4N25V/ 4N25GV/ 4N35V/ 4N35GV
Document Number 83530
Rev. 1.7, 26-Oct-04
Vishay Semiconductors
www.vishay.com
1
CE
B
17186
231
546
ncC(-)A (+)
V
DE
Pb
Pb-free
e3
Optocoupler, Phototransistor Output
Features
Special construction:
Therefore, extra low coupling capacity of typical
0.2 pF, high Common Mode Rejection
Low temperature coefficient of CTR
Rated isolation voltage (RMS includes DC)
VIOWM = 600 VRMS (848 V peak)
Rated recurring peak voltage (repetitive)
VIORM = 600 VRMS
Thickness through insulation 0.75 mm
Creepage current resistance according to VDE
0303/IEC 60112
Comparative Tracking Index: CTI 275
Rated impulse voltage (transient overvoltage)
VIOTM = 6 kV peak
Isolation test voltage (partial discharge test volt-
age) Vpd = 1.6 kV
Lead-free component
Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Agency Approvals
UL1577, File No. E76222 System Code A, Double
Protection
BSI: BS EN 41003, BS EN 60095 (BS415), Certif-
icate number 7081 and 7402
DIN EN 60747-5-2 (VDE0884)
DIN EN 60747-5-5 pending
VDE related features:
FIMKO (SETI): EN 60950, Certificate No. 12399
Applications
Circuits for safe protective separation against electri-
cal shock according to safety class II (reinforced iso-
lation):
For appl. class I - IV at mains voltage 300 V
For appl. class I - III at mains voltage 600 V accord-
ing to DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-
5-5 pending, table 2, suitable for:
Switch-mode power supplies, line receiver, com-
puter peripheral interface, microprocessor sys-
tem interface.
Order Information
For additional information on the available options refer to
Option Information.
G=Leadform 10.16 mm; G is not marked on the body
Description
The 4N25V/ 4N25GV/ 4N35V/ 4N35GV series con-
sists of a phototransistor optically coupled to a gallium
arsenide infrared-emitting diode in a 6-lead plastic
dual inline package.
The elements are mounted on one leadframe using a
coplanar technique, providing a fixed distance
between input and output for highest safety require-
ments.
Part Remarks
4N25GV CTR > 20 % wide lead spacing, DIP-6
4N35GV CTR > 100 % wide lead spacing, DIP-6
4N25V CTR > 20 %, DIP-6
4N35V CTR > 100 %, DIP-6
www.vishay.com
2
Document Number 83530
Rev. 1.7, 26-Oct-04
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Vishay Semiconductors
VDE Standards
These couplers perform safety functions according to the following
equipment standards:
DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5
pending
Optocoupler for electrical safety requirements
IEC EN 60950
Office machines (applied for reinforced isolation for mains voltage
400 VRMS)
VDE 0804
Telecommunication apparatus and data processing
IEC 60065
Safety for mains-operated electronic and related household appa-
ratus
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Output
Coupler
Parameter Test condition Symbol Value Unit
Reverse voltage VR5V
Forward current IF60 mA
Forward surge current tp 10 µsI
FSM 3A
Power dissipation Pdiss 100 mW
Junction temperature Tj125 °C
Parameter Test condition Symbol Value Unit
Collector emitter voltage VCEO 32 V
Emitter collector voltage VCEO 7V
Collector current IC50 mA
Collector peak current tp/T = 0.5, tp 10 ms ICM 100 mA
Power dissipation Pdiss 150 mW
Junction temperature Tj125 °C
Parameter Test condition Symbol Value Unit
Isolation test voltage (RMS) t = 1 min VISO 3750 VRMS
Total power dissipation Ptot 250 mW
Ambient temperature range Tamb - 55 to + 100 °C
Storage temperature range Tstg - 55 to + 125 °C
Soldering temperature 2 mm from case, t 10 s Tsld 260 °C
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Document Number 83530
Rev. 1.7, 26-Oct-04
Vishay Semiconductors
www.vishay.com
3
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Output
Coupler
Current Transfer Ratio
Maximum Safety Ratings
(according to DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5 pending) see figure 1
This optocoupler is suitable for safe electrical isolation only within the safety ratings.
Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
Input
Parameter Test condition Symbol Min Ty p. Max Unit
Forward voltage IF = 50 mA VF1.2 1.4 V
Junction capacitance VR = 0, f = 1 MHz Cj50 pF
Parameter Test condition Symbol Min Ty p. Max Unit
Collector emitter voltage IC = 1 mA VCEO 32 V
Emitter collector voltage IE = 100 µAV
ECO 7V
Collector-emitter leakage
current
VCE = 10 V, IF = 0, Tamb =
100 °C
ICEO 50 nA
VCE = 30 V, IF = 0, Tamb =
100 °C
ICEO 500 µA
Parameter Test condition Symbol Min Ty p. Max Unit
Collector emitter saturation
voltage
IF = 50 mA, IC = 2 mA VCEsat 0.3 V
Cut-off frequency VCE = 5 V, IF = 10 mA,
RL = 100
fc110 kHz
Coupling capacitance f = 1 MHz Ck1pF
Parameter Test condition Part Symbol Min Ty p. Max Unit
IC/IFVCE = 10 V, IF = 10 mA 4N25V
4N25GV
CTR 20 100 %
4N35V
4N35GV
CTR 100 150 %
VCE = 10 V, IF = 10 mA,
Tamb = 100 °C
4N35V
4N35GV
CTR 40 %
Parameter Test condition Symbol Min Ty p. Max Unit
Forward current IF130 mA
www.vishay.com
4
Document Number 83530
Rev. 1.7, 26-Oct-04
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Vishay Semiconductors
Output
Coupler
Insulation Rated Parameters
Parameter Test condition Symbol Min Typ. Max Unit
Power dissipation Pdiss 265 mW
Parameter Test condition Symbol Min Typ. Max Unit
Rated impulse voltage VIOTM 6kV
Safety temperature Tsi 150 °C
Parameter Test condition Symbol Min Typ. Max Unit
Partial discharge test voltage -
Routine test
100 %, ttest = 1 s Vpd 1600 V
Partial discharge test voltage -
Lot test (sample test)
tTr = 60 s, ttest = 10 s,
(see figure 2)
VIOTM 6000 V
tTr = 60 s, ttest = 10 s,
(see figure 2)
Vpd 1300 V
Insulation resistance VIO = 500 V RIO 1012
VIO = 500 V, Tamb = 100 °C RIO 1011
VIO = 500 V, Tamb = 150 °C
(construction test only)
RIO 109
Figure 1. Derating diagram
0 25 50 75 125
0
50
100
150
200
300
P – Total Power Dissipation ( mW )
tot
T
si
– Safety Temperature ( °C )
150
94 9182
100
250 Phototransistor
Psi ( mW )
IR-Diode
Isi ( mA )
Figure 2. Test pulse diagram for sample test according to DIN EN
60747-5-2(VDE0884)/ DIN EN 60747-; IEC60747
t
13930
t
1
, t
2
= 1 to 10 s
t
3
, t
4
= 1 s
t
test
= 10 s
t
stres
= 12 s
V
IOTM
V
Pd
V
IOWM
V
IORM
0
t
1
t
test
t
Tr
= 60 s
t
stres
t
3
t
4
t
2
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Document Number 83530
Rev. 1.7, 26-Oct-04
Vishay Semiconductors
www.vishay.com
5
Switching Characteristics
Parameter Test condition Part Symbol Min Ty p. Max Unit
Delay time (see figure 3) VS = 5 V, IC = 5 mA, RL = 100 4N25V
4N25GV
td4.0 µs
VS = 5 V, IC = 2 mA, RL = 100 4N35V
4N35GV
td2.5 µs
Rise time (see figure 3) VS = 5 V, IC = 5 mA, RL = 100 4N25V
4N25GV
tr7.0 µs
VS = 5 V, IC = 2 mA, RL = 100 4N35V
4N35GV
tr3.0 µs
Fall time (see figure 3) VS = 5 V, IC = 5 mA, RL = 100 4N25V
4N25GV
tf6.7 µs
VS = 5 V, IC = 2 mA, RL = 100 4N35V
4N35GV
tf4.2 µs
Storage time (see figure 3) VS = 5 V, IC = 5 mA, RL = 100 4N25V
4N25GV
ts0.3 µs
VS = 5 V, IC = 2 mA, RL = 100 4N35V
4N35GV
ts0.3 µs
Turn-on time (see figure 3) VS = 5 V, IC = 5 mA, RL = 100 4N25V
4N25GV
ton 11.0 µs
VS = 5 V, IC = 2 mA, RL = 100 4N35V
4N35GV
ton 10.0 µs
Turn-off time (see figure 3) VS = 5 V, IC = 5 mA, RL = 100 4N25V
4N25GV
toff 7.0 µs
VS = 5 V, IC = 2 mA, RL = 100 4N35V
4N35GV
toff 10.0 µs
Turn-on time (see figure 4) VS = 5 V, IF = 10 mA, RL = 1 k4N25V
4N25GV
ton 25.0 µs
4N35V
4N35GV
ton 9.0 µs
Turn-off time (see figure 4) VS = 5 V, IF = 10 mA, RL = 1 k4N25V
4N25GV
toff 42.5 µs
4N35V
4N35GV
toff 25.0 µs
Figure 3. Test circuit, non-saturated operation
Channel I
Channel II
14950
R
G
= 50 W
t
p
t
p
= 50 Ps
T= 0.01
+ 5 V
I
C
= 5 mA/ 2 mA
adjusted through
input amplitude
I
F
0I
F
50 W100 W
Oscilloscope
R
L
t1 MW
C
L
d20 pF
Figure 4. Test circuit, saturated operation
Channel I
Channel II
95 10844
R
G
= 50 W
t
p
t
p
= 50 Ps
T= 0.01
+ 5 V
I
C
I
F
0I
F
= 10 mA
50 W1 kW
Oscilloscope
R
L
t1 MW
C
L
d20 pF
www.vishay.com
6
Document Number 83530
Rev. 1.7, 26-Oct-04
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Vishay Semiconductors
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
t
p
t
t
0
0
10%
90%
100%
t
r
t
d
t
on
t
s
t
f
t
off
IF
IC
96 11698
t
p
pulse duration
t
d
delay time
t
r
rise time
t
on
(= t
d
+t
r
) turn-on time
t
s
storage time
t
f
fall time
t
off
(= t
s
+t
f
) turn-off time
Figure 5. Switching Times
Figure 6. Total Power Dissipation vs. Ambient Temperature
Figure 7. Forward Current vs. Forward Voltage
0
50
100
150
200
250
300
0 40 80 120
P –Total Power Dissipation ( mW)
T
amb
Ambient Temperature( °C )
96 11700
tot
Coupled device
Phototransistor
IR-diode
0.1
1
10
100
1000
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
V
F
- Forward Voltage(V)
96 11862
F
I - Forward Current ( mA )
Figure 8. Relative Current Transfer Ratio vs. Ambient
Temperature
Figure 9. Collector Dark Current vs. Ambient Temperature
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
3020100 1020304050607080
T
amb
Ambient Temperature (°C )
96 11874
CTR Relative Current Transfer Ratio
rel
V
CE
=10V
I
F
=10mA
1
10
100
1000
10000
0 102030405060708090100
T
amb
- Ambient Temperature ( °C)
96 11875
I - Collector Dark Current,
CEO
with open Base ( nA )
V
CE
=10V
I
F
=0
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Document Number 83530
Rev. 1.7, 26-Oct-04
Vishay Semiconductors
www.vishay.com
7
Figure 10. Collector Base Current vs. Forward Current
Figure 11. Collector Current vs. Forward Current
Figure 12. Collector Current vs. Collector Emitter Voltage
0.001
0.010
0.100
1.000
1 10 100
I
F
Forward Current ( mA )
96 11876
I Collector Base Current ( mA)
CB
V
CB
=10V
0.01
0.10
1.00
10.00
100.00
0.1 1.0 10.0 100.0
I
F
Forward Current ( mA )
96 11904
V
CE
=10V
I Collector Current ( mA )
C
0.1
1.0
10.0
100.0
0.1 1.0 10.0 100.0
V
CE
Collector Emitter Voltage(V)
96 11905
I Collector Current ( mA )
C
20mA
10mA
5mA
2mA
1mA
I
F
=50mA
Figure 13. Collector Emitter Saturation Voltage vs. Collector
Current
Figure 14. DC Current Gain vs. Collector Current
Figure 15. Current Transfer Ratio vs. Forward Current
110
0
0.2
0.4
0.6
0.8
1.0
V Collector Emitter Saturation Voltage (V )
CEsat
IC Collector Current ( mA )
100
95 10972
CTR=50%
20%
10%
0.01 0.1 1 10
0
200
400
600
800
1000
h DC Current Gain
FE
IC Collector Current ( mA )
100
95 10973
VCE
=10V
5V
0.1 1 10
1
10
100
1000
CTR Current Transfer Ratio ( % )
IF Forward Current ( mA )
100
95 10976
VCE
=20V
www.vishay.com
8
Document Number 83530
Rev. 1.7, 26-Oct-04
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Vishay Semiconductors
Package Dimensions in mm
Figure 16. Turn on / off Time vs. Forward Current
0 5 10 15
0
10
20
30
40
50
IF Forward Current ( mA )
20
95 10974
t / t –Turn on / Turn off Time ( s )
off
µ
on
Saturated Operation
VS=5V
RL=1k
toff
ton
Figure 17. Turn on / off Time vs. Collector Current
02 46
IC Collector Current ( mA )
10
95 10975
t / t –Turn on / Turn off Time ( s )
off
µ
on
Non Saturated
Operation
VS=10V
RL=100
toff
ton
0
5
10
15
20
8
14770
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Document Number 83530
Rev. 1.7, 26-Oct-04
Vishay Semiconductors
www.vishay.com
9
Package Dimensions in mm
14771
www.vishay.com
10
Document Number 83530
Rev. 1.7, 26-Oct-04
4N25V/ 4N25GV/ 4N35V/ 4N35GV
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423