5.77 6.27 6.97 ns
XC5VSX95T N/A 6.59 7.30 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible
IOB and CLB flip-flops are clocked by the global clock net.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 53
R
Table 58: Global Clock Input to Output Delay With DCM in System-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with DCM
in System-Synchronous Mode.
TICKOFDCM Global Clock and OUTFF with DCM XC5VLX30 2.33 2.56 2.93 ns
XC5VLX30T 2.33 2.56 2.93 ns
XC5VLX50 2.35 2.58 2.95 ns
XC5VLX50T 2.35 2.58 2.95 ns
XC5VLX85 2.41 2.63 3.00 ns
XC5VLX85T 2.41 2.63 3.00 ns
XC5VLX110 2.46 2.69 3.06 ns
XC5VLX110T 2.46 2.69 3.06 ns
XC5VLX220 N/A 2.83 3.18 ns
XC5VLX220T N/A 2.83 3.18 ns
XC5VLX330 N/A 3.00 3.37 ns
XC5VLX330T N/A 3.00 3.37 ns
XC5VSX35T 2.44 2.67 3.03 ns
XC5VSX50T 2.46 2.69 3.05 ns
XC5VSX95T N/A 2.64 3.00 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
2. DCM output jitter is already included in the timing calculation.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 54
R
Table 59: Global Clock Input to Output Delay With DCM in Source-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with DCM
in Source-Synchronous Mode.
TICKOFDCM_0 Global Clock and OUTFF with DCM XC5VLX30 3.45 3.71 4.15 ns
XC5VLX30T 3.45 3.71 4.15 ns
XC5VLX50 3.47 3.73 4.17 ns
XC5VLX50T 3.47 3.73 4.17 ns
XC5VLX85 3.60 3.86 4.29 ns
XC5VLX85T 3.60 3.86 4.29 ns
XC5VLX110 3.65 3.92 4.36 ns
XC5VLX110T 3.65 3.92 4.36 ns
XC5VLX220 N/A 4.41 4.85 ns
XC5VLX220T N/A 4.41 4.85 ns
XC5VLX330 N/A 4.58 5.04 ns
XC5VLX330T N/A 4.58 5.04 ns
XC5VSX35T 3.63 3.89 4.33 ns
XC5VSX50T 3.65 3.91 4.35 ns
XC5VSX95T N/A 4.16 4.59 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
2. DCM output jitter is already included in the timing calculation.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 55
R
Table 60: Global Clock Input to Output Delay With PLL in System-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with PLL in System-Synchronous Mode.
TICKOFPLL Global Clock and OUTFF with PLL XC5VLX30 2.03 2.12 2.41 ns
XC5VLX30T 2.03 2.12 2.41 ns
XC5VLX50 2.05 2.14 2.43 ns
XC5VLX50T 2.05 2.14 2.43 ns
XC5VLX85 2.10 2.18 2.47 ns
XC5VLX85T 2.10 2.18 2.47 ns
XC5VLX110 2.16 2.24 2.54 ns
XC5VLX110T 2.16 2.24 2.54 ns
XC5VLX220 N/A 2.58 2.86 ns
XC5VLX220T N/A 2.58 2.86 ns
XC5VLX330 N/A 2.75 3.05 ns
XC5VLX330T N/A 2.75 3.05 ns
XC5VSX35T 2.14 2.22 2.51 ns
XC5VSX50T 2.16 2.24 2.53 ns
XC5VSX95T N/A 2.32 2.60 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
2. PLL output jitter is included in the timing calculation.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 56
R
Table 61: Global Clock Input to Output Delay With PLL in Source-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with PLL in Source-Synchronous Mode.
TICKOFPLL_0 Global Clock and OUTFF with PLL XC5VLX30 3.98 4.33 4.82 ns
XC5VLX30T 3.98 4.33 4.82 ns
XC5VLX50 4.01 4.35 4.84 ns
XC5VLX50T 4.01 4.35 4.84 ns
XC5VLX85 4.13 4.47 4.96 ns
XC5VLX85T 4.13 4.47 4.96 ns
XC5VLX110 4.19 4.53 5.03 ns
XC5VLX110T 4.19 4.53 5.03 ns
XC5VLX220 N/A 5.03 5.53 ns
XC5VLX220T N/A 5.03 5.53 ns
XC5VLX330 N/A 5.20 5.71 ns
XC5VLX330T N/A 5.20 5.71 ns
XC5VSX35T 4.16 4.51 5.00 ns
XC5VSX50T 4.19 4.53 5.02 ns
XC5VSX95T N/A 4.77 5.27 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
2. PLL output jitter is included in the timing calculation.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 57
R
Table 62: Global Clock Input to Output Delay With DCM and PLL in System-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with DCM and PLL
in System-Synchronous Mode.
TICKOFDCM_PLL Global Clock and OUTFF with DCM and PLL XC5VLX30 2.47 2.70 3.06 ns
XC5VLX30T 2.47 2.70 3.06 ns
XC5VLX50 2.49 2.72 3.08 ns
XC5VLX50T 2.49 2.72 3.08 ns
XC5VLX85 2.55 2.77 3.13 ns
XC5VLX85T 2.55 2.77 3.13 ns
XC5VLX110 2.60 2.83 3.19 ns
XC5VLX110T 2.60 2.83 3.19 ns
XC5VLX220 N/A 2.97 3.31 ns
XC5VLX220T N/A 2.97 3.31 ns
XC5VLX330 N/A 3.14 3.49 ns
XC5VLX330T N/A 3.14 3.49 ns
XC5VSX35T 2.58 2.81 3.16 ns
XC5VSX50T 2.60 2.83 3.18 ns
XC5VSX95T N/A 2.78 3.13 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
2. DCM and PLL output jitter are already included in the timing calculation.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 58
R
Table 63: Global Clock Input to Output Delay With DCM and PLL in Source-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with DCM and PLL
in Source-Synchronous Mode.
TICKOFDCM0_PLL Global Clock and OUTFF with DCM and PLL XC5VLX30 3.59 3.85 4.27 ns
XC5VLX30T 3.59 3.85 4.27 ns
XC5VLX50 3.61 3.87 4.29 ns
XC5VLX50T 3.61 3.87 4.29 ns
XC5VLX85 3.74 4.00 4.42 ns
XC5VLX85T 3.74 4.00 4.42 ns
XC5VLX110 3.79 4.06 4.48 ns
XC5VLX110T 3.79 4.06 4.48 ns
XC5VLX220 N/A 4.55 4.98 ns
XC5VLX220T N/A 4.55 4.98 ns
XC5VLX330 N/A 4.72 5.17 ns
XC5VLX330T N/A 4.72 5.17 ns
XC5VSX35T 3.77 4.03 4.45 ns
XC5VSX50T 3.79 4.05 4.48 ns
XC5VSX95T N/A 4.30 4.72 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
2. DCM and PLL output jitter are already included in the timing calculation.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 59
R
Virtex-5 Pin-to-Pin Input Parameter Guidelines
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are
listed in Ta bl e 65. Values are expressed in nanoseconds unless otherwise noted.
Table 64: Global Clock Setup and Hold Without DCM or PLL
Symbol Description Device Speed Grade Units
-3 -2 -1
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSFD/ TPHFD Full Delay (Legacy Delay or Default Delay)
Global Clock and IFF(2) without DCM or PLL
XC5VLX30 1.49
–0.35
1.60
–0.35
1.77
–0.35
ns
XC5VLX30T 1.49
–0.35
1.60
–0.35
1.76
–0.35
ns
XC5VLX50 1.48
–0.30
1.59
–0.30
1.76
–0.30
ns
XC5VLX50T 1.48
–0.30
1.59
–0.30
1.76
–0.30
ns
XC5VLX85 1.75
–0.49
1.89
–0.49
2.09
–0.49
ns
XC5VLX85T 1.75
–0.49
1.89
–0.49
2.09
–0.49
ns
XC5VLX110 1.74
–0.43
1.88
–0.43
2.09
–0.43
ns
XC5VLX110T 1.73
–0.43
1.88
–0.43
2.09
–0.43
ns
XC5VLX220 N/A 2.57
–0.74
2.86
–0.74
ns
XC5VLX220T N/A 2.57
–0.74
2.86
–0.74
ns
XC5VLX330 N/A 2.55
–0.56
2.85
–0.56
ns
XC5VLX330T N/A 2.57
–0.56
2.86
–0.56
ns
XC5VSX35T 1.47
–0.16
1.59
–0.16
1.76
–0.16
ns
XC5VSX50T 1.62
–0.31
1.74
–0.31
1.93
–0.31
ns
XC5VSX95T N/A 2.10
–0.44
2.32
–0.44
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage.
2. IFF = Input Flip-Flop or Latch
3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed,
there is no positive hold time.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 60
R
Table 65: Global Clock Setup and Hold With DCM in System-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSDCM/ TPHDCM No Delay Global Clock and IFF(2) with DCM in
System-Synchronous Mode
XC5VLX30 1.53
–0.50
1.70
–0.50
1.88
–0.50
ns
XC5VLX30T 1.53
–0.50
1.70
–0.50
1.88
–0.50
ns
XC5VLX50 1.52
–0.48
1.68
–0.48
1.86
–0.48
ns
XC5VLX50T 1.52
–0.48
1.68
–0.48
1.86
–0.48
ns
XC5VLX85 1.58
–0.43
1.76
–0.43
1.95
–0.43
ns
XC5VLX85T 1.57
–0.43
1.76
–0.43
1.95
–0.43
ns
XC5VLX110 1.58
–0.37
1.76
–0.37
1.95
–0.37
ns
XC5VLX110T 1.58
–0.37
1.76
–0.37
1.95
–0.37
ns
XC5VLX220 N/A 2.17
–0.27
2.44
–0.27
ns
XC5VLX220T N/A 2.17
–0.27
2.44
–0.27
ns
XC5VLX330 N/A 2.17
–0.10
2.44
–0.10
ns
XC5VLX330T N/A 2.17
–0.10
2.44
–0.10
ns
XC5VSX35T 1.60
–0.39
1.78
–0.39
1.98
–0.39
ns
XC5VSX50T 1.58
–0.37
1.76
–0.37
1.95
–0.37
ns
XC5VSX95T N/A 2.10
–0.41
2.35
–0.41
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include CLK0, DCM, and jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 61
R
Table 66: Global Clock Setup and Hold With DCM in Source-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSDCM0/
TPHDCM0
No Delay Global Clock and IFF(2) with DCM in
Source-Synchronous Mode
XC5VLX30 0.27
0.62
0.27
0.62
0.27
0.66
ns
XC5VLX30T 0.27
0.62
0.27
0.62
0.27
0.66
ns
XC5VLX50 0.26
0.64
0.26
0.64
0.26
0.68
ns
XC5VLX50T 0.25
0.64
0.26
0.64
0.26
0.68
ns
XC5VLX85 0.23
0.76
0.24
0.76
0.24
0.80
ns
XC5VLX85T 0.23
0.76
0.24
0.76
0.24
0.80
ns
XC5VLX110 0.23
0.82
0.24
0.82
0.24
0.87
ns
XC5VLX110T 0.23
0.82
0.24
0.82
0.24
0.87
ns
XC5VLX220 N/A 0.21
1.31
0.22
1.36
ns
XC5VLX220T N/A 0.21
1.31
0.22
1.36
ns
XC5VLX330 N/A 0.21
1.48
0.22
1.55
ns
XC5VLX330T N/A 0.21
1.48
0.22
1.55
ns
XC5VSX35T 0.25
0.80
0.27
0.80
0.27
0.84
ns
XC5VSX50T 0.24
0.82
0.25
0.82
0.25
0.86
ns
XC5VSX95T N/A 0.24
1.06
0.24
1.11
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include CLK0, DCM, and jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 62
R
Table 67: Global Clock Setup and Hold With PLL in System-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSPLL/ TPHPLL No Delay Global Clock and IFF(2) with PLL in
System-Synchronous Mode
XC5VLX30 1.51
–0.81
1.67
–0.81
1.91
–0.81
ns
XC5VLX30T 1.51
–0.81
1.67
–0.81
1.91
–0.81
ns
XC5VLX50 1.49
–0.79
1.65
–0.79
1.88
–0.79
ns
XC5VLX50T 1.49
–0.79
1.65
–0.79
1.88
–0.79
ns
XC5VLX85 1.52
–0.74
1.70
–0.74
1.95
–0.74
ns
XC5VLX85T 1.52
–0.74
1.70
–0.74
1.95
–0.74
ns
XC5VLX110 1.51
–0.68
1.69
–0.68
1.95
–0.68
ns
XC5VLX110T 1.51
–0.68
1.69
–0.68
1.95
–0.68
ns
XC5VLX220 N/A 1.77
–0.52
2.08
–0.52
ns
XC5VLX220T N/A 1.77
–0.52
2.08
–0.52
ns
XC5VLX330 N/A 1.75
–0.35
2.07
–0.35
ns
XC5VLX330T N/A 1.77
–0.35
2.08
–0.35
ns
XC5VSX35T 1.56
–0.70
1.73
–0.70
1.98
–0.70
ns
XC5VSX50T 1.54
–0.68
1.71
–0.68
1.96
–0.68
ns
XC5VSX95T N/A 1.83
–0.58
2.11
–0.58
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include CLKOUT0, PLL, and jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 63
R
Table 68: Global Clock Setup and Hold With PLL in Source-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSPLL0/ TPHPLL0 No Delay Global Clock and IFF(2) with PLL in
Source-Synchronous Mode
XC5VLX30 –0.21
1.15
–0.21
1.23
–0.21
1.33
ns
XC5VLX30T –0.21
1.15
–0.21
1.23
–0.21
1.33
ns
XC5VLX50 –0.22
1.17
–0.22
1.25
–0.22
1.35
ns
XC5VLX50T –0.22
1.17
–0.22
1.25
–0.22
1.35
ns
XC5VLX85 –0.24
1.29
–0.24
1.37
–0.24
1.48
ns
XC5VLX85T –0.24
1.29
–0.24
1.37
–0.24
1.48
ns
XC5VLX110 –0.24
1.35
–0.24
1.43
–0.24
1.54
ns
XC5VLX110T –0.24
1.35
–0.24
1.43
–0.24
1.54
ns
XC5VLX220 N/A –0.31
1.93
–0.31
2.04
ns
XC5VLX220T N/A –0.32
1.93
–0.32
2.04
ns
XC5VLX330 N/A –0.31
2.10
–0.31
2.22
ns
XC5VLX330T N/A –0.32
2.10
–0.32
2.22
ns
XC5VSX35T –0.22
1.33
–0.22
1.41
–0.22
1.51
ns
XC5VSX50T –0.24
1.35
–0.24
1.43
–0.24
1.53
ns
XC5VSX95T N/A –0.26
1.67
–0.26
1.78
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include CLKOUT0, PLL, and jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 64
R
Table 69: Global Clock Setup and Hold With DCM and PLL in System-Synchronous Mode
Symbol Description Device Speed Grade Units
-3 -2 -1
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSDCMPLL/
TPHDCMPLL
No Delay Global Clock and IFF(2) with
DCM and PLL in System-Synchronous Mode
XC5VLX30 1.66
–0.37
1.83
–0.37
2.00
–0.37
ns
XC5VLX30T 1.65
–0.37
1.83
–0.37
2.00
–0.37
ns
XC5VLX50 1.63
–0.34
1.80
–0.34
1.98
–0.34
ns
XC5VLX50T 1.63
–0.34
1.80
–0.34
1.98
–0.34
ns
XC5VLX85 1.68
–0.29
1.87
–0.29
2.07
–0.29
ns
XC5VLX85T 1.68
–0.29
1.87
–0.29
2.07
–0.29
ns
XC5VLX110 1.67
–0.23
1.87
–0.23
2.07
–0.23
ns
XC5VLX110T 1.66
–0.23
1.86
–0.23
2.06
–0.23
ns
XC5VLX220 N/A 2.26
–0.13
2.55
–0.13
ns
XC5VLX220T N/A 2.25
–0.13
2.55
–0.13
ns
XC5VLX330 N/A 2.23
0.04
2.53
0.04
ns
XC5VLX330T N/A 2.25
0.04
2.54
0.04
ns
XC5VSX35T 1.72
–0.26
1.91
–0.26
2.10
–0.26
ns
XC5VSX50T 1.70
–0.23
1.88
–0.23
2.07
–0.23
ns
XC5VSX95T N/A 2.22
–0.27
2.47
–0.27
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. These measurements include CLK0, DCM, CLKOUT0, PLL, and jitter.
2. IFF = Input Flip-Flop or Latch
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 65
R
Table 70: Global Clock Setup and Hold With DCM and PLL in Source-Synchronous Mode
Symbol Description Device
Speed Grade
Units
-3-2-1
Example Data Input Set-Up and Hold Times Relative to a Forwarded Clock Input Pin,(1) Using DCM, PLL, and Global Clock Buffer. For
situations where clock and data inputs conform to different standards, adjust the setup and hold values accordingly using the values
shown in IOB Switching Characteristics, page 23.
TPSDCMPLL_0/
TPHDCMPLL_0
No Delay Global Clock and IFF (2) with DCM and
PLL in Source-Synchronous Mode
XC5VLX30 0.39
0.75
0.40
0.75
0.40
0.79
ns
XC5VLX30T 0.39
0.75
0.40
0.75
0.40
0.79
ns
XC5VLX50 0.37
0.78
0.38
0.78
0.38
0.81
ns
XC5VLX50T 0.37
0.78
0.38
0.78
0.38
0.81
ns
XC5VLX85 0.34
0.90
0.36
0.90
0.36
0.93
ns
XC5VLX85T 0.33
0.90
0.36
0.90
0.36
0.93
ns
XC5VLX110 0.32
0.96
0.35
0.96
0.35
1.00
ns
XC5VLX110T 0.32
0.96
0.35
0.96
0.35
1.00
ns
XC5VLX220 N/A 0.30
1.45
0.32
1.49
ns
XC5VLX220T N/A 0.30
1.45
0.32
1.49
ns
XC5VLX330 N/A 0.28
1.62
0.31
1.68
ns
XC5VLX330T N/A 0.30
1.62
0.32
1.68
ns
XC5VSX35T 0.38
0.93
0.39
0.93
0.39
0.97
ns
XC5VSX50T 0.35
0.96
0.37
0.96
0.37
0.99
ns
XC5VSX95T N/A 0.35
1.20
0.35
1.24
ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock
input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using
the fastest process, lowest temperature, and highest voltage. The timing values were measured using the fine-phase adjustment feature of the DCM.
These measurements include CLK0, DCM, CLKOUT0, PLL, and jitter. Package skew is not included in these measurements.
2. IFF = Input Flip-Flop
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 66
R
ChipSync™ Source-Synchronous Switching Characteristics
The parameters in this section provide the necessary values for calculating timing budgets for Virtex-5 source-synchronous
transmitter and receiver data-valid windows.
Table 71: Duty Cycle Distortion and Clock-Tree Skew
Symbol Description Device Speed Grade Units
-3 -2 -1
TDCD_CLK Global Clock Tree Duty Cycle Distortion (1) All 0.12 0.12 0.12 ns
TCKSKEW Global Clock Tree Skew (2) XC5VLX30 0.21 0.22 0.22 ns
XC5VLX30T 0.21 0.22 0.22 ns
XC5VLX50 0.26 0.27 0.28 ns
XC5VLX50T 0.26 0.27 0.28 ns
XC5VLX85 0.42 0.43 0.45 ns
XC5VLX85T 0.42 0.43 0.45 ns
XC5VLX110 0.48 0.50 0.51 ns
XC5VLX110T 0.48 0.50 0.51 ns
XC5VLX220 N/A 1.07 1.10 ns
XC5VLX220T N/A 1.07 1.10 ns
XC5VLX330 N/A 1.25 1.29 ns
XC5VLX330T N/A 1.25 1.29 ns
XC5VSX35T 0.38 0.39 0.39 ns
XC5VSX50T 0.43 0.44 0.45 ns
XC5VSX95T N/A 0.72 0.74 ns
TDCD_BUFIO I/O clock tree duty cycle distortion All 0.10 0.10 0.10 ns
TBUFIOSKEW I/O clock tree skew across one clock region All 0.07 0.07 0.08 ns
TDCD_BUFR Regional clock tree duty cycle distortion All 0.25 0.25 0.25 ns
Notes:
1. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where
other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.
2. The TCKSKEW value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists
for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer
tools to evaluate clock skew specific to your application.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 67
R
Table 72: Package Skew
Symbol Description Device Package Value Units
TPKGSKEW Package Skew(1)
XC5VLX30 FF324 80 ps
FF676 142 ps
XC5VLX30T FF665 93 ps
XC5VLX50
FF324 80 ps
FF676 142 ps
FF1153 175 ps
XC5VLX50T FF665 93 ps
FF1136 162 ps
XC5VLX85 FF676 142 ps
FF1153 174 ps
XC5VLX85T FF1136 164 ps
XC5VLX110
FF676 142 ps
FF1153 173 ps
FF1760 190 ps
XC5VLX110T FF1136 163 ps
FF1738 171 ps
XC5VLX220 FF1760 178 ps
XC5VLX220T FF1738 156 ps
XC5VLX330 FF1760 177 ps
XC5VLX330T FF1738 155 ps
XC5VSX35T FF665 103 ps
XC5VSX50T FF665 103 ps
FF1136 157 ps
XC5VSX95T FF1136 176 ps
Notes:
1. These values represent the worst-case skew between any two SelectMap I/Os in the package: shortest flight time to longest flight time from Pad to
Ball (7.0 ps per mm).
2. Package trace length information is available for these device/package combinations. This information can be used to deskew the package.
Table 73: Sample Window
Symbol Description Device Speed Grade Units
-3 -2 -1
TSAMP Sampling Error at Receiver Pins(1) All 450 500 550 ps
TSAMP_BUFIO Sampling Error at Receiver Pins using BUFIO(2) All 350 400 450 ps
Notes:
1. This parameter indicates the total sampling error of Virtex-5 DDR input registers across voltage, temperature, and process. The characterization
methodology uses the DCM to capture the DDR input registers’ edges of operation. These measurements include:
- CLK0 DCM jitter
- DCM accuracy (phase offset)
- DCM phase shift resolution
These measurements do not include package or clock tree skew.
2. This parameter indicates the total sampling error of Virtex-5 DDR input registers across voltage, temperature, and process. The characterization
methodology uses the BUFIO clock network and IODELAY to capture the DDR input registers’ edges of operation. These measurements do not
include package or clock tree skew.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 68
R
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIM-
ITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN
APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE
WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE,
SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY,
OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER,
SUBJECT TO APPLICABLE LAWS AND REGULATIONS.
Table 74: ChipSync Pin-to-Pin Setup/Hold and Clock-to-Out
Symbol Description Speed Grade Units
-3 -2 -1
Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO
TPSCS/TPHCS Setup/Hold of I/O clock –0.56
1.59
–0.54
1.72
–0.54
1.91
ns
Pin-to-Pin Clock-to-Out Using BUFIO
TICKOFCS Clock-to-Out of I/O clock 4.42 4.82 5.40 ns
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 69
R
Revision History
The following table shows the revision history for this document.
Date Version Revision
04/14/06 1.0 Initial Xilinx release.
05/12/06 1.1 First version posted to the Xilinx website. Minor typograpical edits. Revised design software
version on page 21.
•Revised T
IDELAYRESOLUTION in Table 38, page 35.
Revised TDSPCKO in Table 43, page 40.
05/24/06 1.2 Added register-to-register parameters to Table 26.
08/04/06 1.3 Added VDRINT
, VDRI, and CIN values to Ta ble 3 .
Added HSTL_I_12 and LVCMOS12 to Table 7 and renumbered the notes.
Removed pin-to-pin performance (Table 12). Updated and added values to register-register
performance Table 26 (was Table 13).
Added values to Ta b l e 2 7 .
Updated the speed specification version above Table 28.
Added to Table 30 the I/O standards: HSTL_II_T_DCI, HSTL_II_T_DCI_18,
SSTL2_II_T_DCI, and SSTL18_II_T_DCI.
•Revised F
MAX values in Table 42, and RDWR_B Setup/Hold values in Table 44.
•In Table 48, changed FVCOMAX, removed TLOCKMIN, and revised TLOCKMAX values, also
removed note pointing to Architecture Wizard.
Removed Note 2 on Table 61.
09/06/06 2.0 Added new sections for LXT devices and added LXT devices to the appropriate tables. The
addition of the RocketIO GTP Transceiver Specifications required the tables to be
renumbered.
Changed maximum VIN values in Ta ble 1 and Ta ble 2.
Updated values and added Tj = 85°C to Table 4, page 3.
Revised the cascade block RAM Memory, page 19 section in Table 26 to 64K with new I/O
delays.
Revised the setup and hold times in Table 34, page 31.
Added FMAX_CASCADE to Table 42, page 38.
•Revised F
FXLFMSMAX and FCLKINLFFXMSMAX in Table 49, page 47.
10/13/06 2.1 Added System Monitor parameters. Added XC5VLX85T to appropriate tables.
•Revised Table 16 including notes. Added Table 17, and Figure 3 and Figure 4.
Added Table 19, page 14: RocketIO CRC block.
Revised design software version and Table 28 on page 21.
Updated ILOGIC Switching Characteristics, page 31
Updated FMAX_ECC in Table 42, page 38.
Changed hold times for TSMDCCK/ TSMCCKD and TBPIDCC/TBPICCD in Table 44, page 43.
•Revised T
FBDELAY
, FOUTMIN, FOUTMAX, and FINJITTER Table 48, page 46.
•Revised Table 49, page 47.
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 70
R
01/05/07 2.2 Added IIN to Ta b l e 2 . Added XC5VLX220T to appropriate tables.
Added LVDCI33, LVDCI25, LVDCI18, LVDCI15 to Ta bl e 7 .
Update the symbols in the GTP Transceiver Table 12, Table 13, and Table 14.
Add values for -1 speed grade in Table 18, page 14.
Added SFI-4.1 values to Table 27, page 20.
Removed -3 speed grade from available LX220 device list in Table 28, page 21.
Added maximum frequency to Table 46 and Table 47, page 45.
•In Table 49, page 47 changed the all the CLKDV, CLKFX, and CLKFX180 Min values and
the CLKIN Min values in the Input Clocks (High Frequency Mode) section.
Added values to Ta b l e 5 2 and Table 53, page 50.
02/02/07 3.0 Added XC5VSX35T, XC5VSX50T, and SX5VSX95T devices to appropriate tables.
Revised the IRPU values in Table 3, page 2.
Revised the ICCAUXQ values in Table 4, page 3.
Added values to Table 5, page 4.
Minor added notes and changed descriptions in Table 13, page 9 and Table 14, page 9.
Revised the SFI-4.1 (SDR LVDS Interface) -1 values in Table 27, page 20.
Revised gain error, bipolar gain error, and event conversion time in Table 25, page 17
Changed the design software version that matches this datasheet above Table 28 on
page 21.
•In Switching Characteristics, the following values are revised:
- LVCMOS25, Fast, 12 mA in Table 30, page 23.
- Setup and Hold and TICKQ in Table 34, page 31.
-T
OCKQ in Table 35, page 32.
- Sequential delay values in Table 37, page 34.
-T
CXB, TCEO, and TDICK in Table 39, page 35.
-T
RCKO_DO, TRCKO_POINTERS, TRCKO_ECCR, TRCKO_ECC, TRCCK_ADDR, TRDCK_DI,
TRDCK_DI_ECC, TRCCK_WREN, and TRCO_FLAGS in Table 42, page 38.
-T
DSPDCK_CC, TDSPCCK_{RSTAA, RSTBB}, TDSPCKO_{PP, CRYOUTP}, FMAX_MULT_NOMREG
and FMAX_MULT_NOMREG_PATDET in Table 43, page 40.
-T
BCCKO_O, and TBGCKO_O in Table 45, page 45.
-T
BUFIOCKO_O and FMAX in Table 46, page 45.
-T
BRCKO_O and TBRCKO_O_BYP in Table 47, page 45.
- Parameters in Table 48, page 46 including notes.
•In Virtex-5 Pin-to-Pin Output Parameter Guidelines:
- Revised values in Table 57, Ta ble 58, and Table 59.
•In Virtex-5 Pin-to-Pin Input Parameter Guidelines:
- Clarified description in Table 64, page 59.
- Revised values in Table 64, Ta ble 65, and Table 66.
- Removed duplicate TBUFR_MAX_FREQ and TBUFIO_MAX_FREQ from Table 71.
Revised values in Table 74, page 68.
Date Version Revision
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 71
R
05/18/07 3.1 Added typical values for n and r in Table 3.
Revised and added values to Table 4.
Revised standard I/O levels in Ta ble 7.
Additions and updates to Table 14, Tabl e 1 6 , Table 17, Table 18, Table 19, Table 20,
Table 21, Table 22, and Table 23.
Added Ethernet MAC Switching Characteristics, page 16.
Changed the design software version that matches this datasheet above Table 28 on
page 21.
Added new section: I/O Standard Adjustment Measurement Methodology, page 28.
•In Switching Characteristics, the following values are revised:
- LVTTL, Slow and Fast, 2 mA, 4 mA, and 6 mA (Table 30).
- LVCMOS33, Slow and Fast, 2 mA, 4 mA, and 6 mA (Table 30).
- LVCMOS25, Slow and Fast, 2 mA and 4 mA, and Fast 12 mA (Table 30).
- LVCMOS18, Slow and Fast, 2 mA, 4 mA, and 6 mA (Table 30).
- LVCMOS15 and LVCMOS12, Slow and Fast, 2 mA (Tabl e 30 ).
-T
IDOCK and TIDOCKD in Table 34.
- Setup/Hold for Control Lines and Data Lines in Table 36.
-Add T
IDELAYPAT_JIT and revised TIDELAYRESOLUTION in Table 38, page 35 and added
Notes 1 and 2.
-Revised T
RCK page 36 and removed TCKSR Table 39, page 35.
- Replaced TTWC with TMCP symbol in Table 40, page 37.
-Revised T
CECK in Table 41.
-Revised T
RCKO_FLAGS and TRDCK_DI_ECC encode only in Table 42.
- Revised Hold Times of Data/Control Pins to the Input Register Clock.
Setup/Hold times of {PCIN, CARRYCASCIN, MULTSIGNIN} input to P register CLK.
Hold times of some of the CE pins. Hold times of some of the RST pins. Hold times of
{A, B} input to {P, CARRYOUT} output using multiplier and {ACIN, BCIN} input to {P,
CARRYOUT} output using multiplier, CLK (AREG, BREG) to {P, CARRYOUT} output
using multiplier, in Table 43.
- Updated and added values to Table 44, page 43.
Revised -1 speed FMAX value in Table 46, page 45.
Added Note 4 to TLOCKMAX and revised FINDUTY
, FINMAX,and FVCOMAX in Table 48, page 46.
Added ± values to Table 52 and Table 53. Changed TOUT_OFFSET in Table 53.
•In Virtex-5 Pin-to-Pin Output Parameter Guidelines:
- Revised values in Table 57 through Table 63.
•In Virtex-5 Pin-to-Pin Input Parameter Guidelines:
- Revised values in Table 64 through Table 70.
•In ChipSync™ Source-Synchronous Switching Characteristics:
- Revised values in Table 71, page 66.
- Added package skew values to Table 72, page 67.
- Revised values in Table 74, page 68.
Date Version Revision
Virtex-5 Data Sheet: DC and Switching Characteristics
DS202 (v3.6) November 5, 2007 www.xilinx.com
Advance Product Specification 72
R
06/15/07 3.2 Updated TSTG in Table 1 .
Corrected VOH/VOL in Ta b l e 9 and Table 10, page 7.
Changed the design software version that matches this data sheet above Table 28 on
page 21.
Added “Production Silicon and ISE Software Status,” page 22.
Added TIODELAY_CLK_MAX and revised TCKSR in Table 38, page 35.
•In Virtex-5 Pin-to-Pin Output Parameter Guidelines: Revised values in Table 58 through
Table 63.
•In Virtex-5 Pin-to-Pin Input Parameter Guidelines: Revised values in Table 65 through
Table 70.
Corrected units to ns in Table 71, page 66.
06/26/07 3.3 Added conditions to DVPPIN in Table 16, page 12.
Changed the FGTXMAX symbol name to FGTPMAX.
Updated GTP maximum line rates to 3.75 Gb/s in Table 18, page 14.
Updated maximum frequencies in Table 21, page 15.
Added 3.75 Gb/s condition and changed maximum value of FGTX in Table 22, page 15.
Added 3.75 Gb/s sinusoidal jitter specification and changed maximum value of FGRX in
Table 23, page 16.
Changed analog input common mode ranges in Table 25, page 17.
Changed TPKGSKEW values in Table 72, page 67.
07/26/07 3.4 Added maximum value of IREF to Table 3, page 2.
•Revised Table 28 and changed the design software version in Table 29 for production
devices.
•In Table 38, page 35, added High Performance Mode to Note 2.
•In Table 44, page 43, revised description of TSMDCCK/TSMCCKD.
Added Note 4 to TDUTYCYCRANGE_200_400 frequency range in Table 51, page 49.
•In Virtex-5 Pin-to-Pin Input Parameter Guidelines: Revised note 1 in Table 64 through
Table 69.
09/27/07 3.5 Added IBATT value and Note 2 to Table 3.
Added DRP Clock Frequency and Note 4 to Table 25. Revised the typical and maximum
values and units for gain error and bipolar gain error.
Removed unsupported XC5VSX95T -3 speed grade from Table 28 and Table 29.
Removed unsupported I/O standards (LVDS_33, LVDSEXT_33, and ULVDS_25) from
Table 25. Also updated LVDSEXT, 2.5V in Table 33.
Added values to Dynamic Reconfiguration Port (DRP) for DCM and PLL Before and
After DCLK in Table 44.
•In Virtex-5 Pin-to-Pin Input Parameter Guidelines: Revised note 1 in Table 64 through
Table 70.
11/05/07 3.6 Removed note 1 from Table 26, page 19. FMAX of clock is not an applicable limitation.
Revised DDR2 memory interface performance in Table 27, page 20.
•Revised Table 29 to add ISE 9.2i SP3 where applicable.
Removed XC5VSX95T -3 speed grade support from applicable tables.
Removed unsupported I/O standard (LVPECL_33) from Table 32 and added LVPECL_25.
Added TSMCO and TSMCKBY to Table 44, page 43.
Revised note 3 in Table 49, page 47 and Table 50, page 48.
Clarified notes in Ta b l e 6 0 to Table 63, and Table 67 to Table 70.
Revised note 1 in Ta ble 7 2 .
Date Version Revision