DS557 November 19, 2009 www.xilinx.com
Product Specification 1
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.
Module 1: Introduction and Ordering
Information
DS557-1 (v3.2) November 19, 2009
Introduction
Features
Architectural Overview
Configuration Overview
In-system Flash Memory Overview
General I/O Capabilities
Supported Packages and Package Marking
Ordering Information
Module 2: Functional Description
DS557-2 (v3.2) November 19, 2009
The functionality of the Spartan®-3AN FPGA family is
described in the following documents:
UG331: Spartan-3 Generation FPGA User Guide
- Clocking Resources
- Digital Clock Managers (DCMs)
- Block RAM
- Configurable Logic Blocks (CLBs)
· Distributed RAM
· SRL16 Shift Registers
· Carry and Arithmetic Logic
- I/O Resources
- Embedded Multiplier Blocks
- Programmable Interconnect
- ISE® Design Tools and IP Cores
- Embedded Processing and Control Solutions
- Pin Types and Package Overview
- Package Drawings
- Powering FPGAs
- Power Management
UG332: Spartan-3 Generation Configuration User Guide
- Configuration Overview
- Configuration Pins and Behavior
- Bitstream Sizes
- Detailed Descriptions by Mode
· Self-contained In-System Flash mode
· Master Serial Mode using Platform Flash PROM
· Master SPI Mode using Commodity Serial Flash
· Master BPI Mode using Commodity Parallel Flash
· Slave Parallel (SelectMAP) using a Processor
· Slave Serial using a Processor
· JTAG Mode
- ISE iMPACT Programming Examples
- MultiBoot Reconfiguration
- Design Authentication using Device DNA
UG333: Spartan-3AN In-System Flash User Guide
UG334: Spartan-3AN Starter Kit User Guide
Module 3: DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009
DC Electrical Characteristics
- Absolute Maximum Ratings
- Supply Voltage Specifications
- Recommended Operating Conditions
Switching Characteristics
- I/O Timing
- Configurable Logic Block (CLB) Timing
- Multiplier Timing
- Block RAM Timing
- Digital Clock Manager (DCM) Timing
- Suspend Mode Timing
- Device DNA Timing
- Configuration and JTAG Timing
Module 4: Pinout Descriptions
DS557-4 (v3.2) November 19, 2009
Pin Descriptions
Package Overview
•Pinout Tables
Footprint Diagrams
Additional information on the Spartan-3AN family can be found at http://www.xilinx.com/products/spartan3a/3an.htm.
0
Spartan-3AN FPGA Family
Data Sheet
DS557 November 19, 2009 0 0 Product Specification
R
Table 1: Production Status of Spartan-3AN FPGAs
Spartan-3AN FPGA Status
XC3S50AN Production
XC3S200AN Production
XC3S400AN Production
XC3S700AN Production
XC3S1400AN Production
www.xilinx.com DS557 November 19, 2009
2Product Specification
R
DS557-1 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 3
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.
Introduction
The Spartan®-3AN FPGA family combines the best
attributes of a leading edge, low cost FPGA with nonvolatile
technology across a broad range of densities. The family
combines all the features of the Spartan-3A FPGA family
plus leading technology in-system Flash memory for
configuration and nonvolatile data storage.
The Spartan-3AN FPGAs are part of the Extended
Spartan-3A family, which also includes the Spartan-3A
FPGAs and the higher density Spartan-3A DSP FPGAs.
The Spartan-3AN FPGA family is excellent for
space-constrained applications such as blade servers,
medical devices, automotive infotainment, telematics, GPS,
and other small consumer products. Combining FPGA and
Flash technology minimizes chip count, PCB traces and
overall size while increasing system reliability.
The Spartan-3AN FPGA internal configuration interface is
completely self-contained, increasing design security. The
family maintains full support for external configuration. The
Spartan-3AN FPGA is the world’s first nonvolatile FPGA
with MultiBoot, supporting two or more configuration files in
one device, allowing alternative configurations for field
upgrades, test modes, or multiple system configurations.
Features
The new standard for low cost nonvolatile FPGA solutions
Eliminates traditional nonvolatile FPGA limitations with the
advanced 90 nm Spartan-3A device feature set
Memory, multipliers, DCMs, SelectIO, hot swap, power
management, etc.
Integrated robust configuration memory
Saves board space
Improves ease-of-use
Simplifies design
Reduces support issues
Plentiful amounts of nonvolatile memory available to the user
Up to 11+ Mb available
MultiBoot support
Embedded processing and code shadowing
Scratchpad memory
Robust 100K Flash memory program/erase cycles
20 years Flash memory data retention
Security features provide bitstream anti-cloning protection
Buried configuration interface
Unique Device DNA serial number in each device for
design Authentication to prevent unauthorized copying
Flash memory sector protection and lockdown
Configuration watchdog timer automatically recovers from
configuration errors
Suspend mode reduces system power consumption
Retains all design state and FPGA configuration data
Fast response time, typically less than 100 μs
Full hot-swap compliance
Multi-voltage, multi-standard SelectIO™ interface pins
Up to 502 I/O pins or 227 differential signal pairs
LVCMOS, LVTTL, HSTL, and SSTL single-ended signal
standards
3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling
Up to 24 mA output drive
3.3V ±10% compatibility and hot swap compliance
622+ Mb/s data transfer rate per I/O
DDR/DDR2 SDRAM support up to 400 Mb/s
LVDS, RSDS, mini-LVDS, PPDS, and HSTL/SSTL
differential I/O
Abundant, flexible logic resources
Densities up to 25,344 logic cells
Optional shift register or distributed RAM support
Enhanced 18 x 18 multipliers with optional pipeline
Hierarchical SelectRAM™ memory architecture
Up to 576 Kbits of dedicated block RAM
Up to 176 Kbits of efficient distributed RAM
Up to eight Digital Clock Managers (DCMs)
Eight global clocks and eight additional clocks per each half
of device, plus abundant low-skew routing
Complete Xilinx® ISE® and WebPACK™ software
development system support
MicroBlaze™ and PicoBlaze embedded processor cores
Fully compliant 32-/64-bit 33 MHz PCI™ technology support
Low-cost QFP and BGA Pb-free (RoHS) packaging options
Pin-compatible with the same packages in the
Spartan-3A FPGA family
<
B
L
B
Spartan-3AN FPGA Family:
Introduction and Ordering Information
DS557-1 (v3.2) November 19, 2009 Product Specification
R
Table 2: Summary of Spartan-3AN FPGA Attributes
Device
System
Gates
Equivalent
Logic
Cells CLBs Slices
Distributed
RAM Bits(1)
Block
RAM
Bits(1)Dedicated
Multipliers DCMs
Maximum
User I/O
Maximum
Differential
I/O Pairs
Bitstream
Size (1)In-System
Flash Bits
XC3S50AN 50K 1,584 176 704 11K 54K 3 2 108 50 427K 1M
XC3S200AN 200K 4,032 448 1792 28K 288K 16 4 195 90 1,168K 4M
XC3S400AN 400K 8,064 896 3,584 56K 360K 20 4 311 142 1,842K 4M
XC3S700AN 700K 13,248 1472 5,888 92K 360K 20 8 372 165 2,669K 8M
XC3S1400AN 1400K 25,344 2816 11,264 176K 576K 32 8 502 227 4,644K 16M
Notes:
1. By convention, one Kb is equivalent to 1,024 bits and one Mb is equivalent to 1,024 Kb.
Introduction and Ordering Information
www.xilinx.com DS557-1 (v3.2) November 19, 2009
4Product Specification
R
Architectural Overview
The Spartan-3AN FPGA architecture is compatible with that
of the Spartan-3A FPGA. The architecture consists of five
fundamental programmable functional elements:
Configurable Logic Blocks (CLBs) contain flexible
Look-Up Tables (LUTs) that implement logic plus
storage elements used as flip-flops or latches.
Input/Output Blocks (IOBs) control the flow of data
between the I/O pins and the internal logic of the
device. IOBs support bidirectional data flow plus
3-state operation. They support a variety of signal
standards, including several high-performance
differential standards. Double Data-Rate (DDR)
registers are included.
Block RAM provides data storage in the form of
18-Kbit dual-port blocks.
Multiplier Blocks accept two 18-bit binary numbers as
inputs and calculate the product.
Digital Clock Manager (DCM) Blocks provide
self-calibrating, fully digital solutions for distributing,
delaying, multiplying, dividing, and phase-shifting clock
signals.
These elements are organized as shown in Figure 1. A dual
ring of staggered IOBs surrounds a regular array of CLBs.
Each device has two columns of block RAM except for the
XC3S50AN, which has one column. Each RAM column
consists of several 18-Kbit RAM blocks. Each block RAM is
associated with a dedicated multiplier. The DCMs are
positioned in the center with two at the top and two at the
bottom of the device. The XC3S50AN has DCMs only at the
top, while the XC3S700AN and XC3S1400AN add two
DCMs in the middle of the two columns of block RAM and
multipliers.
The Spartan-3AN FPGA features a rich network of traces
that interconnect all five functional elements, transmitting
signals among them. Each functional element has an
associated switch matrix that permits multiple connections
to the routing.
X-Ref Target - Figure 1
Figure 1: Spartan-3AN Family Architecture
CLB
Block RAM
Multiplier
DCM
IOBs
IOBs
DS557-1_01_122006
IOBs
IOBs
DCM
Block RAM / Multiplier
DCM
CLBs
IOBs
OB
s
D
C
M
Notes:
1. The XC3S700AN and XC3S1400AN have two additional DCMs on both the left and right sides as indicated by the
dashed lines. The XC3S50AN has only two DCMs at the top and only one Block RAM/Multiplier column.
Introduction and Ordering Information
DS557-1 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 5
R
Configuration
Spartan-3AN FPGAs are programmed by loading
configuration data into robust, reprogrammable, static
CMOS configuration latches (CCLs) that collectively control
all functional elements and routing resources. The FPGA’s
configuration data is stored on-chip in nonvolatile Flash
memory, or externally in a PROM or some other nonvolatile
medium, either on or off the board. After applying power, the
configuration data is written to the FPGA using any of seven
different modes:
Configure from internal SPI Flash memory (Figure 2)
Completely self-contained
Reduced board space
Easy-to-use configuration interface
Master Serial from a Xilinx Platform Flash PROM
Serial Peripheral Interface (SPI) from an external
industry-standard SPI serial Flash
Byte Peripheral Interface (BPI) Up from an
industry-standard x8 or x8/x16 parallel NOR Flash
Slave Serial, typically downloaded from a processor
Slave Parallel, typically downloaded from a processor
Boundary-Scan (JTAG), typically downloaded from a
processor or system tester
The MultiBoot feature stores multiple configuration files in
the on-chip Flash, providing extended life with field
upgrades. MultiBoot also supports multiple system
solutions with a single board to minimize inventory and
simplify the addition of new features, even in the field.
Flexibility is maintained to do additional MultiBoot
configurations via the external configuration method.
The Spartan-3AN device authentication protocol prevents
cloning. Design cloning, unauthorized overbuilding, and
complete reverse engineering have driven device security
requirements to higher and higher levels. Authentication
moves the security from bitstream protection to the next
generation of design-level security protecting both the
design and embedded microcode. The authentication
algorithm is entirely user defined, implemented using FPGA
logic. Every product, generation, or design can have a
different algorithm and functionality to enhance security.
In-System Flash Memory
Each Spartan-3AN FPGA contains abundant integrated SPI
serial Flash memory, shown in Table 3, used primarily to
store the FPGA’s configuration bitstream. However, the
Flash memory array is large enough to store at least two
MultiBoot FPGA configuration bitstreams or nonvolatile
data required by the FPGA application, such as
code-shadowed MicroBlaze processor applications.
After configuration, the FPGA design has full access to the
in-system Flash memory via an internal SPI interface; the
control logic is implemented with FPGA logic. Additionally,
the FPGA application itself can store nonvolatile data or
provide live, in-system Flash updates.
The Spartan-3AN device in-system Flash memory supports
leading-edge serial Flash features.
Small page size (264 or 528 bytes) simplifies
nonvolatile data storage
Randomly accessible, byte addressable
Up to 66 MHz serial data transfers
SRAM page buffers
Read Flash data while programming another Flash
page
EEPROM-like byte write functionality
Two buffers in most devices, one in XC3S50AN
Page, Block, and Sector Erase
Sector-based data protection and security features
X-Ref Target - Figure 2
Figure 2: Spartan-3AN FPGA Configuration Interface from Internal SPI Flash Memory
M2
M1
M0
VCCAUX
INIT_B
DONE
Spartan-3AN FPGA
‘0
‘1
‘1
3.3V
Configure
from internal
Flash memory Indicates when
configuration is
finished
DS557-1_06_013107
Table 3: Spartan-3AN Device In-System Flash Memory
Part
Number
Total Flash
Memory
(Bits)
FPGA
Bitstream
(Bits)
Additional
Flash
Memory
(Bits)(1)
XC3S50AN 1,081,344 437,312 642,048
XC3S200AN 4,325,376 1,196,128 3,127,872
XC3S400AN 4,325,376 1,886,560 2,437,248
XC3S700AN 8,650,752 2,732,640 5,917,824
XC3S1400AN 17,301,504 4,755,296 12,545,280
1. Aligned to next available page location.
Introduction and Ordering Information
www.xilinx.com DS557-1 (v3.2) November 19, 2009
6Product Specification
R
Sector Protect: Write- and erase-protect a sector
(changeable)
Sector Lockdown: Sector data is unchangeable
(permanent)
128-byte Security Register
Separate from FPGA’s unique Device DNA
identifier
64-byte factory-programmed identifier unique to
the in-system Flash memory
64-byte one-time programmable,
user-programmable field
100,000 Program/Erase cycles
20-year data retention
Comprehensive programming support
In-system prototype programming via JTAG using
Xilinx Platform Cable USB and iMPACT software
Product programming support using BPM
Microsystems programmers with appropriate
programming adapter
Design examples demonstrating in-system
programming from a Spartan-3AN FPGA
application
I/O Capabilities
The Spartan-3AN FPGA SelectIO interface supports many
popular single-ended and differential standards. Tabl e 4
shows the number of user I/Os as well as the number of
differential I/O pairs available for each device/package
combination. Some of the user I/Os are unidirectional,
input-only pins as indicated in Tabl e 4 .
Spartan-3AN FPGAs support the following single-ended
standards:
3.3V low-voltage TTL (LVTTL)
Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V,
1.5V, or 1.2V
3.3V PCI at 33 MHz or 66 MHz
HSTL I, II, and III at 1.5V and 1.8V, commonly used in
memory applications
SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used
for memory applications
Spartan-3AN FPGAs support the following differential
standards:
LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or
3.3V
Bus LVDS I/O at 2.5V
TMDS I/O at 3.3V
Differential HSTL and SSTL I/O
LVPECL inputs at 2.5V or 3.3V
Table 4: Available User I/Os and Differential (Diff) I/O Pairs
Package TQ144
TQG144
FT256
FTG256
FG400
FGG400
FG484
FGG484
FG676
FGG676
Body Size (mm)(4) 20 x 20 17 x 17 21 x 21 23 x 23 27 x 27
Device User Diff User Diff User Diff User Diff User Diff
XC3S50AN 108
(7)
50
(24)
XC3S200AN 195
(35)
90
(50)
XC3S400AN 311
(63)
142
(78)
XC3S700AN ––––––372
(84)
165
(93)
XC3S1400AN ––––––––502
(94)
227
(131)
Notes:
1. The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number
of input-only pins. The Diff input-only pin count includes dedicated inputs and differential pins on banks restricted to inputs. The differential
(Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are
restricted to differential inputs.
2. See "Pb and Pb-Free Packaging," page 8 for details on Pb and Pb-free packaging options.
3. Each Spartan-3AN FPGA has a pin-compatible Spartan-3A FPGA equivalent, although Spartan-3A FPGAs do not have internal SPI flash
and offer more part/package combinations.
4. The footprint for the TQ(G)144 (22 mm x 22 mm) package is larger than the package body.
Introduction and Ordering Information
DS557-1 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 7
R
Package Marking
Figure 3 provides a top marking example for Spartan-3AN
FPGAs in the quad-flat packages. Figure 4 shows the top
marking for Spartan-3AN FPGAs in BGA packages. The
markings for the BGA packages are nearly identical to those
for the quad-flat packages, except that the marking is
rotated with respect to the ball A1 indicator.
The “5C” and “4I” Speed Grade/Temperature Range part
combinations may be dual marked as “5C/4I”. Devices
with the dual mark can be used as either -5C or -4I devices.
Devices with a single mark are only guaranteed for the
marked speed grade and temperature range.
X-Ref Target - Figure 3
Figure 3: Spartan-3AN FPGA QFP Package Marking Example
Date Code
Mask Revision Code
Process Technology
XC3S50ANTM
TQG144 AGQ0725
D1234567A
4C
SPARTAN
Temperature Range
Fabrication Code
Pin P1
Device Type
Package
Speed Grade
R
R
DS557-1_02_080107
Lot Code
X-Ref Target - Figure 4
Figure 4: Spartan-3AN FPGA BGA Package Marking Example
Lot Code
Date Code
XC3S200ANTM
4C
SPARTAN
Device Type
BGA Ball A1
Package
Speed Grade
Temperature Range
R
R
DS557-1_03_080107
FTG256 AGQ0725
D1234567A
Mask Revision Code
Process Code
Fabrication Code
Introduction and Ordering Information
www.xilinx.com DS557-1 (v3.2) November 19, 2009
8Product Specification
R
Pb and Pb-Free Packaging
Spartan-3AN FPGAs are available in both leaded (Pb) and Pb-free packaging options (see Table 5). The Pb-free packages
are available for all devices and include a G’ character in the ordering code. Leaded (non-Pb-free) packages are available
for selected devices. These devices have no G’ in the ordering code and have the same pin-out as Pb-free packages.
Ordering Information
Table 5: Pb and Pb-Free Package Options
Pins 144 256 400 484 676
Type TQFP FTBGA FBGA FBGA FBGA
Material Pb-Free Pb Pb-Free Pb Pb-Free Pb Pb-Free Pb Pb-Free Pb
Device Speed Range TQG144 TQ144 FTG256 FT256 FGG400 FG400 FGG484 FG484 FGG676 FG676
XC3S50AN -4 C, I SCD4100(1)
-5 C (2)
XC3S200AN -4 C, I ✔✔
-5 C ✔✔
XC3S400AN -4 C, I ✔✔
-5 C (2)
XC3S700AN -4 C, I ✔✔
-5 C (2)
XC3S1400AN -4 C, I ✔✔
-5 C (2)
Notes:
1. To order a Pb package for the XC3S50AN -4 option, append SCD4100 to the part number (XC3S50AN-4TQ144C4100).
2. For Pb packaging for these options, contact your Xilinx sales representative.
X-Ref Target - Figure 5
Figure 5: Device Numbering Format
XC3S50AN -4 TQG144 C
Device Type
Speed Grade
Temperature Range:
Package Type/Number of Pins
Example:
DS557-1_05_101109
C = Commercial (T
J
= 0
o
C to 85
o
C)
I = Industrial (T
J
= -40
o
C to 100
o
C)
Device Speed Grade Package Type / Number of Pins Temperature Range ( TJ
)
XC3S50AN –4 Standard Performance TQ144/
TQG144
144-pin Thin Quad Flat Pack (TQFP) C Commercial (0°C to 85°C)
XC3S200AN –5 High Performance(1) FT256/
FTG256
256-ball Fine-Pitch Thin Ball Grid Array (FTBGA) I Industrial (–40°C to 100°C)
XC3S400AN FG400/
FGG400
400-ball Fine-Pitch Ball Grid Array (FBGA)
XC3S700AN FG484/
FGG484
484-ball Fine-Pitch Ball Grid Array (FBGA)
XC3S1400AN FG676/
FGG676
676-ball Fine-Pitch Ball Grid Array (FBGA)
Notes:
1. The –5 speed grade is exclusively available in the Commercial temperature range.
2. See Ta bl e 4 and Table 5 for available package combinations.
Introduction and Ordering Information
DS557-1 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 9
R
Revision History
The following table shows the revision history for this document.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
Date Version Revision
02/26/07 1.0 Initial release.
08/16/07 2.0 Updated for Production release of initial device.
09/12/07 2.0.1 Noted that only dual-mark devices are guaranteed for both -4I and -5C.
12/12/07 3.0 Updated to Production status with Production release of final family member, XC3S50AN. Noted that
non-Pb-free packages may be available for selected devices.
06/02/08 3.1 Minor updates.
11/19/09 3.2 Updated document throughout to reflect availability of Pb package options. Added references to the
Extended Spartan-3A family. Removed table note 2 from Table 2 . In Ta bl e 4 , added Pb packages,
added table note 4, and updated table note 2. Added Ta b l e 5 .
Introduction and Ordering Information
www.xilinx.com DS557-1 (v3.2) November 19, 2009
10 Product Specification
R
DS557-2 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 11
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. All other trademarks are the property of their respective owners.
Spartan-3AN FPGA Design Documentation
The functionality of the Spartan®-3AN FPGA family is
described in the following documents. The topics covered in
each guide are listed below:
DS706: Extended Spartan-3A Family Overview
www.xilinx.com/support/documentation/
data_sheets/ds706.pdf
UG331: Spartan-3 Generation FPGA User Guide
http://www.xilinx.com/support/documentation/
user_guides/ug331.pdf
Clocking Resources
Digital Clock Managers (DCMs)
Block RAM
Configurable Logic Blocks (CLBs)
-Distributed RAM
-SRL16 Shift Registers
-Carry and Arithmetic Logic
I/O Resources
Embedded Multiplier Blocks
Programmable Interconnect
ISE® Design Tools
IP Cores
Embedded Processing and Control Solutions
Pin Types and Package Overview
Package Drawings
Powering FPGAs
Power Management
UG332: Spartan-3 Generation Configuration
User Guide
http://www.xilinx.com/support/documentation/
user_guides/ug332.pdf
Configuration Overview
-Configuration Pins and Behavior
-Bitstream Sizes
Detailed Descriptions by Mode
-
Master Serial Mode using Xilinx® Platform Flash
-
Master SPI Mode using SPI Serial Flash PROM
-
Internal Master SPI Mode
-
Master BPI Mode using Parallel NOR Flash
-Slave Parallel (SelectMAP) using a Processor
-Slave Serial using a Processor
-JTAG Mode
ISE iMPACT Programming Examples
MultiBoot Reconfiguration
Design Authentication using Device DNA
UG333: Spartan-3AN FPGA In-System Flash User
Guide
http://www.xilinx.com/support/documentation/
user_guides/ug333.pdf
For FPGA applications that write to or read from
the In-System Flash memory after configuration
SPI_ACCESS interface
In-System Flash memory architecture
Read, program, and erase commands
Status registers
Sector Protection and Sector Lockdown features
Security Register with Unique Identifier
Xilinx Alerts
Create a Xilinx MySupport user account and sign up to
receive automatic E-mail notification whenever this data
sheet or the associated user guides are updated.
Sign Up for Alerts on Xilinx MySupport
http://www.xilinx.com/support/answers/19380.htm
Spartan-3AN FPGA Starter Kit
For specific hardware examples, please see the
Spartan-3AN FPGA Starter Kit board web page, which has
links to various design examples and the user guide.
Spartan-3AN FPGA Starter Kit Board Page
http://www.xilinx.com/s3anstarter
UG334: Spartan-3AN FPGA Starter Kit User Guide
http://www.xilinx.com/support/documentation/
boards_and_kits/ug334.pdf
<BL
Blue
>Spartan-3AN FPGA Family:
Functional Description
DS557-2 (v3.2) November 19, 2009 0Product Specification
R
Functional Description
www.xilinx.com DS557-2 (v3.2) November 19, 2009
12 Product Specification
R
Related Product Families
The Spartan-3AN FPGA family is generally compatible with
the Spartan-3A FPGA family.
DS529: Spartan-3A FPGA Family Data Sheet
http://www.xilinx.com/support/documentation/
data_sheets/ds529.pdf
Create a Xilinx® MySupport user account and sign up to
receive automatic E-mail notification whenever this data
sheet or the associated user guides are updated.
Sign Up for Alerts on Xilinx MySupport
Revision History
The following table shows the revision history for this document.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
Date Version Revision
02/26/07 1.0 Initial release.
08/16/07 2.0 Updated for Production release of initial device.
09/12/07 2.0.1 Minor updates to text.
09/24/07 2.1 Added note that In-System Flash commands were not supported by simulation until ISE 10.1 software.
12/12/07 3.0 Updated to Production status with Production release of final family member, XC3S50AN. Noted that
SPI_ACCESS simulation is supported in ISE 10.1 software. Updated links.
06/02/08 3.1 Minor updates.
11/19/09 3.2 In the "Spartan-3AN FPGA Design Documentation" section, added link to DS706, Extended
Spartan-3A Family Overview and removed references to older software versions.
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 13
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.
DC Electrical Characteristics
In this section, specifications can be designated as
Advance, Preliminary, or Production. These terms are
defined as follows:
Advance: Initial estimates are based on simulation, early
characterization, and/or extrapolation from the
characteristics of other families. Values are subject to
change. Use as estimates, not for production.
Preliminary: Based on characterization. Further changes
are not expected.
Production: These specifications are approved once the
silicon has been characterized over numerous production
lots. Parameter values are considered stable with no future
changes expected.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. Unless
otherwise noted, the published parameter values apply
to all Spartan®-3AN devices. AC and DC characteristics
are specified using the same numbers for both
commercial and industrial grades.
Absolute Maximum Ratings
Stresses beyond those listed under Tabl e 6 : Absolute
Maximum Ratings might cause permanent damage to the
device. These are stress ratings only; functional operation
of the device at these or any other conditions beyond those
listed under the Recommended Operating Conditions is not
implied. Exposure to absolute maximum conditions for
extended periods of time adversely affects device reliability.
<BL
Blue
>Spartan-3AN FPGA Family:
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 0Product Specification
R
Tabl e 6 : Absolute Maximum Ratings
Symbol Description Conditions Min Max Units
VCCINT Internal supply voltage –0.5 1.32 V
VCCAUX Auxiliary supply voltage –0.5 3.75 V
VCCO Output driver supply voltage –0.5 3.75 V
VREF Input reference voltage –0.5 VCCO
+ 0.5 V
VIN
Voltage applied to all User I/O pins and
Dual-Purpose pins
Driver in a high-impedance state –0.95 4.6 V
Voltage applied to all Dedicated pins –0.5 4.6 V
VESD
Electrostatic Discharge Voltage Human body model ±2000 V
Charged device model ±500 V
Machine model ±200 V
TJJunction temperature –125°C
TSTG Storage temperature –65 150 °C
Notes:
1. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow
Guidelines for Pb-Free Packages.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
14 Product Specification
R
Power Supply Specifications
Tabl e 7 : Supply Voltage Thresholds for Power-On Reset
Symbol Description Min Max Units
VCCINTT Threshold for the VCCINT supply 0.4 1.0 V
VCCAUXT Threshold for the VCCAUX supply 1.0 2.0 V
VCCO2T Threshold for the VCCO Bank 2 supply 1.0 2.0 V
Notes:
1. When configuring from the In-System Flash, VCCAUX must be in the recommended operating range; on power-up make sure VCCAUX
reaches at least 3.0V before INIT_B goes High to indicate the start of configuration. VCCINT
, VCCAUX, and VCCO supplies to the FPGA can
be applied in any order if this requirement is met. However, an external configuration source might have specific requirements. Check the
data sheet for the attached configuration source. Apply VCCINT last for lowest overall power consumption (see the chapter called “Powering
Spartan-3 Generation FPGAs” in UG331 for more information).
2. To ensure successful power-on, VCCINT
, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with
no dips at any point.
Tabl e 8 : Supply Voltage Ramp Rate
Symbol Description Min Max Units
VCCINTR Ramp rate from GND to valid VCCINT supply level 0.2 100 ms
VCCAUXR Ramp rate from GND to valid VCCAUX supply level 0.2 100 ms
VCCO2R Ramp rate from GND to valid VCCO Bank 2 supply level 0.2 100 ms
Notes:
1. When configuring from the In-System Flash, VCCAUX must be in the recommended operating range; on power-up make sure VCCAUX
reaches at least 3.0V before INIT_B goes High to indicate the start of configuration. VCCINT
, VCCAUX, and VCCO supplies to the FPGA can
be applied in any order if this requirement is met. However, an external configuration source might have specific requirements. Check the
data sheet for the attached configuration source. Apply VCCINT last for lowest overall power consumption (see the chapter called “Powering
Spartan-3 Generation FPGAs” in UG331 for more information).
2. To ensure successful power-on, VCCINT
, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with
no dips at any point.
Tabl e 9 : Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM
Data
Symbol Description Min Units
VDRINT VCCINT level required to retain CMOS Configuration Latch (CCL) and RAM data 1.0 V
VDRAUX VCCAUX level required to retain CMOS Configuration Latch (CCL) and RAM data 2.0 V
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 15
R
General Recommended Operating Conditions
Tabl e 1 0 : General Recommended Operating Conditions
Symbol Description Min Nominal Max Units
TJ Junction temperature Commercial 0 -85°C
Industrial –40 - 100 °C
VCCINT Internal supply voltage 1.14 1.20 1.26 V
VCCO
(1) Output driver supply voltage 1.10 -3.60V
VCCAUX Auxiliary supply voltage VCCAUX = 3.3V 3.00 3.30 3.60 V
VIN(2) Input voltage PCI™ IOSTANDARD –0.5 –V
CCO+0.5 V
All other
IOSTANDARDs
–0.5 –4.10V
TIN Input signal transition time(3) -- 500 ns
Notes:
1. This VCCO range spans the lowest and highest operating voltages for all supported I/O standards. Table 13 lists the recommended VCCO
range specific to each of the single-ended I/O standards, and Table 15 lists that specific to the differential standards.
2. See XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.
3. Measured between 10% and 90% VCCO. Follow Signal Integrity recommendations.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
16 Product Specification
R
General DC Characteristics for I/O Pins
Tabl e 1 1 : General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins
Symbol Description Test Conditions Min Typ Max Units
ILLeakage current at User I/O,
Input-only, Dual-Purpose, and
Dedicated pins, FPGA powered
Driver is in a high-impedance state,
VIN = 0V or VCCO max, sample-tested
–10 –+10μA
IHS Leakage current on pins during
hot socketing, FPGA unpowered
All pins except INIT_B, PROG_B, DONE, and JTAG
pins when PUDC_B = 1.
–10 –+10μA
INIT_B, PROG_B, DONE, and JTAG pins or other
pins when PUDC_B = 0. Add IHS + IRPU μA
IRPU(2) Current through pull-up resistor
at User I/O, Dual-Purpose,
Input-only, and Dedicated pins.
Dedicated pins are powered by
VCCAUX.
VIN = GND VCCO or VCCAUX =
3.0V to 3.6V
–151 –315 –710 μA
VCCO = 2.3V to 2.7V –82 –182 –437 μA
VCCO = 1.7V to 1.9V –36 –88 –226 μA
VCCO = 1.4V to 1.6V –22 –56 –148 μA
VCCO = 1.14V to 1.26V –11 –31 –83 μA
RPU(2) Equivalent pull-up resistor value
at User I/O, Dual-Purpose,
Input-only, and Dedicated pins
(based on IRPU per Note 2)
VIN = GND VCCO = 3.0V to 3.6V 5.1 11.4 23.9 kΩ
VCCO = 2.3V to 2.7V 6.2 14.8 33.1 kΩ
VCCO = 1.7V to 1.9V 8.4 21.6 52.6 kΩ
VCCO = 1.4V to 1.6V 10.8 28.4 74.0 kΩ
VCCO = 1.14V to 1.26V 15.3 41.1 119.4 kΩ
IRPD(2) Current through pull-down
resistor at User I/O,
Dual-Purpose, Input-only, and
Dedicated pins
VIN = VCCO VCCAUX = 3.0V to 3.6V 167 346 659 μA
RPD(2) Equivalent pull-down resistor
value at User I/O, Dual-Purpose,
Input-only, and Dedicated pins
(based on IRPD per Note 2)
VCCAUX = 3.0V to 3.6V VIN = 3.0V to 3.6V 5.5 10.4 20.8 kΩ
VIN = 2.3V to 2.7V 4.1 7.8 15.7 kΩ
VIN = 1.7V to 1.9V 3.0 5.7 11.1 kΩ
VIN = 1.4V to 1.6V 2.7 5.1 9.6 kΩ
VIN = 1.14V to 1.26V 2.4 4.5 8.1 kΩ
IREF VREF current per pin All VCCO levels –10 –+10μA
CIN Input capacitance - –10pF
RDT Resistance of optional differential
termination circuit within a
differential I/O pair. Not available
on Input-only pairs.
VCCO = 3.3V ± 10% LVDS_33,
MINI_LVDS_33,
RSDS_33
90 100 115 Ω
VCCO = 2.5V ± 10% LVDS_25,
MINI_LVDS_25,
RSDS_25
90 110 Ω
Notes:
1. The numbers in this table are based on the conditions set forth in Table 10.
2. This parameter is based on characterization. The pull-up resistance RPU = VCCO / IRPU. The pull-down resistance RPD = VIN / IRPD.
3. VCCAUX must be 3.3V on Spartan-3AN FPGAs. VCCAUX for Spartan-3A FPGAs can be either 3.3V or 2.5V.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 17
R
Quiescent Current Requirements
Tabl e 1 2 : Spartan-3AN FPGA Quiescent Supply Current Characteristics
Symbol Description Device Typical(2) Commercial
Maximum(2) Industrial
Maximum(2) Units
ICCINTQ Quiescent VCCINT supply current XC3S50AN 2 20 30 mA
XC3S200AN 7 50 70 mA
XC3S400AN 10 85 125 mA
XC3S700AN 13 120 185 mA
XC3S1400AN 24 220 310 mA
ICCOQ Quiescent VCCO supply current XC3S50AN 0.2 2 3 mA
XC3S200AN 0.2 2 3 mA
XC3S400AN 0.3 3 4 mA
XC3S700AN 0.3 3 4 mA
XC3S1400AN 0.3 3 4 mA
ICCAUXQ Quiescent VCCAUX supply current XC3S50AN 3.1 8.1 10.1 mA
XC3S200AN 5.1 12.1 15.1 mA
XC3S400AN 5.1 18.1 24.1 mA
XC3S700AN 6.1 28.1 34.1 mA
XC3S1400AN 10.1 50.1 58.1 mA
Notes:
1. The numbers in this table are based on the conditions set forth in Table 10.
2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads
disabled. The internal SPI Flash is deselected (CSB = High); the internal SPI Flash current is consumed on the VCCAUX supply rail. Typical
values are characterized using typical devices at room temperature (TJ of 25°C at VCCINT = 1.2V, VCCO = 3.3V, and VCCAUX = 3.3V). The
maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage limits with
VCCINT = 1.26V, VCCO = 3.6V, and VCCAUX = 3.6V. The FPGA is programmed with a “blank” configuration data file (that is, a design with no
functional elements instantiated). For conditions other than those described above (for example, a design including functional elements),
measured quiescent current levels will be different than the values in the table.
3. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The
Spartan-3AN FPGA XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design, and b)
XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates. For more information on
power for the In-System Flash memory, see the Power Management chapter of UG333.
4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.
5. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode
typically saves 40% total power consumption compared to quiescent current.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
18 Product Specification
R
Single-Ended I/O Standards
Tabl e 1 3 : Recommended Operating Conditions for User I/Os Using Single-Ended Standards
IOSTANDARD
Attribute
VCCO for Drivers(2) VREF VIL VIH
Min (V) Nom (V) Max (V) Min (V) Nom (V) Max (V) Max (V) Min (V)
LVTT L 3. 0 3. 3 3. 6
VREF is not used for
these I/O standards
0.8 2.0
LVCM O S3 3(4) 3.0 3.3 3.6 0.8 2.0
LVCM O S2 5(4,5) 2.3 2.5 2.7 0.7 1.7
LVCMOS18 1.65 1.8 1.95 0.4 0.8
LVCMOS15 1.4 1.5 1.6 0.4 0.8
LVCMOS12 1.1 1.2 1.3 0.4 0.7
PCI33_3 3.0 3.3 3.6 0.3 VCCO 0.5 VCCO
PCI66_3 3.0 3.3 3.6 0.3 VCCO 0.5 VCCO
HSTL_I 1.4 1.5 1.6 0.68 0.75 0.9 VREF - 0.1 VREF + 0.1
HSTL_III 1.4 1.5 1.6 0.9 - VREF - 0.1 VREF + 0.1
HSTL_I_18 1.7 1.8 1.9 0.8 0.9 1.1 VREF - 0.1 VREF + 0.1
HSTL_II_18 1.7 1.8 1.9 0.9 VREF - 0.1 VREF + 0.1
HSTL_III_18 1.7 1.8 1.9 1.1 VREF - 0.1 VREF + 0.1
SSTL18_I 1.7 1.8 1.9 0.833 0.900 0.969 VREF - 0.125 VREF + 0.125
SSTL18_II 1.7 1.8 1.9 0.833 0.900 0.969 VREF - 0.125 VREF + 0.125
SSTL2_I 2.3 2.5 2.7 1.13 1.25 1.38 VREF - 0.150 VREF + 0.150
SSTL2_II 2.3 2.5 2.7 1.13 1.25 1.38 VREF - 0.150 VREF + 0.150
SSTL3_I 3.0 3.3 3.6 1.3 1.5 1.7 VREF - 0.2 VREF + 0.2
SSTL3_II 3.0 3.3 3.6 1.3 1.5 1.7 VREF - 0.2 VREF + 0.2
Notes:
1. Descriptions of the symbols used in this table are as follows:
VCCO – the supply voltage for output drivers
VREF – the reference voltage for setting the input switching threshold
VIL – the input voltage that indicates a Low logic level
VIH – the input voltage that indicates a High logic level
2. In general, the VCCO rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs and for PCI™ I/O standards.
3. For device operation, the maximum signal voltage (VIH max) can be as high as VIN max. See Ta b l e 6 .
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.
5. All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail and use the LVCMOS33
standard. The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a
standard 2.5V configuration interface, apply 2.5V to the VCCO lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 19
R
Tabl e 1 4 : DC Characteristics of User I/Os Using
Single-Ended Standards
IOSTANDARD
Attribute
Test
Conditions
Logic Level
Characteristics
IOL
(mA)
IOH
(mA)
VOL
Max (V)
VOH
Min (V)
LVTT L (3) 222 0.4 2.4
444
666
888
12 12 –12
16 16 –16
24 24 –24
LVCM O S3 3 (3) 222 0.4 V
CCO 0.4
444
666
888
12 12 –12
16 16 –16
24(4) 24 –24
LVCM O S2 5 (3) 222 0.4 V
CCO 0.4
444
666
888
12 12 –12
16(4) 16 –16
24(4) 24 –24
LVCM O S1 8 (3) 222 0.4 V
CCO 0.4
444
666
888
12(4) 12 –12
16(4) 16 –16
LVCM O S1 5 (3) 222 0.4 V
CCO 0.4
444
666
8(4) 8–8
12(4) 12 –12
LVCM O S1 2 (3) 222 0.4 V
CCO 0.4
4(4) 4–4
6(4) 6–6
PCI33_3(5) 1.5 –0.5 10% VCCO 90% VCCO
PCI66_3(5) 1.5 –0.5 10% VCCO 90% VCCO
HSTL_I(4) 8–8 0.4 V
CCO - 0.4
HSTL_III(4) 24 –8 0.4 VCCO - 0.4
HSTL_I_18 8 –8 0.4 VCCO - 0.4
HSTL_II_18(4) 16 –16 0.4 VCCO - 0.4
HSTL_III_18 24 –8 0.4 VCCO - 0.4
SSTL18_I 6.7 –6.7 VTT – 0.475 VTT + 0.475
SSTL18_II(4) 13.4 –13.4 VTT – 0.603 VTT + 0.603
SSTL2_I 8.1 –8.1 VTT – 0.61 VTT + 0.61
SSTL2_II(4) 16.2 –16.2 VTT – 0.81 VTT + 0.81
SSTL3_I 8 –8 VTT – 0.6 VTT + 0.6
SSTL3_II 16 –16 VTT – 0.8 VTT + 0.8
Notes:
1. The numbers in this table are based on the conditions set forth in
Table 10 and Table 13.
2. Descriptions of the symbols used in this table are as follows:
IOL the output current condition under which VOL is tested
IOH the output current condition under which VOH is tested
VOL the output voltage that indicates a Low logic level
VOH the output voltage that indicates a High logic level
VCCO the supply voltage for output drivers
VTT the voltage applied to a resistor termination
3. For the LVCMOS and LVTTL standards: the same VOL and VOH
limits apply for the Fast, Slow and QUIETIO slew attributes.
4. These higher-drive output standards are supported only on
FPGA banks 1 and 3. Inputs are unrestricted. See the “Using I/O
Resources” chapter in UG331.
5. Tested according to the relevant PCI specifications. For
information on PCI IP solutions, see www.xilinx.com/products/
design_resources/conn_central/protocols/pci_pcix.htm. The
PCIX IOSTANDARD is available and has equivalent
characteristics but no PCI-X IP is supported.
Table 14: DC Characteristics of User I/Os Using
Single-Ended Standards (Continued)
IOSTANDARD
Attribute
Test
Conditions
Logic Level
Characteristics
IOL
(mA)
IOH
(mA)
VOL
Max (V)
VOH
Min (V)
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
20 Product Specification
R
Differential I/O Standards
Differential Input Pairs
X-Ref Target - Figure 6
Figure 6: Differential Input Voltages
DS529-3_10_012907
V
INN
V
INP
GND level
50%
V
ICM
V
ICM
= Input common mode voltage =
V
ID
V
INP
Internal
Logic
Differential
I/O Pair Pins
V
INN
N
P
2
V
INP
+ V
INN
V
ID
= Differential input voltage = V
INP
- V
INN
Tabl e 1 5 : Recommended Operating Conditions for User I/Os Using Differential Signal Standards
IOSTANDARD Attribute
VCCO for Drivers(1) VID VICM(2)
Min (V) Nom (V) Max (V) Min (mV) Nom (mV) Max (mV) Min (V) Nom (V) Max (V)
LVD S _ 2 5(3) 2.25 2.5 2.75 100 350 600 0.3 1.25 2.35
LVD S _ 3 3(3) 3.0 3.3 3.6 100 350 600 0.3 1.25 2.35
BLVDS_25(4) 2.25 2.5 2.75 100 300 0.3 1.3 2.35
MINI_LVDS_25(3) 2.25 2.5 2.75 200 600 0.3 1.2 1.95
MINI_LVDS_33(3) 3.0 3.3 3.6 200 600 0.3 1.2 1.95
LVPECL_25(5) Inputs Only 100 800 1000 0.3 1.2 1.95
LVPECL_33(5) Inputs Only 100 800 1000 0.3 1.2 2.8(6)
RSDS_25(3) 2.25 2.5 2.75 100 200 –0.31.21.5
RSDS_33(3) 3.0 3.3 3.6 100 200 –0.31.21.5
TMDS_33(3, 4, 7) 3.14 3.3 3.47 150 –12002.7 –3.23
PPDS_25(3) 2.25 2.5 2.75 100 400 0.2 –2.3
PPDS_33(3) 3.0 3.3 3.6 100 400 0.2 –2.3
DIFF_HSTL_I_18 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_II_18(8) 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_III_18 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_I 1.4 1.5 1.6 100 –0.68 0.9
DIFF_HSTL_III 1.4 1.5 1.6 100 –0.9
DIFF_SSTL18_I 1.7 1.8 1.9 100 –0.7–1.1
DIFF_SSTL18_II(8) 1.7 1.8 1.9 100 –0.7–1.1
DIFF_SSTL2_I 2.3 2.5 2.7 100 –1.0–1.5
DIFF_SSTL2_II(8) 2.3 2.5 2.7 100 –1.0–1.5
DIFF_SSTL3_I 3.0 3.3 3.6 100 –1.1–1.9
DIFF_SSTL3_II 3.0 3.3 3.6 100 –1.1–1.9
Notes:
1. The VCCO rails supply only differential output drivers, not input circuits.
2. VICM must be less than VCCAUX.
3. These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the “Using I/O Resources” chapter in UG331.
4. See "External Termination Requirements for Differential I/O," page 22.
5. LVPECL is supported on inputs only, not outputs. Requires VCCAUX = 3.3V ± 10%.
6. LVPECL_33 maximum VICM = VCCAUX – (VID / 2)
7. Requires VCCAUX = 3.3V ± 10% for inputs. (VCCAUX – 300 mV) VICM (VCCAUX – 37 mV)
8. These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the “Using I/O Resources” chapter in UG331.
9. VREF inputs are used for the DIFF_SSTL and DIFF_HSTL standards. The VREF settings are the same as for the single-ended versions in Table 13. Other differential
standards do not use VREF
.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 21
R
Differential Output Pairs
X-Ref Target - Figure 7
Figure 7: Differential Output Voltages
Tabl e 1 6 : DC Characteristics of User I/Os Using Differential Signal Standards
IOSTANDARD Attribute
VOD VOCM VOH VOL
Min (mV)
Typ
(mV) Max (mV)
Min
(V) Typ (V) Max (V)
Min
(V)
Max
(V)
LVDS_25 247 350 454 1.125 –1.375
LVDS_33 247 350 454 1.125 –1.375
BLVDS_25 240 350 460 –1.30
MINI_LVDS_25 300 –600 1.0 –1.4
MINI_LVDS_33 300 –600 1.0 –1.4
RSDS_25 100 –400 1.0 –1.4
RSDS_33 100 –400 1.0 –1.4
TMDS_33 400 –800V
CCO – 0.405 –V
CCO – 0.190
PPDS_25 100 400 0.5 0.8 1.4
PPDS_33 100 400 0.5 0.8 1.4
DIFF_HSTL_I_18 –V
CCO – 0.4 0.4
DIFF_HSTL_II_18 –V
CCO – 0.4 0.4
DIFF_HSTL_III_18 –V
CCO – 0.4 0.4
DIFF_HSTL_I VCCO – 0.4 0.4
DIFF_HSTL_III VCCO – 0.4 0.4
DIFF_SSTL18_I –V
TT + 0.475 VTT – 0.475
DIFF_SSTL18_II –V
TT + 0.475 VTT – 0.475
DIFF_SSTL2_I –V
TT + 0.61 VTT – 0.61
DIFF_SSTL2_II –V
TT + 0.81 VTT – 0.81
DIFF_SSTL3_I –V
TT + 0.6 VTT – 0.6
DIFF_SSTL3_II –V
TT + 0.8 VTT – 0.8
Notes:
1. The numbers in this table are based on the conditions set forth in Ta bl e 1 0 and Ta b l e 1 5 .
2. See "External Termination Requirements for Differential I/O," page 22.
3. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins
of the differential signal pair.
4. At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25,
RSDS_25, MINI_LVDS_25, PPDS_25 when VCCO=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when
VCCO = 3.3V
VOUTN
VOUTP
GND level
50%
VOCM
VOCM
VOD
VOL
VOH
VOUTP
Internal
Logic VOUTN
N
P
= Output common mode voltage = 2
VOUTP +V
OUTN
VOD = Output differential voltage =
VOH = Output voltage indicating a High logic level
VOL = Output voltage indicating a Low logic level
VOUTP -V
OUTN
Differential
I/O Pair Pins
DS529-3_11_012907
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
22 Product Specification
R
External Termination Requirements for Differential I/O
LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards
BLVDS_25 I/O Standard
TMDS_33 I/O Standard
X-Ref Target - Figure 8
Figure 8: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards
X-Ref Target - Figure 9
Figure 9: External Output and Input Termination Resistors for BLVDS_25 I/O Standard
140Ω
165Ω
165Ω
100Ω
V
CCO
= 2.5V No V
CCO
Requirement
DS529-3_07_080307
BLVDS_25 BLVDS_25
CAT16-LV4F12
Part Number
CAT16-PT4F4
Part Number
1/4th of Bourns 1/4th of Bourns
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
Z0 = 50Ω
Z0 = 50Ω
X-Ref Target - Figure 10
Figure 10: External Input Resistors Required for TMDS_33 I/O Standard
50Ω
VCCO = 3.3VVCCAUX = 3.3V
DS529-3_08_020107DVI/HDMI cable
50Ω
3.3V
TMDS_33 TMDS_33
Bank 0
Bank 2
Bank 0 and 2
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 23
R
Device DNA Read Endurance
In-System Flash Memory Data Retention, Program/Write Endurance
Tabl e 1 7 : Device DNA Identifier Memory Characteristics
Symbol Description Minimum Units
DNA_CYCLES Number of READ operations or JTAG ISC_DNA read operations. Unaffected by
HOLD or SHIFT operations 30,000,000 Read
cycles
Tabl e 1 8 : In-System Flash (ISF) Memory Characteristics
Symbol Description Minimum(1) Units
ISF_RETENTION Data retention 20 Years
ISF_ACTIVE Time that the ISF memory is selected and active. SPI_ACCESS design primitive
pins CSB = Low, CLK toggling 2Years
ISF_PAGE_CYCLES Number of program/erase cycles, per ISF memory page 100,000 Cycles
ISF_PAGE_REWRITE Number of cumulative random (non-sequential) page erase/program operations
within a sector before pages must be rewritten 10,000 Cycles
ISF_SPR_CYCLES Number of program/erase cycles for Sector Protection Register 10,000 Cycles
ISF_SEC_CYCLES Number of program cycles for Sector Lockdown Register per sector,
user-programmable field in Security Register, and Power-of-2 Page Size 1 Cycle
Notes:
1. Minimum value at which functionality is still guaranteed. Do not exceed these values.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
24 Product Specification
R
Switching Characteristics
All Spartan-3AN FPGAs ship in two speed grades: –4 and
the higher performance –5. Switching characteristics in this
document are designated as Preview, Advance,
Preliminary, or Production, as shown in Table 19. Each
category is defined as follows:
Preview: These specifications are based on estimates only
and should not be used for timing analysis.
Advance: These specifications are based on simulations
only and are typically available soon after establishing
FPGA specifications. Although speed grades with this
designation are considered relatively stable and
conservative, some under-reporting might still occur.
Preliminary: These specifications are based on complete
early silicon characterization. Devices and speed grades
with this designation are intended to give a better indication
of the expected performance of production silicon. The
probability of under-reporting preliminary delays is greatly
reduced compared to Advance data.
Production: These specifications are approved once
enough production silicon of a particular device family
member has been characterized to provide full correlation
between speed files and devices over numerous production
lots. There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes.
Typically, the slowest speed grades transition to Production
before faster speed grades.
Software Version Requirements
Production-quality systems must use FPGA designs
compiled using a speed file designated as PRODUCTION
status. FPGA designs using a less mature speed file
designation should only be used during system prototyping
or pre-production qualification. FPGA designs with speed
files designated as Preview, Advance, or Preliminary should
not be used in a production-quality system.
Whenever a speed file designation changes, as a device
matures toward Production status, rerun the latest Xilinx®
ISE® software on the FPGA design to ensure that the
FPGA design incorporates the latest timing information and
software updates.
In some cases, a particular family member (and speed
grade) is released to Production at a different time than
when the speed file is released with the Production label.
Any labeling discrepancies are corrected in subsequent
speed file releases. See Table 19 for devices that can be
considered to have the Production label.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. Unless
otherwise noted, the published parameter values apply
to all Spartan-3AN devices. AC and DC characteristics
are specified using the same numbers for both
commercial and industrial grades.
To create a Xilinx MySupport user account and sign up for
automatic E-mail notification whenever this data sheet is
updated:
Sign Up for Alerts on Xilinx MySupport
www.xilinx.com/support/answers/19380.htm
Timing parameters and their representative values are
selected for inclusion either because they are important as
general design requirements or they indicate fundamental
device performance characteristics. The Spartan-3AN
speed files (v1.41), part of the Xilinx Development Software,
are the original source for many but not all of the values.
The speed grade designations for these files are shown in
Table 19. For more complete, more precise, and worst-case
data, use the values reported by the Xilinx static timing
analyzer (TRACE in the Xilinx development software) and
back-annotated to the simulation netlist.
Table 20 provides the recent history of the Spartan-3AN
speed files.
Table 19: Spartan-3AN Family v1.41 Speed Grade
Designations
Device Preview Advance Preliminary Production
XC3S50AN 4, 5
XC3S200AN 4, 5
XC3S400AN 4, 5
XC3S700AN 4, 5
XC3S1400AN 4, 5
Table 20: Spartan-3AN Speed File Version History
Version
ISE
Release Description
1.41 ISE 10.1.03 Updated for Spartan-3A family. No
change to data for Spartan-3AN family.
1.40 ISE 10.1.02 Updated for Spartan-3A family. No
change to data for Spartan-3AN family.
1.39 ISE 10.1 Updated for Spartan-3A family. No
change to data for Spartan-3AN family.
1.38 ISE 9.2.03i Updated to Production. No change to
data.
1.37 ISE 9.2.01i
Updated pin-to-pin setup and hold times,
TMDS output adjustment, multiplier
setup/hold times, and block RAM clock
width.
1.36 ISE 9.2i Added -5 speed grade, updated to
Advance.
1.34 ISE 9.1.03i Updated pin-to-pin timing.
1.32 ISE 9.1.01i Preview speed files for -4 speed grade.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 25
R
I/O Timing
Pin-to-Pin Clock-to-Output Times
Tabl e 2 1 : Pin-to-Pin Clock-to-Output Times for the IOB Output Path
Symbol Description Conditions Device
Speed Grade
Units
-5 -4
Max Max
Clock-to-Output Times
TICKOFDCM When reading from the Output
Flip-Flop (OFF), the time from the
active transition on the Global
Clock pin to data appearing at the
Output pin. The DCM is in use.
LVCM O S2 5 (2), 12mA
output drive, Fast slew
rate, with DCM(3)
XC3S50AN 3.18 3.42 ns
XC3S200AN 3.21 3.27 ns
XC3S400AN 2.97 3.33 ns
XC3S700AN 3.39 3.50 ns
XC3S1400AN 3.51 3.99 ns
TICKOF When reading from OFF, the time
from the active transition on the
Global Clock pin to data appearing
at the Output pin. The DCM is not
in use.
LVCM O S2 5 (2), 12mA
output drive, Fast slew
rate, without DCM
XC3S50AN 4.59 5.02 ns
XC3S200AN 4.88 5.24 ns
XC3S400AN 4.68 5.12 ns
XC3S700AN 4.97 5.34 ns
XC3S1400AN 5.06 5.69 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tabl e 3 0 and are based on the operating conditions set forth in
Ta b l e 1 0 and Table 13.
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate
Input adjustment from Table 26. If the latter is true, add the appropriate Output adjustment from Table 29.
3. DCM output jitter is included in all measurements.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
26 Product Specification
R
Pin-to-Pin Setup and Hold Times
Tabl e 2 2 : Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)
Symbol Description Conditions Device
Speed Grade
Units
-5 -4
Min Min
Setup Times
TPSDCM When writing to the Input
Flip-Flop (IFF), the time from the
setup of data at the Input pin to
the active transition at a Global
Clock pin. The DCM is in use. No
Input Delay is programmed.
LVC MO S 2 5 (2),
IFD_DELAY_VALUE = 0,
with DCM(4)
XC3S50AN 2.45 2.68 ns
XC3S200AN 2.59 2.84 ns
XC3S400AN 2.38 2.68 ns
XC3S700AN 2.38 2.57 ns
XC3S1400AN 1.91 2.17 ns
TPSFD When writing to IFF, the time
from the setup of data at the
Input pin to an active transition at
the Global Clock pin. The DCM is
not in use. The Input Delay is
programmed.
LVC MO S 2 5 (2),
IFD_DELAY_VALUE = 5,
without DCM
XC3S50AN 2.55 2.76 ns
XC3S200AN 2.32 2.76 ns
XC3S400AN 2.21 2.60 ns
XC3S700AN 2.28 2.63 ns
XC3S1400AN 2.33 2.41 ns
Hold Times
TPHDCM When writing to IFF, the time
from the active transition at the
Global Clock pin to the point
when data must be held at the
Input pin. The DCM is in use. No
Input Delay is programmed.
LVC MO S 2 5 (3),
IFD_DELAY_VALUE = 0,
with DCM(4)
XC3S50AN -0.36 -0.36 ns
XC3S200AN -0.52 -0.52 ns
XC3S400AN -0.33 -0.29 ns
XC3S700AN -0.17 -0.12 ns
XC3S1400AN -0.07 0.00 ns
TPHFD When writing to IFF, the time
from the active transition at the
Global Clock pin to the point
when data must be held at the
Input pin. The DCM is not in use.
The Input Delay is programmed.
LVC MO S 2 5 (3),
IFD_DELAY_VALUE = 5,
without DCM
XC3S50AN -0.63 -0.58 ns
XC3S200AN -0.56 -0.56 ns
XC3S400AN -0.42 -0.42 ns
XC3S700AN -0.80 -0.75 ns
XC3S1400AN -0.69 -0.69 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in
Table 10 and Table 13.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 26. If this is true of the data Input, add the
appropriate Input adjustment from the same table.
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data
Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 26. If this is true of the data Input, subtract the
appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active
edge.
4. DCM output jitter is included in all measurements.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 27
R
Input Setup and Hold Times
Tabl e 2 3 : Setup and Hold Times for the IOB Input Path
Symbol Description Conditions
IFD_
DELAY_
VALUE Device
Speed Grade
Units
-5 -4
Min Min
Setup Times
TIOPICK Time from the setup of data at the
Input pin to the active transition at the
ICLK input of the Input Flip-Flop (IFF).
No Input Delay is programmed.
LVCM O S2 5(2) 0 XC3S50AN 1.56 1.58 ns
XC3S200AN 1.71 1.81 ns
XC3S400AN 1.30 1.51 ns
XC3S700AN 1.34 1.51 ns
XC3S1400AN 1.36 1.74 ns
TIOPICKD Time from the setup of data at the
Input pin to the active transition at the
ICLK input of the Input Flip-Flop (IFF).
The Input Delay is programmed.
LVCM O S2 5(2) 1 XC3S50AN 2.16 2.18 ns
23.103.12
ns
33.513.76ns
44.044.32ns
53.884.24
ns
64.725.09ns
75.475.94ns
85.976.52
ns
1 XC3S200AN 2.05 2.20 ns
22.722.93ns
33.383.78
ns
43.884.37ns
53.694.20ns
64.565.23
ns
75.346.11ns
85.856.71ns
1 XC3S400AN 1.79 2.02 ns
22.432.67ns
33.023.43
ns
43.493.96
ns
53.413.95
ns
64.204.81
ns
74.965.66
ns
85.446.19
ns
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
28 Product Specification
R
TIOPICKD Time from the setup of data at the
Input pin to the active transition at the
ICLK input of the Input Flip-Flop (IFF).
The Input Delay is programmed.
LVCM O S2 5(2) 1 XC3S700AN 1.82 1.95 ns
22.622.83
ns
33.323.72ns
43.834.31ns
53.694.14ns
64.605.19
ns
75.396.10ns
85.926.73ns
1 XC3S1400AN 1.79 2.17 ns
22.552.92ns
33.383.76ns
43.754.32
ns
53.814.19ns
64.395.09ns
75.165.98
ns
85.696.57ns
Hold Times
TIOICKP Time from the active transition at the
ICLK input of the Input Flip-Flop (IFF)
to the point where data must be held
at the Input pin. No Input Delay is
programmed.
LVCM O S2 5(3) 0 XC3S50AN –0.66 –0.64 ns
XC3S200AN –0.85 –0.65 ns
XC3S400AN –0.42 –0.42 ns
XC3S700AN –0.81 –0.67 ns
XC3S1400AN –0.71 –0.71 ns
TIOICKPD Time from the active transition at the
ICLK input of the Input Flip-Flop (IFF)
to the point where data must be held
at the Input pin. The Input Delay is
programmed.
LVCM O S2 5(3) 1 XC3S50AN –0.88 –0.88 ns
2 –1.33 –1.33 ns
3 –2.05 –2.05 ns
4 –2.43 –2.43 ns
5 –2.34 –2.34 ns
6 –2.81 –2.81 ns
7 –3.03 –3.03 ns
8 –3.83 –3.57 ns
1 XC3S200AN –1.51 –1.51 ns
2 –2.09 –2.09 ns
3 –2.40 –2.40 ns
4 –2.68 –2.68 ns
5 –2.56 –2.56 ns
6 –2.99 –2.99 ns
7 –3.29 –3.29 ns
8 –3.61 –3.61 ns
Tabl e 2 3 : Setup and Hold Times for the IOB Input Path (Continued)
Symbol Description Conditions
IFD_
DELAY_
VALUE Device
Speed Grade
Units
-5 -4
Min Min
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 29
R
TIOICKPD Time from the active transition at the
ICLK input of the Input Flip-Flop (IFF)
to the point where data must be held
at the Input pin. The Input Delay is
programmed.
LVCM O S2 5(3) 1 XC3S400AN –1.12 –1.12 ns
2 –1.70 –1.70 ns
3 –2.08 –2.08 ns
4 –2.38 –2.38 ns
5 –2.23 –2.23 ns
6 –2.69 –2.69 ns
7 –3.08 –3.08 ns
8 –3.35 –3.35 ns
1 XC3S700AN –1.67 –1.67 ns
2 –2.27 –2.27 ns
3 –2.59 –2.59 ns
4 –2.92 –2.92 ns
5 –2.89 –2.89 ns
6 –3.22 –3.22 ns
7 –3.52 –3.52 ns
8 –3.81 –3.81 ns
1 XC3S1400AN –1.60 –1.60 ns
2 –2.06 –2.06 ns
3 –2.46 –2.46 ns
4 –2.86 –2.86 ns
5 –2.88 –2.88 ns
6 –3.24 –3.24 ns
7 –3.55 –3.55 ns
8 –3.89 –3.89 ns
Set/Reset Pulse Width
TRPW_IOB Minimum pulse width to SR control
input on IOB
-- All 1.33 1.61 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tabl e 3 0 and are based on the operating conditions set forth in
Ta b l e 1 0 and Table 13.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the
appropriate Input adjustment from Table 26.
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract
the appropriate Input adjustment from Table 26. When the hold time is negative, it is possible to change the data before the clock’s active
edge.
Tabl e 2 4 : Sample Window (Source Synchronous)
Symbol Description Max Units
TSAMP Setup and hold
capture window of
an IOB flip-flop.
The input capture sample window value is highly specific to a particular application, device,
package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the
appropriate Xilinx Answer Record for application-specific values.
Answer Record 30879
ps
Tabl e 2 3 : Setup and Hold Times for the IOB Input Path (Continued)
Symbol Description Conditions
IFD_
DELAY_
VALUE Device
Speed Grade
Units
-5 -4
Min Min
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
30 Product Specification
R
Input Propagation Times
Tabl e 2 5 : Propagation Times for the IOB Input Path
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
Propagation Times
TIOPI The time it takes for data to travel
from the Input pin to the I output
with no input delay programmed
LVCM O S2 5 (2) IBUF_DELAY_VALUE=0 XC3S50AN 1.04 1.12 ns
XC3S200AN 0.87 0.87 ns
XC3S400AN 0.65 0.72 ns
XC3S700AN 0.92 0.92 ns
XC3S1400AN 0.96 1.21 ns
TIOPID The time it takes for data to travel
from the Input pin to the I output
with the input delay programmed
LVCM O S2 5 (2) 1 XC3S50AN 1.79 2.07 ns
2 2.13 2.46 ns
3 2.36 2.71 ns
4 2.88 3.21 ns
5 3.11 3.46 ns
6 3.45 3.84 ns
7 3.75 4.19 ns
8 4.00 4.47 ns
9 3.61 4.11 ns
10 3.95 4.50 ns
11 4.18 4.67 ns
12 4.75 5.20 ns
13 4.98 5.44 ns
14 5.31 5.95 ns
15 5.62 6.28 ns
16 5.86 6.57 ns
1 XC3S200AN 1.57 1.65 ns
2 1.87 1.97 ns
3 2.16 2.33 ns
4 2.68 2.96 ns
5 2.87 3.19 ns
6 3.20 3.60 ns
7 3.57 4.02 ns
8 3.79 4.26 ns
9 3.42 3.86 ns
10 3.79 4.25 ns
11 4.02 4.55 ns
12 4.62 5.24 ns
13 4.86 5.53 ns
14 5.18 5.94 ns
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 31
R
TIOPID The time it takes for data to travel
from the Input pin to the I output
with the input delay programmed
LVCM O S2 5 (2) 15 XC3S200AN 5.43 6.24 ns
16 5.75 6.59 ns
1 XC3S400AN 1.32 1.43 ns
2 1.67 1.83 ns
3 1.90 2.07 ns
4 2.33 2.52 ns
5 2.60 2.91 ns
6 2.94 3.20 ns
7 3.23 3.51 ns
8 3.50 3.85 ns
9 3.18 3.55 ns
10 3.53 3.95 ns
11 3.76 4.20 ns
12 4.26 4.67 ns
13 4.51 4.97 ns
14 4.85 5.32 ns
15 5.14 5.64 ns
16 5.40 5.95 ns
1 XC3S700AN 1.84 1.87 ns
2 2.20 2.27 ns
3 2.46 2.60 ns
4 2.93 3.15 ns
5 3.21 3.45 ns
6 3.54 3.80 ns
7 3.86 4.16 ns
8 4.13 4.48 ns
9 3.82 4.19 ns
10 4.17 4.58 ns
11 4.43 4.89 ns
12 4.95 5.49 ns
13 5.22 5.83 ns
14 5.57 6.21 ns
15 5.89 6.55 ns
16 6.16 6.89 ns
1 XC3S1400AN 1.95 2.18 ns
2 2.29 2.59 ns
3 2.54 2.84 ns
4 2.96 3.30 ns
Tabl e 2 5 : Propagation Times for the IOB Input Path (Continued)
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
32 Product Specification
R
TIOPID The time it takes for data to travel
from the Input pin to the I output
with the input delay programmed
LVCM O S2 5 (2) 5 XC3S1400AN 3.17 3.52 ns
6 3.52 3.92 ns
7 3.82 4.18 ns
8 4.10 4.57 ns
9 3.84 4.31 ns
10 4.20 4.79 ns
11 4.46 5.06 ns
12 4.87 5.51 ns
13 5.07 5.73 ns
14 5.43 6.08 ns
15 5.73 6.33 ns
16 6.01 6.77 ns
TIOPLI The time it takes for data to travel
from the Input pin through the IFF
latch to the I output with no input
delay programmed
LVCM O S2 5 (2) IFD_DELAY_VALUE=0 XC3S50AN 1.70 1.81 ns
XC3S200AN 1.85 2.04 ns
XC3S400AN 1.44 1.74 ns
XC3S700AN 1.48 1.74 ns
XC3S1400AN 1.50 1.97 ns
Tabl e 2 5 : Propagation Times for the IOB Input Path (Continued)
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 33
R
TIOPLID The time it takes for data to travel
from the Input pin through the IFF
latch to the I output with the input
delay programmed
LVCM O S2 5 (2 1 XC3S50AN 2.30 2.41 ns
2 3.24 3.35 ns
3 3.65 3.98 ns
4 4.18 4.55 ns
5 4.02 4.47 ns
6 4.86 5.32 ns
7 5.61 6.17 ns
8 6.11 6.75 ns
1 XC3S200AN 2.19 2.43 ns
2 2.86 3.16 ns
3 3.52 4.01 ns
4 4.02 4.60 ns
5 3.83 4.43 ns
6 4.70 5.46 ns
7 5.48 6.33 ns
8 5.99 6.94 ns
1 XC3S400AN 1.93 2.25 ns
2 2.57 2.90 ns
3 3.16 3.66 ns
4 3.63 4.19 ns
5 3.55 4.18 ns
6 4.34 5.03 ns
7 5.09 5.88 ns
8 5.58 6.42 ns
1 XC3S700AN 1.96 2.18 ns
2 2.76 3.06 ns
3 3.45 3.95 ns
4 3.97 4.54 ns
5 3.83 4.37 ns
6 4.74 5.42 ns
7 5.53 6.33 ns
8 6.06 6.96 ns
Tabl e 2 5 : Propagation Times for the IOB Input Path (Continued)
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
34 Product Specification
R
TIOPLID The time it takes for data to travel
from the Input pin through the IFF
latch to the I output with the input
delay programmed
LVCM O S2 5 (2 1 XC3S1400AN 1.93 2.40 ns
2 2.69 3.15 ns
3 3.52 3.99 ns
4 3.89 4.55 ns
5 3.95 4.42 ns
6 4.53 5.32 ns
7 5.30 6.21 ns
8 5.83 6.80 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tabl e 3 0 and are based on the operating conditions set forth in
Ta b l e 1 0 and Table 13.
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is
true, add the appropriate Input adjustment from Tabl e 2 6.
Tabl e 2 5 : Propagation Times for the IOB Input Path (Continued)
Symbol Description Conditions DELAY_VALUE Device
Speed Grade
Units
-5 -4
Max Max
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 35
R
Input Timing Adjustments
Tabl e 2 6 : Input Timing Adjustments by IOSTANDARD
Convert Input Time from
LVCMOS25 to the Following
Signal Standard
(IOSTANDARD)
Add the
Adjustment Below
Units
Speed Grade
-5 -4
Single-Ended Standards
LVT T L 0.6 2 0. 6 2 n s
LVCMOS33 0.54 0.54 ns
LVCMOS25 0 0 ns
LVCMOS18 0.83 0.83 ns
LVCMOS15 0.60 0.60 ns
LVCMOS12 0.31 0.31 ns
PCI33_3 0.41 0.41 ns
PCI66_3 0.41 0.41 ns
HSTL_I 0.72 0.72 ns
HSTL_III 0.77 0.77 ns
HSTL_I_18 0.69 0.69 ns
HSTL_II_18 0.69 0.69 ns
HSTL_III_18 0.79 0.79 ns
SSTL18_I 0.71 0.71 ns
SSTL18_II 0.71 0.71 ns
SSTL2_I 0.68 0.68 ns
SSTL2_II 0.68 0.68 ns
SSTL3_I 0.78 0.78 ns
SSTL3_II 0.78 0.78 ns
Differential Standards
LVDS _ 25 0.7 6 0 .7 6 n s
LVDS _ 33 0.7 9 0 .7 9 n s
BLVDS_25 0.79 0.79 ns
MINI_LVDS_25 0.78 0.78 ns
MINI_LVDS_33 0.79 0.79 ns
LVPECL_25 0.78 0.78 ns
LVPECL_33 0.79 0.79 ns
RSDS_25 0.79 0.79 ns
RSDS_33 0.77 0.77 ns
TMDS_33 0.79 0.79 ns
PPDS_25 0.79 0.79 ns
PPDS_33 0.79 0.79 ns
DIFF_HSTL_I_18 0.74 0.74 ns
DIFF_HSTL_II_18 0.72 0.72 ns
DIFF_HSTL_III_18 1.05 1.05 ns
DIFF_HSTL_I 0.72 0.72 ns
DIFF_HSTL_III 1.05 1.05 ns
DIFF_SSTL18_I 0.71 0.71 ns
DIFF_SSTL18_II 0.71 0.71 ns
DIFF_SSTL2_I 0.74 0.74 ns
DIFF_SSTL2_II 0.75 0.75 ns
DIFF_SSTL3_I 1.06 1.06 ns
DIFF_SSTL3_II 1.06 1.06 ns
Notes:
1. The numbers in this table are tested using the methodology
presented in Table 30 and are based on the operating conditions
set forth in Table 10, Ta bl e 1 3 , and Table 15.
2. These adjustments are used to convert input path times originally
specified for the LVCMOS25 standard to times that correspond to
other signal standards.
Table 26: Input Timing Adjustments by IOSTANDARD
Convert Input Time from
LVCMOS25 to the Following
Signal Standard
(IOSTANDARD)
Add the
Adjustment Below
Units
Speed Grade
-5 -4
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
36 Product Specification
R
Output Propagation Times
Tabl e 2 7 : Timing for the IOB Output Path
Symbol Description Conditions Device
Speed Grade
Units
-5 -4
Max Max
Clock-to-Output Times
TIOCKP When reading from the Output
Flip-Flop (OFF), the time from the
active transition at the OCLK input to
data appearing at the Output pin
LVCM O S 2 5(2), 12 mA output
drive, Fast slew rate
All 2.87 3.13 ns
Propagation Times
TIOOP The time it takes for data to travel from
the IOB’s O input to the Output pin
LVCM O S 2 5(2), 12 mA output
drive, Fast slew rate
All 2.78 2.91 ns
Set/Reset Times
TIOSRP Time from asserting the OFF’s SR
input to setting/resetting data at the
Output pin
LVCM O S 2 5(2), 12 mA output
drive, Fast slew rate
All 3.63 3.89 ns
TIOGSRQ Time from asserting the Global Set
Reset (GSR) input on the
STARTUP_SPARTAN3A primitive to
setting/resetting data at the Output pin
8.62 9.65 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tabl e 3 0 and are based on the operating conditions set forth in
Ta b l e 1 0 and Table 13.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data
Output. When this is true, add the appropriate Output adjustment from Table 29.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 37
R
Three-State Output Propagation Times
Tabl e 2 8 : Timing for the IOB Three-State Path
Symbol Description Conditions Device
Speed Grade
Units
-5 -4
Max Max
Synchronous Output Enable/Disable Times
TIOCKHZ Time from the active transition at the OTCLK
input of the Three-state Flip-Flop (TFF) to when
the Output pin enters the high-impedance state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 0.63 0.76 ns
TIOCKON(2) Time from the active transition at TFF’s OTCLK
input to when the Output pin drives valid data
All 2.80 3.06 ns
Asynchronous Output Enable/Disable Times
TGTS Time from asserting the Global Three State
(GTS) input on the STARTUP_SPARTAN3A
primitive to when the Output pin enters the
high-impedance state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 9.47 10.36 ns
Set/Reset Times
TIOSRHZ Time from asserting TFF’s SR input to when
the Output pin enters a high-impedance state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 1.61 1.86 ns
TIOSRON(2) Time from asserting TFF’s SR input at TFF to
when the Output pin drives valid data
All 3.57 3.82 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in
Table 10 and Table 13.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the
data Output. When this is true, add the appropriate Output adjustment from Table 29.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
38 Product Specification
R
Output Timing Adjustments
Tabl e 2 9 : Output Timing Adjustments for IOB
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
Single-Ended Standards
LVTTL Slow 2 mA 5.58 5.58 ns
4 mA 3.16 3.16 ns
6 mA 3.17 3.17 ns
8 mA 2.09 2.09 ns
12 mA 1.62 1.62 ns
16 mA 1.24 1.24 ns
24 mA 2.74(3) 2.74(3) ns
Fast 2 mA 3.03 3.03 ns
4 mA 1.71 1.71 ns
6 mA 1.71 1.71 ns
8 mA 0.53 0.53 ns
12 mA 0.53 0.53 ns
16 mA 0.59 0.59 ns
24 mA 0.60 0.60 ns
QuietIO 2 mA 27.67 27.67 ns
4 mA 27.67 27.67 ns
6 mA 27.67 27.67 ns
8 mA 16.71 16.71 ns
12 mA 16.67 16.67 ns
16 mA 16.22 16.22 ns
24 mA 12.11 12.11 ns
LVCMOS33 Slow 2 mA 5.58 5.58 ns
4 mA 3.17 3.17 ns
6 mA 3.17 3.17 ns
8 mA 2.09 2.09 ns
12 mA 1.24 1.24 ns
16 mA 1.15 1.15 ns
24 mA 2.55(3) 2.55(3) ns
Fast 2 mA 3.02 3.02 ns
4 mA 1.71 1.71 ns
6 mA 1.72 1.72 ns
8 mA 0.53 0.53 ns
12 mA 0.59 0.59 ns
16 mA 0.59 0.59 ns
24 mA 0.51 0.51 ns
QuietIO 2 mA 27.67 27.67 ns
4 mA 27.67 27.67 ns
6 mA 27.67 27.67 ns
8 mA 16.71 16.71 ns
12 mA 16.29 16.29 ns
16 mA 16.18 16.18 ns
24 mA 12.11 12.11 ns
Table 29: Output Timing Adjustments for IOB (Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 39
R
LVCMOS25 Slow 2 mA 5.33 5.33 ns
4 mA 2.81 2.81 ns
6 mA 2.82 2.82 ns
8 mA 1.14 1.14 ns
12 mA 1.10 1.10 ns
16 mA 0.83 0.83 ns
24 mA 2.26(3) 2.26(3) ns
Fast 2 mA 4.36 4.36 ns
4 mA 1.76 1.76 ns
6 mA 1.25 1.25 ns
8 mA 0.38 0.38 ns
12 mA 0 0 ns
16 mA 0.01 0.01 ns
24 mA 0.01 0.01 ns
QuietIO 2 mA 25.92 25.92 ns
4 mA 25.92 25.92 ns
6 mA 25.92 25.92 ns
8 mA 15.57 15.57 ns
12 mA 15.59 15.59 ns
16 mA 14.27 14.27 ns
24 mA 11.37 11.37 ns
LVCMOS18 Slow 2 mA 4.48 4.48 ns
4 mA 3.69 3.69 ns
6 mA 2.91 2.91 ns
8 mA 1.99 1.99 ns
12 mA 1.57 1.57 ns
16 mA 1.19 1.19 ns
Fast 2 mA 3.96 3.96 ns
4 mA 2.57 2.57 ns
6 mA 1.90 1.90 ns
8 mA 1.06 1.06 ns
12 mA 0.83 0.83 ns
16 mA 0.63 0.63 ns
QuietIO 2 mA 24.97 24.97 ns
4 mA 24.97 24.97 ns
6 mA 24.08 24.08 ns
8 mA 16.43 16.43 ns
12 mA 14.52 14.52 ns
16 mA 13.41 13.41 ns
Tabl e 2 9 : Output Timing Adjustments for IOB (Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
LVCMOS15 Slow 2 mA 5.82 5.82 ns
4 mA 3.97 3.97 ns
6 mA 3.21 3.21 ns
8 mA 2.53 2.53 ns
12 mA 2.06 2.06 ns
Fast 2 mA 5.23 5.23 ns
4 mA 3.05 3.05 ns
6 mA 1.95 1.95 ns
8 mA 1.60 1.60 ns
12 mA 1.30 1.30 ns
QuietIO 2 mA 34.11 34.11 ns
4 mA 25.66 25.66 ns
6 mA 24.64 24.64 ns
8 mA 22.06 22.06 ns
12 mA 20.64 20.64 ns
LVCMOS12 Slow 2 mA 7.14 7.14 ns
4 mA 4.87 4.87 ns
6 mA 5.67 5.67 ns
Fast 2 mA 6.77 6.77 ns
4 mA 5.02 5.02 ns
6 mA 4.09 4.09 ns
QuietIO 2 mA 50.76 50.76 ns
4 mA 43.17 43.17 ns
6 mA 37.31 37.31 ns
PCI33_3 0.34 0.34 ns
PCI66_3 0.34 0.34 ns
HSTL_I 0.78 0.78 ns
HSTL_III 1.16 1.16 ns
HSTL_I_18 0.35 0.35 ns
HSTL_II_18 0.30 0.30 ns
HSTL_III_18 0.47 0.47 ns
SSTL18_I 0.40 0.40 ns
SSTL18_II 0.30 0.30 ns
SSTL2_I 0 0 ns
SSTL2_II 0.05 0.05 ns
SSTL3_I 0 0 ns
SSTL3_II 0.17 0.17 ns
Table 29: Output Timing Adjustments for IOB (Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
40 Product Specification
R
Differential Standards
LVDS_25 1.16 1.16 ns
LVDS_33 0.46 0.46 ns
BLVDS_25 0.11 0.11 ns
MINI_LVDS_25 0.75 0.75 ns
MINI_LVDS_33 0.40 0.40 ns
LVPECL_25 Input Only
LVPECL_33
RSDS_25 1.42 1.42 ns
RSDS_33 0.58 0.58 ns
TMDS_33 0.46 0.46 ns
PPDS_25 1.07 1.07 ns
PPDS_33 0.63 0.63 ns
DIFF_HSTL_I_18 0.43 0.43 ns
DIFF_HSTL_II_18 0.41 0.41 ns
DIFF_HSTL_III_18 0.36 0.36 ns
DIFF_HSTL_I 1.01 1.01 ns
DIFF_HSTL_III 0.54 0.54 ns
DIFF_SSTL18_I 0.49 0.49 ns
DIFF_SSTL18_II 0.41 0.41 ns
DIFF_SSTL2_I 0.82 0.82 ns
DIFF_SSTL2_II 0.09 0.09 ns
DIFF_SSTL3_I 1.16 1.16 ns
DIFF_SSTL3_II 0.28 0.28 ns
Notes:
1. The numbers in this table are tested using the methodology
presented in Tabl e 3 0 and are based on the operating conditions
set forth in Tab l e 1 0 , Table 13, and Table 15.
2. These adjustments are used to convert output- and
three-state-path times originally specified for the LVCMOS25
standard with 12 mA drive and Fast slew rate to times that
correspond to other signal standards. Do not adjust times that
measure when outputs go into a high-impedance state.
3. Note that 16 mA drive is faster than 24 mA drive for the Slow
slew rate.
Tabl e 2 9 : Output Timing Adjustments for IOB (Continued)
Convert Output Time from
LVCMOS25 with 12mA Drive and
Fast Slew Rate to the Following
Signal Standard (IOSTANDARD)
Add the
Adjustment
Below
Units
Speed Grade
-5 -4
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 41
R
Timing Measurement Methodology
When measuring timing parameters at the programmable
I/Os, different signal standards call for different test
conditions. Tabl e 3 0 lists the conditions to use for each
standard.
The method for measuring Input timing is as follows: A
signal that swings between a Low logic level of VL and a
High logic level of VH is applied to the Input under test.
Some standards also require the application of a bias
voltage to the VREF pins of a given bank to properly set the
input-switching threshold. The measurement point of the
Input signal (VM) is commonly located halfway between VL
and VH.
The Output test setup is shown in Figure 11. A termination
voltage VT is applied to the termination resistor RT
, the other
end of which is connected to the Output. For each standard,
RT and VT generally take on the standard values
recommended for minimizing signal reflections. If the
standard does not ordinarily use terminations (for example,
LVC M O S, LV T T L), t h e n RT is set to 1MΩ to indicate an open
connection, and VT is set to zero. The same measurement
point (VM) that was used at the Input is also used at the
Output.
X-Ref Target - Figure 11
Figure 11: Output Test Setup
FPGA Output
VT (VREF)
RT (RREF)
VM (VMEAS)
CL (CREF)
DS312-3_04_102406
Notes:
1. The names shown in parentheses are
used in the IBIS file.
Tabl e 3 0 : Test Methods for Timing Measurement at I/Os
Signal Standard
(IOSTANDARD)
Inputs Outputs
Inputs and
Outputs
VREF (V) VL (V) VH (V) RT (Ω) VT (V) VM (V)
Single-Ended
LVTT L - 0 3.3 1M 0 1.4
LVCM O S3 3 - 0 3.3 1M 0 1.65
LVCM O S2 5 - 0 2.5 1M 0 1.25
LVCM O S1 8 - 0 1.8 1M 0 0.9
LVCM O S1 5 - 0 1.5 1M 0 0.75
LVCM O S1 2 - 0 1.2 1M 0 0.6
PCI33_3 Rising - Note 3 Note 3 25 0 0.94
Falling 25 3.3 2.03
PCI66_3 Rising - Note 3 Note 3 25 0 0.94
Falling 25 3.3 2.03
HSTL_I 0.75 VREF – 0.5 VREF + 0.5 50 0.75 VREF
HSTL_III 0.9 VREF – 0.5 VREF + 0.5 50 1.5 VREF
HSTL_I_18 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF
HSTL_II_18 0.9 VREF – 0.5 VREF + 0.5 25 0.9 VREF
HSTL_III_18 1.1 VREF – 0.5 VREF + 0.5 50 1.8 VREF
SSTL18_I 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF
SSTL18_II 0.9 VREF – 0.5 VREF + 0.5 25 0.9 VREF
SSTL2_I 1.25 VREF – 0.75 VREF + 0.75 50 1.25 VREF
SSTL2_II 1.25 VREF – 0.75 VREF + 0.75 25 1.25 VREF
SSTL3_I 1.5 VREF – 0.75 VREF + 0.75 50 1.5 VREF
SSTL3_II 1.5 VREF – 0.75 VREF + 0.75 25 1.5 VREF
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
42 Product Specification
R
The capacitive load (CL) is connected between the output
and GND. The Output timing for all standards, as published
in the speed files and the data sheet, is always based on a
CL value of zero. High-impedance probes (less than 1 pF)
are used for all measurements. Any delay that the test
fixture might contribute to test measurements is subtracted
from those measurements to produce the final timing
numbers as published in the speed files and data sheet.
Differential
LVDS_25 -V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
LVDS_33 -V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
BLVDS_25 -V
ICM – 0.125 VICM + 0.125 1M 0 VICM
MINI_LVDS_25 -V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
MINI_LVDS_33 -V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
LVPECL_25 -V
ICM – 0.3 VICM + 0.3 N/A N/A VICM
LVPECL_33 -V
ICM – 0.3 VICM + 0.3 N/A N/A VICM
RSDS_25 -V
ICM – 0.1 VICM + 0.1 50 1.2 VICM
RSDS_33 -V
ICM – 0.1 VICM + 0.1 50 1.2 VICM
TMDS_33 -V
ICM – 0.1 VICM + 0.1 50 3.3 VICM
PPDS_25 -V
ICM – 0.1 VICM + 0.1 50 0.8 VICM
PPDS_33 -V
ICM – 0.1 VICM + 0.1 50 0.8 VICM
DIFF_HSTL_I -V
ICM – 0.5 VICM + 0.5 50 0.75 VICM
DIFF_HSTL_III -V
ICM – 0.5 VICM + 0.5 50 1.5 VICM
DIFF_HSTL_I_18 -V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_HSTL_II_18 -V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_HSTL_III_18 -V
ICM – 0.5 VICM + 0.5 50 1.8 VICM
DIFF_SSTL18_I -V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_SSTL18_II -V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_SSTL2_I -V
ICM – 0.5 VICM + 0.5 50 1.25 VICM
DIFF_SSTL2_II -V
ICM – 0.5 VICM + 0.5 50 1.25 VICM
DIFF_SSTL3_I -V
ICM – 0.5 VICM + 0.5 50 1.5 VICM
DIFF_SSTL3_II -V
ICM – 0.5 VICM + 0.5 50 1.5 VICM
Notes:
1. Descriptions of the relevant symbols are as follows:
VREF – The reference voltage for setting the input switching threshold
VICM – The common mode input voltage
VM – Voltage of measurement point on signal transition
VL – Low-level test voltage at Input pin
VH – High-level test voltage at Input pin
RT – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required
VT – Termination voltage
2. The load capacitance (CL) at the Output pin is 0 pF for all signal standards.
3. According to the PCI specification. For information on PCI IP solutions, see
www.xilinx.com/products/design_resources/conn_central/protocols/pci_pcix.htm. The PCIX IOSTANDARD is available and has equivalent
characteristics but no PCI-X IP is supported.
Tabl e 3 0 : Test Methods for Timing Measurement at I/Os (Continued)
Signal Standard
(IOSTANDARD)
Inputs Outputs
Inputs and
Outputs
VREF (V) VL (V) VH (V) RT (Ω)V
T (V) VM (V)
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 43
R
Using IBIS Models to Simulate Load
Conditions in Application
IBIS models permit the most accurate prediction of timing
delays for a given application. The parameters found in the
IBIS model (VREF
, RREF
, and VMEAS) correspond directly
with the parameters used in Table 30 (VT
, RT
, and VM). Do
not confuse VREF (the termination voltage) from the IBIS
model with VREF (the input-switching threshold) from the
table. A fourth parameter, CREF
, is always zero. The four
parameters describe all relevant output test conditions. IBIS
models are found in the Xilinx development software as well
as at the following link:
www.xilinx.com/support/download/index.htm
Delays for a given application are simulated according to its
specific load conditions as follows:
1. Simulate the desired signal standard with the output
driver connected to the test setup shown in Figure 11.
Use parameter values VT
, RT
, and VM from Tabl e 3 0 .
CREF is zero.
2. Record the time to VM.
3. Simulate the same signal standard with the output
driver connected to the PCB trace with load. Use the
appropriate IBIS model (including VREF
, RREF
, CREF
,
and VMEAS values) or capacitive value to represent the
load.
4. Record the time to VMEAS.
5. Compare the results of steps 2 and 4. Add (or subtract)
the increase (or decrease) in delay to (or from) the
appropriate Output standard adjustment (Table 29) to
yield the worst-case delay of the PCB trace.
Simultaneously Switching Output
Guidelines
This section provides guidelines for the recommended
maximum allowable number of Simultaneous Switching
Outputs (SSOs). These guidelines describe the maximum
number of user I/O pins of a given output signal standard
that should simultaneously switch in the same direction,
while maintaining a safe level of switching noise. Meeting
these guidelines for the stated test conditions ensures that
the FPGA operates free from the adverse effects of ground
and power bounce.
Ground or power bounce occurs when a large number of
outputs simultaneously switch in the same direction. The
output drive transistors all conduct current to a common
voltage rail. Low-to-High transitions conduct to the VCCO
rail; High-to-Low transitions conduct to the GND rail. The
resulting cumulative current transient induces a voltage
difference across the inductance that exists between the die
pad and the power supply or ground return. The inductance
is associated with bonding wires, the package lead frame,
and any other signal routing inside the package. Other
variables contribute to SSO noise levels, including stray
inductance on the PCB as well as capacitive loading at
receivers. Any SSO-induced voltage consequently affects
internal switching noise margins and ultimately signal
quality.
Table 31 and Table 32 provide the essential SSO
guidelines. For each device/package combination, Table 31
provides the number of equivalent VCCO/GND pairs. The
equivalent number of pairs is based on characterization and
may not match the physical number of pairs. For each
output signal standard and drive strength, Table 32
recommends the maximum number of SSOs, switching in
the same direction, allowed per VCCO/GND pair within an
I/O bank. The guidelines in Table 32 are categorized by
package style, slew rate, and output drive current.
Furthermore, the number of SSOs is specified by I/O bank.
Generally, the left and right I/O banks (Banks 1 and 3)
support higher output drive current.
Multiply the appropriate numbers from Table 3 1 and
Table 32 to calculate the maximum number of SSOs
allowed within an I/O bank. Exceeding these SSO
guidelines might result in increased power or ground
bounce, degraded signal integrity, or increased system jitter.
SSOMAX/IO Bank = Table 31 x Table 32
The recommended maximum SSO values assumes that the
FPGA is soldered on the printed circuit board and that the
board uses sound design practices. The SSO values do not
apply for FPGAs mounted in sockets, due to the lead
inductance introduced by the socket.
The number of SSOs allowed for quad-flat packages (TQ) is
lower than for ball grid array packages (FG) due to the
larger lead inductance of the quad-flat packages. Ball grid
array packages are recommended for applications with a
large number of simultaneously switching outputs.
Table 31: Equivalent VCCO/GND Pairs per Bank
Device
Package Style
TQG144 FTG256 FGG400 FGG484 FGG676
XC3S50AN 2
XC3S200AN –4
XC3S400AN –5
XC3S700AN –5
XC3S1400AN –9
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
44 Product Specification
R
Tabl e 3 2 : Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair
Signal Standard
(IOSTANDARD)
Package Type
TQG144
FTG256, FGG400,
FGG484, FGG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Single-Ended Standards
LVTTL Slow 2 20 20 60 60
410 10 41 41
610 10 29 29
86 6 22 22
12 6 6 13 13
16 5 5 11 11
24 4 4 9 9
Fast 2 10 10 10 10
46 6 6 6
65 5 5 5
83 3 3 3
12 3 3 3 3
16 3 3 3 3
24 2 2 2 2
QuietIO 2 40 40 80 80
424 24 48 48
620 20 36 36
816 16 27 27
12 12 12 16 16
16 9 9 13 13
24 9 9 12 12
LV C M O S 33 S l o w 2 2 4 2 4 7 6 7 6
414 14 46 46
611 11 27 27
810 10 20 20
12 9 9 13 13
16 8 8 10 10
24 –8–9
Fast 2 10 10 10 10
48 8 8 8
65 5 5 5
84 4 4 4
12 4 4 4 4
16 2 2 2 2
24 –2–2
QuietIO 2 36 36 76 76
432 32 46 46
624 24 32 32
816 16 26 26
12 16 16 18 18
16 12 12 14 14
24 –10–10
Table 32: Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair (Continued)
Signal Standard
(IOSTANDARD)
Package Type
TQG144
FTG256, FGG400,
FGG484, FGG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 45
R
LVCM O S 2 5 Sl ow 2 16 1 6 76 76
410 10 46 46
68 8 33 33
87 7 24 24
12 6 6 18 18
16 –6–11
24 –5–7
Fast 2 12 12 18 18
410 10 14 14
68 8 6 6
86 6 6 6
12 3 3 3 3
16 –3–3
24 –2–2
QuietIO 2 36 36 76 76
430 30 60 60
624 24 48 48
820 20 36 36
12 12 12 36 36
16 –12–36
24 –8–8
LVCM O S 1 8 Sl ow 2 13 1 3 64 64
48 8 34 34
68 8 22 22
87 7 18 18
12 –5–13
16 –5–10
Fast 2 13 13 18 18
48 8 9 9
67 7 7 7
84 4 4 4
12 –4–4
16 –3–3
QuietIO 2 30 30 64 64
424 24 64 64
620 20 48 48
816 16 36 36
12 –12–36
16 –12–24
Tabl e 3 2 : Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair (Continued)
Signal Standard
(IOSTANDARD)
Package Type
TQG144
FTG256, FGG400,
FGG484, FGG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
LV C M O S 15 S l o w 2 1 2 1 2 5 5 5 5
47 7 31 31
67 7 18 18
8–6–15
12 –5–10
Fast 2 10 10 25 25
47 7 10 10
66 6 6 6
8–4–4
12 –3–3
QuietIO 2 30 30 70 70
421 21 40 40
618 18 31 31
8–12–31
12 –12–20
LV C M O S 12 S l o w 2 1 7 1 7 4 0 4 0
4–13–25
6–10–18
Fast 2 12 9 31 31
4–9–13
6–9–9
QuietIO 2 36 36 55 55
4–33–36
6–27–36
PCI33_3 9 9 16 16
PCI66_3 –9–13
HSTL_I –11–20
HSTL_III –7–8
HSTL_I_18 13 13 17 17
HSTL_II_18 –5–5
HSTL_III_18 8 8 10 8
SSTL18_I 7 13 7 15
SSTL18_II –9–9
SSTL2_I 10 10 18 18
SSTL2_II –6–9
SSTL3_I 7 8 8 10
SSTL3_II 5 6 6 7
Table 32: Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair (Continued)
Signal Standard
(IOSTANDARD)
Package Type
TQG144
FTG256, FGG400,
FGG484, FGG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
46 Product Specification
R
Differential Standards (Number of I/O Pairs or Channels)
LVDS _ 25 8 –22
LVDS _ 33 8 –27
BLVDS_25 1 1 4 4
MINI_LVDS_25 8 –22
MINI_LVDS_33 8 –27
LVPECL_25 Input Only
LVPECL_33 Input Only
RSDS_25 8 –22
RSDS_33 8 –27
TMDS_33 8 –27
PPDS_25 8 –22
PPDS_33 8 –27
DIFF_HSTL_I –5–10
DIFF_HSTL_III –3–4
DIFF_HSTL_I_18 6 6 8 8
DIFF_HSTL_II_18 –2–2
DIFF_HSTL_III_18 4 4 5 4
DIFF_SSTL18_I 3 6 3 7
DIFF_SSTL18_II –4–4
DIFF_SSTL2_I 5 5 9 9
DIFF_SSTL2_II –3–4
DIFF_SSTL3_I 3 4 4 5
DIFF_SSTL3_II 2 3 3 3
Notes:
1. Not all I/O standards are supported on all I/O banks. The left and
right banks (I/O banks 1 and 3) support higher output drive
current than the top and bottom banks (I/O banks 0 and 2).
Similarly, true differential output standards, such as LVDS,
RSDS, PPDS, miniLVDS, and TMDS, are only supported in top
or bottom banks (I/O banks 0 and 2). Refer to UG331: Spartan-3
Generation FPGA User Guide for additional information.
2. The numbers in this table are recommendations that assume
sound board lay out practice. Test limits are the VIL/VIH voltage
limits for the respective I/O standard.
3. If more than one signal standard is assigned to the I/Os of a given
bank, refer to XAPP689: Managing Ground Bounce in Large
FPGAs for information on how to perform weighted average SSO
calculations.
Tabl e 3 2 : Recommended Number of Simultaneously
Switching Outputs per VCCO-GND Pair (Continued)
Signal Standard
(IOSTANDARD)
Package Type
TQG144
FTG256, FGG400,
FGG484, FGG676
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
Top,
Bottom
(Banks
0,2)
Left,
Right
(Banks
1,3)
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 47
R
Configurable Logic Block (CLB) Timing
Tabl e 3 3 : CLB (SLICEM) Timing
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Clock-to-Output Times
TCKO When reading from the FFX (FFY) Flip-Flop, the time
from the active transition at the CLK input to data
appearing at the XQ (YQ) output
–0.60–0.68ns
Setup Times
TAS Time from the setup of data at the F or G input to the
active transition at the CLK input of the CLB 0.18 –0.36–ns
TDICK Time from the setup of data at the BX or BY input to
the active transition at the CLK input of the CLB 1.58 –1.88–ns
Hold Times
TAH Time from the active transition at the CLK input to the
point where data is last held at the F or G input 0–0–ns
TCKDI Time from the active transition at the CLK input to the
point where data is last held at the BX or BY input 0–0–ns
Clock Timing
TCH The High pulse width of the CLB’s CLK signal 0.63 –0.75–ns
TCL The Low pulse width of the CLK signal 0.63 –0.75–ns
FTOG Toggle frequency (for export control) 0 770 0 667 MHz
Propagation Times
TILO The time it takes for data to travel from the CLB’s F
(G) input to the X (Y) output –0.62–0.71ns
Set/Reset Pulse Width
TRPW_CLB The minimum allowable pulse width, High or Low, to
the CLB’s SR input 1.33 –1.61–ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta b l e 1 0 .
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
48 Product Specification
R
Tabl e 3 4 : CLB Distributed RAM Switching Characteristics
Symbol Description
-5 -4
UnitsMin Max Min Max
Clock-to-Output Times
TSHCKO Time from the active edge at the CLK input to data appearing on
the distributed RAM output –1.69–2.01ns
Setup Times
TDS Setup time of data at the BX or BY input before the active
transition at the CLK input of the distributed RAM –0.07 –0.02 –ns
TAS Setup time of the F/G address inputs before the active transition
at the CLK input of the distributed RAM 0.18 –0.36–ns
TWS Setup time of the write enable input before the active transition at
the CLK input of the distributed RAM 0.30 –0.59–ns
Hold Times
TDH Hold time of the BX and BY data inputs after the active transition
at the CLK input of the distributed RAM 0.13 –0.13–ns
TAH, TWH Hold time of the F/G address inputs or the write enable input after
the active transition at the CLK input of the distributed RAM 0.01 –0.01–ns
Clock Pulse Width
TWPH, TWPL Minimum High or Low pulse width at CLK input 0.88 –1.01–ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta b l e 1 0 .
Tabl e 3 5 : CLB Shift Register Switching Characteristics
Symbol Description
-5 -4
UnitsMin Max Min Max
Clock-to-Output Times
TREG Time from the active edge at the CLK input to data appearing on
the shift register output –4.11–4.82ns
Setup Times
TSRLDS Setup time of data at the BX or BY input before the active
transition at the CLK input of the shift register 0.13 –0.18–ns
Hold Times
TSRLDH Hold time of the BX or BY data input after the active transition at
the CLK input of the shift register 0.16 –0.16–ns
Clock Pulse Width
TWPH, TWPL Minimum High or Low pulse width at CLK input 0.90 –1.01–ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta b l e 1 0 .
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 49
R
Clock Buffer/Multiplexer Switching Characteristics
Tabl e 3 6 : Clock Distribution Switching Characteristics
Description Symbol Minimum
Maximum
Units
Speed Grade
-5 -4
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to
O-output delay TGIO –0.220.23ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and
I1 inputs. Same as BUFGCE enable CE-input TGSI –0.560.63ns
Frequency of signals distributed on global buffers (all sides) FBUFG 0350334MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta b l e 1 0 .
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
50 Product Specification
R
18 x 18 Embedded Multiplier Timing
Tabl e 3 7 : 18 x 18 Embedded Multiplier Timing
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Combinatorial Delay
TMULT Combinational multiplier propagation delay from the A and B inputs
to the P outputs, assuming 18-bit inputs and a 36-bit product
(AREG, BREG, and PREG registers unused)
–4.36–4.88ns
Clock-to-Output Times
TMSCKP_P Clock-to-output delay from the active transition of the CLK input to
valid data appearing on the P outputs when using the PREG
register(2,3) –0.84–1.30ns
TMSCKP_A
TMSCKP_B
Clock-to-output delay from the active transition of the CLK input to
valid data appearing on the P outputs when using either the AREG
or BREG register(2,4) –4.44–4.97ns
Setup Times
TMSDCK_P Data setup time at the A or B input before the active transition at the
CLK when using only the PREG output register (AREG, BREG
registers unused)(3) 3.56 –3.98–ns
TMSDCK_A Data setup time at the A input before the active transition at the CLK
when using the AREG input register(4) 0.00 –0.00–ns
TMSDCK_B Data setup time at the B input before the active transition at the CLK
when using the BREG input register(4) 0.00 –0.00–ns
Hold Times
TMSCKD_P Data hold time at the A or B input after the active transition at the
CLK when using only the PREG output register (AREG, BREG
registers unused)(3) 0.00 –0.00–ns
TMSCKD_A Data hold time at the A input after the active transition at the CLK
when using the AREG input register(4) 0.35 –0.45–ns
TMSCKD_B Data hold time at the B input after the active transition at the CLK
when using the BREG input register(4) 0.35 –0.45–ns
Clock Frequency
FMULT Internal operating frequency for a two-stage 18x18 multiplier using
the AREG and BREG input registers and the PREG output
register(1) 0 280 0 250 MHz
Notes:
1. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.
2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.
3. The PREG register is typically used when inferring a single-stage multiplier.
4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.
5. The numbers in this table are based on the operating conditions set forth in Tabl e 1 0 .
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 51
R
Block RAM Timing
Tabl e 3 8 : Block RAM Timing
Symbol Description
Speed Grade
Units
-5 -4
MinMaxMinMax
Clock-to-Output Times
TRCKO When reading from block RAM, the delay from the active
transition at the CLK input to data appearing at the DOUT
output
–2.06–2.49ns
Setup Times
TRCCK_ADDR Setup time for the ADDR inputs before the active transition at
the CLK input of the block RAM 0.32 –0.36–ns
TRDCK_DIB Setup time for data at the DIN inputs before the active
transition at the CLK input of the block RAM 0.28 –0.31–ns
TRCCK_ENB Setup time for the EN input before the active transition at the
CLK input of the block RAM 0.69 –0.77–ns
TRCCK_WEB Setup time for the WE input before the active transition at the
CLK input of the block RAM 1.12 –1.26–ns
Hold Times
TRCKC_ADDR Hold time on the ADDR inputs after the active transition at the
CLK input 0–0–ns
TRCKD_DIB Hold time on the DIN inputs after the active transition at the
CLK input 0–0–ns
TRCKC_ENB Hold time on the EN input after the active transition at the CLK
input 0–0–ns
TRCKC_WEB Hold time on the WE input after the active transition at the CLK
input 0–0–ns
Clock Timing
TBPWH High pulse width of the CLK signal 1.56 –1.79–ns
TBPWL Low pulse width of the CLK signal 1.56 –1.79–ns
Clock Frequency
FBRAM Block RAM clock frequency 0 320 0 280 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta b l e 1 0 .
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
52 Product Specification
R
Digital Clock Manager (DCM) Timing
For specification purposes, the DCM consists of three key
components: the Delay-Locked Loop (DLL), the Digital
Frequency Synthesizer (DFS), and the Phase Shifter (PS).
Aspects of DLL operation play a role in all DCM
applications. All such applications inevitably use the CLKIN
and the CLKFB inputs connected to either the CLK0 or the
CLK2X feedback, respectively. Thus, specifications in the
DLL tables (Table 39 and Table 40) apply to any application
that only employs the DLL component. When the DFS
and/or the PS components are used together with the DLL,
then the specifications listed in the DFS and PS tables
(Tabl e 4 1 through Table 44) supersede any corresponding
ones in the DLL tables. DLL specifications that do not
change with the addition of DFS or PS functions are
presented in Table 39 and Table 40.
Period jitter and cycle-cycle jitter are two of many different
ways of specifying clock jitter. Both specifications describe
statistical variation from a mean value.
Period jitter is the worst-case deviation from the ideal clock
period over a collection of millions of samples. In a
histogram of period jitter, the mean value is the clock period.
Cycle-cycle jitter is the worst-case difference in clock period
between adjacent clock cycles in the collection of clock
periods sampled. In a histogram of cycle-cycle jitter, the
mean value is zero.
Spread Spectrum
DCMs accept typical spread spectrum clocks as long as
they meet the input requirements. The DLL will track the
frequency changes created by the spread spectrum clock to
drive the global clocks to the FPGA logic. See XAPP469,
Spread-Spectrum Clocking Reception for Displays for
details.
Delay-Locked Loop (DLL)
Tabl e 3 9 : Recommended Operating Conditions for the DLL
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Input Frequency Ranges
FCLKIN CLKIN_FREQ_DLL Frequency of the CLKIN clock input 5(2) 280(3) 5(2) 250(3) MHz
Input Pulse Requirements
CLKIN_PULSE CLKIN pulse width as a
percentage of the CLKIN
period
FCLKIN < 150 MHz 40% 60% 40% 60% -
FCLKIN > 150 MHz 45% 55% 45% 55% -
Input Clock Jitter Tolerance and Delay Path Variation(4)
CLKIN_CYC_JITT_DLL_LF Cycle-to-cycle jitter at the
CLKIN input
FCLKIN < 150 MHz –±300–±300ps
CLKIN_CYC_JITT_DLL_HF FCLKIN > 150 MHz –±150–±150ps
CLKIN_PER_JITT_DLL Period jitter at the CLKIN input –±1–±1ns
CLKFB_DELAY_VAR_EXT Allowable variation of off-chip feedback delay from
the DCM output to the CLKFB input
–±1–±1ns
Notes:
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Tabl e 4 1 .
3. The CLKIN_DIVIDE_BY_2 attribute can be used to increase the effective input frequency range up to FBUFG. When set to TRUE,
CLKIN_DIVIDE_BY_2 divides the incoming clock frequency by two as it enters the DCM.
4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.
5. The DCM specifications are guaranteed when both adjacent DCMs are locked.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 53
R
Tabl e 4 0 : Switching Characteristics for the DLL
Symbol Description Device
Speed Grade
Units
-5 -4
Min Max Min Max
Output Frequency Ranges
CLKOUT_FREQ_CLK0 Frequency for the CLK0 and CLK180 outputs All 5 280 5 250 MHz
CLKOUT_FREQ_CLK90 Frequency for the CLK90 and CLK270 outputs 5 200 5 200 MHz
CLKOUT_FREQ_2X Frequency for the CLK2X and CLK2X180 outputs 10 334 10 334 MHz
CLKOUT_FREQ_DV Frequency for the CLKDV output 0.3125 186 0.3125 166 MHz
Output Clock Jitter(2,3,4)
CLKOUT_PER_JITT_0 Period jitter at the CLK0 output All ±100 ±100 ps
CLKOUT_PER_JITT_90 Period jitter at the CLK90 output ±150 ±150 ps
CLKOUT_PER_JITT_180 Period jitter at the CLK180 output ±150 ±150 ps
CLKOUT_PER_JITT_270 Period jitter at the CLK270 output ±150 ±150 ps
CLKOUT_PER_JITT_2X Period jitter at the CLK2X and CLK2X180 outputs
±[0.5%
of CLKIN
period
+ 100]
±[0.5%
of CLKIN
period
+ 100]
ps
CLKOUT_PER_JITT_DV1 Period jitter at the CLKDV output when performing integer
division ±150 ±150 ps
CLKOUT_PER_JITT_DV2 Period jitter at the CLKDV output when performing non-integer
division
±[0.5%
of CLKIN
period
+ 100]
±[0.5%
of CLKIN
period
+ 100]
ps
Duty Cycle(4)
CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180, CLK270,
CLK2X, CLK2X180, and CLKDV outputs, including the
BUFGMUX and clock tree duty-cycle distortion
All
±[1% of
CLKIN
period
+ 350]
±[1% of
CLKIN
period
+ 350]
ps
Phase Alignment(4)
CLKIN_CLKFB_PHASE Phase offset between the CLKIN and CLKFB inputs All ±150 ±150 ps
CLKOUT_PHASE_DLL Phase offset between DLL outputs CLK0 to CLK2X
(not CLK2X180)
±[1% of
CLKIN
period
+ 100]
±[1% of
CLKIN
period
+ 100]
ps
All others
±[1% of
CLKIN
period
+ 150]
±[1% of
CLKIN
period
+ 150]
ps
Lock Time
LOCK_DLL(3) When using the DLL alone: The
time from deassertion at the DCM’s
Reset input to the rising transition
at its LOCKED output. When the
DCM is locked, the CLKIN and
CLKFB signals are in phase
5 MHz < FCLKIN < 15 MHz All 55ms
FCLKIN > 15 MHz 600 600 μs
Delay Lines
DCM_DELAY_STEP(5) Finest delay resolution, average over all taps All 15 35 15 35 ps
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 10 and Table 39.
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of “±[1%
of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps.
According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250 ps.
5. The typical delay step size is 23 ps.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
54 Product Specification
R
Digital Frequency Synthesizer (DFS)
Tabl e 4 1 : Recommended Operating Conditions for the DFS
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Input Frequency Ranges(2)
FCLKIN CLKIN_FREQ_FX Frequency for the CLKIN input 0.200 333(4) 0.200 333(4) MHz
Input Clock Jitter Tolerance(3)
CLKIN_CYC_JITT_FX_LF Cycle-to-cycle jitter at the CLKIN
input, based on CLKFX output
frequency
FCLKFX < 150 MHz ±300 ±300 ps
CLKIN_CYC_JITT_FX_HF FCLKFX > 150 MHz ±150 ±150 ps
CLKIN_PER_JITT_FX Period jitter at the CLKIN input ±1 ±1 ns
Notes:
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 39.
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.
4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming
clock frequency by two as it enters the DCM.
Tabl e 4 2 : Switching Characteristics for the DFS
Symbol Description Device
Speed Grade
Units
-5 -4
Min Max Min Max
Output Frequency Ranges
CLKOUT_FREQ_FX Frequency for the CLKFX and CLKFX180 outputs All 5 350 5 320 MHz
Output Clock Jitter(2,3)
CLKOUT_PER_JITT_FX Period jitter at the CLKFX and CLKFX180
outputs.
All Typ Max Typ Max
CLKIN
20 MHz
Use the Spartan-3A Jitter Calculator:
www.xilinx.com/support/documentation
/data_sheets/s3a_jitter_calc.zip
ps
CLKIN
> 20 MHz
±[1% of
CLKFX
period
+ 100]
±[1% of
CLKFX
period
+ 200]
±[1% of
CLKFX
period
+ 100]
±[1% of
CLKFX
period
+ 200]
ps
Duty Cycle(4,5)
CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs,
including the BUFGMUX and clock tree duty-cycle distortion
All ±[1% of
CLKFX
period
+ 350]
±[1% of
CLKFX
period
+ 350]
ps
Phase Alignment(5)
CLKOUT_PHASE_FX Phase offset between the DFS CLKFX output and the DLL
CLK0 output when both the DFS and DLL are used
All ±200 ±200 ps
CLKOUT_PHASE_FX180 Phase offset between the DFS CLKFX180 output and the DLL
CLK0 output when both the DFS and DLL are used
All ±[1% of
CLKFX
period
+ 200]
±[1% of
CLKFX
period
+ 200]
ps
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 55
R
Lock Time
LOCK_FX(2) The time from deassertion at the DCM’s
Reset input to the rising transition at its
LOCKED output. The DFS asserts LOCKED
when the CLKFX and CLKFX180 signals are
valid. If using both the DLL and the DFS, use
the longer locking time.
5 MHz < FCLKIN
< 15 MHz
All 55ms
FCLKIN > 15 MHz 450 450 μs
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 10 and Table 41.
2. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
3. Maximum output jitter is characterized within a reasonable noise environment (40 SSOs and 25% CLB switching) on an XC3S1400A FPGA.
Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching
activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.
4. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
5. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a
maximum CLKFX jitter of “±[1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period
is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.
Tabl e 4 2 : Switching Characteristics for the DFS (Continued)
Symbol Description Device
Speed Grade
Units
-5 -4
Min Max Min Max
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
56 Product Specification
R
Phase Shifter (PS)
Tabl e 4 3 : Recommended Operating Conditions for the PS in Variable Phase Mode
Symbol Description
Speed Grade
Units
-5 -4
Min Max Min Max
Operating Frequency Ranges
PSCLK_FREQ
(FPSCLK)
Frequency for the PSCLK input 1 167 1 167 MHz
Input Pulse Requirements
PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period 40% 60% 40% 60% -
Tabl e 4 4 : Switching Characteristics for the PS in Variable Phase Mode
Symbol Description Phase Shift Amount Units
Phase Shifting Range
MAX_STEPS(2) Maximum allowed number of
DCM_DELAY_STEP steps for a given
CLKIN clock period, where T = CLKIN
clock period in ns. If using
CLKIN_DIVIDE_BY_2 = TRUE,
double the clock effective clock
period.
CLKIN < 60 MHz ±[INTEGER(10 (TCLKIN – 3 ns))] steps
CLKIN 60 MHz ±[INTEGER(15 (TCLKIN – 3 ns))]
FINE_SHIFT_RANGE_MIN Minimum guaranteed delay for variable phase shifting ±[MAX_STEPS
DCM_DELAY_STEP_MIN]
ns
FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting ±[MAX_STEPS
DCM_DELAY_STEP_MAX]
ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Tabl e 1 0 and Tabl e 4 3 .
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the
PHASE_SHIFT attribute is set to 0.
3. The DCM_DELAY_STEP values are provided at the bottom of Table 40.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 57
R
Miscellaneous DCM Timing
DNA Port Timing
Internal SPI Access Port Timing
Tabl e 4 5 : Miscellaneous DCM Timing
Symbol Description Min Max Units
DCM_RST_PW_MIN Minimum duration of a RST pulse width 3 –CLKIN
cycles
DCM_RST_PW_MAX(2) Maximum duration of a RST pulse width N/A N/A seconds
N/A N/A seconds
DCM_CONFIG_LAG_TIME(3) Maximum duration from VCCINT applied to FPGA
configuration successfully completed (DONE pin goes High)
and clocks applied to DCM DLL
N/A N/A minutes
N/A N/A minutes
Notes:
1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV).
The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.
2. This specification is equivalent to the Virtex-4 DCM_RESET specification. This specification does not apply for Spartan-3AN FPGAs.
3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3AN FPGAs.
Tabl e 4 6 : DNA_PORT Interface Timing
Symbol Description Min Max Units
TDNASSU Setup time on SHIFT before the rising edge of CLK 1.0 –ns
TDNASH Hold time on SHIFT after the rising edge of CLK 0.5 –ns
TDNADSU Setup time on DIN before the rising edge of CLK 1.0 –ns
TDNADH Hold time on DIN after the rising edge of CLK 0.5 –ns
TDNARSU Setup time on READ before the rising edge of CLK 5.0 10,000 ns
TDNARH Hold time on READ after the rising edge of CLK 0 –ns
TDNADCKO Clock-to-output delay on DOUT after rising edge of CLK 0.5 1.5 ns
TDNACLKF CLK frequency 0 100 MHz
TDNACLKL CLK High time 1.0 ns
TDNACLKH CLK Low time 1.0 ns
Notes:
1. The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 μs.
Tabl e 4 7 : SPI_ACCESS Interface Timing
Symbol Description
Speed Grade
Units
-5 -4
MinMaxMinMax
TSPICCK_MOSI Setup time on MOSI before the active edge of CLK 4.47 –5.0–ns
TSPICKC_MOSI Hold time on MOSI after the active edge of CLK 4.03 –4.5–ns
TCSB CSB High time 50 –50–ns
TSPICCK_CSB Setup time on CSB before the active edge of CLK 7.15 –8.0–ns
TSPICCK_CSB Hold time on CSB after the active edge of CLK 7.15 –8.0–ns
TSPICKO_MISO Clock-to-output delay on MISO after active edge of CLK –14.3 16.0 ns
FSPICLK CLK frequency –50–50MHz
FSPICAR1 CLK frequency for Continuous Array Read command –50–50MHz
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
58 Product Specification
R
In-System Flash (ISF) Memory Timing
FSPICAR1 CLK frequency for Continuous Array Read command,
reduced initial latency
–33–33MHz
TSPICLKL CLK High time ns
TSPICLKH CLK Low time 6.8 6.8 ns
Notes:
1. For details on using SPI_ACCESS and the In-System Flash memory, see UG333 Spartan-3AN FPGA In-System Flash User Guide.
Tabl e 4 7 : SPI_ACCESS Interface Timing (Continued)
Symbol Description
Speed Grade
Units
-5 -4
MinMaxMinMax
Tabl e 4 8 : In-System Flash (ISF) Memory Operations
Symbol Description Device Typical Max Units
TXFER Page to Buffer transfer time All –400μs
TCOMP Page to Buffer compare time All –400μs
TPP Page Programming time XC3S50AN
XC3S200AN
XC3S400AN
24ms
XC3S700AN
XC3S1400AN
36ms
TPE Page Erase time XC3S50AN
XC3S200AN
XC3S400AN
13 32 ms
XC3S700AN
XC3S1400AN
15 35 ms
TPEP Page Erase and Programming time XC3S50AN
XC3S200AN
XC3S400AN
XC3S700AN
14 35 ms
XC3S1400AN 17 40 ms
TBE Block Erase time XC3S50AN 15 35 ms
XC3S200AN
XC3S400AN
30 75 ms
XC3S700AN
XC3S1400AN
45 100 ms
TSE Sector Erase time XC3S50AN 0.8 2.5 s
XC3S200AN
XC3S400AN
XC3S700AN
XC3S1400AN
1.6 5 s
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 59
R
Suspend Mode Timing
X-Ref Target - Figure 12
Figure 12: Suspend Mode Timing
Tabl e 4 9 : Suspend Mode Timing Parameters
Symbol Description Min Typ Max Units
Entering Suspend Mode
TSUSPENDHIGH_AWAKE Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter
(suspend_filter:No)
–7–ns
TSUSPENDFILTER Adjustment to SUSPEND pin rising edge parameters when glitch filter enabled
(suspend_filter:Yes)
+160 +300 +600 ns
TSUSPEND_GWE Rising edge of SUSPEND pin until FPGA output pins drive their defined
SUSPEND constraint behavior
–10–ns
TSUSPEND_GTS Rising edge of SUSPEND pin to write-protect lock on all writable clocked
elements
–<5–ns
TSUSPEND_DISABLE Rising edge of the SUSPEND pin to FPGA input pins and interconnect
disabled
340 –ns
Exiting Suspend Mode
TSUSPENDLOW_AWAKE Falling edge of the SUSPEND pin to rising edge of the AWAKE pin
Does not include DCM lock time
4 to 108 μs
TSUSPEND_ENABLE Falling edge of the SUSPEND pin to FPGA input pins and interconnect
re-enabled
3.7 to
109
μs
TAWAKE_GWE1 Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1
–67–ns
TAWAKE_GWE512 Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512
–14μs
TAWAKE_GTS1 Rising edge of the AWAKE pin until outputs return to the behavior described
in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1
–57–ns
TAWAKE_GTS512 Rising edge of the AWAKE pin until outputs return to the behavior described
in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:512
–14μs
Notes:
1. These parameters based on characterization.
2. For information on using the Spartan-3AN Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.
DS610-3_08_061207
Blocked
tSUSPEND_DISABLE
tSUSPEND_GWE
tSUSPENDHIGH_AWAKE
tAWAKE_GWE
tAWAKE_GTS
tSUSPEND_GTS
SUSPEND Input
AWAKE Output
Flip-Flops, Block RAM,
Distributed RAM
FPGA Outputs
FPGA Inputs,
Interconnect
Write Protected
Defined by SUSPEND constraint
Entering Suspend Mode Exiting Suspend Mode
sw_gts_cycle
sw_gwe_cycle
tSUSPEND_ENABLE
tSUSPENDLOW_AWAKE
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
60 Product Specification
R
Configuration and JTAG Timing
General Configuration Power-On/Reconfigure Timing
X-Ref Target - Figure 13
Figure 13: Waveforms for Power-On and the Beginning of Configuration
Tabl e 5 0 : Power-On Timing and the Beginning of Configuration
Symbol Description Device
All Speed Grades
UnitsMin Max
TPOR(2) The time from the application of VCCINT
, VCCAUX, and VCCO
Bank 2 supply voltage ramps (whichever occurs last) to the
rising transition of the INIT_B pin
All -18ms
TPROG The width of the low-going pulse on the PROG_B pin All 0.5 -μs
TPL(2) The time from the rising edge of the PROG_B pin to the
rising transition on the INIT_B pin
XC3S50AN -0.5ms
XC3S200AN -0.5ms
XC3S400AN -1ms
XC3S700AN -2ms
XC3S1400AN -2ms
TINIT Minimum Low pulse width on INIT_B output All 250 -ns
TICCK(3) The time from the rising edge of the INIT_B pin to the
generation of the configuration clock signal at the CCLK
output pin
All 0.5 4 μs
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 10. This means power must be applied to all VCCINT
, VCCO,
and VCCAUX lines.
2. Power-on reset and the clearing of configuration memory occurs during this period.
3. This specification applies only to the Master Serial, SPI, and BPI modes.
4. For details on configuration, see UG332 Spartan-3 Generation Configuration User Guide.
VCCINT
(Supply)
(Supply)
(Supply)
VCCAUX
VCCO Bank 2
PROG_B
(Output)
(Open-Drain)
(Input)
INIT_B
CCLK
DS557-3_01_052908
1.2V
TICCK
TPROG TPL
TPOR
1.0V
2.0V
2.0V 3.3V
3.3V
2.5V
or
Notes:
1. When configuring from the In-System Flash, VCCAUX must be in the recommended operating range; on power-up make
sure VCCAUX reaches at least 3.0V before INIT_B goes High to indicate the start of configuration. VCCINT
, VCCAUX, and
VCCO supplies to the FPGA can be applied in any order if this requirement is met.
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 61
R
Configuration Clock (CCLK) Characteristics
Tabl e 5 1 : Master Mode CCLK Output Period by ConfigRate Option Setting
Symbol Description
ConfigRate
Setting
Temperature
Range Minimum Maximum Units
TCCLK1
CCLK clock period by
ConfigRate setting 1
(power-on value)
Commercial 1,254 2,500 ns
Industrial 1,180 ns
TCCLK3 3Commercial 413 833 ns
Industrial 390 ns
TCCLK6 6
(default)
Commercial 207 417 ns
Industrial 195 ns
TCCLK7 7Commercial 178 357 ns
Industrial 168 ns
TCCLK8 8Commercial 156 313 ns
Industrial 147 ns
TCCLK10 10 Commercial 123 250 ns
Industrial 116 ns
TCCLK12 12 Commercial 103 208 ns
Industrial 97 ns
TCCLK13 13 Commercial 93 192 ns
Industrial 88 ns
TCCLK17 17 Commercial 72 147 ns
Industrial 68 ns
TCCLK22 22 Commercial 54 114 ns
Industrial 51 ns
TCCLK25 25 Commercial 47 100 ns
Industrial 45 ns
TCCLK27 27 Commercial 44 93 ns
Industrial 42 ns
TCCLK33 33 Commercial 36 76 ns
Industrial 34 ns
TCCLK44 44 Commercial 26 57 ns
Industrial 25 ns
TCCLK50 50 Commercial 22 50 ns
Industrial 21 ns
TCCLK100 100 Commercial 11.2 25 ns
Industrial 10.6 ns
Notes:
1. Set the ConfigRate option value when generating a configuration bitstream.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
62 Product Specification
R
Tabl e 5 2 : Master Mode CCLK Output Frequency by ConfigRate Option Setting
Symbol Description
ConfigRate
Setting
Temperature
Range Minimum Maximum Units
FCCLK1
Equivalent CCLK clock frequency
by ConfigRate setting 1
(power-on value)
Commercial 0.400 0.797 MHz
Industrial 0.847 MHz
FCCLK3 3Commercial 1.20 2.42 MHz
Industrial 2.57 MHz
FCCLK6 6
(default)
Commercial 2.40 4.83 MHz
Industrial 5.13 MHz
FCCLK7 7Commercial 2.80 5.61 MHz
Industrial 5.96 MHz
FCCLK8 8Commercial 3.20 6.41 MHz
Industrial 6.81 MHz
FCCLK10 10 Commercial 4.00 8.12 MHz
Industrial 8.63 MHz
FCCLK12 12 Commercial 4.80 9.70 MHz
Industrial 10.31 MHz
FCCLK13 13 Commercial 5.20 10.69 MHz
Industrial 11.37 MHz
FCCLK17 17 Commercial 6.80 13.74 MHz
Industrial 14.61 MHz
FCCLK22 22 Commercial 8.80 18.44 MHz
Industrial 19.61 MHz
FCCLK25 25 Commercial 10.00 20.90 MHz
Industrial 22.23 MHz
FCCLK27 27 Commercial 10.80 22.39 MHz
Industrial 23.81 MHz
FCCLK33 33 Commercial 13.20 27.48 MHz
Industrial 29.23 MHz
FCCLK44 44 Commercial 17.60 37.60 MHz
Industrial 40.00 MHz
FCCLK50 50 Commercial 20.00 44.80 MHz
Industrial 47.66 MHz
FCCLK100 100 Commercial 40.00 88.68 MHz
Industrial 94.34 MHz
Tabl e 5 3 : Master Mode CCLK Output Minimum Low and High Time
Symbol Description
ConfigRate Setting
Units1 3 6 7 8 10 12 13 17 22 25 27 33 44 50 100
TMCCL,
TMCCH
Master Mode
CCLK
Minimum Low
and High Time
Commercial 595 196 98.3 84.5 74.1 58.4 48.9 44.1 34.2 25.6 22.3 20.9 17.1 12.3 10.4 5.3 ns
Industrial 560 185 92.6 79.8 69.8 55.0 46.0 41.8 32.3 24.2 21.4 20.0 16.2 11.9 10.0 5.0 ns
Tabl e 5 4 : Slave Mode CCLK Input Low and High Time
Symbol Description Min Max Units
TSCCL,
TSCCH
CCLK Low and High time 5 ns
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 63
R
Master Serial and Slave Serial Mode Timing
X-Ref Target - Figure 14
Figure 14: Waveforms for Master Serial and Slave Serial Configuration
Tabl e 5 5 : Timing for the Master Serial and Slave Serial Configuration Modes
Symbol Description
Slave/
Master
All Speed Grades
UnitsMin Max
Clock-to-Output Times
TCCO The time from the falling transition on the CCLK pin to data appearing at the
DOUT pin
Both 1.5 10 ns
Setup Times
TDCC The time from the setup of data at the DIN pin to the rising transition at the
CCLK pin
Both 7 –ns
Hold Times
TCCD The time from the rising transition at the CCLK pin to the point when data is
last held at the DIN pin
Master 0 ns
Slave 1.0
Clock Timing
TCCH High pulse width at the CCLK input pin Master See Table 53
Slave See Table 54
TCCL Low pulse width at the CCLK input pin Master See Table 53
Slave See Table 54
FCCSER Frequency of the clock signal at the
CCLK input pin
No bitstream compression Slave 0 100 MHz
With bitstream compression 0 100 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta b l e 1 0 .
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.
DS312-3_05_103105
Bit 0 Bit 1 Bit n Bit n+1
Bit n-64 Bit n-63
1/FCCSER
TSCCL
TDCC
TCCD
TSCCH
TCCO
PROG_B
(Input)
DIN
(Input)
DOUT
(Output)
(Open-Drain)
INIT_B
(Input/Output)
CCLK
TMCCL TMCCH
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
64 Product Specification
R
Slave Parallel Mode Timing
X-Ref Target - Figure 15
Figure 15: Waveforms for Slave Parallel Configuration
Tabl e 5 6 : Timing for the Slave Parallel Configuration Mode
Symbol Description
All Speed Grades
UnitsMin Max
Setup Times
TSMDCC The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin 7 -ns
TSMCSCC Setup time on the CSI_B pin before the rising transition at the CCLK pin 7 -ns
TSMCCW(2) Setup time on the RDWR_B pin before the rising transition at the CCLK pin 15 -ns
Hold Times
TSMCCD The time from the rising transition at the CCLK pin to the point when data is last held at
the D0-D7 pins
1.0 -ns
TSMCCCS The time from the rising transition at the CCLK pin to the point when a logic level is last
held at the CSO_B pin
0-ns
TSMWCC The time from the rising transition at the CCLK pin to the point when a logic level is last
held at the RDWR_B pin
0-ns
Clock Timing
TCCH The High pulse width at the CCLK input pin 5 -ns
TCCL The Low pulse width at the CCLK input pin 5 -ns
FCCPAR Frequency of the clock signal
at the CCLK input pin
No bitstream compression 0 80 MHz
With bitstream compression 0 80 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 10.
2. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.
DS529-3_02_051607
Byte 0 Byte 1 Byte n Byte n+1
TSMWCC
1/F
CCPAR
TSMCCCS
TSCCH
TSMCCW
T
SMCCD
TSMCSCC
T
SMDCC
PROG_B
(Input)
(Open-Drain)
INIT_B
(Input)
CSI_B
RDWR_B
(Input)
(Input)
CCLK
(Inputs)
D0 - D7
TMCCH TSCCL
TMCCL
Notes:
1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent
cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B
switches High, be careful to avoid contention on the D0 - D7 bus.
2. To pause configuration, pause CCLK instead of de-asserting CSI_B. See UG332 Chapter 7 section “Non-Continuous SelectMAP Data
Loading” for more details.
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 65
R
External Serial Peripheral Interface (SPI) Configuration Timing
X-Ref Target - Figure 16
Figure 16: Waveforms for External Serial Peripheral Interface (SPI) Configuration
Tabl e 5 7 : Timing for External Serial Peripheral Interface (SPI) Configuration Mode
Symbol Description Minimum Maximum Units
TCCLK1 Initial CCLK clock period See Table 51
TCCLKnCCLK clock period after FPGA loads ConfigRate bitstream option setting See Table 51
TMINIT Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the
rising edge of INIT_B
50 –ns
TINITM Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the
rising edge of INIT_B
0–ns
TCCO MOSI output valid delay after CCLK falling clock edge See Table 55
TDCC Setup time on the DIN data input before CCLK rising clock edge See Table 55
TCCD Hold time on the DIN data input after CCLK rising clock edge See Table 55
T
DH
T
DSU
Command
(msb)
T
V
T
CSS
<1:1:1>
INIT_B
M[2:0]
T
MINIT
T
INITM
DIN
CCLK
(Input)
T
CCLKn
T
CCLK1
VS[2:0]
(Input)
New ConfigRate active
Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B
goes High. After this point, input values do not matter until DONE goes High, at which
point these pins become user-I/O pins.
<0:0:1>
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.
Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B.
T
CCLK1
T
MCCLn
T
MCCHn
(Input)
Data Data Data Data
CSO_B
MOSI
T
CCO
T
MCCL1
T
MCCH1
T
DCC
T
CCD
(Input)
PROG_B
PUDC_B
(Input)
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.
DS529-3_06_102506
(Open-Drain)
Shaded values indicate specifications on attached SPI Flash PROM.
Command
(msb-1)
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
66 Product Specification
R
Tabl e 5 8 : Configuration Timing Requirements for Attached SPI Serial Flash
Symbol Description Requirement Units
TCCS SPI serial Flash PROM chip-select time ns
TDSU SPI serial Flash PROM data input setup time ns
TDH SPI serial Flash PROM data input hold time ns
TVSPI serial Flash PROM data clock-to-output time ns
fC or fRMaximum SPI serial Flash PROM clock frequency (also depends on
specific read command used)
MHz
Notes:
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.
2. Subtract additional printed circuit board routing delay as required by the application.
TCCS TMCCL1TCCO
TDSU TMCCL1TCCO
TDH TMCCH1
TVTMCCLn TDCC
fC
1
TCCLKn min()
---------------------------------
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 67
R
Byte Peripheral Interface (BPI) Configuration Timing
X-Ref Target - Figure 17
Figure 17: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration
Tabl e 5 9 : Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode
Symbol Description Minimum Maximum Units
TCCLK1 Initial CCLK clock period See Table 51
TCCLKnCCLK clock period after FPGA loads ConfigRate setting See Table 51
TMINIT Setup time on M[2:0] mode pins before the rising edge of INIT_B 50 –ns
TINITM Hold time on M[2:0] mode pins after the rising edge of INIT_B 0 –ns
TINITADDR Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted
and valid
55T
CCLK1
cycles
TCCO Address A[25:0] outputs valid after CCLK falling edge See Table 55
TDCC Setup time on D[7:0] data inputs before CCLK rising edge See TSMDCC in Tab l e 5 6
TCCD Hold time on D[7:0] data inputs after CCLK rising edge 0 –ns
(Input) PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.
Data DataData
AddressAddress
Data
Address
Byte 0
000_0000
INIT_B
<0:1:0>
M[2:0]
T
MINIT
T
INITM
LDC[2:0]
HDC
CSO_B
Byte 1
000_0001
CCLK
A[25:0]
D[7:0]
T
DCC
T
CCD
T
AVQV
TCCLK1
(Input)
TINITADDR
T
CCLKn
T
CCLK1
T
CCO
PUDC_B
New ConfigRate active
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.
Pin initially high-impedance (Hi-Z) if PUDC_B input is High.
Mode input pins M[2:0] are sampled when INIT_B goes High. After this point,
input values do not matter until DONE goes High, at which point the mode pins
become user-I/O pins.
(Input)
PROG_B
(Input)
DS557-3_16_032009
(Open-Drain)
Shaded values indicate specifications on attached parallel NOR Flash PROM.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
68 Product Specification
R
Tabl e 6 0 : Configuration Timing Requirements for Attached Parallel NOR Flash
Symbol Description Requirement Units
TCE
(tELQV)
Parallel NOR Flash PROM chip-select time ns
TOE
(tGLQV)
Parallel NOR Flash PROM output-enable time ns
TACC
(tAVQV)
Parallel NOR Flash PROM read access time ns
TBYTE
(tFLQV, tFHQV)
For x8/x16 PROMs only: BYTE# to output valid time(3) ns
Notes:
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.
2. Subtract additional printed circuit board routing delay as required by the application.
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor
value also depends on whether the FPGA’s PUDC_B pin is High or Low.
TCE TINITADDR
TOE TINITADDR
TACC 0.5TCCLKn min()
TCCO TDCC PCB
TBYTE TINITADDR
DC and Switching Characteristics
DS557-3 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 69
R
IEEE 1149.1/1553 JTAG Test Access Port Timing
X-Ref Target - Figure 18
Figure 18: JTAG Waveforms
TCK
T
TMSTCK
TMS
TDI
TDO
(Input)
(Input)
(Input)
(Output)
T
TCKTMS
T
TCKTDI
T
TCKTDO
T
TDITCK
DS557_13_032009
T
CCH
T
CCL
1/F
TCK
Tabl e 6 1 : Timing for the JTAG Test Access Port
Symbol Description
All Speed
Grades
UnitsMin Max
Clock-to-Output Times
TTCKTDO The time from the falling transition on the TCK pin to data appearing at the TDO pin 1.0 11.0 ns
Setup Times
TTDITCK The time from the setup of data at the
TDI pin to the rising transition at the
TCK pin
All devices and functions except those shown below 7.0 –ns
Boundary-Scan commands (INTEST, EXTEST,
SAMPLE) on XC3S700AN and XC3S1400AN FPGAs
11.0
TTMSTCK The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin 7.0 –ns
Hold Times
TTCKTDI The time from the rising transition at
the TCK pin to the point when data is
last held at the TDI pin
All functions except those shown below 0 –ns
Configuration commands (CFG_IN, ISC_PROGRAM) 2.0
TTCKTMS The time from the rising transition at the TCK pin to the point when a logic level is last held at the
TMS pin
0–ns
Clock Timing
TCCH The High pulse width at the TCK pin All functions except ISC_DNA command 5 –ns
TCCL The Low pulse width at the TCK pin 5 –ns
TCCHDNA The High pulse width at the TCK pin During ISC_DNA command 10 10,000 ns
TCCLDNA The Low pulse width at the TCK pin 10 10,000 ns
FTCK Frequency of the TCK signal All operations on XC3S50AN, XC3S200AN, and
XC3S400AN FPGAs and for BYPASS or HIGHZ
instructions on all FPGAs
033MHz
All operations on XC3S700AN and XC3S1400AN
FPGAs, except for BYPASS or HIGHZ instructions
20
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta b l e 1 0 .
2. For details on JTAG see Chapter 9 “JTAG Configuration Mode and Boundary-Scan” in UG332 Spartan-3 Generation Configuration User
Guide.
DC and Switching Characteristics
www.xilinx.com DS557-3 (v3.2) November 19, 2009
70 Product Specification
R
Revision History
The following table shows the revision history for this document.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
Date Version Revision
02/26/07 1.0 Initial release.
08/16/07 2.0 Updated for Production release of initial device (XC3S200AN). Timing specifications updated for v1.38
speed files. DC specifications updated with production values. Other changes throughout.
08/31/07 2.0.1 Updated for Production release of XC3S1400AN. Improved tPEP for XC3S700AN in Table 48.
09/12/07 2.0.2 Updated for Production release of XC3S700AN.
09/24/07 2.1 Updated for Production release of XC3S400AN. Updated Software Version Requirements to note that
Production speed files are available as of Service Pack 3. Removed PCIX IOSTANDARD due to limited
PCIX interface support. Added note that SPI_ACCESS (In-System Flash) is not currently supported in
simulation.
12/12/07 3.0 Updated to Production status with Production release of final family member, XC3S50AN. Noted that
SPI_ACCESS simulation is supported in ISE 10.1 software. Removed DNA_RETENTION limit of 10
years in Table 17 since number of Read cycles is the only unique limit. Updated Setup, Hold, and
Propagation Times for the IOB Input Path to show values by device in Table 23 and Table 25. Increased
SSO recommendation for SSTL18_II in Table 32. Updated Figure 17 and Table 59 to show BPI data
synchronous to CCLK rising edge. Updated links.
06/02/08 3.1 Improved VCCAUXT and VCCO2T POR minimum in Table 7 and updated VCCO POR levels in Figure 13.
Clarified power sequencing in Note 1 of Ta b l e 7 , Tab l e 8, and Figure 13. Added VIN to Recommended
Operating Conditions in Table 10 and added reference to XAPP459, “Eliminating I/O Coupling Effects
when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” Reduced typical ICCINTQ and
ICCAUXQ quiescent current values by 12%-58% in Table 12. Noted latest speed file v1.39 in ISE 10.1
software in Tabl e 1 9 . Added reference to Sample Window in Table 24. Changed Internal SPI interface
max frequency to 50 MHz and updated other Internal SPI timing parameters to match names and
values from speed file in Table 47. Restored Units column to Table 49. Updated CCLK output maximum
period in Table 51 to match minimum frequency in Table 52. Added references to User Guides.
11/19/09 3.2 Updated selected I/O standard DC characteristics. Changed typical quiescent current temperature
from ambient to junction. Removed references to older software versions. Updated column 3 header
of Table 17 and Table 18. Added table note to Table 18. Added TIOPI and TIOPID propagation times in
Table 25. Updated TIOCKHZ and TIOCKON synchronous output enable/disable times in Table 28.
Removed VREF requirements for differential HSTL and differential SSTL in Table 30. Improved
DIFF_SSTL18_II SSO limits in Table 32. Updated table note 3 in Table 39. Removed references to old
software versions from Table 47 and Table 48. Added description of spread spectrum in "Spread
Spectrum" section. Updated BPI configuration waveforms in Figure 17. Updated TACC equation in
Table 60.
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 71
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.
Introduction
This section describes how the various pins on a
Spartan®-3AN FPGA connect within the supported
component packages, and provides device-specific thermal
characteristics. For general information on the pin functions
and the package characteristics, see the Packaging section
of UG331:
UG331: Spartan-3 Generation FPGA User Guide
http://www.xilinx.com/support/documentation/
user_guides/ug331.pdf
Spartan-3AN FPGAs are available in Pb-free, RoHS
packages, indicated by a “G” in the middle of the package
code. Leaded (Pb) packages are available for selected
devices, with the same pinout and without the G’ in the
ordering code (see Table 5, page 8). The Pb-free package
code can be selected in the software for the Pb packages
since the pinouts are identical. References to the Pb-free
package code in this document apply also to the Pb
package.
Pin Types
Most pins on a Spartan-3AN FPGA are general-purpose,
user-defined I/O pins. There are, however, up to 12 different
functional types of pins on Spartan-3AN FPGA packages,
as outlined in Table 62. In the package footprint drawings
that follow, the individual pins are color-coded according to
pin type as in the table.
<BL
Blue
>Spartan-3AN FPGA Family:
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 0Product Specification
R
Tabl e 6 2 : Types of Pins on Spartan-3AN FPGAs
Type /
Color Code Description Pin Name(s) in Type
I/O Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential
I/Os.
IO_#
IO_Lxxy_#
INPUT Unrestricted, general-purpose input-only pin. This pin does not have an output structure,
differential termination resistor, or PCI™ clamp diode.
IP_#
IP_Lxxy_#
DUAL
Dual-purpose pin used in some configuration modes during the configuration process and then
usually available as a user I/O after configuration. If the pin is not used during configuration, this
pin behaves as an I/O-type pin. See UG332: Spartan-3 Generation Configuration User Guide for
additional information on these signals.
M[2:0]
PUDC_B
CCLK
MOSI/CSI_B
D[7:1]
D0/DIN
DOUT
CSO_B
RDWR_B
INIT_B
A[25:0]
VS[2:0]
LDC[2:0]
HDC
VREF
Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other VREF pins
in the same bank, provides a reference voltage input for certain I/O standards. If used for a
reference voltage within a bank, all VREF pins within the bank must be connected.
IP/VREF_#
IP_Lxx_#/VREF_#
IO/VREF_#
IO_Lxx_#/VREF_#
CLK
Either a user-I/O pin or an input to a specific clock buffer driver. Most packages have 16 global
clock inputs that optionally clock the entire device. The exception is the TQ144 package). The
RHCLK inputs optionally clock the right half of the device. The LHCLK inputs optionally clock the
left half of the device. See the Using Global Clock Resources chapter in UG331: Spartan-3
Generation FPGA User Guide for additional information on these signals.
IO_Lxx_#/GCLK[15:0],
IO_Lxx_#/LHCLK[7:0],
IO_Lxx_#/RHCLK[7:0]
CONFIG
Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every package has
two dedicated configuration pins. These pins are powered by VCCAUX. See the UG332:
Spartan-3 Generation Configuration User Guide for additional information on the DONE and
PROG_B signals.
DONE, PROG_B
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
72 Product Specification
R
Package Pins by Type
Each package has three separate voltage supply
inputs—VCCINT, VCCAUX, and VCCO—and a common
ground return, GND. The numbers of pins dedicated to
these functions vary by package, as shown in Table 63.
A majority of package pins are user-defined I/O or input
pins. However, the numbers and characteristics of these
I/Os depend on the device type and the package in which it
is available, as shown in Tabl e 6 4 . The table shows the
maximum number of single-ended I/O pins available,
assuming that all I/O-, INPUT-, DUAL-, VREF-, and
CLK-type pins are used as general-purpose I/O. AWAKE is
counted here as a Dual-Purpose I/O pin. Likewise, the table
shows the maximum number of differential pin-pairs
available on the package. Finally, the table shows how the
total maximum user-I/Os are distributed by pin type,
including the number of unconnected—N.C.—pins on the
device.
Not all I/O standards are supported on all I/O banks. The left
and right banks (I/O banks 1 and 3) support higher output
drive current than the top and bottom banks (I/O banks 0
and 2). Similarly, true differential output standards, such as
LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only
supported in the top or bottom banks (I/O banks 0 and 2).
Inputs are unrestricted. For more details, see the “Using I/O
Resources” chapter in UG331.
PWR
MGMT
Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated pin and
is powered by VCCAUX. AWAKE is a Dual-Purpose pin. Unless Suspend mode is enabled in the
application, AWAKE is available as a user-I/O pin.
SUSPEND, AWAKE
JTAG Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has four
dedicated JTAG pins. These pins are powered by VCCAUX.
TDI, TMS, TCK, TDO
GND Dedicated ground pin. The number of GND pins depends on the package used. All must be
connected.
GND
VCCAUX Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package
used. The In-System Flash memory is powered by VCCAUX. All must be connected to +3.3V.
VCCAUX
VCCINT Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the
package used. All must be connected to +1.2V.
VCCINT
VCCO
Along with all the other VCCO pins in the same bank, this pin supplies power to the output buffers
within the I/O bank and sets the input threshold voltage for some I/O standards. All must be
connected.
VCCO_#
N.C. This package pin is not connected in this specific device/package combination. N.C.
Notes:
1. # = I/O bank number, an integer between 0 and 3.
Tabl e 6 2 : Types of Pins on Spartan-3AN FPGAs (Continued)
Type /
Color Code Description Pin Name(s) in Type
Tabl e 6 3 : Power and Ground Supply Pins by Package
Package VCCINT VCCAUX VCCO GND
TQG144 4 4 8 13
FTG256 6 4 16 28
FGG400 9 8 22 43
FGG484 15 10 24 53
FGG676 23 14 36 77
Tabl e 6 4 : Maximum User I/O by Package
Device Package
Maximum
User I/Os
and
Input-Only
Maximum
Input-
Only
Maximum
Differential
Pairs
All Possible I/Os by Type
I/O INPUT DUAL VREF CLK N.C.
XC3S50AN TQG144 108 750 42 226 830 0
XC3S200AN FTG256 195 35 90 69 21 52 21 32 0
XC3S400AN FGG400 311 63 142 155 46 52 26 32 0
XC3S700AN FGG484 372 84 165 194 61 52 33 32 3
XC3S1400AN FGG676 502 94 227 313 67 52 38 32 17
Notes:
1. Some VREFs are on INPUT pins. See pinout tables for details.
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 73
R
Electronic versions of the package pinout tables and foot-
prints are available for download from the Xilinx website:
http://www.xilinx.com/support/documentation/data_sheets/
s3a_pin.zip
Using a spreadsheet program, the data can be sorted and
reformatted according to any specific needs. Similarly, the
ASCII-text file is easily parsed by most scripting programs.
Package Overview
Table 65 shows the five low-cost, space-saving production
package styles for the Spartan-3AN family.
Each package style is available in an environmentally
friendly lead-free (Pb-free) option. The Pb-free packages
include an extra G’ in the package style name. For example,
the standard “CS484” package becomes “CSG484” when
ordered as the Pb-free option. Leaded (Pb) packages are
available for selected devices, with the same pinout and
without the G’ in the ordering code; See Table 5, page 8 for
more information. The mechanical dimensions of the Pb
and Pb-free packages are similar, as shown in the
mechanical drawings provided in Tabl e 6 6.
For additional package information, see UG112: Device
Package User Guide.
Mechanical Drawings
Detailed mechanical drawings for each package type are
available from the Xilinx website at the specified location in
Table 66.
Material Declaration Data Sheets (MDDS) are also
available on the Xilinx website for each package.
Tabl e 6 5 : Spartan-3AN Family Package Options
Package Leads Type Maximum
I/O
Lead Pitch
(mm)
Body Area
(mm)
Height
(mm)
Mass(1)
(g)
TQ144/TQG144 144 Thin Quad Flat Pack (TQFP) 108 0.5 20 x 20 1.60 1.4
FT256/FTG256 256 Fine-pitch Thin Ball Grid Array (FBGA) 195 1.0 17 x 17 1.55 0.9
FG400/FGG400 400 Fine-pitch Ball Grid Array (FBGA) 311 1.0 21 x 21 2.43 2.2
FG484/FGG484 484 Fine-pitch Ball Grid Array (FBGA) 372 1.0 23 x 23 2.60 2.2
FG676/FGG676 676 Fine-pitch Ball Grid Array (FBGA) 502 1.0 27 x 27 2.60 3.4
Notes:
1. Package mass is ±10%.
Ta bl e 66 : Xilinx Package Documentation
Package Drawing MDDS
TQ144 Package Drawing PK169_TQ144
TQG144 PK126_TQG144
FT256 Package Drawing PK158_FT256
FTG256 PK115_FTG256
FG400 Package Drawing PK182_FG400
FGG400 PK108_FGG400
FG484 Package Drawing PK183_FG484
FGG484 PK110_FGG484
FG676 Package Drawing PK155_FG676
FGG676 PK111_FGG676
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
74 Product Specification
R
Package Thermal Characteristics
The power dissipated by an FPGA application has
implications on package selection and system design. The
power consumed by a Spartan-3AN FPGA is reported using
either the XPower Power Estimator or the XPower Analyzer
calculator integrated in the Xilinx® ISE® development
software. Table 67 provides the thermal characteristics for
the various Spartan-3AN FPGA packages. This information
is also available using the Thermal Query tool at:
(http://www.xilinx.com/cgi-bin/thermal/thermal.pl).
The junction-to-case thermal resistance (θJC) indicates the
difference between the temperature measured on the
package body (case) and the junction temperature per watt
of power consumption. The junction-to-board (θJB) value
similarly reports the difference between the board and
junction temperature. The junction-to-ambient (θJA) value
reports the temperature difference between the ambient
environment and the junction temperature. The θJA value is
reported at different air velocities, measured in linear feet
per minute (LFM). The “Still Air (0 LFM)” column shows the
θJA value in a system without a fan. The thermal resistance
drops with increasing air flow.
Tabl e 6 7 : Spartan-3AN FPGA Package Thermal Characteristics
Package Device Junction-to-Case
(θJC)
Junction-to-
Board (θJB)
Junction-to-Ambient (θJA)
at Different Air Flows Units
Still Air
(0 LFM) 250 LFM 500 LFM 750 LFM
TQG144 XC3S50AN 13.4 32.8 38.9 32.8 32.5 31.7 °C/Watt
FTG256 XC3S200AN 7.4 23.3 29.0 23.8 23.0 22.3 °C/Watt
FGG400 XC3S400AN 6.2 12.9 22.5 16.7 15.6 15.0 °C/Watt
FGG484 XC3S700AN 5.3 11.5 19.4 15.0 13.9 13.4 °C/Watt
FGG676 XC3S1400AN 4.3 10.9 17.7 13.7 12.6 12.1 °C/Watt
Notes:
1. Thermal characteristics are similar for leaded (non-Pb-free) packages.
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 75
R
TQG144: 144-lead Thin Quad Flat Package
The XC3S50AN is available in the 144-lead thin quad flat
package, TQG144.
Table 68 lists all the package pins. They are sorted by bank
number and then by pin name. Pins that form a differential
I/O pair appear together in the table. The table also shows
the pin number for each pin and the pin type, as defined
earlier.
The XC3S50AN does not support the address output pins
for the Byte-wide Peripheral Interface (BPI) configuration
mode.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.
Pinout Table
Tabl e 6 8 : Spartan-3AN TQG144 Pinout
Bank Pin Name Pin Type
0 IO_0 P142 I/O
0 IO_L01N_0 P111 I/O
0 IO_L01P_0 P110 I/O
0 IO_L02N_0 P113 I/O
0 IO_L02P_0/VREF_0 P112 VREF
0 IO_L03N_0 P117 I/O
0 IO_L03P_0 P115 I/O
0 IO_L04N_0 P116 I/O
0 IO_L04P_0 P114 I/O
0 IO_L05N_0 P121 I/O
0 IO_L05P_0 P120 I/O
0 IO_L06N_0/GCLK5 P126 GCLK
0 IO_L06P_0/GCLK4 P124 GCLK
0 IO_L07N_0/GCLK7 P127 GCLK
0 IO_L07P_0/GCLK6 P125 GCLK
0 IO_L08N_0/GCLK9 P131 GCLK
0 IO_L08P_0/GCLK8 P129 GCLK
0 IO_L09N_0/GCLK11 P132 GCLK
0 IO_L09P_0/GCLK10 P130 GCLK
0 IO_L10N_0 P135 I/O
0 IO_L10P_0 P134 I/O
0 IO_L11N_0 P139 I/O
0 IO_L11P_0 P138 I/O
0 IO_L12N_0/PUDC_B P143 DUAL
0 IO_L12P_0/VREF_0 P141 VREF
0 IP_0 P140 INPUT
0 IP_0/VREF_0 P123 VREF
0 VCCO_0 P119 VCCO
0 VCCO_0 P136 VCCO
1IO_1 P79 I/O
1 IO_L01N_1/LDC2 P78 DUAL
1 IO_L01P_1/HDC P76 DUAL
1 IO_L02N_1/LDC0 P77 DUAL
1 IO_L02P_1/LDC1 P75 DUAL
1 IO_L03N_1 P84 I/O
1 IO_L03P_1 P82 I/O
1 IO_L04N_1/RHCLK1 P85 RHCLK
1 IO_L04P_1/RHCLK0 P83 RHCLK
1 IO_L05N_1/TRDY1/RHCLK3 P88 RHCLK
1 IO_L05P_1/RHCLK2 P87 RHCLK
1 IO_L06N_1/RHCLK5 P92 RHCLK
1 IO_L06P_1/RHCLK4 P90 RHCLK
1 IO_L07N_1/RHCLK7 P93 RHCLK
1 IO_L07P_1/IRDY1/RHCLK6 P91 RHCLK
1 IO_L08N_1 P98 I/O
1 IO_L08P_1 P96 I/O
1 IO_L09N_1 P101 I/O
1 IO_L09P_1 P99 I/O
1 IO_L10N_1 P104 I/O
1 IO_L10P_1 P102 I/O
1 IO_L11N_1 P105 I/O
1 IO_L11P_1 P103 I/O
1 IP_1/VREF_1 P80 VREF
1 IP_1/VREF_1 P97 VREF
1 VCCO_1 P86 VCCO
1 VCCO_1 P95 VCCO
2 IO_2/MOSI/CSI_B P62 DUAL
2 IO_L01N_2/M0 P38 DUAL
2 IO_L01P_2/M1 P37 DUAL
2 IO_L02N_2/CSO_B P41 DUAL
2 IO_L02P_2/M2 P39 DUAL
2 IO_L03N_2/VS1 P44 DUAL
2 IO_L03P_2/RDWR_B P42 DUAL
2 IO_L04N_2/VS0 P45 DUAL
2 IO_L04P_2/VS2 P43 DUAL
2 IO_L05N_2/D7 P48 DUAL
Ta bl e 68 : Spartan-3AN TQG144 Pinout (Continued)
Bank Pin Name Pin Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
76 Product Specification
R
2 IO_L05P_2 P46 I/O
2 IO_L06N_2/D6 P49 DUAL
2 IO_L06P_2 P47 I/O
2 IO_L07N_2/D4 P51 DUAL
2 IO_L07P_2/D5 P50 DUAL
2 IO_L08N_2/GCLK15 P55 GCLK
2 IO_L08P_2/GCLK14 P54 GCLK
2 IO_L09N_2/GCLK1 P59 GCLK
2 IO_L09P_2/GCLK0 P57 GCLK
2 IO_L10N_2/GCLK3 P60 GCLK
2 IO_L10P_2/GCLK2 P58 GCLK
2 IO_L11N_2/DOUT P64 DUAL
2 IO_L11P_2/AWAKE P63 PWR
MGMT
2 IO_L12N_2/D3 P68 DUAL
2 IO_L12P_2/INIT_B P67 DUAL
2 IO_L13N_2/D0/DIN/MISO P71 DUAL
2 IO_L13P_2/D2 P69 DUAL
2 IO_L14N_2/CCLK P72 DUAL
2 IO_L14P_2/D1 P70 DUAL
2 IP_2/VREF_2 P53 VREF
2 VCCO_2 P40 VCCO
2 VCCO_2 P61 VCCO
3 IO_L01N_3 P6 I/O
3 IO_L01P_3 P4 I/O
3 IO_L02N_3 P5 I/O
3 IO_L02P_3 P3 I/O
3 IO_L03N_3 P8 I/O
3 IO_L03P_3 P7 I/O
3 IO_L04N_3/VREF_3 P11 VREF
3 IO_L04P_3 P10 I/O
3 IO_L05N_3/LHCLK1 P13 LHCLK
3 IO_L05P_3/LHCLK0 P12 LHCLK
3 IO_L06N_3/IRDY2/LHCLK3 P16 LHCLK
3 IO_L06P_3/LHCLK2 P15 LHCLK
3 IO_L07N_3/LHCLK5 P20 LHCLK
3 IO_L07P_3/LHCLK4 P18 LHCLK
3 IO_L08N_3/LHCLK7 P21 LHCLK
3 IO_L08P_3/TRDY2/LHCLK6 P19 LHCLK
3 IO_L09N_3 P25 I/O
3 IO_L09P_3 P24 I/O
3 IO_L10N_3 P29 I/O
Tabl e 6 8 : Spartan-3AN TQG144 Pinout (Continued)
Bank Pin Name Pin Type
3 IO_L10P_3 P27 I/O
3 IO_L11N_3 P30 I/O
3 IO_L11P_3 P28 I/O
3 IO_L12N_3 P32 I/O
3 IO_L12P_3 P31 I/O
3 IP_L13N_3/VREF_3 P35 VREF
3 IP_L13P_3 P33 INPUT
3 VCCO_3 P14 VCCO
3 VCCO_3 P23 VCCO
GND GND P9 GND
GND GND P17 GND
GND GND P26 GND
GND GND P34 GND
GND GND P56 GND
GND GND P65 GND
GND GND P81 GND
GND GND P89 GND
GND GND P100 GND
GND GND P106 GND
GND GND P118 GND
GND GND P128 GND
GND GND P137 GND
VCCAUX SUSPEND P74 PWR
MGMT
VCCAUX DONE P73 CONFIG
VCCAUX PROG_B P144 CONFIG
VCCAUX TCK P109 JTAG
VCCAUX TDI P2 JTAG
VCCAUX TDO P107 JTAG
VCCAUX TMS P1 JTAG
VCCAUX VCCAUX P36 VCCAUX
VCCAUX VCCAUX P66 VCCAUX
VCCAUX VCCAUX P108 VCCAUX
VCCAUX VCCAUX P133 VCCAUX
VCCINT VCCINT P22 VCCINT
VCCINT VCCINT P52 VCCINT
VCCINT VCCINT P94 VCCINT
VCCINT VCCINT P122 VCCINT
Ta bl e 68 : Spartan-3AN TQG144 Pinout (Continued)
Bank Pin Name Pin Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 77
R
User I/Os by Bank
Table 69 indicates how the 108 available user-I/O pins are
distributed between the four I/O banks on the TQG144
package. The AWAKE pin is counted as a Dual-Purpose
I/O.
Footprint Migration Differences
The XC3S50AN FPGA is the only Spartan-3AN device
offered in the TQG144 package.
The XC3S50AN FPGA is pin compatible with the
Spartan-3A XC3S50A FPGA in the TQ(G)144 package,
although the Spartan-3A FPGA requires an external
configuration source.
Tabl e 6 9 : User I/Os Per Bank for the XC3S50AN in the TQG144 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 027 14 1 1 3 8
Right 125 11 0 4 2 8
Bottom 230 2 0 21 1 6
Left 326 15 1 0 2 8
TOTAL 108 42 226 830
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
78 Product Specification
R
TQG144 Footprint
Note pin 1 indicator in top-left corner and logo orientation.
X-Ref Target - Figure 19
Figure 19: XC3S50AN FPGA in TQG144 Package Footprint (top view)
PROG_B
IO_L12N_0/PUDC_B
IO_0
IO_L12P_0/VREF_0
IP_0
IO_L11N_0
IO_L11P_0
GND
VCCO_0
IO_L10N_0
IO_L10P_0
VCCAUX
IO_L09N_0/GCLK11
IO_L08N_0/GCLK9
IO_L09P_0/GCLK10
IO_L08P_0/GCLK8
GND
IO_L07N_0/GCLK7
IO_L06N_0/GCLK5
IO_L07P_0/GCLK6
IO_L06P_0/GCLK4
IP_0/VREF_0
VCCINT
IO_L05N_0
IO_L05P_0
VCCO_0
GND
IO_L03N_0
IO_L04N_0
IO_L03P_0
IO_L04P_0
IO_L02N_0
IO_L02P_0/VREF_0
IO_L01N_0
IO_L01P_0
TCK
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
TMS1108VCCAUX
TDI 2 107 TD
O
IO_L02P_33
X
106 GND
IO_L01P_34 105 IO_L11N_1
IO_L02N_35 104 IO_L10N_1
IO_L01N_36 103IO_L11P_1
IO_L03P_37 102 IO_L10P_1
IO_L03N_38 101 IO_L09N_1
GND 9 100 GND
IO_L04P_310 99 IO_L09P_1
IO_L04N_3/VREF_
3
11 98IO_L08N_1
IO_L05P_3/LHCLK
0
12 97 IP_1/VREF_1
IO_L05N_3/LHCLK1 1396 IO_L08P_1
VCCO_314 95 VCCO_1
IO_L06P_3/LHCLK2 15 94 VCCINT
IO_L06N_3/LHCLK
3
16 93IO_L07N_1/RHCLK
7
GND 17 92 IO_L06N_1/RHCLK
5
IO_L07P_3/LHCLK
4
1891 IO_L07P_1/RHCLK
6
IO_L08P_3/LHCLK
6
19 90 IO_L06P_1/RHCLK
4
IO_L07N_3/LHCLK
5
20 89GND
IO_L08N_3/LHCLK
7
21 88 IO_L05N_1/RHCLK
3
VCCINT 22 87IO_L05P_1/RHCLK2
VCCO_323 86 VCCO_1
IO_L09P_324 85IO_L04N_1/RHCLK1
IO_L09N_325 84 IO_L03N_1
GND 26 83 IO_L04P_1/RHCLK
0
IO_L10P_327 82 IO_L03P_1
IO_L11P_32881GND
IO_L10N_329 80 IP_1/VREF_1
IO_L11N_330 79 IO_1
IO_L12P_331 78IO_L01N_1/LDC2
IO_L12N_332 77 IO_L02N_1/LDC
0
IP_L13P_333 76 I
O
_L01P_1
/
HD
C
G
ND 3475 I
O
_L02P_1
/
LD
C
1
IP_L13N_3/VREF_
3
35 74 SUSPEND
V
CC
AUX 36 73DONE
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
IO_L01P_2/M1
IO_L01N_2/M0
IO_L02P_2/M2
VCCO_2
IO_L02N_2/CSO_B
IO_L03P_2/RDWR_B
IO_L04P_2/VS2
IO_L03N_2/VS1
IO_L04N_2/VS0
IO_L05P_2
IO_L06P_2
IO_L05N_2/D7
IO_L06N_2/D6
IO_L07P_2/D5
IO_L07N_2/D4
VCCINT
IP_2/VREF_2
IO_L08P_2/GCLK14
IO_L08N_2/GCLK15
GND
IO_L09P_2/GCLK0
IO_L10P_2/GCLK2
IO_L09N_2/GCLK1
IO_L10N_2/GCLK3
VCCO_2
IO_2/MOSI/CSI_B
IO_L11P_2/AWAKE
IO_L11N_2/DOUT
GND
VCCAUX
IO_L12P_2/INIT_B
IO_L12N_2/D3
IO_L13P_2/D2
IO_L14P_2/D1
IO_L13N_2/D0/DIN/MISO
IO_L14N_2/CCLK
Bank 3
Bank 1
Bank 0
Bank 2
DS529-4_10_031207
42 I/O: Unrestricted, general-purpose
user I/O 25 DUAL: Configuration pins, then
possible user I/O 8VREF: User I/O or input voltage
reference for bank
2INPUT: Unrestricted,
general-purpose input pin 30 CLK: User I/O, input, or global
buffer input 8VCCO: Output voltage supply for
bank
2CONFIG: Dedicated configuration
pins 4JTAG: Dedicated JTAG port pins 4VCCINT: Internal core supply
voltage (+1.2V)
0N.C.: Not connected 13 GND: Ground 4VCCAUX: Auxiliary supply voltage
2SUSPEND: Dedicated SUSPEND
and dual-purpose AWAKE Power
Management pins
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 79
R
FTG256: 256-ball Fine-pitch, Thin Ball Grid Array
The 256-ball fine-pitch, thin ball grid array package,
FTG256, supports the XC3S200AN FPGAs.
Table 70 lists all the package pins. They are sorted by bank
number and then by pin name of the largest device. Pins
that form a differential I/O pair appear together in the table.
The table also shows the pin number for each pin and the
pin type, as defined earlier.
Figure 20 shows the footprint for the XC3S200AN.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.
Pinout Table
Tabl e 7 0 : Spartan-3AN FTG256 Pinout
Bank Pin Name
FT256
Ball Type
0 IO_L01N_0 C13 I/O
0 IO_L01P_0 D13 I/O
0 IO_L02N_0 B14 I/O
0 IO_L02P_0/VREF_0 B15 VREF
0 IO_L03N_0 D11 I/O
0 IO_L03P_0 C12 I/O
0 IO_L04N_0 A13 I/O
0 IO_L04P_0 A14 I/O
0 IO_L05N_0 A12 I/O
0 IO_L05P_0 B12 I/O
0 IO_L06N_0/VREF_0 E10 VREF
0 IO_L06P_0 D10 I/O
0 IO_L07N_0 A11 I/O
0 IO_L07P_0 C11 I/O
0 IO_L08N_0 A10 I/O
0 IO_L08P_0 B10 I/O
0 IO_L09N_0/GCLK5 D9 GCLK
0 IO_L09P_0/GCLK4 C10 GCLK
0 IO_L10N_0/GCLK7 A9 GCLK
0 IO_L10P_0/GCLK6 C9 GCLK
0 IO_L11N_0/GCLK9 D8 GCLK
0 IO_L11P_0/GCLK8 C8 GCLK
0 IO_L12N_0/GCLK11 B8 GCLK
0 IO_L12P_0/GCLK10 A8 GCLK
0 IO_L13N_0 C7 I/O
0 IO_L13P_0 A7 I/O
0 IO_L14N_0/VREF_0 E7 VREF
0 IO_L14P_0 F8 I/O
0 IO_L15N_0 B6 I/O
0 IO_L15P_0 A6 I/O
0 IO_L16N_0 C6 I/O
0 IO_L16P_0 D7 I/O
0 IO_L17N_0 C5 I/O
0 IO_L17P_0 A5 I/O
0 IO_L18N_0 B4 I/O
0 IO_L18P_0 A4 I/O
0 IO_L19N_0 B3 I/O
0 IO_L19P_0 A3 I/O
0 IO_L20N_0/PUDC_B D5 DUAL
0 IO_L20P_0/VREF_0 C4 VREF
0 IP_0 D6 INPUT
0 IP_0 D12 INPUT
0 IP_0 E6 INPUT
0 IP_0 F7 INPUT
0 IP_0 F9 INPUT
0 IP_0 F10 INPUT
0 IP_0/VREF_0 E9 VREF
0 VCCO_0 B5 VCCO
0 VCCO_0 B9 VCCO
0 VCCO_0 B13 VCCO
0 VCCO_0 E8 VCCO
1 IO_L01N_1/LDC2 N14 DUAL
1 IO_L01P_1/HDC N13 DUAL
1 IO_L02N_1/LDC0 P15 DUAL
1 IO_L02P_1/LDC1 R15 DUAL
1 IO_L03N_1/A1 N16 DUAL
1 IO_L03P_1/A0 P16 DUAL
1 IO_L05N_1/VREF_1 M14 VREF
1 IO_L05P_1 M13 I/O
1 IO_L06N_1/A3 K13 DUAL
1 IO_L06P_1/A2 L13 DUAL
1 IO_L07N_1/A5 M16 DUAL
1 IO_L07P_1/A4 M15 DUAL
1 IO_L08N_1/A7 L16 DUAL
1 IO_L08P_1/A6 L14 DUAL
1 IO_L10N_1/A9 J13 DUAL
1 IO_L10P_1/A8 J12 DUAL
1 IO_L11N_1/RHCLK1 K14 RHCLK
1 IO_L11P_1/RHCLK0 K15 RHCLK
1 IO_L12N_1/TRDY1/RHCLK3 J16 RHCLK
1 IO_L12P_1/RHCLK2 K16 RHCLK
1 IO_L14N_1/RHCLK5 H14 RHCLK
Ta bl e 70 : Spartan-3AN FTG256 Pinout (Continued)
Bank Pin Name
FT256
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
80 Product Specification
R
1 IO_L14P_1/RHCLK4 J14 RHCLK
1 IO_L15N_1/RHCLK7 H16 RHCLK
1 IO_L15P_1/IRDY1/RHCLK6 H15 RHCLK
1 IO_L16N_1/A11 F16 DUAL
1 IO_L16P_1/A10 G16 DUAL
1 IO_L17N_1/A13 G14 DUAL
1 IO_L17P_1/A12 H13 DUAL
1 IO_L18N_1/A15 F15 DUAL
1 IO_L18P_1/A14 E16 DUAL
1 IO_L19N_1/A17 F14 DUAL
1 IO_L19P_1/A16 G13 DUAL
1 IO_L20N_1/A19 F13 DUAL
1 IO_L20P_1/A18 E14 DUAL
1 IO_L22N_1/A21 D15 DUAL
1 IO_L22P_1/A20 D16 DUAL
1 IO_L23N_1/A23 D14 DUAL
1 IO_L23P_1/A22 E13 DUAL
1 IO_L24N_1/A25 C15 DUAL
1 IO_L24P_1/A24 C16 DUAL
1 IP_L04N_1/VREF_1 K12 VREF
1 IP_L04P_1 K11 INPUT
1 IP_L09N_1 J11 INPUT
1 IP_L09P_1/VREF_1 J10 VREF
1 IP_L13N_1 H11 INPUT
1 IP_L13P_1 H10 INPUT
1 IP_L21N_1 G11 INPUT
1 IP_L21P_1/VREF_1 G12 VREF
1 IP_L25N_1 F11 INPUT
1 IP_L25P_1/VREF_1 F12 VREF
1 VCCO_1 E15 VCCO
1 VCCO_1 H12 VCCO
1 VCCO_1 J15 VCCO
1 VCCO_1 N15 VCCO
2 IO_L01N_2/M0 P4 DUAL
2 IO_L01P_2/M1 N4 DUAL
2 IO_L02N_2/CSO_B T2 DUAL
2 IO_L02P_2/M2 R2 DUAL
2 IO_L03N_2/VS2 T3 DUAL
2 IO_L03P_2/RDWR_B R3 DUAL
2 IO_L04N_2/VS0 P5 DUAL
2 IO_L04P_2/VS1 N6 DUAL
2 IO_L05N_2 R5 I/O
2 IO_L05P_2 T4 I/O
2 IO_L06N_2/D6 T6 DUAL
Tabl e 7 0 : Spartan-3AN FTG256 Pinout (Continued)
Bank Pin Name
FT256
Ball Type
2 IO_L06P_2/D7 T5 DUAL
2 IO_L07N_2 P6 I/O
2 IO_L07P_2 N7 I/O
2 IO_L08N_2/D4 N8 DUAL
2 IO_L08P_2/D5 P7 DUAL
2 IO_L09N_2/GCLK13 T7 GCLK
2 IO_L09P_2/GCLK12 R7 GCLK
2 IO_L10N_2/GCLK15 T8 GCLK
2 IO_L10P_2/GCLK14 P8 GCLK
2 IO_L11N_2/GCLK1 P9 GCLK
2 IO_L11P_2/GCLK0 N9 GCLK
2 IO_L12N_2/GCLK3 T9 GCLK
2 IO_L12P_2/GCLK2 R9 GCLK
2 IO_L13N_2 M10 I/O
2 IO_L13P_2 N10 I/O
2 IO_L14N_2/MOSI/CSI_B P10 DUAL
2 IO_L14P_2 T10 I/O
2 IO_L15N_2/DOUT R11 DUAL
2IO_L15P_2/
AWAKE T11 PWR
MGMT
2 IO_L16N_2 N11 I/O
2 IO_L16P_2 P11 I/O
2 IO_L17N_2/D3 P12 DUAL
2 IO_L17P_2/INIT_B T12 DUAL
2 IO_L18N_2/D1 R13 DUAL
2 IO_L18P_2/D2 T13 DUAL
2 IO_L19N_2 P13 I/O
2 IO_L19P_2 N12 I/O
2 IO_L20N_2/CCLK R14 DUAL
2 IO_L20P_2/D0/DIN/MISO T14 DUAL
2 IP_2 L7 INPUT
2 IP_2 L8 INPUT
2 IP_2/VREF_2 L9 VREF
2 IP_2/VREF_2 L10 VREF
2 IP_2/VREF_2 M7 VREF
2 IP_2/VREF_2 M8 VREF
2 IP_2/VREF_2 M11 VREF
2 IP_2/VREF_2 N5 VREF
2 VCCO_2 M9 VCCO
2 VCCO_2 R4 VCCO
2 VCCO_2 R8 VCCO
2 VCCO_2 R12 VCCO
3 IO_L01N_3 C1 I/O
3 IO_L01P_3 C2 I/O
Ta bl e 70 : Spartan-3AN FTG256 Pinout (Continued)
Bank Pin Name
FT256
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 81
R
3 IO_L02N_3 D3 I/O
3 IO_L02P_3 D4 I/O
3 IO_L03N_3 E1 I/O
3 IO_L03P_3 D1 I/O
3 IO_L05N_3 E2 I/O
3 IO_L05P_3 E3 I/O
3 IO_L07N_3 G4 I/O
3 IO_L07P_3 F3 I/O
3 IO_L08N_3/VREF_3 G1 VREF
3 IO_L08P_3 F1 I/O
3 IO_L09N_3 H4 I/O
3 IO_L09P_3 G3 I/O
3 IO_L10N_3 H5 I/O
3 IO_L10P_3 H6 I/O
3 IO_L11N_3/LHCLK1 H1 LHCLK
3 IO_L11P_3/LHCLK0 G2 LHCLK
3 IO_L12N_3/IRDY2/LHCLK3 J3 LHCLK
3 IO_L12P_3/LHCLK2 H3 LHCLK
3 IO_L14N_3/LHCLK5 J1 LHCLK
3 IO_L14P_3/LHCLK4 J2 LHCLK
3 IO_L15N_3/LHCLK7 K1 LHCLK
3 IO_L15P_3/TRDY2/LHCLK6 K3 LHCLK
3 IO_L16N_3 L2 I/O
3 IO_L16P_3/VREF_3 L1 VREF
3 IO_L17N_3 J6 I/O
3 IO_L17P_3 J4 I/O
3 IO_L18N_3 L3 I/O
3 IO_L18P_3 K4 I/O
3 IO_L19N_3 L4 I/O
3 IO_L19P_3 M3 I/O
3 IO_L20N_3 N1 I/O
3 IO_L20P_3 M1 I/O
3 IO_L22N_3 P1 I/O
3 IO_L22P_3 N2 I/O
3 IO_L23N_3 P2 I/O
3 IO_L23P_3 R1 I/O
3 IO_L24N_3 M4 I/O
3 IO_L24P_3 N3 I/O
3 IP_L04N_3/VREF_3 F4 VREF
3 IP_L04P_3 E4 INPUT
3 IP_L06N_3/VREF_3 G5 VREF
3 IP_L06P_3 G6 INPUT
3 IP_L13N_3 J7 INPUT
3 IP_L13P_3 H7 INPUT
Tabl e 7 0 : Spartan-3AN FTG256 Pinout (Continued)
Bank Pin Name
FT256
Ball Type
3 IP_L21N_3 K6 INPUT
3 IP_L21P_3 K5 INPUT
3 IP_L25N_3/VREF_3 L6 VREF
3 IP_L25P_3 L5 INPUT
3 VCCO_3 D2 VCCO
3 VCCO_3 H2 VCCO
3 VCCO_3 J5 VCCO
3 VCCO_3 M2 VCCO
GND GND A1 GND
GND GND A16 GND
GND GND B7 GND
GND GND B11 GND
GND GND C3 GND
GND GND C14 GND
GND GND E5 GND
GND GND E12 GND
GND GND F2 GND
GND GND F6 GND
GND GND G8 GND
GND GND G10 GND
GND GND G15 GND
GND GND H9 GND
GND GND J8 GND
GND GND K2 GND
GND GND K7 GND
GND GND K9 GND
GND GND L11 GND
GND GND L15 GND
GND GND M5 GND
GND GND M12 GND
GND GND P3 GND
GND GND P14 GND
GND GND R6 GND
GND GND R10 GND
GND GND T1 GND
GND GND T16 GND
VCCAUX SUSPEND R16 PWR
MGMT
VCCAUX DONE T15 CONFIG
VCCAUX PROG_B A2 CONFIG
VCCAUX TCK A15 JTAG
VCCAUX TDI B1 JTAG
VCCAUX TDO B16 JTAG
VCCAUX TMS B2 JTAG
Ta bl e 70 : Spartan-3AN FTG256 Pinout (Continued)
Bank Pin Name
FT256
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
82 Product Specification
R
User I/Os by Bank
Table 71 indicates how the available user-I/O pins are
distributed between the four I/O banks on the FTG256
package. The AWAKE pin is counted as a Dual-Purpose
I/O.
Footprint Migration Differences
The XC3S200AN FPGA is the only Spartan-3AN device
offered in the FTG256 package.
The XC3S200AN FPGA is pin compatible with the
Spartan-3A XC3S200A FPGA in the FT(G)256 package,
although the Spartan-3A FPGA requires an external
configuration source.
VCCAUX VCCAUX E11 VCCAUX
VCCAUX VCCAUX F5 VCCAUX
VCCAUX VCCAUX L12 VCCAUX
VCCAUX VCCAUX M6 VCCAUX
VCCINT VCCINT G7 VCCINT
VCCINT VCCINT G9 VCCINT
VCCINT VCCINT H8 VCCINT
VCCINT VCCINT J9 VCCINT
VCCINT VCCINT K8 VCCINT
VCCINT VCCINT K10 VCCINT
Tabl e 7 0 : Spartan-3AN FTG256 Pinout (Continued)
Bank Pin Name
FT256
Ball Type
Tabl e 7 1 : User I/Os Per Bank on XC3S200AN in the FTG256 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 047 27 6 1 5 8
Right 150 1 6 30 5 8
Bottom 248 11 221 6 8
Left 350 30 7 0 5 8
TOTAL 195 69 21 52 21 32
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 83
R
FTG256 Footprint (XC3S200AN)
X-Ref Target - Figure 20
Figure 20: XC3S200AN FPGA in FTG256 Package Footprint (top view)
123456789 1011121314 15 16
AGND
PROG_B
I/O
L19P_0
I/O
L18P_0
I/O
L17P_0
I/O
L15P_0
I/O
L13P_0
I/O
L12P_0
GCLK10
I/O
L10N_0
GCLK7
I/O
L08N_0
I/O
L07N_0
I/O
L05N_0
I/O
L04N_0
I/O
L04P_0 TCK GND
BTDI TMSI/O
L19N_0
I/O
L18N_0 VCCO_0 I/O
L15N_0 GND
I/O
L12N_0
GCLK11
VCCO_0 I/O
L08P_0 GND I/O
L05P_0 VCCO_0 I/O
L02N_0
I/O
L02P_0
VREF_0
TDO
CI/O
L01N_3
I/O
L01P_3GND
I/O
L20P_0
VREF_0
I/O
L17N_0
I/O
L16N_0
I/O
L13N_0
I/O
L11P_0
GCLK8
I/O
L10P_0
GCLK6
I/O
L09P_0
GCLK4
I/O
L07P_0
I/O
L03P_0
I/O
L01N_0 GND
I/O
L24N_1
A25
I/O
L24P_1
A24
DI/O
L03P_3VCCO_3I/O
L02N_3
I/O
L02P_3
I/O
L20N_0
PUDC_B
INPUT I/O
L16P_0
I/O
L11N_0
GCLK9
I/O
L09N_0
GCLK5
I/O
L06P_0
I/O
L03N_0 INPUT I/O
L01P_0
I/O
L23N_1
A23
I/O
L22N_1
A21
I/O
L22P_1
A20
EI/O
L03N_3
I/O
L05N_3
I/O
L05P_3
INPUT
L04P_3GND INPUT
I/O
L14N_0
VREF_0
VCCO_0 INPUT
VREF_0
I/O
L06N_0
VREF_0
VCCAUX GND
I/O
L23P_1
A22
I/O
L20P_1
A18
VCCO_1
I/O
L18P_1
A14
FI/O
L08P_3GND I/O
L07P_3
INPUT
L04N_3
VREF_3
VCCAUX GND INPUT I/O
L14P_0 INPUT INPUT INPUT
L25N_1
INPUT
L25P_1
VREF_1
I/O
L20N_1
A19
I/O
L19N_1
A17
I/O
L18N_1
A15
I/O
L16N_1
A11
G
I/O
L08N_3
VREF_3
I/O
L11P_3
LHCLK0
I/O
L09P_3
I/O
L07N_3
INPUT
L06N_3
VREF_3
INPUT
L06P_3VCCINT GND VCCINT GND INPUT
L21N_1
INPUT
L21P_1
VREF_1
I/O
L19P_1
A16
I/O
L17N_1
A13
GND
I/O
L16P_1
A10
H
I/O
L11N_3
LHCLK1
VCCO_3
I/O
L12P_3
LHCLK2
I/O
L09N_3
I/O
L10N_3
I/O
L10P_3
INPUT
L13P_3VCCINT GND INPUT
L13P_1
INPUT
L13N_1 VCCO_1
I/O
L17P_1
A12
I/O
L14N_1
RHCLK5
I/O
L15P_1
IRDY1
RHCLK6
I/O
L15N_1
RHCLK7
J
I/O
L14N_3
LHCLK5
I/O
L14P_3
LHCLK4
I/O
L12N_3
IRDY2
LHCLK3
I/O
L17P_3VCCO_3I/O
L17N_3
INPUT
L13N_3GND VCCINT
INPUT
L09P_1
VREF_1
INPUT
L09N_1
I/O
L10P_1
A8
I/O
L10N_1
A9
I/O
L14P_1
RHCLK4
VCCO_1
I/O
L12N_1
TRDY1
RHCLK3
K
I/O
L15N_3
LHCLK7
GND
I/O
L15P_3
TRDY2
LHCLK6
I/O
L18P_3
INPUT
L21P_3
INPUT
L21N_3GND VCCINT GND VCCINT INPUT
L04P_1
INPUT
L04N_1
VREF_1
I/O
L06N_1
A3
I/O
L11N_1
RHCLK1
I/O
L11P_1
RHCLK0
I/O
L12P_1
RHCLK2
L
I/O
L16P_3
VREF_3
I/O
L16N_3
I/O
L18N_3
I/O
L19N_3
INPUT
L25P_3
INPUT
L25N_3
VREF_3
INPUT INPUT INPUT
VREF_2
INPUT
VREF_2 GND VCCAUX
I/O
L06P_1
A2
I/O
L08P_1
A6
GND
I/O
L08N_1
A7
MI/O
L20P_3VCCO_3I/O
L19P_3
I/O
L24N_3GND VCCAUX INPUT
VREF_2
INPUT
VREF_2 VCCO_2 I/O
L13N_2
INPUT
VREF_2 GND I/O
L05P_1
I/O
L05N_1
VREF_1
I/O
L07P_1
A4
I/O
L07N_1
A5
NI/O
L20N_3
I/O
L22P_3
I/O
L24P_3
I/O
L01P_2
M1
INPUT
VREF_2
I/O
L04P_2
VS1
I/O
L07P_2
I/O
L08N_2
D4
I/O
L11P_2
GCLK0
I/O
L13P_2
I/O
L16N_2
I/O
L19P_2
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
VCCO_1
I/O
L03N_1
A1
PI/O
L22N_3
I/O
L23N_3GND
I/O
L01N_2
M0
I/O
L04N_2
VS0
I/O
L07N_2
I/O
L08P_2
D5
I/O
L10P_2
GCLK14
I/O
L11N_2
GCLK1
I/O
L14N_2
MOSI
CSI_B
I/O
L16P_2
I/O
L17N_2
D3
I/O
L19N_2 GND
I/O
L02N_1
LDC0
I/O
L03P_1
A0
RI/O
L23P_3
I/O
L02P_2
M2
I/O
L03P_2
RDWR_B
VCCO_2 I/O
L05N_2 GND
I/O
L09P_2
GCLK12
VCCO_2
I/O
L12P_2
GCLK2
GND
I/O
L15N_2
DOUT
VCCO_2
I/O
L18N_2
D1
I/O
L20N_2
CCLK
I/O
L02P_1
LDC1
SUSPEND
TGND
I/O
L02N_2
CSO_B
I/O
L03N_2
VS2
I/O
L05P_2
I/O
L06P_2
D7
I/O
L06N_2
D6
I/O
L09N_2
GCLK13
I/O
L10N_2
GCLK15
I/O
L12N_2
GCLK3
I/O
L14P_2
I/O
L15P_2
AWAKE
I/O
L17P_2
INIT_B
I/O
L18P_2
D2
I/O
L20P_2
D0
DIN/MISO
DONE GND
Bank 2
Bank 3
Bank 1
Bank 0
DS529-4_06_101106
69 I/O: Unrestricted,
general-purpose user I/O 51 DUAL: Configuration pins,
then possible user I/O 21 VREF: User I/O or input
voltage reference for bank 2SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
21 INPUT: Unrestricted,
general-purpose input pin 32 CLK: User I/O, input, or
global buffer input 16 VCCO: Output voltage
supply for bank
2CONFIG: Dedicated
configuration pins 4JTAG: Dedicated JTAG
port pins 6VCCINT: Internal core
supply voltage (+1.2V)
0N.C.: Not connected 28 GND: Ground 4VCCAUX: Auxiliary supply
voltage
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
84 Product Specification
R
FGG400: 400-ball Fine-pitch Ball Grid Array
The 400-ball fine-pitch ball grid array, FGG400, supports the
XC3S400AN FPGA as shown in Table 72 and Figure 21.
Table 72 lists all the FGG400 package pins. They are sorted
by bank number and then by pin name. Pairs of pins that
form a differential I/O pair appear together in the table. The
table also shows the pin number for each pin and the pin
type, as defined earlier.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.
Pinout Table
Tabl e 7 2 : Spartan-3AN FGG400 Pinout
Bank Pin Name
FG400
Ball Type
0 IO_L01N_0 A18 I/O
0 IO_L01P_0 B18 I/O
0 IO_L02N_0 C17 I/O
0 IO_L02P_0/VREF_0 D17 VREF
0 IO_L03N_0 E15 I/O
0 IO_L03P_0 D16 I/O
0 IO_L04N_0 A17 I/O
0 IO_L04P_0/VREF_0 B17 VREF
0 IO_L05N_0 A16 I/O
0 IO_L05P_0 C16 I/O
0 IO_L06N_0 C15 I/O
0 IO_L06P_0 D15 I/O
0 IO_L07N_0 A14 I/O
0 IO_L07P_0 C14 I/O
0 IO_L08N_0 A15 I/O
0 IO_L08P_0 B15 I/O
0 IO_L09N_0 F13 I/O
0 IO_L09P_0 E13 I/O
0 IO_L10N_0/VREF_0 C13 VREF
0 IO_L10P_0 D14 I/O
0 IO_L11N_0 C12 I/O
0 IO_L11P_0 B13 I/O
0 IO_L12N_0 F12 I/O
0 IO_L12P_0 D12 I/O
0 IO_L13N_0 A12 I/O
0 IO_L13P_0 B12 I/O
0 IO_L14N_0 C11 I/O
0 IO_L14P_0 B11 I/O
0 IO_L15N_0/GCLK5 E11 GCLK
0 IO_L15P_0/GCLK4 D11 GCLK
0 IO_L16N_0/GCLK7 C10 GCLK
0 IO_L16P_0/GCLK6 A10 GCLK
0 IO_L17N_0/GCLK9 E10 GCLK
0 IO_L17P_0/GCLK8 D10 GCLK
0 IO_L18N_0/GCLK11 A8 GCLK
0 IO_L18P_0/GCLK10 A9 GCLK
0 IO_L19N_0 C9 I/O
0 IO_L19P_0 B9 I/O
0 IO_L20N_0 C8 I/O
0 IO_L20P_0 B8 I/O
0 IO_L21N_0 D8 I/O
0 IO_L21P_0 C7 I/O
0 IO_L22N_0/VREF_0 F9 VREF
0 IO_L22P_0 E9 I/O
0 IO_L23N_0 F8 I/O
0 IO_L23P_0 E8 I/O
0 IO_L24N_0 A7 I/O
0 IO_L24P_0 B7 I/O
0 IO_L25N_0 C6 I/O
0 IO_L25P_0 A6 I/O
0 IO_L26N_0 B5 I/O
0 IO_L26P_0 A5 I/O
0 IO_L27N_0 F7 I/O
0 IO_L27P_0 E7 I/O
0 IO_L28N_0 D6 I/O
0 IO_L28P_0 C5 I/O
0 IO_L29N_0 C4 I/O
0 IO_L29P_0 A4 I/O
0 IO_L30N_0 B3 I/O
0 IO_L30P_0 A3 I/O
0 IO_L31N_0 F6 I/O
0 IO_L31P_0 E6 I/O
0 IO_L32N_0/PUDC_B B2 DUAL
0 IO_L32P_0/VREF_0 A2 VREF
0 IP_0 E14 INPUT
Ta bl e 72 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 85
R
0 IP_0 F11 INPUT
0 IP_0 F14 INPUT
0 IP_0 G8 INPUT
0 IP_0 G9 INPUT
0 IP_0 G10 INPUT
0 IP_0 G12 INPUT
0 IP_0 G13 INPUT
0 IP_0 H9 INPUT
0 IP_0 H10 INPUT
0 IP_0 H11 INPUT
0 IP_0 H12 INPUT
0 IP_0/VREF_0 G11 VREF
0 VCCO_0 B4 VCCO
0 VCCO_0 B10 VCCO
0 VCCO_0 B16 VCCO
0 VCCO_0 D7 VCCO
0 VCCO_0 D13 VCCO
0 VCCO_0 F10 VCCO
1 IO_L01N_1/LDC2 V20 DUAL
1 IO_L01P_1/HDC W20 DUAL
1 IO_L02N_1/LDC0 U18 DUAL
1 IO_L02P_1/LDC1 V19 DUAL
1 IO_L03N_1/A1 R16 DUAL
1 IO_L03P_1/A0 T17 DUAL
1 IO_L05N_1 T20 I/O
1 IO_L05P_1 T18 I/O
1 IO_L06N_1 U20 I/O
1 IO_L06P_1 U19 I/O
1 IO_L07N_1 P17 I/O
1 IO_L07P_1 P16 I/O
1 IO_L08N_1 R17 I/O
1 IO_L08P_1 R18 I/O
1 IO_L09N_1 R20 I/O
1 IO_L09P_1 R19 I/O
1 IO_L10N_1/VREF_1 P20 VREF
1 IO_L10P_1 P18 I/O
1 IO_L12N_1/A3 N17 DUAL
1 IO_L12P_1/A2 N15 DUAL
1 IO_L13N_1/A5 N19 DUAL
1 IO_L13P_1/A4 N18 DUAL
Tabl e 7 2 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
1 IO_L14N_1/A7 M18 DUAL
1 IO_L14P_1/A6 M17 DUAL
1 IO_L16N_1/A9 L16 DUAL
1 IO_L16P_1/A8 L15 DUAL
1 IO_L17N_1/RHCLK1 M20 RHCLK
1 IO_L17P_1/RHCLK0 M19 RHCLK
1 IO_L18N_1/TRDY1/RHCLK3 L18 RHCLK
1 IO_L18P_1/RHCLK2 L19 RHCLK
1 IO_L20N_1/RHCLK5 L17 RHCLK
1 IO_L20P_1/RHCLK4 K18 RHCLK
1 IO_L21N_1/RHCLK7 J20 RHCLK
1 IO_L21P_1/IRDY1/RHCLK6 K20 RHCLK
1 IO_L22N_1/A11 J18 DUAL
1 IO_L22P_1/A10 J19 DUAL
1 IO_L24N_1 K16 I/O
1 IO_L24P_1 J17 I/O
1 IO_L25N_1/A13 H18 DUAL
1 IO_L25P_1/A12 H19 DUAL
1 IO_L26N_1/A15 G20 DUAL
1 IO_L26P_1/A14 H20 DUAL
1 IO_L28N_1 H17 I/O
1 IO_L28P_1 G18 I/O
1 IO_L29N_1/A17 F19 DUAL
1 IO_L29P_1/A16 F20 DUAL
1 IO_L30N_1/A19 F18 DUAL
1 IO_L30P_1/A18 G17 DUAL
1 IO_L32N_1 E19 I/O
1 IO_L32P_1 E20 I/O
1 IO_L33N_1 F17 I/O
1 IO_L33P_1 E18 I/O
1 IO_L34N_1 D18 I/O
1 IO_L34P_1 D20 I/O
1 IO_L36N_1/A21 F16 DUAL
1 IO_L36P_1/A20 G16 DUAL
1 IO_L37N_1/A23 C19 DUAL
1 IO_L37P_1/A22 C20 DUAL
1 IO_L38N_1/A25 B19 DUAL
1 IO_L38P_1/A24 B20 DUAL
1 IP_1/VREF_1 N14 VREF
1 IP_L04N_1/VREF_1 P15 VREF
Ta bl e 72 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
86 Product Specification
R
1 IP_L04P_1 P14 INPUT
1 IP_L11N_1/VREF_1 M15 VREF
1 IP_L11P_1 M16 INPUT
1 IP_L15N_1 M13 INPUT
1 IP_L15P_1/VREF_1 M14 VREF
1 IP_L19N_1 L13 INPUT
1 IP_L19P_1 L14 INPUT
1 IP_L23N_1 K14 INPUT
1 IP_L23P_1/VREF_1 K15 VREF
1 IP_L27N_1 J15 INPUT
1 IP_L27P_1 J16 INPUT
1 IP_L31N_1 J13 INPUT
1 IP_L31P_1/VREF_1 J14 VREF
1 IP_L35N_1 H14 INPUT
1 IP_L35P_1 H15 INPUT
1 IP_L39N_1 G14 INPUT
1 IP_L39P_1/VREF_1 G15 VREF
1 VCCO_1 D19 VCCO
1 VCCO_1 H16 VCCO
1 VCCO_1 K19 VCCO
1 VCCO_1 N16 VCCO
1 VCCO_1 T19 VCCO
2 IO_L01N_2/M0 V4 DUAL
2 IO_L01P_2/M1 U4 DUAL
2 IO_L02N_2/CSO_B Y2 DUAL
2 IO_L02P_2/M2 W3 DUAL
2 IO_L03N_2 W4 I/O
2 IO_L03P_2 Y3 I/O
2 IO_L04N_2 R7 I/O
2 IO_L04P_2 T6 I/O
2 IO_L05N_2 U5 I/O
2 IO_L05P_2 V5 I/O
2 IO_L06N_2 U6 I/O
2 IO_L06P_2 T7 I/O
2 IO_L07N_2/VS2 U7 DUAL
2 IO_L07P_2/RDWR_B T8 DUAL
2 IO_L08N_2 Y5 I/O
2 IO_L08P_2 Y4 I/O
2 IO_L09N_2/VS0 W6 DUAL
2 IO_L09P_2/VS1 V6 DUAL
Tabl e 7 2 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
2 IO_L10N_2 Y7 I/O
2 IO_L10P_2 Y6 I/O
2 IO_L11N_2 U9 I/O
2 IO_L11P_2 T9 I/O
2 IO_L12N_2/D6 W8 DUAL
2 IO_L12P_2/D7 V7 DUAL
2 IO_L13N_2 V9 I/O
2 IO_L13P_2 V8 I/O
2 IO_L14N_2/D4 T10 DUAL
2 IO_L14P_2/D5 U10 DUAL
2 IO_L15N_2/GCLK13 Y9 GCLK
2 IO_L15P_2/GCLK12 W9 GCLK
2 IO_L16N_2/GCLK15 W10 GCLK
2 IO_L16P_2/GCLK14 V10 GCLK
2 IO_L17N_2/GCLK1 V11 GCLK
2 IO_L17P_2/GCLK0 Y11 GCLK
2 IO_L18N_2/GCLK3 V12 GCLK
2 IO_L18P_2/GCLK2 U11 GCLK
2 IO_L19N_2 R12 I/O
2 IO_L19P_2 T12 I/O
2 IO_L20N_2/MOSI/CSI_B W12 DUAL
2 IO_L20P_2 Y12 I/O
2 IO_L21N_2 W13 I/O
2 IO_L21P_2 Y13 I/O
2 IO_L22N_2/DOUT V13 DUAL
2IO_L22P_2/AWAKE U13 PWR
MGMT
2 IO_L23N_2 R13 I/O
2 IO_L23P_2 T13 I/O
2 IO_L24N_2/D3 W14 DUAL
2 IO_L24P_2/INIT_B Y14 DUAL
2 IO_L25N_2 T14 I/O
2 IO_L25P_2 V14 I/O
2 IO_L26N_2/D1 V15 DUAL
2 IO_L26P_2/D2 Y15 DUAL
2 IO_L27N_2 T15 I/O
2 IO_L27P_2 U15 I/O
2 IO_L28N_2 W16 I/O
2 IO_L28P_2 Y16 I/O
2 IO_L29N_2 U16 I/O
Ta bl e 72 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 87
R
2 IO_L29P_2 V16 I/O
2 IO_L30N_2 Y18 I/O
2 IO_L30P_2 Y17 I/O
2 IO_L31N_2 U17 I/O
2 IO_L31P_2 V17 I/O
2 IO_L32N_2/CCLK Y19 DUAL
2 IO_L32P_2/D0/DIN/MISO W18 DUAL
2 IP_2 P9 INPUT
2 IP_2 P12 INPUT
2 IP_2 P13 INPUT
2 IP_2 R8 INPUT
2 IP_2 R10 INPUT
2 IP_2 T11 INPUT
2 IP_2/VREF_2 N9 VREF
2 IP_2/VREF_2 N12 VREF
2 IP_2/VREF_2 P8 VREF
2 IP_2/VREF_2 P10 VREF
2 IP_2/VREF_2 P11 VREF
2 IP_2/VREF_2 R14 VREF
2 VCCO_2 R11 VCCO
2 VCCO_2 U8 VCCO
2 VCCO_2 U14 VCCO
2 VCCO_2 W5 VCCO
2 VCCO_2 W11 VCCO
2 VCCO_2 W17 VCCO
3 IO_L01N_3 D3 I/O
3 IO_L01P_3 D4 I/O
3 IO_L02N_3 C2 I/O
3 IO_L02P_3 B1 I/O
3 IO_L03N_3 D2 I/O
3 IO_L03P_3 C1 I/O
3 IO_L05N_3 E1 I/O
3 IO_L05P_3 D1 I/O
3 IO_L06N_3 G5 I/O
3 IO_L06P_3 F4 I/O
3 IO_L07N_3 J5 I/O
3 IO_L07P_3 J6 I/O
3 IO_L08N_3 H4 I/O
3 IO_L08P_3 H6 I/O
3 IO_L09N_3 G4 I/O
Tabl e 7 2 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
3 IO_L09P_3 F3 I/O
3 IO_L10N_3 F2 I/O
3 IO_L10P_3 E3 I/O
3 IO_L12N_3 H2 I/O
3 IO_L12P_3 G3 I/O
3 IO_L13N_3/VREF_3 G1 VREF
3 IO_L13P_3 F1 I/O
3 IO_L14N_3 H3 I/O
3 IO_L14P_3 J4 I/O
3 IO_L16N_3 J2 I/O
3 IO_L16P_3 J3 I/O
3 IO_L17N_3/LHCLK1 K2 LHCLK
3 IO_L17P_3/LHCLK0 J1 LHCLK
3 IO_L18N_3/IRDY2/LHCLK3 L3 LHCLK
3 IO_L18P_3/LHCLK2 K3 LHCLK
3 IO_L20N_3/LHCLK5 L5 LHCLK
3 IO_L20P_3/LHCLK4 K4 LHCLK
3 IO_L21N_3/LHCLK7 M1 LHCLK
3 IO_L21P_3/TRDY2/LHCLK6 L1 LHCLK
3 IO_L22N_3 M3 I/O
3 IO_L22P_3/VREF_3 M2 VREF
3 IO_L24N_3 M5 I/O
3 IO_L24P_3 M4 I/O
3 IO_L25N_3 N2 I/O
3 IO_L25P_3 N1 I/O
3 IO_L26N_3 N4 I/O
3 IO_L26P_3 N3 I/O
3 IO_L28N_3 R1 I/O
3 IO_L28P_3 P1 I/O
3 IO_L29N_3 P4 I/O
3 IO_L29P_3 P3 I/O
3 IO_L30N_3 R3 I/O
3 IO_L30P_3 R2 I/O
3 IO_L32N_3 T2 I/O
3 IO_L32P_3/VREF_3 T1 VREF
3 IO_L33N_3 R4 I/O
3 IO_L33P_3 T3 I/O
3 IO_L34N_3 U3 I/O
3 IO_L34P_3 U1 I/O
3 IO_L36N_3 T4 I/O
Ta bl e 72 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
88 Product Specification
R
3 IO_L36P_3 R5 I/O
3 IO_L37N_3 V2 I/O
3 IO_L37P_3 V1 I/O
3 IO_L38N_3 W2 I/O
3 IO_L38P_3 W1 I/O
3 IP_3 H7 INPUT
3 IP_L04N_3/VREF_3 G6 VREF
3 IP_L04P_3 G7 INPUT
3 IP_L11N_3/VREF_3 J7 VREF
3 IP_L11P_3 J8 INPUT
3 IP_L15N_3 K7 INPUT
3 IP_L15P_3 K8 INPUT
3 IP_L19N_3 K5 INPUT
3 IP_L19P_3 K6 INPUT
3 IP_L23N_3 L6 INPUT
3 IP_L23P_3 L7 INPUT
3 IP_L27N_3 M7 INPUT
3 IP_L27P_3 M8 INPUT
3 IP_L31N_3 N7 INPUT
3 IP_L31P_3 M6 INPUT
3 IP_L35N_3 N6 INPUT
3 IP_L35P_3 P5 INPUT
3 IP_L39N_3/VREF_3 P7 VREF
3 IP_L39P_3 P6 INPUT
3 VCCO_3 E2 VCCO
3 VCCO_3 H5 VCCO
3 VCCO_3 L2 VCCO
3 VCCO_3 N5 VCCO
3 VCCO_3 U2 VCCO
GND GND A1 GND
GND GND A11 GND
GND GND A20 GND
GND GND B6 GND
GND GND B14 GND
GND GND C3 GND
GND GND C18 GND
GND GND D9 GND
GND GND E5 GND
GND GND E12 GND
GND GND F15 GND
Tabl e 7 2 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
GND GND G2 GND
GND GND G19 GND
GND GND H8 GND
GND GND H13 GND
GND GND J9 GND
GND GND J11 GND
GND GND K1 GND
GND GND K10 GND
GND GND K12 GND
GND GND K17 GND
GND GND L4 GND
GND GND L9 GND
GND GND L11 GND
GND GND L20 GND
GND GND M10 GND
GND GND M12 GND
GND GND N8 GND
GND GND N11 GND
GND GND N13 GND
GND GND P2 GND
GND GND P19 GND
GND GND R6 GND
GND GND R9 GND
GND GND T16 GND
GND GND U12 GND
GND GND V3 GND
GND GND V18 GND
GND GND W7 GND
GND GND W15 GND
GND GND Y1 GND
GND GND Y10 GND
GND GND Y20 GND
VCCAUX SUSPEND R15 PWR
MGMT
VCCAUX DONE W19 CONFIG
VCCAUX PROG_B D5 CONFIG
VCCAUX TCK A19 JTAG
VCCAUX TDI F5 JTAG
VCCAUX TDO E17 JTAG
VCCAUX TMS E4 JTAG
Ta bl e 72 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 89
R
User I/Os by Bank
Table 73 indicates how the 311 available user-I/O pins are
distributed between the four I/O banks on the FGG400
package. The AWAKE pin is counted as a Dual-Purpose
I/O.
Footprint Migration Differences
The XC3S400AN is the only Spartan-3AN FPGA offered in
the FGG400 package.
The XC3S400AN FPGA is pin compatible with the
Spartan-3A XC3S400A FPGA in the FG(G)400 package,
although the Spartan-3A FPGA requires an external
configuration source.
VCCAUX VCCAUX A13 VCCAUX
VCCAUX VCCAUX E16 VCCAUX
VCCAUX VCCAUX H1 VCCAUX
VCCAUX VCCAUX K13 VCCAUX
VCCAUX VCCAUX L8 VCCAUX
VCCAUX VCCAUX N20 VCCAUX
VCCAUX VCCAUX T5 VCCAUX
VCCAUX VCCAUX Y8 VCCAUX
VCCINT VCCINT J10 VCCINT
VCCINT VCCINT J12 VCCINT
VCCINT VCCINT K9 VCCINT
VCCINT VCCINT K11 VCCINT
VCCINT VCCINT L10 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT M9 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT N10 VCCINT
Tabl e 7 2 : Spartan-3AN FGG400 Pinout (Continued)
Bank Pin Name
FG400
Ball Type
Tabl e 7 3 : User I/Os Per Bank for the XC3S400AN in the FGG400 Package
Package
Edge I/O Bank Maximum I/O All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 077 50 12 1 6 8
Right 179 21 12 30 8 8
Bottom 276 35 621 6 8
Left 379 49 16 0 6 8
TOTAL 311 155 46 52 26 32
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
90 Product Specification
R
FG400 Footprint X-Ref Target - Figure 21
Left Half of FG400
Package (top view)
155
I/O: Unrestricted,
general-purpose user I/O
46
INPUT: Unrestricted,
general-purpose input pin
51
DUAL: Configuration pins,
then possible user I/O
26
VREF: User I/O or input
voltage reference for bank
32
CLK: User I/O, input, or
clock buffer input
2CONFIG: Dedicated
configuration pins
4
JTAG: Dedicated JTAG
port pins
2
SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
43
GND: Ground
22
VCCO: Output voltage
supply for bank
9
VCCINT: Internal core
supply voltage (+1.2V)
8
VCCAUX: Auxiliary supply
voltage
Figure 21: FG400 Package Footprint (top view)
12345678910
AGND
I/O
L32P_0
VREF_0
I/O
L30P_0
I/O
L29P_0
I/O
L26P_0
I/O
L25P_0
I/O
L24N_0
I/O
L18N_0
GCLK11
I/O
L18P_0
GCLK10
I/O
L16P_0
GCLK6
BI/O
L02P_3
I/O
L32N_0
PUDC_B
I/O
L30N_0 VCCO_0 I/O
L26N_0 GND I/O
L24P_0
I/O
L20P_0
I/O
L19P_0 VCCO_0
CI/O
L03P_3
I/O
L02N_3GND I/O
L29N_0
I/O
L28P_0
I/O
L25N_0
I/O
L21P_0
I/O
L20N_0
I/O
L19N_0
I/O
L16N_0
GCLK7
DI/O
L05P_3
I/O
L03N_3
I/O
L01N_3
I/O
L01P_3
PROG_B
I/O
L28N_0 VCCO_0 I/O
L21N_0 GND
I/O
L17P_0
GCLK8
EI/O
L05N_3VCCO_3I/O
L10P_3TMSGND I/O
L31P_0
I/O
L27P_0
I/O
L23P_0
I/O
L22P_0
I/O
L17N_0
GCLK9
FI/O
L13P_3
I/O
L10N_3
I/O
L09P_3
I/O
L06P_3TDI I/O
L31N_0
I/O
L27N_0
I/O
L23N_0
I/O
L22N_0
VREF_0
VCCO_0
G
I/O
L13N_3
VREF_3
GND I/O
L12P_3
I/O
L09N_3
I/O
L06N_3
INPUT
L04N_3
VREF_3
INPUT
L04P_3INPUT INPUT INPUT
HVCCAUX I/O
L12N_3
I/O
L14N_3
I/O
L08N_3VCCO_3I/O
L08P_3INPUT GND INPUT INPUT
J
I/O
L17P_3
LHCLK0
I/O
L16N_3
I/O
L16P_3
I/O
L14P_3
I/O
L07N_3
I/O
L07P_3
INPUT
L11N_3
VREF_3
INPUT
L11P_3GND VCCINT
KGND
I/O
L17N_3
LHCLK1
I/O
L18P_3
LHCLK2
I/O
L20P_3
LHCLK4
INPUT
L19N_3
INPUT
L19P_3
INPUT
L15N_3
INPUT
L15P_3VCCINT GND
L
I/O
L21P_3
TRDY2
LHCLK6
VCCO_3
I/O
L18N_3
IRDY2
LHCLK3
GND
I/O
L20N_3
LHCLK5
INPUT
L23N_3
INPUT
L23P_3VCCAUX GND VCCINT
M
I/O
L21N_3
LHCLK7
I/O
L22P_3
VREF_3
I/O
L22N_3
I/O
L24P_3
I/O
L24N_3
INPUT
L31P_3
INPUT
L27N_3
INPUT
L27P_3VCCINT GND
NI/O
L25P_3
I/O
L25N_3
I/O
L26P_3
I/O
L26N_3VCCO_3INPUT
L35N_3
INPUT
L31N_3GND INPUT
VREF_2 VCCINT
PI/O
L28P_3GND I/O
L29P_3
I/O
L29N_3
INPUT
L35P_3
INPUT
L39P_3
INPUT
L39N_3
VREF_3
INPUT
VREF_2 INPUT INPUT
VREF_2
RI/O
L28N_3
I/O
L30P_3
I/O
L30N_3
I/O
L33N_3
I/O
L36P_3GND I/O
L04N_2 INPUT GND INPUT
T
I/O
L32P_3
VREF_3
I/O
L32N_3
I/O
L33P_3
I/O
L36N_3VCCAUX I/O
L04P_2
I/O
L06P_2
I/O
L07P_2
RDWR_B
I/O
L11P_2
I/O
L14N_2
D4
UI/O
L34P_3VCCO_3I/O
L34N_3
I/O
L01P_2
M1
I/O
L05N_2
I/O
L06N_2
I/O
L07N_2
VS2
VCCO_2 I/O
L11N_2
I/O
L14P_2
D5
VI/O
L37P_3
I/O
L37N_3GND
I/O
L01N_2
M0
I/O
L05P_2
I/O
L09P_2
VS1
I/O
L12P_2
D7
I/O
L13P_2
I/O
L13N_2
I/O
L16P_2
GCLK14
WI/O
L38P_3
I/O
L38N_3
I/O
L02P_2
M2
I/O
L03N_2 VCCO_2
I/O
L09N_2
VS0
GND
I/O
L12N_2
D6
I/O
L15P_2
GCLK12
I/O
L16N_2
GCLK15
YGND
I/O
L02N_2
CSO_B
I/O
L03P_2
I/O
L08P_2
I/O
L08N_2
I/O
L10P_2
I/O
L10N_2 VCCAUX
I/O
L15N_2
GCLK13
GND
Bank 2
Bank 3
Bank 0
DS529-4_03_101106
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 91
R
Right Half of FGG400
Package (top view)
11 12 1314 15 16 17 1819 20
GND I/O
L13N_0 VCCAUX
I/O
L07N_0
I/O
L08N_0
I/O
L05N_0
I/O
L04N_0
I/O
L01N_0
TCK GND
A
I/O
L14P_0
I/O
L13P_0
I/O
L11P_0
GND I/O
L08P_0 VCCO_0
I/O
L04P_0
VREF_0
I/O
L01P_0
I/O
L38N_1
A25
I/O
L38P_1
A24
B
I/O
L14N_0
I/O
L11N_0
I/O
L10N_0
VREF_0
I/O
L07P_0
I/O
L06N_0
I/O
L05P_0
I/O
L02N_0
GND
I/O
L37N_1
A23
I/O
L37P_1
A22
C
I/O
L15P_0
GCLK4
I/O
L12P_0 VCCO_0
I/O
L10P_0
I/O
L06P_0
I/O
L03P_0
I/O
L02P_0
VREF_0
I/O
L34N_1 VCCO_1
I/O
L34P_1
D
I/O
L15N_0
GCLK5
GND I/O
L09P_0
INPUT I/O
L03N_0 VCCAUX
TDO I/O
L33P_1
I/O
L32N_1
I/O
L32P_1
E
INPUT I/O
L12N_0
I/O
L09N_0
INPUT GND
I/O
L36N_1
A21
I/O
L33N_1
I/O
L30N_1
A19
I/O
L29N_1
A17
I/O
L29P_1
A16
F
INPUT
VREF_0
INPUT INPUT INPUT
L39N_1
INPUT
L39P_1
VREF_1
I/O
L36P_1
A20
I/O
L30P_1
A18
I/O
L28P_1
GND
I/O
L26N_1
A15
G
INPUT INPUT GND INPUT
L35N_1
INPUT
L35P_1 VCCO_1
I/O
L28N_1
I/O
L25N_1
A13
I/O
L25P_1
A12
I/O
L26P_1
A14
H
GND VCCINT INPUT
L31N_1
INPUT
L31P_1
VREF_1
INPUT
L27N_1
INPUT
L27P_1
I/O
L24P_1
I/O
L22N_1
A11
I/O
L22P_1
A10
I/O
L21N_1
RHCLK7
J
VCCINT GND
VCCAUX
INPUT
L23N_1
INPUT
L23P_1
VREF_1
I/O
L24N_1
GND
I/O
L20P_1
RHCLK4
VCCO_1
I/O
L21P_1
IRDY1
RHCLK6
K
GND VCCINT INPUT
L19N_1
INPUT
L19P_1
I/O
L16P_1
A8
I/O
L16N_1
A9
I/O
L20N_1
RHCLK5
I/O
L18N_1
TRDY1
RHCLK3
I/O
L18P_1
RHCLK2
GND
L
VCCINT GND INPUT
L15N_1
INPUT
L15P_1
VREF_1
INPUT
L11N_1
VREF_1
INPUT
L11P_1
I/O
L14P_1
A6
I/O
L14N_1
A7
I/O
L17P_1
RHCLK0
I/O
L17N_1
RHCLK1
M
GND INPUT
VREF_2
GND INPUT
VREF_1
I/O
L12P_1
A2
VCCO_1
I/O
L12N_1
A3
I/O
L13P_1
A4
I/O
L13N_1
A5
VCCAUX
N
INPUT
VREF_2
INPUT INPUT INPUT
L04P_1
INPUT
L04N_1
VREF_1
I/O
L07P_1
I/O
L07N_1
I/O
L10P_1
GND
I/O
L10N_1
VREF_1
P
VCCO_2
I/O
L19N_2
I/O
L23N_2
INPUT
VREF_2
SUSPEND
I/O
L03N_1
A1
I/O
L08N_1
I/O
L08P_1
I/O
L09P_1
I/O
L09N_1
R
INPUT I/O
L19P_2
I/O
L23P_2
I/O
L25N_2
I/O
L27N_2
GND
I/O
L03P_1
A0
I/O
L05P_1 VCCO_1
I/O
L05N_1
T
I/O
L18P_2
GCLK2
GND
I/O
L22P_2
AWAKE
VCCO_2
I/O
L27P_2
I/O
L29N_2
I/O
L31N_2
I/O
L02N_1
LDC0
I/O
L06P_1
I/O
L06N_1
U
I/O
L17N_2
GCLK1
I/O
L18N_2
GCLK3
I/O
L22N_2
DOUT
I/O
L25P_2
I/O
L26N_2
D1
I/O
L29P_2
I/O
L31P_2
GND
I/O
L02P_1
LDC1
I/O
L01N_1
LDC2
V
VCCO_2
I/O
L20N_2
MOSI
CSI_B
I/O
L21N_2
I/O
L24N_2
D3
GND I/O
L28N_2 VCCO_2
I/O
L32P_2
D0
DIN/MISO
DONE
I/O
L01P_1
HDC
W
I/O
L17P_2
GCLK0
I/O
L20P_2
I/O
L21P_2
I/O
L24P_2
INIT_B
I/O
L26P_2
D2
I/O
L28P_2
I/O
L30P_2
I/O
L30N_2
I/O
L32N_2
CCLK
GND
Y
Bank 2
Bank 1
Bank 0
DS529-4_04_101106
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
92 Product Specification
R
FGG484: 484-ball Fine-pitch Ball Grid Array
The 484-ball fine-pitch ball grid array, FGG484, supports the
XC3S700AN FPGA, as described in Table 74.
Table 74 lists all the FGG484 package pins. They are sorted
by bank number and then by pin name. Pairs of pins that
form a differential I/O pair appear together in the table. The
table also shows the pin number for each pin and the pin
type, as defined earlier.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.
Pinout Table
Tabl e 7 4 : Spartan-3AN FGG484 Pinout
Bank Pin Name
FG484
Ball Type
0 IO_L01N_0 D18 I/O
0 IO_L01P_0 E17 I/O
0 IO_L02N_0 C19 I/O
0 IO_L02P_0/VREF_0 D19 VREF
0 IO_L03N_0 A20 I/O
0 IO_L03P_0 B20 I/O
0 IO_L04N_0 F15 I/O
0 IO_L04P_0 E15 I/O
0 IO_L05N_0 A18 I/O
0 IO_L05P_0 C18 I/O
0 IO_L06N_0 A19 I/O
0 IO_L06P_0/VREF_0 B19 VREF
0 IO_L07N_0 C17 I/O
0 IO_L07P_0 D17 I/O
0 IO_L08N_0 C16 I/O
0 IO_L08P_0 D16 I/O
0 IO_L09N_0 E14 I/O
0 IO_L09P_0 C14 I/O
0 IO_L10N_0 A17 I/O
0 IO_L10P_0 B17 I/O
0 IO_L11N_0 C15 I/O
0 IO_L11P_0 D15 I/O
0 IO_L12N_0/VREF_0 A15 VREF
0 IO_L12P_0 A16 I/O
0 IO_L13N_0 A14 I/O
0 IO_L13P_0 B15 I/O
0 IO_L14N_0 E13 I/O
0 IO_L14P_0 F13 I/O
0 IO_L15N_0 C13 I/O
0 IO_L15P_0 D13 I/O
0 IO_L16N_0 A13 I/O
0 IO_L16P_0 B13 I/O
0 IO_L17N_0/GCLK5 E12 GCLK
0 IO_L17P_0/GCLK4 C12 GCLK
0 IO_L18N_0/GCLK7 A11 GCLK
0 IO_L18P_0/GCLK6 A12 GCLK
0 IO_L19N_0/GCLK9 C11 GCLK
0 IO_L19P_0/GCLK8 B11 GCLK
0 IO_L20N_0/GCLK11 E11 GCLK
0 IO_L20P_0/GCLK10 D11 GCLK
0 IO_L21N_0 C10 I/O
0 IO_L21P_0 A10 I/O
0 IO_L22N_0 A8 I/O
0 IO_L22P_0 A9 I/O
0 IO_L23N_0 E10 I/O
0 IO_L23P_0 D10 I/O
0 IO_L24N_0/VREF_0 C9 VREF
0 IO_L24P_0 B9 I/O
0 IO_L25N_0 C8 I/O
0 IO_L25P_0 B8 I/O
0 IO_L26N_0 A6 I/O
0 IO_L26P_0 A7 I/O
0 IO_L27N_0 C7 I/O
0 IO_L27P_0 D7 I/O
0 IO_L28N_0 A5 I/O
0 IO_L28P_0 B6 I/O
0 IO_L29N_0 D6 I/O
0 IO_L29P_0 C6 I/O
0 IO_L30N_0 D8 I/O
0 IO_L30P_0 E9 I/O
0 IO_L31N_0 B4 I/O
0 IO_L31P_0 A4 I/O
0 IO_L32N_0 D5 I/O
0 IO_L32P_0 C5 I/O
0 IO_L33N_0 B3 I/O
0 IO_L33P_0 A3 I/O
0 IO_L34N_0 F8 I/O
0 IO_L34P_0 E7 I/O
0 IO_L35N_0 E6 I/O
0 IO_L35P_0 F7 I/O
0 IO_L36N_0/PUDC_B A2 DUAL
0 IO_L36P_0/VREF_0 B2 VREF
0 IP_0 E16 INPUT
0 IP_0 E8 INPUT
0 IP_0 F10 INPUT
0 IP_0 F12 INPUT
0 IP_0 F16 INPUT
0 IP_0 G10 INPUT
0 IP_0 G11 INPUT
Ta bl e 74 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 93
R
0 IP_0 G12 INPUT
0 IP_0 G13 INPUT
0 IP_0 G14 INPUT
0 IP_0 G15 INPUT
0 IP_0 G16 INPUT
0 IP_0 G7 INPUT
0 IP_0 G9 INPUT
0 IP_0 H10 INPUT
0 IP_0 H13 INPUT
0 IP_0 H14 INPUT
0 IP_0/VREF_0 G8 VREF
0 IP_0/VREF_0 H12 VREF
0 IP_0/VREF_0 H9 VREF
0 VCCO_0 B10 VCCO
0 VCCO_0 B14 VCCO
0 VCCO_0 B18 VCCO
0 VCCO_0 B5 VCCO
0 VCCO_0 F14 VCCO
0 VCCO_0 F9 VCCO
1 IO_L01N_1/LDC2 Y21 DUAL
1 IO_L01P_1/HDC AA22 DUAL
1 IO_L02N_1/LDC0 W20 DUAL
1 IO_L02P_1/LDC1 W19 DUAL
1 IO_L03N_1/A1 T18 DUAL
1 IO_L03P_1/A0 T17 DUAL
1 IO_L05N_1 W21 I/O
1 IO_L05P_1 Y22 I/O
1 IO_L06N_1 V20 I/O
1 IO_L06P_1 V19 I/O
1 IO_L07N_1 V22 I/O
1 IO_L07P_1 W22 I/O
1 IO_L09N_1 U21 I/O
1 IO_L09P_1 U22 I/O
1 IO_L10N_1 U19 I/O
1 IO_L10P_1 U20 I/O
1 IO_L11N_1 T22 I/O
1 IO_L11P_1 T20 I/O
1 IO_L13N_1 T19 I/O
1 IO_L13P_1 R20 I/O
1 IO_L14N_1 R22 I/O
1 IO_L14P_1 R21 I/O
1 IO_L15N_1/VREF_1 P22 VREF
1 IO_L15P_1 P20 I/O
1 IO_L17N_1/A3 P18 DUAL
1 IO_L17P_1/A2 R19 DUAL
1 IO_L18N_1/A5 N21 DUAL
1 IO_L18P_1/A4 N22 DUAL
1 IO_L19N_1/A7 N19 DUAL
Tabl e 7 4 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
1 IO_L19P_1/A6 N20 DUAL
1 IO_L20N_1/A9 N17 DUAL
1 IO_L20P_1/A8 N18 DUAL
1 IO_L21N_1/RHCLK1 L22 RHCLK
1 IO_L21P_1/RHCLK0 M22 RHCLK
1 IO_L22N_1/TRDY1/RHCLK3 L20 RHCLK
1 IO_L22P_1/RHCLK2 L21 RHCLK
1 IO_L24N_1/RHCLK5 M20 RHCLK
1 IO_L24P_1/RHCLK4 M18 RHCLK
1 IO_L25N_1/RHCLK7 K19 RHCLK
1 IO_L25P_1/IRDY1/RHCLK6 K20 RHCLK
1 IO_L26N_1/A11 J22 DUAL
1 IO_L26P_1/A10 K22 DUAL
1 IO_L28N_1 L19 I/O
1 IO_L28P_1 L18 I/O
1 IO_L29N_1/A13 J20 DUAL
1 IO_L29P_1/A12 J21 DUAL
1 IO_L30N_1/A15 G22 DUAL
1 IO_L30P_1/A14 H22 DUAL
1 IO_L32N_1 K18 I/O
1 IO_L32P_1 K17 I/O
1 IO_L33N_1/A17 H20 DUAL
1 IO_L33P_1/A16 H21 DUAL
1 IO_L34N_1/A19 F21 DUAL
1 IO_L34P_1/A18 F22 DUAL
1 IO_L36N_1 G20 I/O
1 IO_L36P_1 G19 I/O
1 IO_L37N_1 H19 I/O
1 IO_L37P_1 J18 I/O
1 IO_L38N_1 F20 I/O
1 IO_L38P_1 E20 I/O
1 IO_L40N_1 F18 I/O
1 IO_L40P_1 F19 I/O
1 IO_L41N_1 D22 I/O
1 IO_L41P_1 E22 I/O
1 IO_L42N_1 D20 I/O
1 IO_L42P_1 D21 I/O
1 IO_L44N_1/A21 C21 DUAL
1 IO_L44P_1/A20 C22 DUAL
1 IO_L45N_1/A23 B21 DUAL
1 IO_L45P_1/A22 B22 DUAL
1 IO_L46N_1/A25 G17 DUAL
1 IO_L46P_1/A24 G18 DUAL
1 IP_L04N_1/VREF_1 R16 VREF
1 IP_L04P_1 R15 INPUT
1 IP_L08N_1 P16 INPUT
1 IP_L08P_1 P15 INPUT
1 IP_L12N_1/VREF_1 R18 VREF
Ta bl e 74 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
94 Product Specification
R
1 IP_L12P_1 R17 INPUT
1 IP_L16N_1/VREF_1 N16 VREF
1 IP_L16P_1 N15 INPUT
1 IP_L23N_1 M16 INPUT
1 IP_L23P_1 M17 INPUT
1 IP_L27N_1 L16 INPUT
1 IP_L27P_1/VREF_1 M15 VREF
1 IP_L31N_1 K16 INPUT
1 IP_L31P_1 L15 INPUT
1 IP_L35N_1 K15 INPUT
1 IP_L35P_1/VREF_1 K14 VREF
1 IP_L39N_1 H18 INPUT
1 IP_L39P_1 H17 INPUT
1 IP_L43N_1/VREF_1 J15 VREF
1 IP_L43P_1 J16 INPUT
1 IP_L47N_1 H15 INPUT
1 IP_L47P_1/VREF_1 H16 VREF
1 VCCO_1 E21 VCCO
1 VCCO_1 J17 VCCO
1 VCCO_1 K21 VCCO
1 VCCO_1 P17 VCCO
1 VCCO_1 P21 VCCO
1 VCCO_1 V21 VCCO
2 IO_L01N_2/M0 W5 DUAL
2 IO_L01P_2/M1 V6 DUAL
2 IO_L02N_2/CSO_B Y4 DUAL
2 IO_L02P_2/M2 W4 DUAL
2 IO_L03N_2 AA3 I/O
2 IO_L03P_2 AB2 I/O
2 IO_L04N_2 AA4 I/O
2 IO_L04P_2 AB3 I/O
2 IO_L05N_2 Y5 I/O
2 IO_L05P_2 W6 I/O
2 IO_L06N_2 AB5 I/O
2 IO_L06P_2 AB4 I/O
2 IO_L07N_2 Y6 I/O
2 IO_L07P_2 W7 I/O
2 IO_L08N_2 AB6 I/O
2 IO_L08P_2 AA6 I/O
2 IO_L09N_2/VS2 W9 DUAL
2 IO_L09P_2/RDWR_B V9 DUAL
2 IO_L10N_2 AB7 I/O
2 IO_L10P_2 Y7 I/O
2 IO_L11N_2/VS0 Y8 DUAL
2 IO_L11P_2/VS1 W8 DUAL
2 IO_L12N_2 AB8 I/O
2 IO_L12P_2 AA8 I/O
2 IO_L13N_2 Y10 I/O
Tabl e 7 4 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
2 IO_L13P_2 V10 I/O
2 IO_L14N_2/D6 AB9 DUAL
2 IO_L14P_2/D7 Y9 DUAL
2 IO_L15N_2 AB10 I/O
2 IO_L15P_2 AA10 I/O
2 IO_L16N_2/D4 AB11 DUAL
2 IO_L16P_2/D5 Y11 DUAL
2 IO_L17N_2/GCLK13 V11 GCLK
2 IO_L17P_2/GCLK12 U11 GCLK
2 IO_L18N_2/GCLK15 Y12 GCLK
2 IO_L18P_2/GCLK14 W12 GCLK
2 IO_L19N_2/GCLK1 AB12 GCLK
2 IO_L19P_2/GCLK0 AA12 GCLK
2 IO_L20N_2/GCLK3 U12 GCLK
2 IO_L20P_2/GCLK2 V12 GCLK
2 IO_L21N_2 Y13 I/O
2 IO_L21P_2 AB13 I/O
2 IO_L22N_2/MOSI/CSI_B AB14 DUAL
2 IO_L22P_2 AA14 I/O
2 IO_L23N_2 Y14 I/O
2 IO_L23P_2 W13 I/O
2IO_L24N_2/
DOUT AA15 DUAL
2 IO_L24P_2/AWAKE AB15 PWR
MGMT
2 IO_L25N_2 Y15 I/O
2 IO_L25P_2 W15 I/O
2 IO_L26N_2/D3 U13 DUAL
2 IO_L26P_2/INIT_B V13 DUAL
2 IO_L27N_2 Y16 I/O
2 IO_L27P_2 AB16 I/O
2 IO_L28N_2/D1 Y17 DUAL
2 IO_L28P_2/D2 AA17 DUAL
2 IO_L29N_2 AB18 I/O
2 IO_L29P_2 AB17 I/O
2 IO_L30N_2 V15 I/O
2 IO_L30P_2 V14 I/O
2 IO_L31N_2 V16 I/O
2 IO_L31P_2 W16 I/O
2 IO_L32N_2 AA19 I/O
2 IO_L32P_2 AB19 I/O
2 IO_L33N_2 V17 I/O
2 IO_L33P_2 W18 I/O
2 IO_L34N_2 W17 I/O
2 IO_L34P_2 Y18 I/O
2 IO_L35N_2 AA21 I/O
2 IO_L35P_2 AB21 I/O
2 IO_L36N_2/CCLK AA20 DUAL
Ta bl e 74 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 95
R
2 IO_L36P_2/D0/DIN/MISO AB20 DUAL
2 IP_2 P12 INPUT
2 IP_2 R10 INPUT
2 IP_2 R11 INPUT
2 IP_2 R9 INPUT
2 IP_2 T13 INPUT
2 IP_2 T14 INPUT
2 IP_2 T9 INPUT
2 IP_2 U10 INPUT
2 IP_2 U15 INPUT
2N.C. U16 N.C.
2N.C. U7 N.C.
2 IP_2 U8 INPUT
2 IP_2 V7 INPUT
2 IP_2/VREF_2 R12 VREF
2 IP_2/VREF_2 R13 VREF
2 IP_2/VREF_2 R14 VREF
2 IP_2/VREF_2 T10 VREF
2 IP_2/VREF_2 T11 VREF
2 IP_2/VREF_2 T15 VREF
2 IP_2/VREF_2 T16 VREF
2 IP_2/VREF_2 T7 VREF
2N.C. T8 N.C.
2 IP_2/VREF_2 V8 VREF
2 VCCO_2 AA13 VCCO
2 VCCO_2 AA18 VCCO
2 VCCO_2 AA5 VCCO
2 VCCO_2 AA9 VCCO
2 VCCO_2 U14 VCCO
2 VCCO_2 U9 VCCO
3 IO_L01N_3 D2 I/O
3 IO_L01P_3 C1 I/O
3 IO_L02N_3 C2 I/O
3 IO_L02P_3 B1 I/O
3 IO_L03N_3 E4 I/O
3 IO_L03P_3 D3 I/O
3 IO_L05N_3 G5 I/O
3 IO_L05P_3 G6 I/O
3 IO_L06N_3 E1 I/O
3 IO_L06P_3 D1 I/O
3 IO_L07N_3 E3 I/O
3 IO_L07P_3 F4 I/O
3 IO_L08N_3 G4 I/O
3 IO_L08P_3 F3 I/O
3 IO_L09N_3 H6 I/O
3 IO_L09P_3 H5 I/O
3 IO_L10N_3 J5 I/O
3 IO_L10P_3 K6 I/O
Tabl e 7 4 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
3 IO_L12N_3 F1 I/O
3 IO_L12P_3 F2 I/O
3 IO_L13N_3 G1 I/O
3 IO_L13P_3 G3 I/O
3 IO_L14N_3 H3 I/O
3 IO_L14P_3 H4 I/O
3 IO_L16N_3 H1 I/O
3 IO_L16P_3 H2 I/O
3 IO_L17N_3/VREF_3 J1 VREF
3 IO_L17P_3 J3 I/O
3 IO_L18N_3 K4 I/O
3 IO_L18P_3 K5 I/O
3 IO_L20N_3 K2 I/O
3 IO_L20P_3 K3 I/O
3 IO_L21N_3/LHCLK1 L3 LHCLK
3 IO_L21P_3/LHCLK0 L5 LHCLK
3 IO_L22N_3/IRDY2/LHCLK3 L1 LHCLK
3 IO_L22P_3/LHCLK2 K1 LHCLK
3 IO_L24N_3/LHCLK5 M2 LHCLK
3 IO_L24P_3/LHCLK4 M1 LHCLK
3 IO_L25N_3/LHCLK7 M4 LHCLK
3 IO_L25P_3/TRDY2/LHCLK6 M3 LHCLK
3 IO_L26N_3 N3 I/O
3 IO_L26P_3/VREF_3 N1 VREF
3 IO_L28N_3 P2 I/O
3 IO_L28P_3 P1 I/O
3 IO_L29N_3 P5 I/O
3 IO_L29P_3 P3 I/O
3 IO_L30N_3 N4 I/O
3 IO_L30P_3 M5 I/O
3 IO_L32N_3 R2 I/O
3 IO_L32P_3 R1 I/O
3 IO_L33N_3 R4 I/O
3 IO_L33P_3 R3 I/O
3 IO_L34N_3 T4 I/O
3 IO_L34P_3 R5 I/O
3 IO_L36N_3 T3 I/O
3 IO_L36P_3/VREF_3 T1 VREF
3 IO_L37N_3 U2 I/O
3 IO_L37P_3 U1 I/O
3 IO_L38N_3 V3 I/O
3 IO_L38P_3 V1 I/O
3 IO_L40N_3 U5 I/O
3 IO_L40P_3 T5 I/O
3 IO_L41N_3 U4 I/O
3 IO_L41P_3 U3 I/O
3 IO_L42N_3 W2 I/O
3 IO_L42P_3 W1 I/O
Ta bl e 74 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
96 Product Specification
R
3 IO_L43N_3 W3 I/O
3 IO_L43P_3 V4 I/O
3 IO_L44N_3 Y2 I/O
3 IO_L44P_3 Y1 I/O
3 IO_L45N_3 AA2 I/O
3 IO_L45P_3 AA1 I/O
3 IP_3/VREF_3 J8 VREF
3 IP_3/VREF_3 R6 VREF
3 IP_L04N_3/VREF_3 H7 VREF
3 IP_L04P_3 H8 INPUT
3 IP_L11N_3 K8 INPUT
3 IP_L11P_3 J7 INPUT
3 IP_L15N_3/VREF_3 L8 VREF
3 IP_L15P_3 K7 INPUT
3 IP_L19N_3 M8 INPUT
3 IP_L19P_3 L7 INPUT
3 IP_L23N_3 M6 INPUT
3 IP_L23P_3 M7 INPUT
3 IP_L27N_3 N9 INPUT
3 IP_L27P_3 N8 INPUT
3 IP_L31N_3 N5 INPUT
3 IP_L31P_3 N6 INPUT
3 IP_L35N_3 P8 INPUT
3 IP_L35P_3 N7 INPUT
3 IP_L39N_3 R8 INPUT
3 IP_L39P_3 P7 INPUT
3 IP_L46N_3/VREF_3 T6 VREF
3 IP_L46P_3 R7 INPUT
3 VCCO_3 E2 VCCO
3 VCCO_3 J2 VCCO
3 VCCO_3 J6 VCCO
3 VCCO_3 N2 VCCO
3 VCCO_3 P6 VCCO
3 VCCO_3 V2 VCCO
GND GND A1 GND
GND GND A22 GND
GND GND AA11 GND
GND GND AA16 GND
GND GND AA7 GND
GND GND AB1 GND
GND GND AB22 GND
GND GND B12 GND
GND GND B16 GND
GND GND B7 GND
GND GND C20 GND
GND GND C3 GND
GND GND D14 GND
GND GND D9 GND
Tabl e 7 4 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
GND GND F11 GND
GND GND F17 GND
GND GND F6 GND
GND GND G2 GND
GND GND G21 GND
GND GND J11 GND
GND GND J13 GND
GND GND J14 GND
GND GND J19 GND
GND GND J4 GND
GND GND J9 GND
GND GND K10 GND
GND GND K12 GND
GND GND L11 GND
GND GND L13 GND
GND GND L17 GND
GND GND L2 GND
GND GND L6 GND
GND GND L9 GND
GND GND M10 GND
GND GND M12 GND
GND GND M14 GND
GND GND M21 GND
GND GND N11 GND
GND GND N13 GND
GND GND P10 GND
GND GND P14 GND
GND GND P19 GND
GND GND P4 GND
GND GND P9 GND
GND GND T12 GND
GND GND T2 GND
GND GND T21 GND
GND GND U17 GND
GND GND U6 GND
GND GND W10 GND
GND GND W14 GND
GND GND Y20 GND
GND GND Y3 GND
VCCAUX SUSPEND U18 PWR
MGMT
VCCAUX DONE Y19 CONFIG
VCCAUX PROG_B C4 CONFIG
VCCAUX TCK A21 JTAG
VCCAUX TDI F5 JTAG
VCCAUX TDO E19 JTAG
VCCAUX TMS D4 JTAG
VCCAUX VCCAUX D12 VCCAUX
Ta bl e 74 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 97
R
User I/Os by Bank
Table 75 indicates how the user-I/O pins are distributed
between the four I/O banks on the FGG484 package. The
AWAKE pin is counted as a Dual-Purpose I/O.
Footprint Migration Differences
The XC3S700AN is the only Spartan-3AN FPGA offered in
the FGG484 package.
The XC3S700AN FPGA is pin compatible with the
Spartan-3A XC3S700A FPGA in the FG(G)484 package,
although the Spartan-3A FPGA requires an external
configuration source.
VCCAUX VCCAUX E18 VCCAUX
VCCAUX VCCAUX E5 VCCAUX
VCCAUX VCCAUX H11 VCCAUX
VCCAUX VCCAUX L4 VCCAUX
VCCAUX VCCAUX M19 VCCAUX
VCCAUX VCCAUX P11 VCCAUX
VCCAUX VCCAUX V18 VCCAUX
VCCAUX VCCAUX V5 VCCAUX
VCCAUX VCCAUX W11 VCCAUX
VCCINT VCCINT J10 VCCINT
VCCINT VCCINT J12 VCCINT
VCCINT VCCINT K11 VCCINT
VCCINT VCCINT K13 VCCINT
VCCINT VCCINT K9 VCCINT
VCCINT VCCINT L10 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT L14 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT M13 VCCINT
VCCINT VCCINT M9 VCCINT
VCCINT VCCINT N10 VCCINT
VCCINT VCCINT N12 VCCINT
VCCINT VCCINT N14 VCCINT
VCCINT VCCINT P13 VCCINT
Tabl e 7 4 : Spartan-3AN FGG484 Pinout (Continued)
Bank Pin Name
FG484
Ball Type
Tabl e 7 5 : User I/Os Per Bank for the XC3S700AN in the FGG484 Package
Package
Edge I/O Bank Maximum I/O
All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 092 58 17 1 8 8
Right 194 33 15 30 8 8
Bottom 292 43 11 21 9 8
Left 394 61 17 0 8 8
TOTAL 372 195 60 52 33 32
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
98 Product Specification
R
FG484 Footprint X-Ref Target - Figure 22
Left Half of FG484
Package (top view)
195
I/O: Unrestricted,
general-purpose user I/O
60
INPUT: Unrestricted,
general-purpose input pin
51
DUAL: Configuration pins,
then possible user I/O
33
VREF: User I/O or input
voltage reference for bank
32
CLK: User I/O, input, or
clock buffer input
2
SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
2
CONFIG: Dedicated
configuration pins
4
JTAG: Dedicated JTAG
port pins
53
GND: Ground
24
VCCO: Output voltage
supply for bank
15
VCCINT: Internal core
supply voltage (+1.2V)
10
VCCAUX: Auxiliary supply
voltage (+3.3V)
3
N.C.: Not connected
Figure 22: FG484 Package Footprint (top view)
1234567891011
AGND
I/O
L36N_0
PUDC_B
I/O
L33P_0
I/O
L31P_0
I/O
L28N_0
I/O
L26N_0
I/O
L26P_0
I/O
L22N_0
I/O
L22P_0
I/O
L21P_0
I/O
L18N_0
GCLK7
BI/O
L02P_3
I/O
L36P_0
VREF_0
I/O
L33N_0
I/O
L31N_0 VCCO_0 I/O
L28P_0 GND I/O
L25P_0
I/O
L24P_0 VCCO_0
I/O
L19P_0
GCLK8
CI/O
L01P_3
I/O
L02N_3 GND
PROG_B
I/O
L32P_0
I/O
L29P_0
I/O
L27N_0
I/O
L25N_0
I/O
L24N_0
VREF_0
I/O
L21N_0
I/O
L19N_0
GCLK9
DI/O
L06P_3
I/O
L01N_3
I/O
L03P_3 TMS I/O
L32N_0
I/O
L29N_0
I/O
L27P_0
I/O
L30N_0 GND I/O
L23P_0
I/O
L20P_0
GCLK10
EI/O
L06N_3 VCCO_3 I/O
L07N_3
I/O
L03N_3 VCCAUX I/O
L35N_0
I/O
L34P_0 INPUT I/O
L30P_0
I/O
L23N_0
I/O
L20N_0
GCLK11
FI/O
L12N_3
I/O
L12P_3
I/O
L08P_3
I/O
L07P_3 TDI GND I/O
L35P_0
I/O
L34N_0 VCCO_0 INPUT GND
GI/O
L13N_3 GND I/O
L13P_3
I/O
L08N_3
I/O
L05N_3
I/O
L05P_3 INPUT INPUT
VREF_0 INPUT INPUT INPUT
HI/O
L16N_3
I/O
L16P_3
I/O
L14N_3
I/O
L14P_3
I/O
L09P_3
I/O
L09N_3
INPUT
L04N_3
VREF_3
INPUT
L04P_3
INPUT
VREF_0 INPUT VCCAUX
J
I/O
L17N_3
VREF_3
VCCO_3 I/O
L17P_3 GND I/O
L10N_3 VCCO_3 INPUT
L11P_3
INPUT
VREF_3 GND VCCINT GND
K
I/O
L22P_3
LHCLK2
I/O
L20N_3
I/O
L20P_3
I/O
L18N_3
I/O
L18P_3
I/O
L10P_3
INPUT
L15P_3
INPUT
L11N_3 VCCINT GND VCCINT
L
I/O
L22N_3
IRDY2
LHCLK3
GND
I/O
L21N_3
LHCLK1
VCCAUX
I/O
L21P_3
LHCLK0
GND INPUT
L19P_3
INPUT
L15N_3
VREF_3
GND VCCINT GND
M
I/O
L24P_3
LHCLK4
I/O
L24N_3
LHCLK5
I/O
L25P_3
TRDY2
LHCLK6
I/O
L25N_3
LHCLK7
I/O
L30P_3
INPUT
L23N_3
INPUT
L23P_3
INPUT
L19N_3 VCCINT GND VCCINT
N
I/O
L26P_3
VREF_3
VCCO_3 I/O
L26N_3
I/O
L30N_3
INPUT
L31N_3
INPUT
L31P_3
INPUT
L35P_3
INPUT
L27P_3
INPUT
L27N_3 VCCINT GND
PI/O
L28P_3
I/O
L28N_3
I/O
L29P_3 GND I/O
L29N_3 VCCO_3 INPUT
L39P_3
INPUT
L35N_3 GND GND VCCAUX
RI/O
L32P_3
I/O
L32N_3
I/O
L33P_3
I/O
L33N_3
I/O
L34P_3
INPUT
VREF_3
INPUT
L46P_3
INPUT
L39N_3 INPUT INPUT INPUT
T
I/O
L36P_3
VREF_3
GND I/O
L36N_3
I/O
L34N_3
I/O
L40P_3
INPUT
L46N_3
VREF_3
INPUT
VREF_2 N.C. INPUT INPUT
VREF_2
INPUT
VREF_2
UI/O
L37P_3
I/O
L37N_3
I/O
L41P_3
I/O
L41N_3
I/O
L40N_3 GND N.C. INPUT VCCO_2 INPUT
I/O
L17P_2
GCLK12
VI/O
L38P_3 VCCO_3 I/O
L38N_3
I/O
L43P_3 VCCAUX
I/O
L01P_2
M1
INPUT INPUT
VREF_2
I/O
L09P_2
RDWR_B
I/O
L13P_2
I/O
L17N_2
GCLK13
WI/O
L42P_3
I/O
L42N_3
I/O
L43N_3
I/O
L02P_2
M2
I/O
L01N_2
M0
I/O
L05P_2
I/O
L07P_2
I/O
L11P_2
VS1
I/O
L09N_2
VS2
GND VCCAUX
YI/O
L44P_3
I/O
L44N_3 GND
I/O
L02N_2
CSO_B
I/O
L05N_2
I/O
L07N_2
I/O
L10P_2
I/O
L11N_2
VS0
I/O
L14P_2
D7
I/O
L13N_2
I/O
L16P_2
D5
A
A
I/O
L45P_3
I/O
L45N_3
I/O
L03N_2
I/O
L04N_2 VCCO_2 I/O
L08P_2 GND I/O
L12P_2 VCCO_2 I/O
L15P_2 GND
A
BGND I/O
L03P_2
I/O
L04P_2
I/O
L06P_2
I/O
L06N_2
I/O
L08N_2
I/O
L10N_2
I/O
L12N_2
I/O
L14N_2
D6
I/O
L15N_2
I/O
L16N_2
D4
Bank 3
Bank 2
Bank 0
DS557-4_01_032709
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 99
R
Right Half of FGG484
Package (top view)
12 13 14 15 16 17 18 19 20 21 22
I/O
L18P_0
GCLK6
I/O
L16N_0
I/O
L13N_0
I/O
L12N_0
VREF_0
I/O
L12P_0
I/O
L10N_0
I/O
L05N_0
I/O
L06N_0
I/O
L03N_0 TCK GND A
GND I/O
L16P_0 VCCO_0 I/O
L13P_0 GND I/O
L10P_0 VCCO_0
I/O
L06P_0
VREF_0
I/O
L03P_0
I/O
L45N_1
A23
I/O
L45P_1
A22
B
I/O
L17P_0
GCLK4
I/O
L15N_0
I/O
L09P_0
I/O
L11N_0
I/O
L08N_0
I/O
L07N_0
I/O
L05P_0
I/O
L02N_0 GND
I/O
L44N_1
A21
I/O
L44P_1
A20
C
VCCAUX I/O
L15P_0 GND I/O
L11P_0
I/O
L08P_0
I/O
L07P_0
I/O
L01N_0
I/O
L02P_0
VREF_0
I/O
L42N_1
I/O
L42P_1
I/O
L41N_1 D
I/O
L17N_0
GCLK5
I/O
L14N_0
I/O
L09N_0
I/O
L04P_0 INPUT I/O
L01P_0 VCCAUX TDO I/O
L38P_1 VCCO_1 I/O
L41P_1 E
INPUT I/O
L14P_0 VCCO_0 I/O
L04N_0 INPUT GND I/O
L40N_1
I/O
L40P_1
I/O
L38N_1
I/O
L34N_1
A19
I/O
L34P_1
A18
F
INPUT INPUT INPUT INPUT INPUT
I/O
L46N_1
A25
I/O
L46P_1
A24
I/O
L36P_1
I/O
L36N_1 GND
I/O
L30N_1
A15
G
INPUT
VREF_0 INPUT INPUT INPUT
L47N_1
INPUT
L47P_1
VREF_1
INPUT
L39P_1
INPUT
L39N_1
I/O
L37N_1
I/O
L33N_1
A17
I/O
L33P_1
A16
I/O
L30P_1
A14
H
VCCINT GND GND
INPUT
L43N_1
VREF_1
INPUT
L43P_1 VCCO_1 I/O
L37P_1 GND
I/O
L29N_1
A13
I/O
L29P_1
A12
I/O
L26N_1
A11
J
GND VCCINT
INPUT
L35P_1
VREF_1
INPUT
L35N_1
INPUT
L31N_1
I/O
L32P_1
I/O
L32N_1
I/O
L25N_1
RHCLK7
I/O
L25P_1
IRDY1
RHCLK6
VCCO_1
I/O
L26P_1
A10
K
VCCINT GND VCCINT INPUT
L31P_1
INPUT
L27N_1 GND I/O
L28P_1
I/O
L28N_1
I/O
L22N_1
TRDY1
RHCLK3
I/O
L22P_1
RHCLK2
I/O
L21N_1
RHCLK1
L
GND VCCINT GND
INPUT
L27P_1
VREF_1
INPUT
L23N_1
INPUT
L23P_1
I/O
L24P_1
RHCLK4
VCCAUX
I/O
L24N_1
RHCLK5
GND
I/O
L21P_1
RHCLK0
M
VCCINT GND VCCINT INPUT
L16P_1
INPUT
L16N_1
VREF_1
I/O
L20N_1
A9
I/O
L20P_1
A8
I/O
L19N_1
A7
I/O
L19P_1
A6
I/O
L18N_1
A5
I/O
L18P_1
A4
N
INPUT VCCINT GND INPUT
L08P_1
INPUT
L08N_1 VCCO_1
I/O
L17N_1
A3
GND I/O
L15P_1 VCCO_1
I/O
L15N_1
VREF_1
P
INPUT
VREF_2
INPUT
VREF_2
INPUT
VREF_2
INPUT
L04P_1
INPUT
L04N_1
VREF_1
INPUT
L12P_1
INPUT
L12N_1
VREF_1
I/O
L17P_1
A2
I/O
L13P_1
I/O
L14P_1
I/O
L14N_1 R
GND INPUT INPUT INPUT
VREF_2
INPUT
VREF_2
I/O
L03P_1
A0
I/O
L03N_1
A1
I/O
L13N_1
I/O
L11P_1 GND I/O
L11N_1 T
I/O
L20N_2
GCLK3
I/O
L26N_2
D3
VCCO_2 INPUT N.C. GND
SUSPEND
I/O
L10N_1
I/O
L10P_1
I/O
L09N_1
I/O
L09P_1 U
I/O
L20P_2
GCLK2
I/O
L26P_2
INIT_B
I/O
L30P_2
I/O
L30N_2
I/O
L31N_2
I/O
L33N_2 VCCAUX I/O
L06P_1
I/O
L06N_1 VCCO_1 I/O
L07N_1 V
I/O
L18P_2
GCLK14
I/O
L23P_2 GND I/O
L25P_2
I/O
L31P_2
I/O
L34N_2
I/O
L33P_2
I/O
L02P_1
LDC1
I/O
L02N_1
LDC0
I/O
L05N_1
I/O
L07P_1 W
I/O
L18N_2
GCLK15
I/O
L21N_2
I/O
L23N_2
I/O
L25N_2
I/O
L27N_2
I/O
L28N_2
D1
I/O
L34P_2 DONE GND
I/O
L01N_1
LDC2
I/O
L05P_1 Y
I/O
L19P_2
GCLK0
VCCO_2 I/O
L22P_2
I/O
L24N_2
DOUT
GND
I/O
L28P_2
D2
VCCO_2 I/O
L32N_2
I/O
L36N_2
CCLK
I/O
L35N_2
I/O
L01P_1
HDC
A
A
I/O
L19N_2
GCLK1
I/O
L21P_2
I/O
L22N_2
MOSI
CSI_B
I/O
L24P_2
AWAKE
I/O
L27P_2
I/O
L29P_2
I/O
L29N_2
I/O
L32P_2
I/O
L36P_2
D0
DIN/MISO
I/O
L35P_2 GND A
B
Bank 1
Bank 2
Bank 0
DS557-4_02_032709
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
100 Product Specification
R
FGG676: 676-ball Fine-pitch Ball Grid Array
The 676-ball fine-pitch ball grid array, FGG676, supports the
XC3S1400AN FPGA.
Table 76 lists all the FGG676 package pins. They are sorted
by bank number and then by pin name. Pairs of pins that
form a differential I/O pair appear together in the table. The
table also shows the pin number for each pin and the pin
type, as defined earlier.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.
Pinout Table
Tabl e 7 6 : Spartan-3AN FGG676 Pinout
Bank Pin Name
FG676
Ball Type
0 IO_L01N_0 F20 I/O
0 IO_L01P_0 G20 I/O
0 IO_L02N_0 F19 I/O
0 IO_L02P_0/VREF_0 G19 VREF
0 IO_L05N_0 C22 I/O
0 IO_L05P_0 D22 I/O
0 IO_L06N_0 C23 I/O
0 IO_L06P_0 D23 I/O
0 IO_L07N_0 A22 I/O
0 IO_L07P_0 B23 I/O
0 IO_L08N_0 G17 I/O
0 IO_L08P_0 H17 I/O
0 IO_L09N_0 B21 I/O
0 IO_L09P_0 C21 I/O
0 IO_L10N_0 D21 I/O
0 IO_L10P_0 E21 I/O
0 IO_L11N_0 C20 I/O
0 IO_L11P_0 D20 I/O
0 IO_L12N_0 K16 I/O
0 IO_L12P_0 J16 I/O
0 IO_L13N_0 E17 I/O
0 IO_L13P_0 F17 I/O
0 IO_L14N_0 A20 I/O
0 IO_L14P_0/VREF_0 B20 VREF
0 IO_L15N_0 A19 I/O
0 IO_L15P_0 B19 I/O
0 IO_L16N_0 H15 I/O
0 IO_L16P_0 G15 I/O
0 IO_L17N_0 C18 I/O
0 IO_L17P_0 D18 I/O
0 IO_L18N_0 A18 I/O
0 IO_L18P_0 B18 I/O
0 IO_L19N_0 B17 I/O
0 IO_L19P_0 C17 I/O
0 IO_L20N_0/VREF_0 E15 VREF
0 IO_L20P_0 F15 I/O
0 IO_L21N_0 C16 I/O
0 IO_L21P_0 D17 I/O
0 IO_L22N_0 C15 I/O
0 IO_L22P_0 D16 I/O
0 IO_L23N_0 A15 I/O
0 IO_L23P_0 B15 I/O
0 IO_L24N_0 F14 I/O
0 IO_L24P_0 E14 I/O
0 IO_L25N_0/GCLK5 J14 GCLK
0 IO_L25P_0/GCLK4 K14 GCLK
0 IO_L26N_0/GCLK7 A14 GCLK
0 IO_L26P_0/GCLK6 B14 GCLK
0 IO_L27N_0/GCLK9 G13 GCLK
0 IO_L27P_0/GCLK8 F13 GCLK
0 IO_L28N_0/GCLK11 C13 GCLK
0 IO_L28P_0/GCLK10 B13 GCLK
0 IO_L29N_0 B12 I/O
0 IO_L29P_0 A12 I/O
0 IO_L30N_0 C12 I/O
0 IO_L30P_0 D13 I/O
0 IO_L31N_0 F12 I/O
0 IO_L31P_0 E12 I/O
0 IO_L32N_0/VREF_0 D11 VREF
0 IO_L32P_0 C11 I/O
0 IO_L33N_0 B10 I/O
0 IO_L33P_0 A10 I/O
0 IO_L34N_0 D10 I/O
0 IO_L34P_0 C10 I/O
0 IO_L35N_0 H12 I/O
0 IO_L35P_0 G12 I/O
0 IO_L36N_0 B9 I/O
0 IO_L36P_0 A9 I/O
0 IO_L37N_0 D9 I/O
0 IO_L37P_0 E10 I/O
0 IO_L38N_0 B8 I/O
0 IO_L38P_0 A8 I/O
0 IO_L39N_0 K12 I/O
Ta bl e 76 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 101
R
0 IO_L39P_0 J12 I/O
0 IO_L40N_0 D8 I/O
0 IO_L40P_0 C8 I/O
0 IO_L41N_0 C6 I/O
0 IO_L41P_0 B6 I/O
0 IO_L42N_0 C7 I/O
0 IO_L42P_0 B7 I/O
0 IO_L43N_0 K11 I/O
0 IO_L43P_0 J11 I/O
0 IO_L44N_0 D6 I/O
0 IO_L44P_0 C5 I/O
0 IO_L45N_0 B4 I/O
0 IO_L45P_0 A4 I/O
0 IO_L46N_0 H10 I/O
0 IO_L46P_0 G10 I/O
0 IO_L47N_0 H9 I/O
0 IO_L47P_0 G9 I/O
0 IO_L48N_0 E7 I/O
0 IO_L48P_0 F7 I/O
0 IO_L51N_0 B3 I/O
0 IO_L51P_0 A3 I/O
0 IO_L52N_0/PUDC_B G8 DUAL
0 IO_L52P_0/VREF_0 F8 VREF
0 IP_0 A5 INPUT
0 IP_0 A7 INPUT
0 IP_0 A13 INPUT
0 IP_0 A17 INPUT
0 IP_0 A23 INPUT
0 IP_0 C4 INPUT
0 IP_0 D12 INPUT
0 IP_0 D15 INPUT
0 IP_0 D19 INPUT
0 IP_0 E11 INPUT
0 IP_0 E18 INPUT
0 IP_0 E20 INPUT
0 IP_0 F10 INPUT
0 IP_0 G14 INPUT
0 IP_0 G16 INPUT
0 IP_0 H13 INPUT
0 IP_0 H18 INPUT
0 IP_0 J10 INPUT
0 IP_0 J13 INPUT
0 IP_0 J15 INPUT
0 IP_0/VREF_0 D7 VREF
Tabl e 7 6 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
0 IP_0/VREF_0 D14 VREF
0 IP_0/VREF_0 G11 VREF
0 IP_0/VREF_0 J17 VREF
0N.C. A24 N.C.
0N.C. B24 N.C.
0N.C. D5 N.C.
0N.C. E9 N.C.
0N.C. F18 N.C.
0N.C. E6 N.C.
0N.C. F9 N.C.
0N.C. G18 N.C.
0 VCCO_0 B5 VCCO
0 VCCO_0 B11 VCCO
0 VCCO_0 B16 VCCO
0 VCCO_0 B22 VCCO
0 VCCO_0 E8 VCCO
0 VCCO_0 E13 VCCO
0 VCCO_0 E19 VCCO
0 VCCO_0 H11 VCCO
0 VCCO_0 H16 VCCO
1 IO_L01N_1/LDC2 Y21 DUAL
1 IO_L01P_1/HDC Y20 DUAL
1 IO_L02N_1/LDC0 AD25 DUAL
1 IO_L02P_1/LDC1 AE26 DUAL
1 IO_L03N_1/A1 AC24 DUAL
1 IO_L03P_1/A0 AC23 DUAL
1 IO_L04N_1 W21 I/O
1 IO_L04P_1 W20 I/O
1 IO_L05N_1 AC25 I/O
1 IO_L05P_1 AD26 I/O
1 IO_L06N_1 AB26 I/O
1 IO_L06P_1 AC26 I/O
1 IO_L07N_1/VREF_1 AB24 VREF
1 IO_L07P_1 AB23 I/O
1 IO_L08N_1 V19 I/O
1 IO_L08P_1 V18 I/O
1 IO_L09N_1 AA23 I/O
1 IO_L09P_1 AA22 I/O
1 IO_L10N_1 U20 I/O
1 IO_L10P_1 V21 I/O
1 IO_L11N_1 AA25 I/O
1 IO_L11P_1 AA24 I/O
1 IO_L12N_1 U18 I/O
1 IO_L12P_1 U19 I/O
Ta bl e 76 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
102 Product Specification
R
1 IO_L13N_1 Y23 I/O
1 IO_L13P_1 Y22 I/O
1 IO_L14N_1 T20 I/O
1 IO_L14P_1 U21 I/O
1 IO_L15N_1 Y25 I/O
1 IO_L15P_1 Y24 I/O
1 IO_L17N_1 T17 I/O
1 IO_L17P_1 T18 I/O
1 IO_L18N_1 V22 I/O
1 IO_L18P_1 W23 I/O
1 IO_L19N_1 V25 I/O
1 IO_L19P_1 V24 I/O
1 IO_L21N_1 U22 I/O
1 IO_L21P_1 V23 I/O
1 IO_L22N_1 R20 I/O
1 IO_L22P_1 R19 I/O
1 IO_L23N_1/VREF_1 U24 VREF
1 IO_L23P_1 U23 I/O
1 IO_L25N_1/A3 R22 DUAL
1 IO_L25P_1/A2 R21 DUAL
1 IO_L26N_1/A5 T24 DUAL
1 IO_L26P_1/A4 T23 DUAL
1 IO_L27N_1/A7 R17 DUAL
1 IO_L27P_1/A6 R18 DUAL
1 IO_L29N_1/A9 R26 DUAL
1 IO_L29P_1/A8 R25 DUAL
1 IO_L30N_1/RHCLK1 P20 RHCLK
1 IO_L30P_1/RHCLK0 P21 RHCLK
1 IO_L31N_1/TRDY1/RHCLK3 P25 RHCLK
1 IO_L31P_1/RHCLK2 P26 RHCLK
1 IO_L33N_1/RHCLK5 N24 RHCLK
1 IO_L33P_1/RHCLK4 P23 RHCLK
1 IO_L34N_1/RHCLK7 N19 RHCLK
1 IO_L34P_1/IRDY1/RHCLK6 P18 RHCLK
1 IO_L35N_1/A11 M25 DUAL
1 IO_L35P_1/A10 M26 DUAL
1 IO_L37N_1 N21 I/O
1 IO_L37P_1 P22 I/O
1 IO_L38N_1/A13 M23 DUAL
1 IO_L38P_1/A12 L24 DUAL
1 IO_L39N_1/A15 N17 DUAL
1 IO_L39P_1/A14 N18 DUAL
1 IO_L41N_1 K26 I/O
1 IO_L41P_1 K25 I/O
Tabl e 7 6 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
1 IO_L42N_1/A17 M20 DUAL
1 IO_L42P_1/A16 N20 DUAL
1 IO_L43N_1/A19 J25 DUAL
1 IO_L43P_1/A18 J26 DUAL
1 IO_L45N_1 M22 I/O
1 IO_L45P_1 M21 I/O
1 IO_L46N_1 K22 I/O
1 IO_L46P_1 K23 I/O
1 IO_L47N_1 M18 I/O
1 IO_L47P_1 M19 I/O
1 IO_L49N_1 J22 I/O
1 IO_L49P_1 J23 I/O
1 IO_L50N_1 K21 I/O
1 IO_L50P_1 L22 I/O
1 IO_L51N_1 G24 I/O
1 IO_L51P_1 G23 I/O
1 IO_L53N_1 K20 I/O
1 IO_L53P_1 L20 I/O
1 IO_L54N_1 F24 I/O
1 IO_L54P_1 F25 I/O
1 IO_L55N_1 L17 I/O
1 IO_L55P_1 L18 I/O
1 IO_L56N_1 F23 I/O
1 IO_L56P_1 E24 I/O
1 IO_L57N_1 K18 I/O
1 IO_L57P_1 K19 I/O
1 IO_L58N_1 G22 I/O
1 IO_L58P_1/VREF_1 F22 VREF
1 IO_L59N_1 J20 I/O
1 IO_L59P_1 J19 I/O
1 IO_L60N_1 D26 I/O
1 IO_L60P_1 E26 I/O
1 IO_L61N_1 D24 I/O
1 IO_L61P_1 D25 I/O
1 IO_L62N_1/A21 H21 DUAL
1 IO_L62P_1/A20 J21 DUAL
1 IO_L63N_1/A23 C25 DUAL
1 IO_L63P_1/A22 C26 DUAL
1 IO_L64N_1/A25 G21 DUAL
1 IO_L64P_1/A24 H20 DUAL
1 IP_L16N_1 Y26 INPUT
1 IP_L16P_1 W25 INPUT
1 IP_L20N_1/VREF_1 V26 VREF
1 IP_L20P_1 W26 INPUT
Ta bl e 76 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 103
R
1 IP_L24N_1/VREF_1 U26 VREF
1 IP_L24P_1 U25 INPUT
1 IP_L28N_1 R24 INPUT
1 IP_L28P_1/VREF_1 R23 VREF
1 IP_L32N_1 N25 INPUT
1 IP_L32P_1 N26 INPUT
1 IP_L36N_1 N23 INPUT
1 IP_L36P_1/VREF_1 M24 VREF
1 IP_L40N_1 L23 INPUT
1 IP_L40P_1 K24 INPUT
1 IP_L44N_1 H25 INPUT
1 IP_L44P_1/VREF_1 H26 VREF
1 IP_L48N_1 H24 INPUT
1 IP_L48P_1 H23 INPUT
1 IP_L52N_1/VREF_1 G25 VREF
1 IP_L52P_1 G26 INPUT
1 IP_L65N_1 B25 INPUT
1 IP_L65P_1/VREF_1 B26 VREF
1 VCCO_1 AB25 VCCO
1 VCCO_1 E25 VCCO
1 VCCO_1 H22 VCCO
1 VCCO_1 L19 VCCO
1 VCCO_1 L25 VCCO
1 VCCO_1 N22 VCCO
1 VCCO_1 T19 VCCO
1 VCCO_1 T25 VCCO
1 VCCO_1 W22 VCCO
2 IO_L01N_2/M0 AD4 DUAL
2 IO_L01P_2/M1 AC4 DUAL
2 IO_L02N_2/CSO_B AA7 DUAL
2 IO_L02P_2/M2 Y7 DUAL
2 IO_L05N_2 Y9 I/O
2 IO_L05P_2 W9 I/O
2 IO_L06N_2 AF3 I/O
2 IO_L06P_2 AE3 I/O
2 IO_L07N_2 AF4 I/O
2 IO_L07P_2 AE4 I/O
2 IO_L08N_2 AD6 I/O
2 IO_L08P_2 AC6 I/O
2 IO_L09N_2 W10 I/O
2 IO_L09P_2 V10 I/O
2 IO_L10N_2 AE6 I/O
2 IO_L10P_2 AF5 I/O
2 IO_L11N_2 AE7 I/O
Tabl e 7 6 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
2 IO_L11P_2 AD7 I/O
2 IO_L12N_2 AA10 I/O
2 IO_L12P_2 Y10 I/O
2 IO_L13N_2 U11 I/O
2 IO_L13P_2 V11 I/O
2 IO_L14N_2 AB7 I/O
2 IO_L14P_2 AC8 I/O
2 IO_L15N_2 AC9 I/O
2 IO_L15P_2 AB9 I/O
2 IO_L16N_2 W12 I/O
2 IO_L16P_2 V12 I/O
2 IO_L17N_2/VS2 AA12 DUAL
2 IO_L17P_2/RDWR_B Y12 DUAL
2 IO_L18N_2 AF8 I/O
2 IO_L18P_2 AE8 I/O
2 IO_L19N_2/VS0 AF9 DUAL
2 IO_L19P_2/VS1 AE9 DUAL
2 IO_L20N_2 W13 I/O
2 IO_L20P_2 V13 I/O
2 IO_L21N_2 AC12 I/O
2 IO_L21P_2 AB12 I/O
2 IO_L22N_2/D6 AF10 DUAL
2 IO_L22P_2/D7 AE10 DUAL
2 IO_L23N_2 AC11 I/O
2 IO_L23P_2 AD11 I/O
2 IO_L24N_2/D4 AE12 DUAL
2 IO_L24P_2/D5 AF12 DUAL
2 IO_L25N_2/GCLK13 Y13 GCLK
2 IO_L25P_2/GCLK12 AA13 GCLK
2 IO_L26N_2/GCLK15 AE13 GCLK
2 IO_L26P_2/GCLK14 AF13 GCLK
2 IO_L27N_2/GCLK1 AA14 GCLK
2 IO_L27P_2/GCLK0 Y14 GCLK
2 IO_L28N_2/GCLK3 AE14 GCLK
2 IO_L28P_2/GCLK2 AF14 GCLK
2 IO_L29N_2 AC14 I/O
2 IO_L29P_2 AD14 I/O
2 IO_L30N_2/MOSI/CSI_B AB15 DUAL
2 IO_L30P_2 AC15 I/O
2 IO_L31N_2 W15 I/O
2 IO_L31P_2 V14 I/O
2 IO_L32N_2/DOUT AE15 DUAL
2 IO_L32P_2/AWAKE AD15 PWR
MGMT
Ta bl e 76 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
104 Product Specification
R
2 IO_L33N_2 AD17 I/O
2 IO_L33P_2 AE17 I/O
2 IO_L34N_2/D3 Y15 DUAL
2 IO_L34P_2/INIT_B AA15 DUAL
2 IO_L35N_2 U15 I/O
2 IO_L35P_2 V15 I/O
2 IO_L36N_2/D1 AE18 DUAL
2 IO_L36P_2/D2 AF18 DUAL
2 IO_L37N_2 AE19 I/O
2 IO_L37P_2 AF19 I/O
2 IO_L38N_2 AB16 I/O
2 IO_L38P_2 AC16 I/O
2 IO_L39N_2 AE20 I/O
2 IO_L39P_2 AF20 I/O
2 IO_L40N_2 AC19 I/O
2 IO_L40P_2 AD19 I/O
2 IO_L41N_2 AC20 I/O
2 IO_L41P_2 AD20 I/O
2 IO_L42N_2 U16 I/O
2 IO_L42P_2 V16 I/O
2 IO_L43N_2 Y17 I/O
2 IO_L43P_2 AA17 I/O
2 IO_L44N_2 AD21 I/O
2 IO_L44P_2 AE21 I/O
2 IO_L45N_2 AC21 I/O
2 IO_L45P_2 AD22 I/O
2 IO_L46N_2 V17 I/O
2 IO_L46P_2 W17 I/O
2 IO_L47N_2 AA18 I/O
2 IO_L47P_2 AB18 I/O
2 IO_L48N_2 AE23 I/O
2 IO_L48P_2 AF23 I/O
2 IO_L51N_2 AE25 I/O
2 IO_L51P_2 AF25 I/O
2 IO_L52N_2/CCLK AE24 DUAL
2 IO_L52P_2/D0/DIN/MISO AF24 DUAL
2 IP_2 AA19 INPUT
2 IP_2 AB13 INPUT
2 IP_2 AB17 INPUT
2 IP_2 AB20 INPUT
2 IP_2 AC7 INPUT
2 IP_2 AC13 INPUT
2 IP_2 AC17 INPUT
2 IP_2 AC18 INPUT
Tabl e 7 6 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
2 IP_2 AD9 INPUT
2 IP_2 AD10 INPUT
2 IP_2 AD16 INPUT
2 IP_2 AF2 INPUT
2 IP_2 AF7 INPUT
2 IP_2 Y11 INPUT
2 IP_2/VREF_2 AA9 VREF
2 IP_2/VREF_2 AA20 VREF
2 IP_2/VREF_2 AB6 VREF
2 IP_2/VREF_2 AB10 VREF
2 IP_2/VREF_2 AC10 VREF
2 IP_2/VREF_2 AD12 VREF
2 IP_2/VREF_2 AF15 VREF
2 IP_2/VREF_2 AF17 VREF
2 IP_2/VREF_2 AF22 VREF
2 IP_2/VREF_2 Y16 VREF
2N.C. AA8 N.C.
2N.C. AC5 N.C.
2N.C. AC22 N.C.
2N.C. AD5 N.C.
2N.C. Y18 N.C.
2N.C. Y19 N.C.
2N.C. AD23 N.C.
2N.C. W18 N.C.
2N.C. Y8 N.C.
2 VCCO_2 AB8 VCCO
2 VCCO_2 AB14 VCCO
2 VCCO_2 AB19 VCCO
2 VCCO_2 AE5 VCCO
2 VCCO_2 AE11 VCCO
2 VCCO_2 AE16 VCCO
2 VCCO_2 AE22 VCCO
2 VCCO_2 W11 VCCO
2 VCCO_2 W16 VCCO
3 IO_L01N_3 J9 I/O
3 IO_L01P_3 J8 I/O
3 IO_L02N_3 B1 I/O
3 IO_L02P_3 B2 I/O
3 IO_L03N_3 H7 I/O
3 IO_L03P_3 G6 I/O
3 IO_L05N_3 K8 I/O
3 IO_L05P_3 K9 I/O
3 IO_L06N_3 E4 I/O
3 IO_L06P_3 D3 I/O
Ta bl e 76 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 105
R
3 IO_L07N_3 F4 I/O
3 IO_L07P_3 E3 I/O
3 IO_L09N_3 G4 I/O
3 IO_L09P_3 F5 I/O
3 IO_L10N_3 H6 I/O
3 IO_L10P_3 J7 I/O
3 IO_L11N_3 F2 I/O
3 IO_L11P_3 E1 I/O
3 IO_L13N_3 J6 I/O
3 IO_L13P_3 K7 I/O
3 IO_L14N_3 F3 I/O
3 IO_L14P_3 G3 I/O
3 IO_L15N_3 L9 I/O
3 IO_L15P_3 L10 I/O
3 IO_L17N_3 H1 I/O
3 IO_L17P_3 H2 I/O
3 IO_L18N_3 L7 I/O
3 IO_L18P_3 K6 I/O
3 IO_L19N_3 J4 I/O
3 IO_L19P_3 J5 I/O
3 IO_L21N_3 M9 I/O
3 IO_L21P_3 M10 I/O
3 IO_L22N_3 K4 I/O
3 IO_L22P_3 K5 I/O
3 IO_L23N_3 K2 I/O
3 IO_L23P_3 K3 I/O
3 IO_L25N_3 L3 I/O
3 IO_L25P_3 L4 I/O
3 IO_L26N_3 M7 I/O
3 IO_L26P_3 M8 I/O
3 IO_L27N_3 M3 I/O
3 IO_L27P_3 M4 I/O
3 IO_L28N_3 M6 I/O
3 IO_L28P_3 M5 I/O
3 IO_L29N_3/VREF_3 M1 VREF
3 IO_L29P_3 M2 I/O
3 IO_L30N_3 N4 I/O
3 IO_L30P_3 N5 I/O
3 IO_L31N_3 N2 I/O
3 IO_L31P_3 N1 I/O
3 IO_L32N_3/LHCLK1 N7 LHCLK
3 IO_L32P_3/LHCLK0 N6 LHCLK
3 IO_L33N_3/IRDY2/LHCLK3 P2 LHCLK
3 IO_L33P_3/LHCLK2 P1 LHCLK
Tabl e 7 6 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
3 IO_L34N_3/LHCLK5 P3 LHCLK
3 IO_L34P_3/LHCLK4 P4 LHCLK
3 IO_L35N_3/LHCLK7 P10 LHCLK
3 IO_L35P_3/TRDY2/LHCLK6 N9 LHCLK
3 IO_L36N_3 R2 I/O
3 IO_L36P_3/VREF_3 R1 VREF
3 IO_L37N_3 R4 I/O
3 IO_L37P_3 R3 I/O
3 IO_L38N_3 T4 I/O
3 IO_L38P_3 T3 I/O
3 IO_L39N_3 P6 I/O
3 IO_L39P_3 P7 I/O
3 IO_L40N_3 R6 I/O
3 IO_L40P_3 R5 I/O
3 IO_L41N_3 P9 I/O
3 IO_L41P_3 P8 I/O
3 IO_L42N_3 U4 I/O
3 IO_L42P_3 T5 I/O
3 IO_L43N_3 R9 I/O
3 IO_L43P_3/VREF_3 R10 VREF
3 IO_L44N_3 U2 I/O
3 IO_L44P_3 U1 I/O
3 IO_L45N_3 R7 I/O
3 IO_L45P_3 R8 I/O
3 IO_L47N_3 V2 I/O
3 IO_L47P_3 V1 I/O
3 IO_L48N_3 T9 I/O
3 IO_L48P_3 T10 I/O
3 IO_L49N_3 V5 I/O
3 IO_L49P_3 U5 I/O
3 IO_L51N_3 U6 I/O
3 IO_L51P_3 T7 I/O
3 IO_L52N_3 W4 I/O
3 IO_L52P_3 W3 I/O
3 IO_L53N_3 Y2 I/O
3 IO_L53P_3 Y1 I/O
3 IO_L55N_3 AA3 I/O
3 IO_L55P_3 AA2 I/O
3 IO_L56N_3 U8 I/O
3 IO_L56P_3 U7 I/O
3 IO_L57N_3 Y6 I/O
3 IO_L57P_3 Y5 I/O
3 IO_L59N_3 V6 I/O
3 IO_L59P_3 V7 I/O
Ta bl e 76 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
106 Product Specification
R
3 IO_L60N_3 AC1 I/O
3 IO_L60P_3 AB1 I/O
3 IO_L61N_3 V8 I/O
3 IO_L61P_3 U9 I/O
3 IO_L63N_3 W6 I/O
3 IO_L63P_3 W7 I/O
3 IO_L64N_3 AC3 I/O
3 IO_L64P_3 AC2 I/O
3 IO_L65N_3 AD2 I/O
3 IO_L65P_3 AD1 I/O
3IP_L04N_3/VREF_3 C1VREF
3 IP_L04P_3 C2 INPUT
3 IP_L08N_3 D1 INPUT
3 IP_L08P_3 D2 INPUT
3IP_L12N_3/VREF_3 H4VREF
3 IP_L12P_3 G5 INPUT
3 IP_L16N_3 G1 INPUT
3 IP_L16P_3 G2 INPUT
3 IP_L20N_3/VREF_3 J2 VREF
3 IP_L20P_3 J3 INPUT
3 IP_L24N_3 K1 INPUT
3 IP_L24P_3 J1 INPUT
3 IP_L46N_3 V4 INPUT
3 IP_L46P_3 U3 INPUT
3 IP_L50N_3/VREF_3 W2 VREF
3 IP_L50P_3 W1 INPUT
3 IP_L54N_3 Y4 INPUT
3 IP_L54P_3 Y3 INPUT
3 IP_L58N_3/VREF_3 AA5 VREF
3 IP_L58P_3 AA4 INPUT
3 IP_L62N_3 AB4 INPUT
3 IP_L62P_3 AB3 INPUT
3 IP_L66N_3/VREF_3 AE2 VREF
3 IP_L66P_3 AE1 INPUT
3 VCCO_3 AB2 VCCO
3 VCCO_3 E2 VCCO
3 VCCO_3 H5 VCCO
3 VCCO_3 L2 VCCO
3 VCCO_3 L8 VCCO
3 VCCO_3 P5 VCCO
3 VCCO_3 T2 VCCO
3 VCCO_3 T8 VCCO
3 VCCO_3 W5 VCCO
GND GND A1 GND
Tabl e 7 6 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
GND GND A6 GND
GND GND A11 GND
GND GND A16 GND
GND GND A21 GND
GND GND A26 GND
GND GND AA1 GND
GND GND AA6 GND
GND GND AA11 GND
GND GND AA16 GND
GND GND AA21 GND
GND GND AA26 GND
GND GND AD3 GND
GND GND AD8 GND
GND GND AD13 GND
GND GND AD18 GND
GND GND AD24 GND
GND GND AF1 GND
GND GND AF6 GND
GND GND AF11 GND
GND GND AF16 GND
GND GND AF21 GND
GND GND AF26 GND
GND GND C3 GND
GND GND C9 GND
GND GND C14 GND
GND GND C19 GND
GND GND C24 GND
GND GND F1 GND
GND GND F6 GND
GND GND F11 GND
GND GND F16 GND
GND GND F21 GND
GND GND F26 GND
GND GND H3 GND
GND GND H8 GND
GND GND H14 GND
GND GND H19 GND
GND GND J24 GND
GND GND K10 GND
GND GND K17 GND
GND GND L1 GND
GND GND L6 GND
GND GND L11 GND
GND GND L13 GND
Ta bl e 76 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 107
R
GND GND L15 GND
GND GND L21 GND
GND GND L26 GND
GND GND M12 GND
GND GND M14 GND
GND GND M16 GND
GND GND N3 GND
GND GND N8 GND
GND GND N11 GND
GND GND N15 GND
GND GND P12 GND
GND GND P16 GND
GND GND P19 GND
GND GND P24 GND
GND GND R11 GND
GND GND R13 GND
GND GND R15 GND
GND GND T1 GND
GND GND T6 GND
GND GND T12 GND
GND GND T14 GND
GND GND T16 GND
GND GND T21 GND
GND GND T26 GND
GND GND U10 GND
GND GND U13 GND
GND GND U17 GND
GND GND V3 GND
GND GND W8 GND
GND GND W14 GND
GND GND W19 GND
GND GND W24 GND
VCCAUX SUSPEND V20 PWR
MGMT
VCCAUX DONE AB21 CONFIG
VCCAUX PROG_B A2 CONFIG
VCCAUX TCK A25 JTAG
VCCAUX TDI G7 JTAG
VCCAUX TDO E23 JTAG
VCCAUX TMS D4 JTAG
VCCAUX VCCAUX AB5 VCCAUX
VCCAUX VCCAUX AB11 VCCAUX
VCCAUX VCCAUX AB22 VCCAUX
VCCAUX VCCAUX E5 VCCAUX
Tabl e 7 6 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
VCCAUX VCCAUX E16 VCCAUX
VCCAUX VCCAUX E22 VCCAUX
VCCAUX VCCAUX J18 VCCAUX
VCCAUX VCCAUX K13 VCCAUX
VCCAUX VCCAUX L5 VCCAUX
VCCAUX VCCAUX N10 VCCAUX
VCCAUX VCCAUX P17 VCCAUX
VCCAUX VCCAUX T22 VCCAUX
VCCAUX VCCAUX U14 VCCAUX
VCCAUX VCCAUX V9 VCCAUX
VCCINT VCCINT K15 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT L14 VCCINT
VCCINT VCCINT L16 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT M13 VCCINT
VCCINT VCCINT M15 VCCINT
VCCINT VCCINT M17 VCCINT
VCCINT VCCINT N12 VCCINT
VCCINT VCCINT N13 VCCINT
VCCINT VCCINT N14 VCCINT
VCCINT VCCINT N16 VCCINT
VCCINT VCCINT P11 VCCINT
VCCINT VCCINT P13 VCCINT
VCCINT VCCINT P14 VCCINT
VCCINT VCCINT P15 VCCINT
VCCINT VCCINT R12 VCCINT
VCCINT VCCINT R14 VCCINT
VCCINT VCCINT R16 VCCINT
VCCINT VCCINT T11 VCCINT
VCCINT VCCINT T13 VCCINT
VCCINT VCCINT T15 VCCINT
VCCINT VCCINT U12 VCCINT
Ta bl e 76 : Spartan-3AN FGG676 Pinout (Continued)
Bank Pin Name
FG676
Ball Type
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
108 Product Specification
R
User I/Os by Bank
Table 77 indicates how the 502 available user-I/O pins are
distributed between the four I/O banks on the FGG676
package. The AWAKE pin is counted as a Dual-Purpose
I/O.
Footprint Migration Differences
The XC3S1400AN is the only Spartan-3AN FPGA offered in
the FGG676 package.
The XC3S1400AN FPGA is pin compatible with the
Spartan-3A XC3S1400A FPGA in the FG(G)676 package,
although the Spartan-3A FPGA requires an external
configuration source.
Tabl e 7 7 : User I/Os Per Bank for the XC3S1400AN in the FGG676 Package
Package
Edge I/O Bank Maximum I/O
All Possible I/O Pins by Type
I/O INPUT DUAL VREF CLK
Top 0120 82 20 1 9 8
Right 1130 67 15 30 10 8
Bottom 2120 67 14 21 10 8
Left 3132 97 18 0 9 8
TOTAL 502 313 67 52 38 32
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 109
R
FG676 Footprint X-Ref Target - Figure 23
Left Half of FG676
Package (top view)
313
I/O: Unrestricted,
general-purpose user I/O
67
INPUT: Unrestricted,
general-purpose input pin
51
DUAL: Configuration pins,
then possible user I/O
2
SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
38
VREF: User I/O or input
voltage reference for bank
32
CLK: User I/O, input, or
clock buffer input
2
CONFIG: Dedicated
configuration pins
4
JTAG: Dedicated JTAG
port pins
77
GND: Ground
36
VCCO: Output voltage
supply for bank
23
VCCINT: Internal core
supply voltage (+1.2V)
14
VCCAUX: Auxiliary supply
voltage
17
N.C.: Not connected
Figure 23: FG676 Package Footprint (top view)
12345678910111213
A
GND
PROG_B
I/O
L51P_0
I/O
L45P_0
INPUT GND INPUT I/O
L38P_0
I/O
L36P_0
I/O
L33P_0
GND I/O
L29P_0
INPUT
B
I/O
L02N_3
I/O
L02P_3
I/O
L51N_0
I/O
L45N_0 VCCO_0
I/O
L41P_0
I/O
L42P_0
I/O
L38N_0
I/O
L36N_0
I/O
L33N_0 VCCO_0
I/O
L29N_0
I/O
L28P_0
GCLK10
C
INPUT
L04N_3
VREF_3
INPUT
L04P_3
GND INPUT I/O
L44P_0
I/O
L41N_0
I/O
L42N_0
I/O
L40P_0
GND I/O
L34P_0
I/O
L32P_0
I/O
L30N_0
I/O
L28N_0
GCLK11
D
INPUT
L08N_3
INPUT
L08P_3
I/O
L06P_3
TMS N.C. I/O
L44N_0
INPUT
VREF_0
I/O
L40N_0
I/O
L37N_0
I/O
L34N_0
I/O
L32N_0
VREF_0
INPUT I/O
L30P_0
E
I/O
L11P_3 VCCO_3
I/O
L07P_3
I/O
L06N_3 VCCAUX
I/O
L48N_0 VCCO_0
N.C. I/O
L37P_0
INPUT I/O
L31P_0 VCCO_0
F
GND I/O
L11N_3
I/O
L14N_3
I/O
L07N_3
I/O
L09P_3
GND I/O
L48P_0
I/O
L52P_0
VREF_0
INPUT GND I/O
L31N_0
I/O
L27P_0
GCLK8
G
INPUT
L16N_3
INPUT
L16P_3
I/O
L14P_3
I/O
L09N_3
INPUT
L12P_3
I/O
L03P_3
TDI
I/O
L52N_0
PUDC_B
I/O
L47P_0
I/O
L46P_0
INPUT
VREF_0
I/O
L35P_0
I/O
L27N_0
GCLK9
H
I/O
L17N_3
I/O
L17P_3
GND
INPUT
L12N_3
VREF_3
VCCO_3
I/O
L10N_3
I/O
L03N_3
GND I/O
L47N_0
I/O
L46N_0 VCCO_0
I/O
L35N_0
INPUT
J
INPUT
L24P_3
INPUT
L20N_3
VREF_3
INPUT
L20P_3
I/O
L19N_3
I/O
L19P_3
I/O
L13N_3
I/O
L10P_3
I/O
L01P_3
I/O
L01N_3
INPUT I/O
L43P_0
I/O
L39P_0
INPUT
K
INPUT
L24N_3
I/O
L23N_3
I/O
L23P_3
I/O
L22N_3
I/O
L22P_3
I/O
L18P_3
I/O
L13P_3
I/O
L05N_3
I/O
L05P_3
GND I/O
L43N_0
I/O
L39N_0 VCCAUX
L
GND
VCCO_3
I/O
L25N_3
I/O
L25P_3 VCCAUX
GND I/O
L18N_3 VCCO_3
I/O
L15N_3
I/O
L15P_3
GND VCCINT GND
M
I/O
L29N_3
VREF_3
I/O
L29P_3
I/O
L27N_3
I/O
L27P_3
I/O
L28P_3
I/O
L28N_3
I/O
L26N_3
I/O
L26P_3
I/O
L21N_3
I/O
L21P_3
VCCINT GND VCCINT
N
I/O
L31P_3
I/O
L31N_3
GND I/O
L30N_3
I/O
L30P_3
I/O
L32P_3
LHCLK0
I/O
L32N_3
LHCLK1
GND
I/O
L35P_3
TRDY2
LHCLK
6
VCCAUX
GND VCCINT VCCINT
P
I/O
L33P_3
LHCLK2
I/O
L33N_3
IRDY2
LHCLK
3
I/O
L34N_3
LHCLK5
I/O
L34P_3
LHCLK4
VCCO_3
I/O
L39N_3
I/O
L39P_3
I/O
L41P_3
I/O
L41N_3
I/O
L35N_3
LHCLK7
VCCINT GND VCCINT
R
I/O
L36P_3
VREF_3
I/O
L36N_3
I/O
L37P_3
I/O
L37N_3
I/O
L40P_3
I/O
L40N_3
I/O
L45N_3
I/O
L45P_3
I/O
L43N_3
I/O
L43P_3
VREF_3
GND VCCINT GND
T
GND
VCCO_3
I/O
L38P_3
I/O
L38N_3
I/O
L42P_3
GND I/O
L51P_3 VCCO_3
I/O
L48N_3
I/O
L48P_3
VCCINT GND VCCINT
U
I/O
L44P_3
I/O
L44N_3
INPUT
L46P_3
I/O
L42N_3
I/O
L49P_3
I/O
L51N_3
I/O
L56P_3
I/O
L56N_3
I/O
L61P_3
GND I/O
L13N_2
VCCINT GND
V
I/O
L47P_3
I/O
L47N_3
GND INPUT
L46N_3
I/O
L49N_3
I/O
L59N_3
I/O
L59P_3
I/O
L61N_3 VCCAUX
I/O
L09P_2
I/O
L13P_2
I/O
L16P_2
I/O
L20P_2
W
INPUT
L50P_3
INPUT
L50N_3
VREF_3
I/O
L52P_3
I/O
L52N_3 VCCO_3
I/O
L63N_3
I/O
L63P_3
GND I/O
L05P_2
I/O
L09N_2 VCCO_2
I/O
L16N_2
I/O
L20N_2
Y
I/O
L53P_3
I/O
L53N_3
INPUT
L54P_3
INPUT
L54N_3
I/O
L57P_3
I/O
L57N_3
I/O
L02P_2
M2
I/O
L05N_2
I/O
L12P_2
INPUT
I/O
L17P_2
RDWR_B
I/O
L25N_2
GCLK13
A
A
GND I/O
L55P_3
I/O
L55N_3
INPUT
L58P_3
INPUT
L58N_3
VREF_3
GND
I/O
L02N_2
CSO_B
N.C. INPUT
VREF_2
I/O
L12N_2
GND
I/O
L17N_2
VS2
I/O
L25P_2
GCLK12
A
B
I/O
L60P_3 VCCO_3
INPUT
L62P_3
INPUT
L62N_3 VCCAUX
INPUT
VREF_2
I/O
L14N_2 VCCO_2
I/O
L15P_2
INPUT
VREF_2 VCCAUX
I/O
L21P_2
INPUT
A
C
I/O
L60N_3
I/O
L64P_3
I/O
L64N_3
I/O
L01P_2
M1
N.C. I/O
L08P_2
INPUT I/O
L14P_2
I/O
L15N_2
INPUT
VREF_2
I/O
L23N_2
I/O
L21N_2
INPUT
A
D
I/O
L65P_3
I/O
L65N_3
GND
I/O
L01N_2
M0
N.C. I/O
L08N_2
I/O
L11P_2
GND INPUT INPUT I/O
L23P_2
INPUT
VREF_2
GND
A
E
INPUT
L66P_3
INPUT
L66N_3
VREF_3
I/O
L06P_2
I/O
L07P_2 VCCO_2
I/O
L10N_2
I/O
L11N_2
I/O
L18P_2
I/O
L19P_2
VS1
I/O
L22P_2
D7
VCCO_2
I/O
L24N_2
D4
I/O
L26N_2
GCLK15
A
F
GND INPUT I/O
L06N_2
I/O
L07N_2
I/O
L10P_2
GND INPUT I/O
L18N_2
I/O
L19N_2
VS0
I/O
L22N_2
D6
GND
I/O
L24P_2
D5
I/O
L26P_2
GCLK14
Bank 2
Bank 0
Bank 3
DS557-4_07_032309
N.C.
N.C.
N.C.
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
110 Product Specification
R
Right Half of FGG676
Package (top view)
14 15 16 17 18 19 20 21 22 23 24 25 26
I/O
L26N_0
GCLK7
I/O
L23N_0
GND INPUT I/O
L18N_0
I/O
L15N_0
I/O
L14N_0
GND I/O
L07N_0
INPUT N.C. TCK GND
A
I/O
L26P_0
GCLK6
I/O
L23P_0 VCCO_0
I/O
L19N_0
I/O
L18P_0
I/O
L15P_0
I/O
L14P_0
VREF_0
I/O
L09N_0 VCCO_0
I/O
L07P_0
N.C. INPUT
L65N_1
INPUT
L65P_1
VREF_1
B
GND I/O
L22N_0
I/O
L21N_0
I/O
L19P_0
I/O
L17N_0
GND I/O
L11N_0
I/O
L09P_0
I/O
L05N_0
I/O
L06N_0
GND
I/O
L63N_1
A23
I/O
L63P_1
A22
C
INPUT
VREF_0
INPUT I/O
L22P_0
I/O
L21P_0
I/O
L17P_0
INPUT I/O
L11P_0
I/O
L10N_0
I/O
L05P_0
I/O
L06P_0
I/O
L61N_1
I/O
L61P_1
I/O
L60N_1
D
I/O
L24P_0
I/O
L20N_0
VREF_0
VCCAUX
I/O
L13N_0
INPUT
VCCO_0
INPUT I/O
L10P_0 VCCAUX
TDO I/O
L56P_1 VCCO_1
I/O
L60P_1
E
I/O
L24N_0
I/O
L20P_0
GND I/O
L13P_0
N.C. I/O
L02N_0
I/O
L01N_0
GND
I/O
L58P_1
VREF_1
I/O
L56N_1
I/O
L54N_1
I/O
L54P_1
GND
F
INPUT I/O
L16P_0
INPUT I/O
L08N_0
I/O
L02P_0
VREF_0
I/O
L01P_0
I/O
L64N_1
A25
I/O
L58N_1
I/O
L51P_1
I/O
L51N_1
INPUT
L52N_1
VREF_1
INPUT
L52P_1
G
GND I/O
L16N_0 VCCO_0
I/O
L08P_0
INPUT GND
I/O
L64P_1
A24
I/O
L62N_1
A21
VCCO_1
INPUT
L48P_1
INPUT
L48N_1
INPUT
L44N_1
INPUT
L44P_1
VREF_1
H
I/O
L25N_0
GCLK5
INPUT I/O
L12P_0
INPUT
VREF_0 VCCAUX
I/O
L59P_1
I/O
L59N_1
I/O
L62P_1
A20
I/O
L49N_1
I/O
L49P_1
GND
I/O
L43N_1
A19
I/O
L43P_1
A18
J
I/O
L25P_0
GCLK4
VCCINT I/O
L12N_0
GND I/O
L57N_1
I/O
L57P_1
I/O
L53N_1
I/O
L50N_1
I/O
L46N_1
I/O
L46P_1
INPUT
L40P_1
I/O
L41P_1
I/O
L41N_1
K
VCCINT GND VCCINT I/O
L55N_1
I/O
L55P_1 VCCO_1
I/O
L53P_1
GND I/O
L50P_1
INPUT
L40N_1
I/O
L38P_1
A12
VCCO_1
GND
L
GND VCCINT GND VCCINT I/O
L47N_1
I/O
L47P_1
I/O
L42N_1
A17
I/O
L45P_1
I/O
L45N_1
I/O
L38N_1
A13
INPUT
L36P_1
VREF_1
I/O
L35N_1
A11
I/O
L35P_1
A10
M
VCCINT GND VCCINT
I/O
L39N_1
A15
I/O
L39P_1
A14
I/O
L34N_1
RHCLK7
I/O
L42P_1
A16
I/O
L37N_1 VCCO_1
INPUT
L36N_1
I/O
L33N_1
RHCLK5
INPUT
L32N_1
INPUT
L32P_1
N
VCCINT VCCINT GND
VCCAUX
I/O
L34P_1
IRDY1
RHCLK6
GND
I/O
L30N_1
RHCLK1
I/O
L30P_1
RHCLK0
I/O
L37P_1
I/O
L33P_1
RHCLK4
GND
I/O
L31N_1
TRDY1
RHCLK3
I/O
L31P_1
RHCLK2
P
VCCINT GND VCCINT
I/O
L27N_1
A7
I/O
L27P_1
A6
I/O
L22P_1
I/O
L22N_1
I/O
L25P_1
A2
I/O
L25N_1
A3
INPUT
L28P_1
VREF_1
INPUT
L28N_1
I/O
L29P_1
A8
I/O
L29N_1
A9
R
GND VCCINT GND I/O
L17N_1
I/O
L17P_1 VCCO_1
I/O
L14N_1
GND
VCCAUX
I/O
L26P_1
A4
I/O
L26N_1
A5
VCCO_1
GND
T
VCCAUX
I/O
L35N_2
I/O
L42N_2
GND I/O
L12N_1
I/O
L12P_1
I/O
L10N_1
I/O
L14P_1
I/O
L21N_1
I/O
L23P_1
I/O
L23N_1
VREF_1
INPUT
L24P_1
INPUT
L24N_1
VREF_1
U
I/O
L31P_2
I/O
L35P_2
I/O
L42P_2
I/O
L46N_2
I/O
L08P_1
I/O
L08N_1
SUSPEND
I/O
L10P_1
I/O
L18N_1
I/O
L21P_1
I/O
L19P_1
I/O
L19N_1
INPUT
L20N_1
VREF_1
V
GND I/O
L31N_2 VCCO_2
I/O
L46P_2
GND I/O
L04P_1
I/O
L04N_1 VCCO_1
I/O
L18P_1
GND INPUT
L16P_1
INPUT
L20P_1
W
I/O
L27P_2
GCLK0
I/O
L34N_2
D3
INPUT
VREF_2
I/O
L43N_2
N.C. N.C.
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
I/O
L13P_1
I/O
L13N_1
I/O
L15P_1
I/O
L15N_1
INPUT
L16N_1
Y
I/O
L27N_2
GCLK1
I/O
L34P_2
INIT_B
GND I/O
L43P_2
I/O
L47N_2
INPUT INPUT
VREF_2
GND I/O
L09P_1
I/O
L09N_1
I/O
L11P_1
I/O
L11N_1
GND
A
A
VCCO_2
I/O
L30N_2
MOSI
CSI_B
I/O
L38N_2
INPUT I/O
L47P_2 VCCO_2
INPUT DONE
VCCAUX
I/O
L07P_1
I/O
L07N_1
VREF_1
VCCO_1
I/O
L06N_1
A
B
I/O
L29N_2
I/O
L30P_2
I/O
L38P_2
INPUT INPUT I/O
L40N_2
I/O
L41N_2
I/O
L45N_2
N.C.
I/O
L03P_1
A0
I/O
L03N_1
A1
I/O
L05N_1
I/O
L06P_1
A
C
I/O
L29P_2
I/O
L32P_2
AWAKE
INPUT I/O
L33N_2
GND I/O
L40P_2
I/O
L41P_2
I/O
L44N_2
I/O
L45P_2
GND
I/O
L02N_1
LDC0
I/O
L05P_1
A
D
I/O
L28N_2
GCLK3
I/O
L32N_2
DOUT
VCCO_2
I/O
L33P_2
I/O
L36N_2
D1
I/O
L37N_2
I/O
L39N_2
I/O
L44P_2 VCCO_2
I/O
L48N_2
I/O
L52N_2
CCLK
I/O
L51N_2
I/O
L02P_1
LDC1
A
E
I/O
L28P_2
GCLK2
INPUT
VREF_2
GND INPUT
VREF_2
I/O
L36P_2
D2
I/O
L37P_2
I/O
L39P_2
GND INPUT
VREF_2
I/O
L48P_2
I/O
L52P_2
D0
DIN/MISO
I/O
L51P_2
GND
A
F
Bank 2
Bank 0
Bank 1
DS557-4_08_032709
N.C.
N.C.
N.C.
Pinout Descriptions
DS557-4 (v3.2) November 19, 2009 www.xilinx.com
Product Specification 111
R
Revision History
The following table shows the revision history for this document.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
Date Version Revision
02/26/07 1.0 Initial release.
08/16/07 2.0 Updated for Production release of initial device. Noted that family is available in Pb-free packages only.
09/12/07 2.0.1 Minor updates to text.
09/24/07 2.1 Update thermal characteristics in Ta bl e 6 7 .
12/12/07 3.0 Updated to Production status with Production release of final family member, XC3S50AN. Noted that
non-Pb-free packages may be available for selected devices. Updated thermal characteristics in
Table 67. Updated links.
06/02/08 3.1 Add "Package Overview" section. Removed VREF and INPUT designations and diamond symbols on
unconnected N.C. pins for XC3S700AN FG484 in Table 74 and Figure 21 and for XC3S1400AN
FGG676 in Table 76 and Figure 22.
11/19/09 3.2 Renamed package Footprint Area’ to Body Area’ throughout document. Noted in "Introduction" that
references to Pb-free package code also apply to the Pb package. Added Pb packages to Table 65 and
Table 66. Changed Body Area of TQ144/TQG144 packages in Tabl e 6 5 . Corrected bank designation
for SUSPEND to VCCAUX. Noted that non-Pb-free (Pb) packages are available for selected devices.
Updated Ta bl e 7 5 and Figure 21 for I/O vs. Input pin counts.
Pinout Descriptions
www.xilinx.com DS557-4 (v3.2) November 19, 2009
112 Product Specification
R