IRFP460LC
HEXFET® Power MOSFET
PD - 9.1232
Revision 0
VDSS = 500V
RDS(on) = 0.27
ID = 20A
Ultra Low Gate Charge
Reduced Gate Drive Requirement
Enhanced 30V Vgs Rating
Reduced Ciss, Coss, Crss
Isolated Central Mounting Hole
Dynamic dv/dt Rated
Repetitive Avalanche Rated
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, V GS @ 10V 20
ID @ TC = 100°C Continuous Drain Current, V GS @ 10V 12 A
IDM Pulsed Drain Current 80
PD @TC = 25°C Power Dissipation 280 W
Linear Derating Factor 2.2 W/°C
VGS Gate-to-Source Voltage ±30 V
EAS Single Pulse Avalanche Energy 960 mJ
IAR Avalanche Current 20 A
EAR Repetitive Avalanche Energy 28 mJ
dv/dt Peak Diode Recovery dv/dt 3.5 V/ns
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 seconds 300 (1.6mm from case)
Mounting torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m)
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case –––– –––– 0.45
RθCS Case-to-Sink, Flat, Greased Surface –––– 0.24 –––– °C/W
RθJA Junction-to-Ambient –––– –––– 40
Thermal Resistance
Description
This new series of Low Charge HEXFET Power MOSFETs achieve significantly
lower gate charge over conventional MOSFETs. Utilizing advanced Hexfet
technology the device improvements allow for reduced gate drive requirements,
faster switching speeds and increased total system savings. These device
improvements combined with the proven ruggedness and reliability of HEXFETs
offer the designer a new standard in power transistors for switching applications.
The TO-247 package is preferred for commercial-industrial applications where
higher power levels preclude the use of TO-220 devices. The TO-247 is similar
but superior to the earlier TO-218 package because of its isolated mounting hole.
Next Data SheetIndex
Previous Datasheet
To Order
IRFP460LC
Notes:
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) showing the
ISM Pulsed Source Current integral reverse
(Body Diode) p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.8 VTJ = 25°C, IS = 20A, VGS = 0V
trr Reverse Recovery Time ––– 570 860 ns TJ = 25°C, IF = 20A
Qrr Reverse Recovery Charge ––– 6.6 9.9 µC di/dt = 100A/µs
ton Forward Turn-On Time
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
VDD = 25V, starting T J = 25°C, L = 4.3mH
RG = 25, I AS = 20A. (See Figure 12)
ISD 20A, di/dt 160A/µs, VDD V(BR)DSS,
TJ 150°C
Pulse width 300µs; duty cycle 2%.
Source-Drain Ratings and Characteristics
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 500 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.59 ––– V/°C Reference to 25°C, I D = 1mA
RDS(ON) Static Drain-to-Source On-Resistance ––– ––– 0.27 VGS = 10V, ID = 12A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 12 ––– ––– S VDS = 50V, ID = 12A
––– ––– 25 VDS = 500V, VGS = 0V
––– ––– 250 VDS = 400V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V
QgTotal Gate Charge ––– ––– 120 ID = 20A
Qgs Gate-to-Source Charge ––– ––– 32 nC VDS = 400V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 49 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 18 ––– VDD = 250V
trRise Time ––– 77 ––– ID = 20A
td(off) Turn-Off Delay Time ––– 40 ––– RG = 4.3
tfFall Time ––– 43 ––– RD = 12Ω, See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 3600 ––– VGS = 0V
Coss Output Capacitance ––– 440 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 39 ––– ƒ = 1.0MHz, See Fig. 5
Intrinsic turn-on time is negligible (turn-on is dominated by L S+LD)
––– ––– 80
––– ––– 20 A
nH
LDInternal Drain Inductance ––– 5.0 –––
LSInternal Source Inductance ––– 13 –––
IDSS Drain-to-Source Leakage Current
IGSS
ns
µA
nA
Next Data SheetIndex
Previous Datasheet
To Order
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance
Vs. Temperature
IRFP460LC
Fig 1. Typical Output Characteristics,
TC = 25oCFig 2. Typical Output Characteristics,
TC = 150oC
0.01
0.1
1
10
100
0.01 0.1 1 10 100
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
I , Drain-to-Source Current (A)
D
V , Drain-to-Source Voltage (V)
DS
20µs PULSE WIDTH
T = 25°C
C
0.01
0.1
1
10
100
0.01 0.1 1 10 100
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
I , Drain-to-Source Current (A)
D
V , Drain-to-Source Voltage (V)
DS
20µs PULSE WIDTH
T = 150°C
C
4.5V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
V = 10V
GS
J
T , Junction Temperature (°C)
R , Drain-to-Source On Resistance
DS(on) (Normalized)
I = 20A
D
0.01
0.1
1
10
100
4 5 6 7 8 9 10
T = 25°C
T = 150°C
J
J
GS
V
,
G
a
t
e-
t
o-
S
ource
V
o
lt
age (
V
)
D
I , Drain-to-Source Current (A)
V = 50V
2s PULS E WIDTH
DS
To Order
Next Data SheetIndex
Previous Datasheet
IRFP460LC
Fig 7. Typical Source-Drain Diode
Forward Voltage Fig 8. Maximum Safe Operating Area
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0
1000
2000
3000
4000
5000
6000
7000
1 10 100
C, Capacitance (pF)
DS
V , Drain-to-Source Voltage (V)
V = 0V, f = 1MHz
C = C + C , C SHORTED
C = C
C = C + C
GS
iss gs gd ds
rss gd
oss ds gd
C
iss
C
oss
C
rss
0
4
8
12
16
20
0 30 60 90 120
Q , Total Gate Charge (nC)
G
FOR TEST CIRCUIT
SEE FIGURE 13
V , Gate-to-Source Voltage (V)
GS
I = 20A
V = 400V
V = 250V
V = 100V
DS
DS
DS
D
1
10
100
0 0.4 0.8 1.2 1.6 2
T = 25°C
T = 150°C
J
J
V = 0V
GS
V , Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
1
10
100
1000
1 10 100 1000
V , Drain-to-Source Voltage (V)
DS
I , Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
D
DS(on)
T = 25°C
T = 150°C
Single Pulse
C
J
10µs
100µs
1ms
10ms
To Order
Next Data SheetIndex
Previous Datasheet
IRFP460LC
Fig 10a. Switching Time Test Circuit
VDS
10 V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 9. Maximum Drain Current Vs.
Case Temperature Fig 10b. Switching Time Waveforms
RD
VGS
VDD
RGD.U.T.
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0
4
8
12
16
20
25 50 75 100 125 150
T , Case Temperature (°C)
C
I , Drain Current (Amps)
D
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
t , Rectangular Pulse Duration (sec)
1
thJC
D = 0.50
0.01
0.02
0.05
0.10
0.20
SINGLE PULSE
(THERMAL RESPONSE)
Thermal Response (Z )
P
t
2
1
t
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
12
JDMthJC
C
To Order
Next Data SheetIndex
Previous Datasheet
IRFP460LC
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12a. Unclamped Inductive Test Circuit
Fig 12b. Unclamped Inductive Waveforms
Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit
10 V
10 V
0
300
600
900
1200
1500
1800
2100
25 50 75 100 125 150
V = 50V
Starting T , Juntion Temperature (°C)
J
E , Single Pulse Avalanche Energy (mJ)
AS
DD
I
TOP 8.9A
13A
BOTTOM 20A
D
To Order
Next Data SheetIndex
Previous Datasheet
IRFP460LC
Fig 14. For N-Channel HEXFETS
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RGVDD
dv/dt controlled by R G
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
To Order
Next Data SheetIndex
Previous Datasheet
IRF460LC
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: (44) 0883 713215
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 3L1, Tel: (905) 475 1897 IR GERMANY:
Saalburgstrasse 157, 61350 Bad Homburg Tel: 6172 37066 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: (39) 1145
10111 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo 171 Tel: (03)3983 0641 IR
SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, 0316 Tel: 65 221 8371
Data and specifications subject to change without notice.
Package Outline
TO-247AC
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
EXAMPLE : THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 3A1QPART NUMBER
DATE CODE
(YYWW)
YY = YEAR
WW WEEK
3A1Q 9302
IRFPE30
A
Part Marking Information
TO-247AC
To Order
Next Data SheetIndex
Previous Datasheet