Power Management & Supply
Version 1.0 , June 2001
Application Note
AN-PSM-11
Switched and Averaged PSPICE Models
Authors: Horst Edel
Daniel Lindenmeyer
Published by Infineon Technologies AG
www.infineon.com/simulate
Never stop thinking
Titel:
(Infineon Logo 4c.eps)
Erstellt von:
Adobe Illustrator(R) 8.0
Vorschau:
Diese EPS-Grafik wurde nicht gespeichert
mit einer enthaltenen Vorschau.
Kommentar:
Diese EPS-Grafik wird an einen
PostScript-Drucker gedruckt, aber nicht
an andere Druckertypen.
Support: simulate@infineon.com
www.infineon.com/coolset
Switched and Averaged Pspice Models
Page 2 / 20 AN-PSM-11
V1.0
Serial number:9101-20-P1-1-----
This work is protected by copyright. All rights reserved. Neither the complete work nor extracts
therefrom may be copied or reproduced, regardless of the means employed, without the permission of
the publisher.
Text, illustrations and examples were produced with great care. Nevertheless, errors cannot be
completely excluded. The author can assume neither a legal responsibility nor any form of liability for
any possibly remaining incorrect details and their consequences.
PSPICE is a registered trademark of MicroSim Corp. USA.
© 2000 by Ing. Büro Horst Edel
Switched and Averaged Pspice Models
Page 3 / 20 AN-PSM-11
V1.0
Contents
1Preliminary remarks 4
1.1 Description of the converter symbols 4
1.2 General notes 5
2Flyback converter with electrical isolation, 1 output 8
2.1 Linearized circuit 8
2.2 Averaged model 8
2.3 Time-domain characteristic with current loop 9
2.4 DC operating points 10
2.5Frequency-domain characteristic 11
3Flyback converter with electrical isolation, 2 outputs 12
3.1 Linearized circuit 12
3.2 Averaged model 12
3.3 Time-domain characteristic with current loop 13
3.4 DC operating points 14
3.5 Frequency-domain characteristic 15
AConvergence aids 16
BNotes on the subcircuits 16
B.1 Activation 16
B.2 Adapting the averaged models 17
Switched and Averaged Pspice Models
Page 4 / 20 AN-PSM-11
V1.0
1 Preliminary remarks
The simulations described in this document were carried out with PSpice V8.0
Version V2.0.
1.1 Description of the converter symbols
All the symbols used in the converter circuits have the same structure.
Inputs
ue: Connection for the input voltage.
d1: Input of the averaged pulse control factor d
1 for controlling the converter.
CAUTION: This input is not restricted to values between 0 and 1. Meaningless
pulse control factors (e.g. d1 = 0.5) can therefore be specified. (Limiting occurs
in the pulse-width modulator).
Outputs
ua: Connection(s) for the output voltage(s).
Ud: Drain connection of the external switching transistor.
d3: Output for display of the operating mode and length of the interval d3Ts (inductor
current iL = 0). d3 = 0 means the converter is operating continuously. For
example, d3 = 0.3 means the converter is operating discontinuously and the
time duration of the interval is d3Ts =0.3 * Ts (Ts is the switching period).
dis: Output which describes the slope of the switch current in the interval d1Ts. This
quantity is necessary for current loop operation. In the case of a “single-
inductor-converter”, dis is equal to the slope of the inductor current iL in the
interval d1Ts. In the case of a converter with several inductors, however, it is a
weighted linear combination of the inductor currents.
iL: Output for the averaged inductor current. In the case of a converter with one
inductor it is the mean value of the current through this inductor. This quantity is
important for current loop operation.
eta: Output which indicates the efficiency of the circuit. CAUTION: The output
supplies meaningful values only in the steady-state condition and with DC
analysis. Moreover, it serves only as a point of reference, as, of course, the
switching losses of the real converter are not taken into account.
With all models, variable parameters are represented in the symbol and can be
edited by double-clicking. The variable values can be either figures (e.g. L = 50uH) or
parameter values (e.g. L ={L1}). For latter, the parameter values must be defined in
the circuit by a PARAM block.
Every averaged model has a null parameter. This parameter serves as a
convergence aid. PSPICE experiences difficulties if an expression in an EVALUE
source in IF commands is to become zero. Example:
E3 IF (V(dss)-Dmin>0, V(dss),Dmin)
Switched and Averaged Pspice Models
Page 5 / 20 AN-PSM-11
V1.0
It makes sense here to replace the 0 by a very small value (1u = 10-6; 1m = 10-3).
-1m< null < 1m
It is by no means certain that a value with a large magnitude is always favorable. It is
possible that a circuit with null=100u does not converge, but does with null=10u.
Unfortunately a little experimentation is unavoidable.
The control inputs and outputs are each referred to the ground of input Ue. In the
case of the circuits with electrical isolation, the outputs can be connected in any way,
i.e. also connected in series. They must have only one, albeit very high-resistance
path to the primary ground.
1.2 General notes
Both converters are intended for operation with pulse-width modulators with
integrated switching transistors. The test circuits are identical for both. The
TDA1683x is used for driving the flyback converter with one output (1004i_LIN) and
the TDA16822 for the converter with two outputs (1005i_LIN). Both are Infineon
products. The averaged circuit will be presented first, then the averaged model
derived from it. A simulation in the time domain follows in order to demonstrate the
accuracy of the model. It compares the transient responses when a pulse-width
modulator with current loop is used. The curves show the comparison of the inductor
current iL and the output voltage ua of the switched and the averaged circuits.
Quantity Switched
model Averaged model
iLI(L1) V(iL)
uaV(uazt) V(ua)
The table shows the assignment of the quantities used to the models.
The curve V(d3) of the averaged model shows the temporal response of the length of
d3. This quantity can assume a value between zero and one. V(d3) = 0 means that
the interval d3Ts = 0, i.e. the converter operates continuously. V(d3) = 1 means that
the inductor current is always zero. This can be the case, for instance, if the
controller in a converter with feedback disconnects as a consequence of an
excessive output voltage (actual value).
The transformer ratios V1 and V2 in the case of the converter with two outputs
represent the ratio of the number of primary turns w1 to the respective secondary
winding w2 and w3:
V1 = w1 / w2 V2 = w1 / w3
Switched and Averaged Pspice Models
Page 6 / 20 AN-PSM-11
V1.0
The diode forward voltage drops can be arbitrarily chosen in the case of the
averaged models (including zero, for instance). In order that the results from the
switched model agree with those of the averaged model during the comparison
simulation in the time domain, the diode forward voltage drops must in each case be
assumed as ud = 0.8V, since the forward voltage of the SPICE diode is preset at
approximately 0.8V. The differences compared to the switched model depend very
strongly on the chosen time increment and the ripple of the inductor current. The
larger the two are chosen, the greater the differences become.
The subsequent simulations can be performed only with the averaged model, since
only with that is SPICE able to calculate operating points which differ from zero. The
first simulation shows an analysis of the DC operating points. It can be seen how the
efficiency η = V(eta) and the length of the interval d3 = V(d3) change when the control
voltage is increased from 0 to 4V.
The second diagram shows the comparison of the output voltage ua = V(ua) with the
theoretical value V(uas). This value is calculated in the simulation by an EVALUE
source. Since no internal resistances are taken into account in this calculation, the
deviations naturally become greater as the load current increases.
The last simulation shows the characteristic in the frequency domain. In each case
the response characteristic of pulse control factor d1 to the output voltage ua, i.e.
ua/d1, is shown in Bode diagrams. The upper diagram shows the amplitude response
22 ImRelog20 +=A
and the lower the phase response
Re
Im
arctan=ϕ
with
( ) ( ) ( )
ωωω jjjjF
u
u
d
aImRe +==
In the process the load resistor Ra is varied logarithmically with three values per
decade. It can be readily seen that at a certain resistance value the converter
changes from continuous to discontinuous operating mode.
SPICE calculates the operating point before every frequency response analysis. Six
operating point calculations (DC analyses) are therefore performed for each run. The
results of these calculations are available in the SPICE output file.
Switched and Averaged Pspice Models
Page 7 / 20 AN-PSM-11
V1.0
Example of a SPICE output file:
Operating points from the frequency response analysis of converter 1004i fq
**** SMALL SIGNAL BIAS SOLUTION PARAM RA = 10
******************************************************************************
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( d1) .0662 ( d3) 126.1E-18 ( FB) 2.0000 ( iL) .6688
( Tj) 23.0000 ( ua) 6.2452 ( Ud) 99.9550 ( ue) 100.0000
(dis) 1.000E+06 ( eta) .8804 ( Vcc) 20.0000 (X U1.3) -.0450
**** SMALL SIGNAL BIAS SOLUTION PARAM RA = 21.544
******************************************************************************
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( d1) .0976 ( d3) 0.0000 ( FB) 2.0000 ( iL) .5121
( Tj) 23.0000 ( ua) 9.9567 ( Ud) 99.9500 ( ue) 100.0000
(dis)1.000E+06 ( eta) .9208 ( Vcc) 20.0000 (X U1.3) -.0505
**** SMALL SIGNAL BIAS SOLUTION PARAM RA = 100
******************************************************************************
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( d1) .1003 ( d3) .4605 ( FB) 2.0000 ( iL) .4987
( Tj) 23.0000 ( ua) 21.9080 ( Ud) 99.9500 ( ue) 100.0000
(dis)1.000E+06 ( eta) .9599 ( Vcc) 20.0000 (X U1.3) -.0505
**** SMALL SIGNAL BIAS SOLUTION PARAM RA = 215.44
******************************************************************************
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( d1) .1003 ( d3) .5988 ( FB) 2.0000 ( iL) .4987
( Tj) 23.0000 ( ua) 32.3400 ( Ud) 99.9500 ( ue) 100.0000
(dis)1.000E+06 ( eta) .9709 ( Vcc) 20.0000 (X U1.3) -.0505
**** SMALL SIGNAL BIAS SOLUTION PARAM RA = 464.16
******************************************************************************
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( d1) .1003 ( d3) .6939 ( FB) 2.0000 ( iL) .4987
( Tj) 23.0000 ( ua) 47.6540 ( Ud) 99.9500 ( ue) 100.0000
(dis)1.000E+06 ( eta) .9785 ( Vcc) 20.0000 (X U1.3) -.0505
**** SMALL SIGNAL BIAS SOLUTION PARAM RA = 1.0000E+03
******************************************************************************
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( d1) .1003 ( d3) .7591 ( FB) 2.0000 ( iL) .4987
( Tj) 23.0000 ( ua) 70.1330 ( Ud) 99.9500 ( ue) 100.0000
(dis)1.000E+06 ( eta) .9837 ( Vcc) 20.0000 (X U1.3) -.0505
Switched and Averaged Pspice Models
Page 8 / 20 AN-PSM-11
V1.0
2Flyback converter with electrical isolation, 1 output
2.1 Averaged circuit
Ts: Cycle time
Ud1: Forward voltage of D1
Rds: Forward resistance of S1
Although no switch is integrated, the
parameter Rds is required in order to
determine the damping in the
converter.
(File: 1004i_sch.sch)
2.2 Averaged model
+
-VU10
+
-
V7 0
{RL}
R5
{CA1}
C2
100MEG
R15
1k
Rxx6
{RCA1}
R9
-I(VU1)/V1 Ged
Gtr
V(8,100)*(-V(5,101)+V(2,100)/V1)-(1-V(8,100)-V(207,100))*V(30,100)
E2Eed
PARAMETERS:
LT {L/TS}
Ls {L*1MEG}
1MEGR12
1MEG
R18
1MEG
R23 1MEGR11
1MEG
R22
V(5,101)*I(V7)
E220
2*V(14,100)*LT
E203
Eed
E8 I(L1)
1MEG
R16
E202(-V(5,101)+V(30,100))*V1
1MEG
R20
E222
V(2,100)*I(V8)
V(207,100)*V(5,101)
Eed
E5
E205
Eed 1-V(8,100)-V(204,100)
IF(V(205,100)>null,V(205,100),0)
E206
Eed
IF(V1>null, UD1, -UD1)
Eed
Eud1
E223
IF(V(222,100)>null, V(220,100)/V(222,100), 0)
IF(V(202,100)>null, V(203,100)/V(202,100) ,1)
E204
IF(1-V(8,100)-V(206,100)>null,V(206,100),1-V(8,100))
Eed
E207
G6
Ged
V(207,100)*I(L1)
RDS*V(8,100)*I(L1)
E14
Eed
+
-
V8 0
1k
Rxx2
-
++
-
1MEG
E
E2b
V(2,100)/Ls E2a
Eed
1k
Rxx3
1k
Rxx1
{L}
L1
1k
Rxx7
1k
Rxx4
R3
1MEG
1k
Rxx8
Etr1
Eed
V(4,80)/V1
0
40
15
6
21
3 12 5
2
206 207
220223
202 203
14
30
222
22
205204
4
252 251
101
100
100 100
100
8
80
------>
dis
RDS*D1*IL
Ua1
D3*Ua1
D1*(-Ua1+Ue/V1)-(1-D1-D3)*Ud1
Up/V1
-I(VU1)/V1
D3=D3'>0 ? D3' : 0
D3
iL
iLg
eta
d2 = 2*iLg*LT/((-Ua1+Ud1)*V1)
ETA=(UA1*IA1+UA2*IA2)/(UE*IE+0.001)
D3'=1-D1-D2
ud1 = V1>0 ? ud1 : -ud1
D3<1-D1 ? D3 : 1-D1
D3*I(L1)
UE/Ls
Ud
D1
------>
Ue
(File: 1004i_md.sch)
Switched and Averaged Pspice Models
Page 9 / 20 AN-PSM-11
V1.0
2.3 Time-domain characteristic with current loop
(File: 1004i_zp.sch)
Datum: November 11, 2000 Zeit: 20:08:06
(G) 1004i_zp
0s 0.5ms 1.0ms 1.5ms 2.0ms
Time
V(ua) V(uazt) V(Vcc)
20V
-0V
SEL>>
V(iL) I(L1)
4.0
0
0.8+40*0.03*V(iL)+0.5*V(d1)*10u*40*0.03*V(dis) V(X_U5.pwmrmp) V(FB)
5.0
0
1
2
V(X_U5.gtdrv)/12 V(d1) V(d3)
1.0V
0V
Switch-on characteristic with sawtooth controller voltage V(FB).The second curve shows the
comparison of the inductor peak current iLs in the switched model with the calculation in the averaged
model:
iLs mean value of iL + half current rise dis * Ts.
iLs = 0.8 + 40RsiL + 1/2d1Ts40Rsdis
Switched and Averaged Pspice Models
Page 10 / 20 AN-PSM-11
V1.0
At marking 1 the current is limited by the maximum pulse control factor Dmax = 0.5. At marking 2 the
PWM is switched off by the drop in the supply voltage Vcc.
Switched and Averaged Pspice Models
Page 11 / 20 AN-PSM-11
V1.0
2.4 DC operating points
E1 calculated for comparison of the output voltage ua (File:1004i_gl.sch)
Datum: November 11, 2000 Zeit: 18:50:50
(B) 1004i_gl
0V 1.0V 2.0V 3.0V 4.0V
V_VFB
V(eta) V(d3)
1.0V
0.5V
0V
SEL>>
V(ua) V(uas)
200V
150V
100V
50V
0V
Logarithmic variation of Ra from 10 ... 1k with 3 values per decade, with Ue = 100V and Ud1 = 0.8V.
The TDA 1683x is switched on only after V(FB) > 0.8V.
Switched and Averaged Pspice Models
Page 12 / 20 AN-PSM-11
V1.0
2.5 Frequency-domain characteristic
(File:1004i_fq.sch)
Datum: November 11, 2000 Zeit: 19:02:09
(D) 1004i_fq
10Hz 100Hz 1.0KHz 10KHz 100KHz
Frequency
P(V(ua)/V(d1))
0d
-50d
-100d
-150d
-200d
DB(V(ua)/V(d1))
100
50
0
-50
SEL>>
Response characteristic of ua/d1. Variation of Ra from 10 ... 1k with 3 values per decade.
Switched and Averaged Pspice Models
Page 13 / 20 AN-PSM-11
V1.0
3Flyback converter with electrical isolation, 2 outputs
3.1 Averaged circuit
Ts: Elementary period Rds: Forward resistance of S1
Although no switch is integrated, the
Ud1: Forward voltage of D1 parameter Rds is required in order to
Ud2: Forward voltage of D2 determine the attenuation in the
converter.
(File: 1005i_sch.sch)
3.2 Averaged model
1MEG
R16 1MEGR17
1MEG
R18
1MEG
R19
1MEG
R20
1MEG
R23 1MEG
R11
+
-VU10
+
-
V7 0
{RL}
R5
PARAMETERS:
LT {L/TS}
Ls {L*1MEG}
{CA1}
C2
{RCA1}
R9
{CA2}
C2a
{RCA2}
R9a
+
-
V11 0
+
-
VU2
0
1MEG
R22
1MEG
R3
1k
Rxx4
{L}
L1
1k
Rxx7
1k
Rxx8
1k
Rxx2
-
++
-
1MEG
E
E2b
1k
Rxx1
100MEG
R15
1k
Rxx3
1k
Rxx6
1k
Rxx5
V(8,100)*(-V(5,101)+V(2,100)/V1)-(1-V(8,100)-V(207,100))*V(30,100)
E2
Eed V(207,100)*V(5,101)
EedE5
V(207,100)*V(7,102)
EedE5a
V(5,101)*I(V7)
E220
V(7,102)*I(V11)
E221
V(2,100)/Ls E2a
Eed
GedGtr
-I(VU1)/V1-I(VU2)/V2
E202
(-V(5,101)+V(30,100))*V1
2*V(14,100)*LT
E203
E2c
V(8,100)*(-V(7,102)+V(2,100)/V2)-(1-V(8,100)-V(207,100))*V(31,100)
Eed
Eed
E8 I(L1)
1-V(8,100)-V(204,100)
E205
Eed Eed
E206
IF(V(205,100)>null,V(205,100),0)
V(2,100)*I(V8)
E222 IF(V1>null, UD1, -UD1)
Eed
Eud1 IF(V2>null, UD2, -UD2)
Eed
Eud2
IF(V(222,100)>null, (V(220,100)+V(221,100))/V(222,100), 0)
E223
E24
IF(V1*I(E2)>-null, 1k*I(E2), 0)
E24a
IF(V2*I(E2c)>-null, 1k*I(E2c), 0)
E204
IF(V(202,100)>null, V(203,100)/V(202,100), 1)
R12 1MEG
Eed
E207
IF(1-V(8,100)-V(206,100)>null,V(206,100),1-V(8,100))
G6
Ged
V(207,100)*I(L1)
Etr1
Eed
V(4,80)/V1
Eed
Etr2
V(4,80)/V2
1k
Rxx10
RDS*V(8,100)*I(L1)
E14
Eed
+
-
V8 0
0
814
220222223
30 31
221
40
15
6
21
251
252
310
12
101
102
5053
54
55
51
52
202 203
5
7
222
205
204 206 207
100
100
100
100
80
4
D1 iL
iLg
eta
------>
------>
dis
RDS*D1*IL -I(VU1)/V1-I(VU2)/V2
Ua1
D3*Ua1
D1*(-Ua1+Ue/V1)-(1-D1-D3)*Ud1
D1*(-Ua2+Ue/V2)-(1-D1-D3)*Ud2
Ua2
D3*Ua2
Up/V2
Up/V1
UE/Ls
d2 = 2*iLg*LT/((-Ua1+Ud1)*V1)
D3'=1-D1-D2 D3=D3'>0 ? D3' : 0
ETA=(UA1*IA1+UA2*IA2)/UE*IE
ud1 = V1>0 ?-ud1 : -ud1 ud2 = V2>0 ? ud2 : -ud2
D3
D3<1-D1 ? D3 : 1-D1
D3*I(L1)
Ud
------>
Ue
(File: 1005i_md.sch)
Switched and Averaged Pspice Models
Page 14 / 20 AN-PSM-11
V1.0
3.3 Time-domain characteristic with current loop
(File: 1005i_zp.sch)
Datum: November 11, 2000 Zeit: 18:44:19
(A) 1005i_zp
0s 0.5ms 1.0ms 1.5ms 2.0ms
Time
V(ua1) V(uazt1) V(ua2) V(uazt2)
20V
10V
0V
-10V
I(L1) V(iL)
500m
0
-500m
V(X_U16.pwmrmp) V(FB) V(SoftS)
5.0V
0V
SEL>>
Switch-on characteristic with current loop for a step change of the control voltage V(FB) from V(FB) =
0 to V(FB) = 3V. The top curve shows how the inductor peak current is limited, first by the soft-start
voltage and then by the controller voltage V(FB).
Switched and Averaged Pspice Models
Page 15 / 20 AN-PSM-11
V1.0
3.4 DC operating points
Calculate E1 and E2 for comparison of the output voltages ua1 and ua2 (File: 1005i_gl.sch)
Datum: November 11, 2000 Zeit: 19:03:47
(E) 1005i_gl
0V 1.0V 2.0V 3.0V 4.0V
V_VFB
V(eta) V(d3)
1.0V
0.5V
0V
SEL>>
V(ua1) V(ua1s)
20V
0V
-20V
-40V
V(ua2) V(ua2s)
20V
10V
0V
-10V
Logarithmic variation of Ra from 1 ... 100 with 3 values per decade, with Ue = 100V and Ud1 = Ud2 =
0.8V. The TDA 16822 is switched on only after V(FB) > 0.8V.
Switched and Averaged Pspice Models
Page 16 / 20 AN-PSM-11
V1.0
3.5 Frequency-domain characteristic
(File: 1005i_fq.sch)
Datum: November 11, 2000 Zeit: 19:04:38
(F) 1005i_fq
10Hz 100Hz 1.0KHz 10KHz 100KHz
Frequency
P(V(ua2)/V(d1))
0d
-100d
-200d
-300d
DB(V(ua2)/V(d1))
50
0
-50
SEL>>
Response characteristic of ua2/d1. Variation of Ra from 1 ... 100 with 3 values per decade. The
phase response begins at 0 because the transformer ratio V2 is negative.
Switched and Averaged Pspice Models
Page 17 / 20 AN-PSM-11
V1.0
AConvergence aids
As SPICE was originally developed for simulation of integrated circuits, it makes sense to adapt the
OPTIONS to the needs and conditions of switched mode power supplies. Experience shows that the
following extreme values are adequate:
Minimum voltage of interest in the circuit: Umin = 1 mV.
Minimum current of interest in the circuit: Imin = 1 mA.
Greatest resistance in the circuit: Rmax = 100MΩ.
If the preset relative tolerance (RELTOL) of 0.001 is retained, the following is obtained for the
transient analysis:
RELTOL = 0.001 (preset)
VNTOL=RELTOL*Umin VNTOL = 1 uV (preset)
ABSTOL = RELTOL *Imin ABSTOL = 1uA
In addition, it is advantageous to increase the number of iterations per time increment in the transient
analysis;
ITL4 = 40 ... 100.
In the DC analysis, i.e. to determine the operating point, SPICE automatically connects a very small
conductance in parallel with the switching components. This conductance should be adapted to the
circuit:
GMIN = 1/Rmax GMIN = 0.01u
In addition, the number of iterations for determining the operating point should be increased:
ITL1 = 500
This results in the following changes to the OPTIONS:
BNotes on the subcircuits
B.1 Activation
All subcircuits are located in the infineon library which can be found in the subdirectory ..\lib. The
library consists of two files: Infineon1.slb
Infineon1.lib
In order to link the library, the following needs to be entered into SCHEMATICS before the first
simulation is carried out:
File / Edit Library / File / Open... / infineon1.slb / Save
ABSTOL = 1uA
GMIN = 0.01u
ITL1 = 500
ITL4 = 40
Switched and Averaged Pspice Models
Page 18 / 20 AN-PSM-11
V1.0
The circuits in SCHEMATICS can be called with the commands Draw / Get New Part / Browse /
infineon.slb.
The subcircuit description is located in ...\lib\infineon1.lib. You therefore have to make this library
known in SCHEMATICS:
Analysis / Library and Include Files... / infineon.lib / Add Library*
The circuits contained in directory ...\SMPS_examples are executable only under PSPICE version 7.1
or higher.
In order to use the subcircuits, the grid size must be set in SCHEMATICS:
Options / Display Options / Grid Size 00.05in or Grid Size 01.25 mm
B.2 Adapting the averaged models
The averaged models (files *_mod.sch) of the subcircuits can be customized. To this end, the netlist
must be regenerated following the modification:
Analysis / Create Netlist
This netlist can now be opened with the PSPICE text editor:
Analysis / Examine Netlist
All resistors beginning with Rxx must now be removed. This is done most easily with the Search
command of the editor. Finally, the netlist must be copied into the subcircuit in infineon.lib.
Switched and Averaged Pspice Models
Page 19 / 20 AN-PSM-11
V1.0
Attention please!
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts
stated herein. Simulation models provided by INFINEON are not warranted by INFINEON as fully representing all of the specifications and
operating characteristics of the semiconductor product to which the model relates. The model describe the characteristics of a typical device. In all
cases, the current data sheet information for a given device is the final design guideline and the only actual performance specification. Although
models can be a useful tool in evaluating device performance, they cannot model exact device performance under all conditions, nor are they
intended to replace bread-boarding for final verification. INFINEON therefore does not assume any liability arising from their use. INFINEON
reserves the right to change models without prior notice.
Information
For information on simulation-related issues, please check out the INFINEON simulation web page: www.infineon.com/simulate or
email to: simulate@infineon.com. For information on technology, delivery terms and conditions and prices of INFINEON devices please
contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your
nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon
Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the
safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be
endangered.
Switched and Averaged Pspice Models
Page 20 / 20 AN-PSM-11
V1.0
Infineon Technologies AG sales offices worldwide –
partly represented by Siemens AG
A
Siemens AG Österreich
Erdberger Lände 26
A-1031 Wien
T (+43)1-17 07-3 56 11
Fax (+43)1-17 07-5 59 73
AUS
Siemens Ltd.
885 Mountain Highway
Bayswater,Victoria 3153
T (+61)3-97 21 21 11
Fax (+61)3-97 21 72 75
B
Siemens Electronic Components
Benelux
Charleroisesteenweg 116/
Chaussée de Charleroi 116
B-1060 Brussel/Bruxelles
T (+32)2-5 36 69 05
Fax (+32)2-5 36 28 57
Email:components@siemens.nl
BR
Siemens Ltda.
Semiconductores
Avenida Mutinga,3800-Pirituba
05110-901 São Paulo-SP
T (+55)11-39 08 25 64
Fax (+55)11-39 08 27 28
CDN
Infineon Technologies Corporation
320 March Road,Suite 604
Canada,Ontario K2K 2E2
T (+1)6 13-5 91 63 86
Fax (+1)6 13-5 91 63 89
CH
Siemens Schweiz AG
Bauelemente
Freilagerstrasse 40
CH-8047 Zürich
T (+41)1-4 953065
Fax (+41)1-4 955050
D
Infineon Technologies AG
Völklinger Str.2
D-40219 Düsseldorf
T (+49)2 11-3 99 29 30
Fax (+49)2 11-3 99 14 81
Infineon Technologies AG
Werner-von-Siemens-Platz 1
D-30880 Laatzen (Hannover)
T (+49)5 11-8 77 22 22
Fax (+49)5 11-8 77 15 20
Infineon Technologies AG
Von-der-Tann-Straße 30
D-90439 Nürnberg
T (+49)9 11-6 54 76 99
Fax (+49)9 11-6 54 76 24
Infineon Technologies AG
Weissacher Straße 11
D-70499 Stuttgart
T (+49)7 11-1 37 33 14
Fax (+49)7 11-1 37 24 48
D
Infineon Technologies AG
Halbleiter Distribution
Richard-Strauss-Straße 76
D-81679 München
T (+49)89-92 21 40 86
Fax (+49)89-92 21 20 71
DK
Siemens A/S
Borupvang 3
DK-2750 Ballerup
T (+45)44 77-44 77
Fax (+45)44 77-40 17
E
Siemens S.A.
Dpto.Componentes
Ronda de Europa,5
E-28760 Tres Cantos-Madrid
T (+34)91-5 14 71 51
Fax (+34)91-5 14 70 13
F
Infineon Technologies France,
39/47,Bd.Ornano
F-93527 Saint-Denis CEDEX2
T (+33)1-49 22 31 00
Fax (+33)1-49 22 28 01
FIN
Siemens Components
Scandinavia
P.O .Bo x 6 0
FIN-02601 Espoo (Helsinki)
T (+3 58)10-5 11 51 51
Fax (+3 58)10-5 11 24 95
Email:
scs@components.siemens.se
GB
Infineon Technologies
Siemens House
Oldbury
GB-Bracknell,Berkshire
RG12 8FZ
T (+44)13 44-39 66 18
Fax (+44)13 44-39 66 32
H
Simacomp Kft.
Lajos u.103
H-1036 Budapest
T (+36)1-4 57 16 90
Fax (+36)1-4 57 16 92
HK
Infineon Technologies
Hong Kong Ltd.
Suite 302,Level 3,
Festival Walk,
80 Tat Chee Avenue,
Yam Yat Tsuen,
Kowloon Tong
Hong Kong
T (+8 52)28 32 05 00
Fax (+8 52)28 27 97 62
I
Siemens S..A.
Semiconductor Sales
Via Piero e Alberto Pirelli,10
I-20126 Milano
T (+39)02-66 76 -1
Fax (+39)02-66 76 43 95
IND
Siemens Ltd.
Components Division
No.84 Keonics Electronic City
Hosur Road
Bangalore 561 229
T (+91)80-8 52 11 22
Fax (+91)80-8 52 11 80
Siemens Ltd.
CMP Div,5th Floor
4A Ring Road,IP Estate
New Delhi 110 002
T (+91)11-3 31 99 12
Fax (+91)11-3 31 96 04
Siemens Ltd.
CMP Div,4th Floor
130,Pandurang Budhkar Marg,
Worli
Mumbai 400 018
T (+91)22-4 96 21 99
Fax (+91)22-4 96 22 01
IRL
Siemens Ltd.
Electronic Components Division
8,Raglan Road
IRL-Dublin 4
T (+3 53)1-2 16 23 42
Fax (+3 53)1-2 16 23 49
IL
Nisko Ltd.
2A,Habarzel St.
P.O.Box 58151
61580 Tel Aviv –Isreal
T (+9 72)3 -7 65 73 00
Fax (+9 72)3 -7 65 73 33
J
Siemens Components K.K.
Talanawa Park Tower 12F &17F
3-20-14,Higashi-Gotanda,
Shinagawa-ku
Tokyo
T (+81)3-54 49 64 11
Fax (+81)3 -54 49 64 01
MAL
Infineon Technologies AG
Sdn Bhd
Bayan Lepas Free Industrial Zone1
11900 Penang
T (+60)4 -6 44 99 75
Fax (+60)4 -6 41 48 72
N
Siemens Components
Scandinavia
Østre Aker vei 24
Postboks 10,Veitvet
N-0518 Oslo
T (+47)22-63 30 00
Fax (+47)22-68 49 13
Email:
scs@components.siemens.se
NL
Siemens Electronic Components
Benelux
Postbus 16068
NL-2500 BB Den Haag
T (+31)70-3 33 20 65
Fax (+31)70-3 33 28 15
Email:components@siemens.nl
NZ
Siemens Auckland
300 Great South Road
Greenland
Auckland
T (+64)9-5 20 30 33
Fax (+64)9-5 20 15 56
P
Siemens S.A.
an Componentes Electronicos
R.Irmaos Siemens,1
Alfragide
P-2720-093 Amadora
T (+351)1-4 17 85 90
Fax (+351)1-4 17 80 83
PK
Siemens Pakistan Engineering
Co.Ltd.
PO Box 1129,Islamabad 44000
23 West Jinnah Ave
Islamabad
T (+92)51-21 22 00
Fax (+92)51-21 16 10
PL
Siemens SP.z.o.o.
ul.Zupnicza 11
PL-03-821 Warszawa
T (+48)22-8 70 91 50
Fax (+48)22-8 70 91 59
ROK
Siemens Ltd.
Asia Tower,10th Floor
726 Yeoksam-dong,Kang-nam Ku
CPO Box 3001
Seoul 135-080
T (+82)2-5 27 77 00
Fax (+82)2-5 27 77 79
RUS
INTECH electronics
ul.Smolnaya,24/1203
RUS-125 445 Moskva
T (+7)0 95 -4 51 97 37
Fax (+7)0 95 -4 51 86 08
S
Siemens Components Scandinavia
Österögatan 1,Box 46
S-164 93 Kista
T (+46)8-7 03 35 00
Fax (+46)8-7 03 35 01
Email:
scs@components.siemens.se
RC
Infineon Technologies
Asia Pacific Pte.Ltd.
Taiwan Branch
10F,No.136 Nan King East Road
Section 23,Taipei
T (+8 86)2-27 73 66 06
Fax (+8 86)2-27 71 20 76
SGP
Infineon Technologies Asia
Pacific,Pte.Ltd.
168 Kallang Way
Singapore 349 253
T (+65)8 40 06 10
Fax (+65)7 42 62 39
USA
Infineon Technologies Corporation
1730 North First Street
San Jose,CA 95112
T (+1)4 08-5 01 60 00
Fax (+1)4 08-5 01 24 24
Siemens Components,Inc.
Optoelectronics Division
19000 Homestead Road
Cupertino,CA 95014
T (+1)4 08-2 57 79 10
Fax (+1)4 08-7 25 34 39
Siemens Components,Inc.
Special Products Division
186 Wood Avenue South
Iselin,NJ 08830-2770
T (+1)7 32-9 06 43 00
Fax (+1)7 32-6 32 28 30
VRC
Infineon Technologies
Hong Kong Ltd.
Beijing Office
Room 2106,Building A
Vantone New World Plaza
No.2 Fu Cheng Men Wai Da Jie
Jie
100037 Beijing
T (+86)10 -68 57 90 -06,-07
Fax (+86)10 -68 57 90 08
Infineon Technologies
Hong Kong Ltd.
Chengdu Office
Room14J1,Jinyang Mansion
58 Tidu Street
Chengdu,
Sichuan Province 610 016
T (+86)28-6 61 54 46 /79 51
Fax (+86)28 -6 61 01 59
Infineon Technologies
Hong Kong Ltd.
Shanghai Office
Room1101,Lucky Target Square
No.500 Chengdu Road North
Shanghai 200003
T (+86)21-63 6126 18 /19
Fax (+86)21-63 61 11 67
Infineon Technologies
Hong Kong Ltd.
Shenzhen Office
Room 1502,Block A
Tian An International Building
Renim South Road
Shenzhen 518 005
T (+86)7 55 -2 28 91 04
Fax (+86)7 55-2 28 02 17
ZA
Siemens Ltd.
Components Division
P.O.B.3438
Halfway House 1685
T (+27)11-6 52 -27 02
Fax (+27)11-6 52 20 42