INSULATED GATE BIPOLAR TRANSISTOR
05/17/05
www.irf.com 1
IRGB30B60KPbF
IRGS30B60KPbF
IRGSL30B60KPbF
VCES = 600V
IC = 50A, TC=100°C
at TJ=175°C
tsc > 10µs, TJ=150°C
VCE(on) typ. = 1.95V
Features
• Low VCE (on) Non Punch Through IGBT Technology
• 10µs Short Circuit Capability
• Square RBSOA
• Positive VCE (on) Temperature Coefficient
• Maximum Junction Temperature rated at 175°C
• Lead-Free
Benefits
• Benchmark Efficiency for Motor Control
• Rugged Transient Performance
• Low EMI
• Excellent Current Sharing in Parallel Operation
D2Pak
IRGS30B60KPbF
TO-220AB
IRGB30B60KPbF
TO-262
IRGSL30B60KPbF
E
C
G
n-channel
PD - 97003
* RθJC (end of life) = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55 to 150°C
and is accounted for by the physical wearout of the die attach medium.
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 78
g
IC @ TC = 100°C Continuous Collector Current 50 A
ICM Pulse Collector Current (Ref.Fig.C.T.5) 120
ILM Clamped Inductive Load current
c
120
VISOL RMS Isolation Voltage, Terminal to Case, t=1 min. 2500 V
VGE Gate-to-Emitter Voltage ±20
PD @ TC = 25°C Maximum Power Dissipation 370 W
PD @ TC = 100°C Maximum Power Dissipation 180
TJOperating Junction and -55 to +175
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal / Mechanical Characteristics
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case- IGBT ––– ––– 0.41* °C/W
RθCS Case-to-Sink, flat, greased surface ––– 0.50 –––
RθJA Junction-to-Ambient, typical socket mount
d
––– –– 62
RθJA Junction-to-Ambient (PCB Mount, Steady State)
e
––– –– 40
Wt Weight –– 1.44 ––– g
IRGB/S/SL30B60KPbF
2 www.irf.com
Note to are on page 13
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig.
V(BR)CES Collector-to-Emitter Breakdown Voltage 600——V
VGE = 0V, IC = 500µA
V(BR)CES
/
TJTemperature Coeff. of Breakdown Volta
g
e—0.40—V/°C
VGE = 0V, IC = 1mA (25°C-150°C)
—1.952.35 IC = 30A, VGE = 15V, TJ = 25°C 5,6,7
VCE(on) Collector-to-Emitter Voltage 2.40 2.75 V IC = 30A, VGE = 15V, TJ = 150°C 8,9,10
2.6 2.95 IC = 30A, VGE = 15V, TJ = 175°C
VGE(th) Gate Threshold Voltage 3.5 4.5 5.5 V VCE = VGE, IC = 25A 8,9,10
VGE(th)
/
TJThreshold Voltage temp. coefficient -10 mV/°
C
VCE = VGE, IC = 1.0mA (2C-150°C) 11
gfe Forward Transconductance 18 S VCE = 50V, IC = 50A, PW = 80µs
—5.0250 VGE = 0V, VCE = 600V
ICES Zero Gate Voltage Collector Current 1000 2000 µA VGE = 0V, VCE = 600V, TJ = 150°C
—18303000 VGE = 0V, VCE = 600V, TJ = 175°C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V, VCE = 0V
Switchin
g
Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig.
QgTotal Gate Charge (turn-on) 102 153 IC = 30A 17
Qge Gate-to-Emitter Charge (turn-on) 14 21 nC VCC = 400V CT1
Qgc Gate-to-Collector Charge (turn-on) 44 66 VGE = 15V
Eon Turn-On Switching Loss 350 620 IC = 30A, VCC = 400V CT4
Eoff Turn-Off Switching Loss 825 955 µJ VGE = 15V, RG = 10, L = 200µH
Etot Total Switching Loss 1175 1575 TJ = 25°C
f
td(on) Turn-On delay time 46 60 IC = 30A, VCC = 400V
trRise time 28 39 ns VGE = 15V, RG = 10, L = 200µH CT4
td(off) Turn-Off delay time 185 200 TJ = 25°C
tfFall time 31 40
Eon Turn-On Switching Loss 635 1085 IC = 30A, VCC = 400V CT4
Eoff Turn-Off Switching Loss 1150 1350 µJ VGE = 15V, RG = 10, L = 200µH 12,14
Etot Total Switching Loss 1785 2435 TJ = 150°C
f
WF1,WF2
td(on) Turn-On delay time 46 60 IC = 30A, VCC = 400V 13,15
trRise time 28 39 ns VGE = 15V, RG = 10, L = 200µH CT4
td(off) Turn-Off delay time 205 235 TJ = 150°C WF1
tfFall time 32 42 WF2
LEInternal Emitter Inductance 7.5 nH Measured 5mm from package
Cies Input Capacitance 1750 2500 VGE = 0V
Coes Output Capacitance 160 255 pF VCC = 30V 16
Cres Reverse Transfer Capacitance 60 90 f = 1.0MHz
RBSOA Reverse Bias Safe Operating Area FULL SQUARE TJ = 150°C, IC = 120A, Vp = 600V 4
VCC=500V,VGE = +15V to 0V,RG =10 CT2
SCSOA Short Circuit Safe Operating Area 10 µs TJ = 150°C, Vp = 600V, RG = 10 CT3
VCC=360V,VGE = +15V to 0V WF3
ISC (Peak) Peak Short Circuit Collector Current 200 A WF3
IRGB/S/SL30B60KPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C; TJ 150°C
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
1 10 100 1000 10000
VCE (V)
0.1
1
10
100
1000
IC (A)
10 µs
100 µs
1ms
DC
10 100 1000
VCE (V)
1
10
100
1000
IC A)
0 20 40 60 80 100 120 140 160 180
TC (°C)
0
10
20
30
40
50
60
70
80
IC (A)
0 20 40 60 80 100 120 140 160 180
TC (°C)
0
50
100
150
200
250
300
350
400
Ptot (W)
IRGB/S/SL30B60KPbF
4 www.irf.com
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
012345
VCE (V)
0
10
20
30
40
50
60
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
012345
VCE (V)
0
10
20
30
40
50
60
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
012345
VCE (V)
0
10
20
30
40
50
60
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
IRGB/S/SL30B60KPbF
www.irf.com 5
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 10 - Typical VCE vs. VGE
TJ = 150°C
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 15A
ICE = 30A
ICE = 60A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 15A
ICE = 30A
ICE = 60A
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 15A
ICE = 30A
ICE = 60A
0 5 10 15 20
VGE (V)
0
50
100
150
200
250
ICE (A)
TJ = 25°C
TJ = 150°C
TJ = 150°C
TJ = 25°C
IRGB/S/SL30B60KPbF
6 www.irf.com
Fig. 15 - Typ. Switching Time vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 30A; VGE= 15V
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 150°C; L=200µH; VCE= 400V
ICE= 30A; VGE= 15V
Fig. 13 - Typ. Switching Time vs. IC
TJ = 150°C; L=200µH; VCE= 400V
RG= 10; VGE= 15V
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 150°C; L=200µH; VCE= 400V,
RG= 10; VGE= 15V
0 20406080
IC (A)
0
500
1000
1500
2000
2500
3000
Energy (µJ)
EOFF
EON
020 40 60 80
IC (A)
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
025 50 75 100 125
RG ()
0
500
1000
1500
2000
2500
3000
Energy (µJ)
EON
EOFF
025 50 75 100 125
RG ()
10
100
1000
10000
Swiching Time (ns)
tR
tdOFF
tF
tdON
IRGB/S/SL30B60KPbF
www.irf.com 7
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 30A; L = 600µH
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 25 50 75 100 125
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE (V)
200V
400V
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.200 0.000428
0.209 0.013031
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
IRGB/S/SL30B60KPbF
8 www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
1K
VCC
DUT
0
L
Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit
L
Rg
VCC
diode clamp /
DUT
DUT /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
L
Rg
80 V DUT
480V
+
-
DC
Driver
DUT
360V
IRGB/S/SL30B60KPbF
www.irf.com 9
Fig. WF3- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
-100
0
100
200
300
400
500
600
700
-0.20 0.00 0.20 0.40 0.60 0.80
Time(µs)
V
CE
(V)
-5
0
5
10
15
20
25
30
35
I
CE
(A)
90% ICE
5% VCE
5% ICE
Eof f Loss
tf
-100
0
100
200
300
400
500
600
700
15.90 16.00 16.10 16.20 16.30
Time (µs)
V
CE
(V)
-10
0
10
20
30
40
50
60
70
I
CE
(A)
TEST CURRENT
90% test current
5% VCE
10% test c urren
t
tr
Eon Loss
0
100
200
300
400
500
600
-5.00 0.00 5.00 10.00 15.00
time (µS)
V
CE
(V)
0
50
100
150
200
250
300
I
CE
(A)
VCE
ICE
IRGB/S/SL30B60KPbF
10 www.irf.com
TO-220AB Part Marking Information
(;$03/(
,17+($66(0%/</,1(&
7+,6,6$1,5)
/27&2'(
$66(0%/('21:: 3$57180%(5
$66(0%/<
/27&2'(
'$7(&2'(
< ( $5  
/,1(&
:((.
/2*2
5(&7,),(5
,17(51$7,21$/
Note: "P" in assembly line
position indicates "Lead-Free"
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
IRGB/S/SL30B60KPbF
www.irf.com 11
D2Pak Part Marking Information
'$7(&2'(
<($5 
:((.
$ $6 6(0 %/<6,7(&2'(
5(&7,),(5
,17(51$7,21$/ 3$57180%(5
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
)6
,17+($66(0%/</,1(/
$66(0%/('21::
7+,6,6$1,5)6:,7+
/27&2'( ,17(51$7,21$/
/2*2
5(&7,),(5
/27&2'(
$66(0%/< <($5
3$57180%(5
'$7(&2'(
/,1(/
:((.
25
)6
/2*2
$66(0%/<
/27&2'(
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
IRGB/S/SL30B60KPbF
12 www.irf.com
TO-262 Part Marking Information
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
/2*2
5(&7,),(5
,17(51$7,21$/
/27&2'(
$66(0%/<
/2*2
5(&7,),(5
,17(51$7,21$/
'$7(&2'(
:((.
<($5
3$57180%(5
$ $66(0%/<6,7(&2'(
25
352'8&7237,21$/
3 '(6,*1$7(6/($')5( (
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/<
3$57180%(5
'$7(&2'(
:((.
/,1(&
/27&2'(
< ($5
$66(0%/('21::
,17+($66(0%/</,1(&
IGBT
1- GATE
IRGB/S/SL30B60KPbF
www.irf.com 13
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 05/05
Data and specifications subject to change without notice.
TO-220AB package is not recommended for Surface Mount Application.
Notes:
VCC = 80% (VCES), VGE = 20V, L = 28µH, RG = 22Ω.
This is only applied to TO-220AB package.
This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Energy losses include "tail" and diode reverse recovery.
Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/