5STF 10F3080 5STF 10F3080 Old part no. TR 918-1010-30 Fast Thyristor Properties Amplifying gate High operational capability Optimized turn-off parameters Applications Power switching applications Key Parameters V DRM, V RRM = 3 000 I TAV = 1 003 I TSM = 13.0 V TO = 2.562 r T = 0.246 t q = 80.0 V A kA V m s Types VRRM, VDRM 5SDF 10F3080..3010 5SDF 10F2880..2810 3 000 V 2 800 V Conditions: Tj = -40 / 125 C, half sine waveform, f = 50 Hz, note 1 Mechanical Data Fm Mounting force m Weight DS Surface creepage distance 25 mm Da Air strike distance 13 mm 22 2 kN 0.48 kg Fig. 1 Case ABB s.r.o. Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic tel.: +420 261 306 250, http://www.abb.com/semiconductors TS - TR/281/09 Jul-10 1 of 11 5STF 10F3080 Maximum Ratings VRRM VDRM ITRMS Repetitive peak reverse and off-state voltage Maximum Limits Unit 3 000 2 800 V 1 575 A 1 003 A tp = 10 ms tp = 8.3 ms 13 000 13 900 A tp = 10 ms tp = 8.3 ms 845 000 800 000 A2s 800 A/s 1 000 V/s 5SDF 10F3080..3010 5SDF 10F2880..2810 Tj = -40 / 125 C, note 1 RMS on-state current Tc = 70 C, half sine waveform, f = 50 Hz ITAVm Average on-state current Tc = 70 C, half sine waveform, f = 50 Hz ITSM Peak non-repetitive surge half sine pulse, VR = 0 V I2t Limiting load integral half sine pulse, VR = 0 V (diT/dt)cr Critical rate of rise of on-state current IT = ITAVm, half sine waveform, f = 50 Hz, VD = 2/3 VDRM, tr = 0.3 s, IGT = 2 A (dvD/dt)cr Critical rate of rise of off-state voltage VD = 2/3 VDRM PGAVm Maximum average gate power losses 3 W IFGM Peak gate current 10 A VFGM Peak gate voltage 12 V VRGM Reverse peak gate voltage 10 V Tjmin - Tjmax Operating temperature range -40 / 125 C Tstgmin Tstgmax Storage temperature range -40 / 125 C Unless otherwise specified Tj = 125 C Note 1: De-rating factor of 0.13% VRRM or VDRM per C is applicable for Tj below 25 C ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 2 of 11 5STF 10F3080 Characteristics Value min. VTM typ. Maximum peak on-state voltage Unit max. 3.060 V ITM = 2 000 A VT0 Threshold voltage 2.562 V rT Slope resistance 0.246 m 100 mA 100 mA 2.0 s 80.0 s IT1 = 1 587 A, IT2 = 4 760 A IDM Peak off-state current VD = VDRM IRM Peak reverse current VR = VRRM tgd Delay time Tj = 25 C, VD = 0.4 VDRM, ITM = ITAVm, tr = 0.3 s, IGT = 2 A tq1 Turn-off time IT = 1 000 A, diT/dt = -50 A/s, VR = 100 V, VD = 2/3 VDRM, dvD/dt = 50 V/s group of tq 5STF 10F3080 5STF 10F2880 5STF 10F3010 5STF 10F2810 Qrr 100.0 Recovery charge 1 000 C 170 A the same conditions as at tq1 IrrM Reverse recovery current the same conditions as at tq1 IH Holding current Tj = 25 C Tj = 125 C 250 150 mA IL Latching current Tj = 25 C Tj = 125 C 1 500 1 000 mA VGT Gate trigger voltage Tj = - 40 C Tj = 25 C Tj = 125 C VD = 12V, IT = 4 A IGT Gate trigger current VD = 12V, IT = 4 A Tj = - 40 C Tj = 25 C Tj = 125 C V 0.25 4 3 2 mA 10 1000 500 300 Unless otherwise specified Tj = 125 C ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 3 of 11 5STF 10F3080 Thermal Parameters Thermal resistance junction to case Rthjc Value Unit 16.0 K/kW double side cooling anode side cooling 25.0 cathode side cooling 45.0 Thermal resistance case to heatsink Rthch 4.0 K/kW double side cooling single side cooling 8.0 Transient Thermal Impedance i 1 2 3 4 i ( s ) 0.4653 0.1533 0.0375 0.0034 Ri( K/kW ) 5.50 7.24 2.00 1.30 Analytical function for transient thermal impedance 4 Z thjc = R i (1 - exp( -t / i )) 18 Conditions: Fm = 22 2 kN, Double side cooled Correction for periodic waveforms 180 sine: add 1.3 K/kW 180 rectangular: add 1.8 K/kW 120 rectangular: add 3.0 K/kW 60 rectangular: add 5.1 K/kW Transient thermal impedance junction to case Zthjc ( K/kW ) i =1 16 14 12 10 8 6 4 2 0 0.001 0.01 0.1 1 10 Square wave pulse duration t d ( s ) Fig. 2 Dependence transient thermal impedance junction to case on square pulse ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 4 of 11 5STF 10F3080 IT ( A ) On-State Characteristics 8000 T j = 125 C 25 C 7000 6000 5000 4000 3000 2000 1000 0 0 1 2 3 4 5V ( V 6) T Fig. 3 Maximum on-state characteristics Gate Trigger Characteristics VG ( V ) VG ( V ) 6 DC 5 -40 C 4 +25 C 14 12 V GTmax 10 50 s 8 1 ms 3 I GTmax 6 2 +125 C 4 V GTmin 1 10 ms 2 DC 0 0 0 I GTmin 0.2 0.4 0.6 Fig. 4 Gate trigger characteristics 0.8 1 IG ( A ) 0 2 4 6 8 10 12 IG ( A ) Fig. 5 Maximum peak gate power loss ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 5 of 11 5STF 10F3080 Surge Characteristics ITSM ( kA ) 14 i 2dt (106 A2s) 3 ITSM ( kA ) 30 12 10 20 2 8 i 2 dt VR = 0 V 6 10 1 4 I TSM V R 0.5 V DRM 2 0 1 10 t ( ms ) 0 100 Fig. 6 Surge on-state current vs. pulse length, half sine wave, single pulse, VR = 0 V, Tj = Tjmax 0 1 10 100 Number n of cycles at 50 Hz Fig. 7 Surge on-state current vs. number of pulses, half sine wave, Tj = Tjmax ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 6 of 11 5STF 10F3080 Power Loss and Maximum Case Temperature Characteristics PT ( W ) 3000 3000 2500 2500 2000 2000 1500 1500 1000 1000 500 500 0 0 0 200 400 600 800 0 1000 1200 I TAV ( A ) Fig. 8 On-state power loss vs. average on-state current, sine waveform, f = 50 Hz, T = 1/f 130 200 400 600 800 1000 1200 I TAV ( A ) Fig. 9 On-state power loss vs. average on-state current, square waveform, f = 50 Hz, T = 1/f 130 TC ( C ) TC ( C ) = 30 60 90120 180 270 DC 3500 PT ( W ) = 30 60 90 120 180 DC 3500 120 120 110 110 100 100 90 90 80 80 DC 70 = 30 60 DC 70 = 30 90 120 180 60 60 90 270 180 120 60 0 200 400 600 800 1000 1200 0 200 400 600 I TAV ( A ) Fig. 10 Max. case temperature vs. aver. on-state current, sine waveform, f = 50 Hz, T = 1/f 800 1000 1200 I TAV ( A ) Fig. 11 Max. case temperature vs. aver. on-state current, square waveform, f = 50 Hz, T = 1/f Note 2: Figures number 8 / 11 have been calculated without considering any turn-on and turn-off losses. They are valid for f = 50 or 60 Hz operation. ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 7 of 11 5STF 10F3080 Maximum values of turn-off time at application specific conditions are given by using this formula: t q = t q1 tq t q1 (T j ) tq t q1 (dv D / dt ) tq t q1 tq / tq1 ( - ) Turn-off Time, Parameter Relationship 0.80 0.70 t q1 is turn-off time at standard conditions, see section "Characteristics" t q1 tq t q1 tq t q1 0.90 ( -diT / dt ) where: tq 1.00 (T j ) is factor to be taken from fig. 12 (dv D / dt ) is factor to be taken from fig. 13 ( -diT / dt ) is factor to be taken from fig. 14 0.60 0.50 0.40 0.30 25 50 75 100 125 T j ( C ) 2.60 tq / tq1 ( - ) tq / tq1 ( - ) Fig. 12 Normalised maximum turn-off time vs. junction temperature 2.40 1.40 1.30 2.20 2.00 1.20 1.80 1.10 1.60 1.40 1.00 1.20 0.90 1.00 0.80 0.80 0 200 400 600 800 1000 dv D /dt ( V/s ) Fig. 13 Normalised maximum turn-off time vs. rate of rise of off-state voltage 0 200 400 600 800 1000 - di T /dt ( A/s ) Fig. 14 Normalised maximum turn-off time vs. rate of fall of on-state current ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 8 of 11 5STF 10F3080 6000 VD 2500 I TM 0.9 V D W on ( J ) Turn-on Characteristics 2.00 iG (t), vT (t), iT (t) i T (t) 1.50 di T /dt 0.5 I TM 1.00 0.1 I TM 0.1 V D 0.50 i G (t) v T (t) 0 0 10 t gd t t gt 30 td Fig. 15 Typical waveforms and definition of symbols at turn-on of a thyristor 0.00 0 200 400 600 800 1000 di T /dt ( A/s ) Fig. 16 Maximum turn-on energy per pulse vs. rate of rise on-state current, Tj = Tjmax ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 9 of 11 5STF 10F3080 VD Qrr ( C ) v T (t), iT (t) Turn-off Characteristics 10000 v T (t) I TM i T (t) - di T /dt dv D /dt 1000 tq 10 I TM = 2000 A 1000 A 500 A Q rr I rrM VR 100 -600 t -600 10000 100 1000 - di T /dt ( A/s ) Fig. 18 Max. recovered charge vs. rate of fall on-state current, trapezoid pulse, VR = 100 V, Tj = Tjmax W off ( J ) IrrM ( A ) Fig. 17 Typical waveforms and definition of symbols at turn-off of a thyristor, inductive switching without RC snubber 10 8.0 V R = 2/3 V DRM 7.0 6.0 1000 5.0 4.0 1000 V 3.0 100 I TM = 2000 A 1000 A 500 A 2.0 500 V 1.0 200 V 100 V 10 0.0 10 100 1000 - di T /dt ( A/s ) Fig. 19 Max. reverse recovery current vs. rate of fall on-state current, trapezoid pulse, VR = 100 V, Tj = Tjmax 0 200 400 600 800 1000 - di T /dt ( A/s ) Fig. 20 Maximum turn-off energy per pulse vs. rate of fall on-state current, trapezoid pulse, inductive switching without RC snubber, ITM = 2 000 A, Tj = Tjmax ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 10 of 11 5STF 10F3080 Notes: ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - TR/281/09 Jul-10 11 of 11