04/21/09
www.irf.com 1
HEXFET® Power MOSFET
S
D
G
PD - 96230
IRLP3034PbF
GDS
Gate Drain Source
Applications
l DC Motor Drive
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
Benefits
lOptimized for Logic Level Drive
lVery Low RDS(ON) at 4.5V VGS
lSuperior R*Q at 4.5V VGS
lImproved Gate, Avalanche and Dynamic dV/dt
Ruggedness
lFully Characterized Capacitance and Avalanche
SOA
lEnhanced body diode dV/dt and dI/dt Capability
l Lead-Free
TO-247AC
IRLP3034PbF
VDSS 40V
RDS
(
on
)
typ. 1.4m
:
max. 1.7m
:
ID
(
Silicon Limited
)
327A
c
ID (Package Limited) 195A
S
D
G
D
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
d
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
dv/dt Peak Diode Recovery
f
V/ns
TJ Operating Junction and
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited) Sin
g
le Pulse Avalanche Ener
g
y
e
mJ
IAR Avalanche Current
d
A
EAR Repetitive Avalanche Ener
g
y
d
mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
RθJC Junction-to-Case
j
––– 0.44
RθCS Case-to-Sink, Flat, Greased Surface 0.24 –––
RθJA Junction-to-Ambient ––– 40
See Fig. 14, 15, 22a, 22b,
A
°C
°C/W
224
341
4.6
±20
2.3
10lbf
x
in (1.1N
x
m)
-55 to + 175
300
Max.
327
c
232
c
1308
195
IRLP3034PbF
2www.irf.com
S
D
G
Pulse width 400µs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
Rθ is measured at TJ approximately 90°C
Notes:
Calcuted continuous current based on maximum allowable junction
temperature Bond wire current limit is 195A. Note that current
limitation arising from heating of the device leds may occur with
some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.013mH
RG = 25, IAS = 195A, VGS =10V. Part not recommended for use
above this value .
ISD 195A, di/dt 841A/µs, VDD V(BR)DSS, TJ 175°C.
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
s
V(BR)DSS Drain-to-Source Breakdown Volta
g
e 40 ––– ––– V
V(BR)DSS
/
TJ Breakdown Volta
g
e Temp. Coefficient ––– 0.04 ––– V/°C
––– 1.4 1.7
––– 1.6 2.0
VGS(th) Gate Threshold Volta
e 1.0 ––– 2.5 V
IDSS Drain-to-Source Leaka
g
e Current ––– ––– 20
––– ––– 250
IGSS Gate-to-Source Forward Leaka
g
e ––– ––– 100
Gate-to-Source Reverse Leaka
g
e ––– ––– -100
RG(int) Internal Gate Resistance ––– 2.1 –––
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
s
g
fs Forward Transconductance 286 ––– ––– S
QgTotal Gate Char
g
e ––– 108 162
Qgs Gate-to-Source Char
g
e ––– 29 –––
Qgd Gate-to-Drain ("Miller") Char
g
e ––– 54 –––
Qsync Total Gate Char
g
e Sync. (Qg - Qgd)––– 54 –––
td(on) Turn-On Delay Time ––– 65 –––
trRise Time ––– 827 –––
td(off) Turn-Off Delay Time ––– 97 –––
tfFall Time ––– 355 –––
Ciss Input Capacitance ––– 10315 –––
Coss Output Capacitance ––– 1980 –––
Crss Reverse Transfer Capacitance ––– 935 –––
Coss eff. (ER) Effective Output Capacitance (Energy Related)
i
––– 2378 –––
Coss eff. (TR) Effective Output Capacitance (Time Related)
h
––– 2986 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Unit
s
ISContinuous Source Current ––– –––
(Body Diode)
ISM Pulsed Source Current ––– –––
(Body Diode)
d
VSD Diode Forward Volta
g
e ––– ––– 1.3 V
trr Reverse Recovery Time ––– 39 ––– TJ = 25°C VR = 34V,
––– 41 ––– TJ = 125°C IF = 195A
Qrr Reverse Recovery Char
g
e ––– 39 ––– TJ = 25°C di
/
dt = 100A
/
µs
g
––– 46 ––– TJ = 125°C
IRRM Reverse Recovery Current ––– 1.7 ––– A TJ = 25°C
ton Forward Turn-On Time Intrinsic turn-on time is ne
g
li
g
ible (turn-on is dominated by LS+LD)
VGS = -20V
showing the
VDS = 20V
Conditions
VGS = 4.5V
g
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 32V
i
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 5mA
d
VGS = 10V, ID = 195A
g
VDS = VGS, ID = 250µA
VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
ns
VGS = 0V, VDS = 0V to 32V
h
MOSFET symbol
TJ = 25°C, IS = 195A, VGS = 0V
g
integral reverse
p-n junction diode.
VGS = 20V
nC
µA
nA
nC
ns
RDS(on) Static Drain-to-Source On-Resistance
pF
A
327
c
1308
VGS = 4.5V, ID = 172A
g
m
ID = 195A
RG = 2.1
VGS = 4.5V
g
VDD = 26V
ID = 185A, VDS =0V, VGS = 4.5V
Conditions
VDS = 10V, ID = 195A
ID = 185A
IRLP3034PbF
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
12345
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
VDS = 25V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 195A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 20 40 60 80 100 120 140
QG, Total Gate Charge (nC)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VGS, Gate-to-Source Voltage (V)
VDS= 32V
VDS= 20V
ID= 185A
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
100000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
4.5V
3.5V
3.0V
2.7V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 25°C
2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
4.5V
3.5V
3.0V
2.7V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 175°C
2.5V
IRLP3034PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-to-Drain Voltage (V)
1.0
10
100
1000
10000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
-60 -40 -20 020 40 60 80 100120140160180
TJ , Temperature ( °C )
40
42
44
46
48
50
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Id = 5mA
0 5 10 15 20 25 30 35 40 45
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
Energy (µJ)
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
50
100
150
200
250
300
350
ID, Drain Current (A)
Limited By Package
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
LIMITED BY PACKAGE
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 36.5A
61A
BOTTOM 195A
IRLP3034PbF
www.irf.com 5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 195A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.02725 0.000025
0.08804 0.000077
0.20964 0.001656
0.11529 0.008408
IRLP3034PbF
6www.irf.com
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VGS(th), Gate threshold Voltage (V)
ID = 250µA
ID = 1.0mA
ID = 1.0A
0100 200 300 400 500
diF /dt (A/µs)
0
100
200
300
400
QRR (A)
IF = 78A
VR = 34V
TJ = 25°C
TJ = 125°C
0100 200 300 400 500
diF /dt (A/µs)
0
100
200
300
400
QRR (A)
IF = 117A
VR = 34V
TJ = 25°C
TJ = 125°C
0100 200 300 400 500
diF /dt (A/µs)
0
2
4
6
8
10
12
14
IRRM (A)
IF = 78A
VR = 34V
TJ = 25°C
TJ = 125°C
0100 200 300 400 500
diF /dt (A/µs)
0
2
4
6
8
10
12
14
IRRM (A)
IF = 117A
VR = 34V
TJ = 25°C
TJ = 125°C
IRLP3034PbF
www.irf.com 7
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
IRLP3034PbF
8www.irf.com
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/2009
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
/,1(+
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
<($5
'$7(&2'(
3$57180%(5
LQGLFDWHV/HDG)UHH :((.
/27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/( :,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
TO-247AC package is not recommended for Surface Mount Application.