1. General description
The integrated circuit PCF8885 is a capacitive 8-channel touch and proximity sensor that
uses a patented (EDISEN) method to detect a change in capacitance on remote sensing
plates. Changes in the st atic cap acit ances (as opposed to dynamic capacit ance changes)
are automatically compensated using continuous auto-calibration. Remo te sensing plates
(for example, cond ucti ve fo ils ) can be conn ected to the IC 1 using coaxial cable. The eight
input channels operate independently of each other. There is also a built-in option for a
matrix arrangement of the sensors: interrupt generation only when two channels are
activated simultaneously, suppression of additional channel outputs when two channels
are already active.
2. Features and benefits
Dynamic touch and proximity sensor with 8 sensor channels
Support for matrix arrangement of sensors
Sensing plates can be connected remotely
Adjustable response time
Adjustable sensitivity
Continuous auto-calibration
Digital processing meth od
Can cope with up to 6 mm of acrylic glass
Direct and latching switch modes
I2C Fast-mode Plus (Fm+) compatible interface
Two I2C-bus addresses
Cascading of two ICs possible
Interrupt signaling over I2C-bus
Interrupt output
Large voltage operating range (VDD = 2.5V to 5.5V)
Sleep mode (IDD < 100 nA)
Low-power battery operation possible (IDD ~10A)
Operating temperature range (Tamb = 40 C to +85 C)
Available in TSSOP28 and SOIC28 package
PCF8885
Capacitive 8-channel touch and proximity sensor with
auto-calibration and very low power consumption
Rev. 3 — 17 March 2014 Product data sheet
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 22 on page 38.
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 2 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
3. Applications
Replacing mechanical switches
Hermetically sealed keys on a keyboard
Switches for medical applications
Switches for use in explosive environments
Audio control: on/off, channel, volume
Sliders and wheel-switches
Vandal proof switches
Switches in or under the upholstery, leather, handles, mats, carpets, tiles and glass
Switches for home automation
Use of standard metal sanitary parts (for example a tap) as switch
Portable communication and entertainment units
White goods control panel
4. Ordering information
4.1 Ordering options
5. Marking
Table 1. Ordering information
Type number Package
Name Description Version
PCF8885TS TSSOP28 plastic small outline package; 28 leads;
body width 4.4 mm PCF8885TS
Table 2. Ordering options
Product type number Orderable part number Sales item
(12NC) Delivery form IC
revision
PCF8885TS/1 PCF8885TS/1,118 935296171118 tape and reel, 13 inch 1
Table 3. Marking codes
Type number Marking code
PCF8885TS/1 PCF8885TS
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 3 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
6. Block diagram
Fig 1. Block diagram of PCF8885
&+$11(/
&+$11(/
&+$11(/
26&,//$725 7,0,1*
&21752/
92/7$*(
5(*8/$725
6<67(0
&21752/
6(16
,&,17(5)$&(
7(67
&21752/
&/.B,1 &/.
&/.B28
7
WGFKUHI
*(1(5$725
,1
&3&
,1
&3&
,1
&3&
7$WR7$
287WR287


,17
,17B,1
6/((3
6&/
$
6'$
7(67 9
''
9
'',175(*'
3&)
DDD
966
7$
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 4 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
7. Pinning information
7.1 Pinning
7.2 Pin description
Top view. For mechanical details, see Figure 26 on page 35.
Fig 2. Pin configuration for TSSOP28 (PCF8885TS)
3&)76
&/.B287 &/.B,1
9
'',175(*'
,17B,1
,1 9
''
,1 ,17
,1 6/((3
,1 $
,1 7(67
,1 6'$
,1 6&/
,1 9
66
&3& &3&
&3& &3&
&3& &3&
&3& &3&
DDD



















Table 4. Pin description
Input or input/output pins must always be at a defined level (VSS or VDD) unless otherwise specified.
Symbol Pin Type Description
PCF8885TS
CLK_OUT 1 output clock output for chip cascading and
synchronization
VDD(INTREGD)[1] 2 supply internal regulated supply reference voltage
IN7 to IN0 3 to 10 analog
input/output sensor input, channel 0 to 7[2]
CPC7 to CPC0 11 to 18 analog
input/output reservoir capacitor, channel 0 to 7[2]
VSS 19[3] supply ground supply voltage
SCL 20 input serial clock line
SDA 21 input/output serial data line
TEST 22 input test pin;
must be connected to VSS
A0 23 input I2C subaddress LSB[4]
SLEEP 24 input sleep mode;
connect to VDD to force the circuit into
low-power sleep mode
INT 25 output interrupt output
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 5 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
[1] The internal regulated supply voltage output must be decoupled with a decoupling capacitor to VSS.
[2] If a channel is not used, the apropriate sensor input line has to be left open, the corresponding CPCn has to
be connected to VSS and the channel should be disabled in the MASK register (see Table 11 on page 15).
[3] The die paddle (exposed pad) is connected to VSS and should be electrically isolated.
[4] Used to address two devices, for example: low address 3Ah, high address 3Bh.
VDD 26 supply supply voltage
INT_IN 27 input interrupt input for chip cascading;
connect to VDD if not used
CLK_IN 28 input clock input;
for the secondary chip when the primary
chip provides the clock signal
Table 4. Pin description …continued
Input or input/output pins must always be at a defined level (VSS or VDD) unless otherwise specified.
Symbol Pin Type Description
PCF8885TS
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 6 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
8. Functional description
The sensing plates have to be connected to the sensor input pins IN0 to IN7. The
discharge times (tdch) on the sensor input pins, are compared to the discharge time
(tdch(ref)) of an internal RC timing element. The comparison is done sequen tially for each
sensor input pin. The RC timing circuits are periodically charged from VDD(INTREGD) and
then discharged via a resistor to VSS. The charge-discharge cycle for each channel is
governed by the samp lin g ra te (fs). The channels are sampled sequentially, while the
reference element is activated at the sampling point of each channel (see timing diagram
in Figure 3).
When the voltage of an RC combination falls below the level Vref, the appropriate
comparator output changes. The logic following the comparators determines which
comparator switched first. If the reference comparator switched first, then a pulse is given
on CUP. If the sensor comparator switched first, then a pulse is given on CDN. Figure 4
illustrates the functional principle of the PCF8885.
The pulses control the charge on the external capacitors CCPC on pins CPC0 to CPC7.
Every time a pulse is given on CUP, the capacitor CCPC is charged through a current
source (Isource) from VDD(INTREGD) for a fixed tim e causing th e volt age on CCPC to rise by a
small increment. Likewise when a pulse occurs on CDN, capacitor CCPC is discharged
through a current sink (Isink) towards ground for a fixed time, cau s ing the vo ltage on CCPC
to fall by a small d ecrement. The volt age on CCPC controls an additional current sink (ICPC)
that causes the capacitance attached to the input pins IN[0:7] to be discharged more
quickly. This arrangemen t constitutes a closed loop control system, that constantly tr ies to
equalize the discharge time (tdch) with the reference discharge time (tdch(ref)). In the
equilibrium state, the discharge times are nearly equal and the pulses alternate between
CUP and CDN.
For this example, the oscillator frequency and the clock division factor have been set to result in a 1 kHz sampling frequency.
Fig 3. Timing diag ram of se ns o r sa mpling
&/.
7$
7$
7$
7$
PV
V

,1
VDPSOLQJ
,1
VDPSOLQJ
 ,1
VDPSOLQJ
,1
VDPSOLQJ DDD
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 7 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
The counter following this logic counts the pulses CUP or CDN respectively. The counter
is reset every time the pulse sequence changes from CUP to CDN or the other way round .
The outputs OUT0 to OUT7 are only activated when 64 cons ecu tive pulses occur re d on
CUP. Low-level interference or slow changes in the input capacitance do not cause the
output to switch.
Various measures, such as asymmetrical charge and discharge steps, are taken to
ensure that the output switches off correctly. A special st art-up circuit ensures that the
device reaches equilibrium quickly when the supply is attached.
The sampling rate (fs) is derived from the internally generated oscillator frequency. The
oscillator frequency can be adjusted within a specified range by programming the
CLKREG register (see Table 10 on p age 14).
The status of the output signals OUT0 to OUT7 is stored in the SENS register (see
Table 9 on page 13). An interrupt is generated on changes of the sensor states.
Fig 4. Functional diag ram of se ns or operation
9UHI
9'',175(*'
WGFKUHI
7$
7,0,1*5()
9'',175(*'
WGFK
7$
6(16,1*3/$7(
,1 83
'2:1
9'',175(*'
&75
/2*,&
287
&83
&'1
9'',175(*'
WGFK
7$
6(16,1*3/$7(
,1 83
'2:1
9'',175(*'
&75
/2*,&
287
&83
&'1
&3&
&3&
&&3&
&&3&
&+$11(/
&+$11(/
DDD
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 8 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
9. Commands
The operation of the PCF88 85 can be controll ed by 12 commands and four co nfiguration-
and status-registers (see Section 10 on page 10). Several configuration settings can be
programmed using single commands without associated data transfer. The configuration
register can however a lso be written using the write-config comm and. The clock and mask
registers can only be programmed using the write-clock and write-mask commands.
9.1 Command overview
9.2 Command: soft-reset
Reset takes place during power-on of the circuit. There is no external hardware reset
input.
During operation, the device can be reset using the soft-reset command. The sensor
channels and all registers are reset to the default values and the int-over-I2C mode is
terminated. It does not af fect the st ate of the analog section except fo r those functions that
are controlled by configuration bits.
9.3 Commands: Sleep and wake-up
Sleep mode is implemented to save power during periods where no sensor activity is
expected or supported.
In sleep mode, most of the circuit parts are put in power-down mode, in particular all
analog blocks consuming static and dynamic power. This includes the oscillator, thus no
internal activity remains. Also the voltage regulator is powered down, to reduce its
standalone power consu m pt ion .
Table 5. Commands of PCF8885
Command Operation
code Description Transfer
type Reference
soft-reset 00000000 brings chip to reset state command Section 9.2,
Section 10.2.2.2
clear-INT 00000011 deactivates interrupt generation on pin
INT command Section 10.2.2.1
sleep 0000010 1 enter sleep mode command Section 9.3
wake-up 00000110 enter active mode command
write-config 00110000 write configuration register write 1 byte Section 10.2
read-config 00110011 read configuration register read 1 byte
write-clock 00110101 write clock setting register write 1 byte Section 10.4
read-clock 00110110 read clock setting register read 1 byte
write-mask 00111001 write the mask register write 1 byte Section 10.5
read-mask 00111010 read the mask register read 1 byte
int-over-I2C 00111100 put the device in int-over-I2C mode command Section 10.2.2.1
read-sensor - read sensor state register and clears
the INT line direct read Section 9.4,
Section 10.2.2.1
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 9 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
During sleep mode, the register configuration is maintained and the device remains
responsive to I2C commands. The charges in the CPC capacitors however cannot be
guaranteed, as there is no limitation on the duration of the sleep mode. Therefore the
analog part has to perform a normal start-up phase, including the fast start procedure for
the CPC capacitor charging.
Sleep mode is entered wh en the sleep command is received from the system co ntroller or
when the SLEEP pin is set to HIGH. Resume is done by the wake-up command, or by
setting the SLEEP pin to LOW.
The hardware sleep mechanism using the SLEEP pin and the software sleep mechanism
using the sleep or wake-up commands are independent of each other:
If the device was put to sleep using the sleep command, a wake-up command
resumes the operation. It cannot be resumed by activating the SLEEP pin.
If the device was put to sleep by setting pin SLEEP to HIGH, then pin SLEEP must be
set to LOW to resume operation. It cannot be resumed with the wake-up command.
9.4 Command: read-sensor
The read-sensor command is the main transaction to read the actual state information of
the sensor state register SENS.
If the R/W bit (LSB of the I2C slave address byte, see Table 12 on page 20) is set logic 1
the PCF8885 regards the transaction as the read-sensor command. The read-sensor
command transaction su pports a repeated r eading of the SENS register (see Section 10.3
on page 13). When two circuits are used in a cascaded configuration, they alternately
return their SENS register content in a single transaction
The protocol s fo r the re peated read mode and the alterna ting read mode are de scribed in
Section 13.7 on page 21.
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 10 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
10. Registers
The PCF8885 h as four registers storing the configuration and the status information of the
device.
10.1 Register overview
10.2 Register: CONFIG
Table 6. Register overview
The bit position labeled as x is not relevant; if read, it can be either logic 0 or logic 1.
Register
name Bit Default
value
76543210
CONFIG OPM[1:0] SWM KM[1:0] VROF INTM MSKMODE 00000000
SENS CH[7:0] 00000000
CLKREG CLO CLI x FRQC[1:0] FRQF[2:0] 00x01100
MASK MSK[7:0] 11111111
Table 7. CONFIG - configuration register bit description
Bit Symbol Value Description Reference
7 to 6 OPM[1:0] main operation mode Section 10.2.1.1
00[1] stand-alone device
01 secondary-chip in a
cascade
10 primary-chip in a cascade
11 unused
5 SWM switching mode Section 10.2.1.2
0[1] direct switching mode:
sensor release clears the
corresponding bit in the
SENS register
1 latching mode :
reading SENS register
clears bits in the SENS
register
4 to 3 KM[1:0] key-press mode Section 10.2.1.3
00[1] N-key mode:
each sensor activity is
reflected in the SENS
register
01 2-key mode:
only first two keys are
visible in the SENS register
10 1-key mode:
only first key-press is visible
in the SENS register
11 unused
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 11 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
[1] Default value.
All bits in this register can be written and read with the write-config and read -config
commands.
10.2.1 Operating modes
10.2.1.1 Main operating modes
The PCF8885 can operate in three operating modes: as a stand-alone device or in a
cascade as a primary-chip or a secondary-chip (see Table 8).
[1] Default operating mode after power-on.
The operating modes are implemented to support the application of two PCF8885 in the
system (see Section 13.8 on page 22).
10.2.1.2 Switching modes
There is a one to one relationship between the channels IN[0:7] and the bits in the SENS
register. The indication of the switching status of each channel is controlled by the two
switching modes supported:
2 VROF voltage regulation Section 11
0[1] voltage regulation on
1 voltage regulation off
1 INTM interrupt generation mode Section 10.2.2
0[1] an interrupt is generated by
each bit changed in the
SENS register (press and
release)
1 an interrupt is generated by
each bit set in the SENS
register (press only)
0 MSKMODE channel maski ng mode Section 10.5.1
0[1] normal power:
masked out channels
remain operational
1 low power:
masked out chann els are
powered do w n
Table 7. CONFIG - configuration register bit description …continued
Bit Symbol Value Description Reference
Table 8. Main operatin g modes
Conditions of Main operating modes
Stand-alone[1] Primary-chip Secondary-chip
clock source internal oscillator internal oscillator clock input
oscillator enabled enabled disabled
clock output pin CLK_OUT disabled enabled disabled
clock input pin CLK_IN disabled disabled enabled
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 12 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
Direct mode — In direct mode, the sensor state is directly reflected in the SENS register.
When the sensor is activated, the corresponding bit in the SENS register is immediately
set logic 1. When the sensor is released, the bit is cleared (set logic 0) agai n. The bits are
even cleared if the SENS register has not yet been read by the system controller.
Latching mode — In latching mode , ever y activated sensor sets the correspon ding bit in
the SENS register logic 1. When the sensor is released, the SENS register is unaffected.
Reading the SENS regi st er clears (se t log i c 0) thos e bits, whose se nsor is not activated
anymore.
After reset, the PCF8885 is set to direct switching mode.
10.2.1.3 Key-press modes
There are three key-press modes implemented in the PCF8885: N-key, 1-key, and 2-key
mode.
N-key mode — In N-key mode, each sensor activity is reflected in register SENS
according to the configured switching mode. The N-key mode is the default key-press
mode after reset.
1-key mode — In 1-key mode, only the first sensor activation sets the corresponding bit
in register SENS. All further activations of the other sensors are su ppressed at the SENS
register boundary. In this way, sensors in a keypad are masked out, which are activated
accidentally because they are arranged next to the activated sensor.
The 1-key mode supports sensor matrix arrangements with two PCF8885, where one chip
is attached to the co lumns and one to the rows (primar y-chip and secondary-chip). Sensor
activation sets 1 bit for the column and 1 bit for the row in the SENS register of the
appropriate chip. Each activation of a sensor raises an interrupt. The system controller
must handle the situation where the INT is raised before the second sensor in the matrix
has been activated.
2-key mode — In 2-key mode, only the two first sensor activations set the corresponding
bits in register SENS. All further activations of the other sensors are suppressed at the
SENS register boundary. This mode supports in particular the matrix arrangement of
sensors using only one PCF8885, as illustrated in Figure 25 on page 33. In this way,
sensors in a matrix are masked out, which are activated accidentally because they are
arranged next to the intended sensors. This mode properly handles a delay in sensor
activation due to unequal sensor capacitance or area (non-centric sensor touching, and
so on) as long as the intended sensors react befo re sensors which are activated
accidentally. In 2-key mode, the INT output is only activated after 2 bits have been set in
the SENS register.
10.2.2 Interrupt generation
The PCF8885 provides two mechanisms to inform the system controller that a sensor
activity has been detected.
10.2.2.1 Interrupt output INT
The PCF8885 has an interrupt output, INT, to flag to the system controller that a
capacitive event has been detected. The controller can then fetch the sensor state by
reading the SENS register over the I2C-bus.
The interrupt generation is con trolled by th e INTM bit in th e CONFIG r egister (see Table 7
on page 10).
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 13 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
If INTM is logic 0 (default), then the change (s et or clear) of ea ch bit in re giste r SENS
activates the INT output.
If INTM is logic 1, then only sensor press events, resulting in bits being set logic 1 in
the SENS register, activate the INT output. Sens or release events, which cause the
corresponding bit in SENS to be cleared (set logic 0), do not activate the INT output.
In 2-key mode, the INT output is only activated after 2 bits have been set in the SENS
register.
The interrupt is automatically cleared when the system controller read s the SENS register .
Alternatively the INT can be cleared by using th e clear-INT command, without readin g the
actual sensor state.
10.2.2.2 Interrupt over the I2C-bus
In applications where the sensing plates are re mote from the microc ontroller, the interrupt
line can be saved by enabling the interrupt over I2C-bus.
The PCF8885 provides the feature of interrupt over the I2C-bus. The PCF8885 then
behaves l ike an I2C master with restricted functionality . The interrupt is signaled by setting
a START condition immediately followed by a STOP condition. It is illustrated in Figure 5.
No further I2C master capabilities are supported.
The system controller has to detect the START-STOP condition and react accordingly.
The interrupt over the I2C-bus can be enabled with the int-over-I2C command and
disabled with the soft-reset command.
In interrupt over the I2C-bus mode, the functionality of the INT output continues to work as
described in Section 10.2.2.1.
10.3 Register: SENS
[1] Default value.
All bits in this register are read-only and can be read with the re ad-sensor co mma nd (se e
Section 9.4).
Fig 5. Interrupt over the I2C-bus
6'$
6&/
WZLQW
67$57 6723
DDD
Table 9. SENS - sensor state register bit description
Bit Symbol Value Description
7 to 0 CH[7:0] 00000000[1] to
11111111 sensor state of the respective channels IN7 to
IN0
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 14 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
10.4 Register: CLKREG
[1] Default value.
[2] Should always be written with logic 0 and if read, it can be either logic 0 or logic 1.
All bits in this register can be written and read with the write-clock and read-clock
commands.
10.4.1 Clock generation and frequency adjustment
The PCF8885 contains an integrated oscillator as main clock source. With the values of
FRQF[2:0], the oscillator frequency can be tuned (see Equation 1).
(1)
Table 10. CLKREG - clock setting register bit description
Bit Symbol Value Description
7 CLO CLK_OUT switch
0[1] CLK_OUT disabled (unless IC is in
primary-chip mode)
1 CLK_OUT enabled
6 CLI CLK_IN switch
0[1] CLK_IN disabled (unless IC is in
secondary-chi p mode)
1 CLK_IN enabled, internal oscillator is
powered do w n
5- -
[2] unused
4 to 3 FRQC[1:0] clock frequency, coarse setting
00
01[1]
10
11
2 to 0 FRQF[2:0] oscillator tuning
000
001
010
011
100[1]
101
110
111
fclk fosc 64=
fclk fosc 16=
fclk fosc
=
fosc 0.5 fosc nom
=
fosc 0.625 fosc nom
=
fosc 0.75 fosc nom
=
fosc 0.875 fosc nom
=
fosc 1f
osc nom
=
fosc 1.25 fosc nom
=
fosc 1.5 fosc nom
=
fosc 1.75 fosc nom
=
fosc mf
osc nom
=
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 15 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
The values of m can be varied in the ra nge 0.5 m1.75, where m = 1.0 corresponds to
the default value of F R QF[ 2:0 ] = 100.
The internal clock frequency (fclk) is derived from the oscillator frequency with Equation 2:
(2)
where the values for n are 1, 4, 16, or 64 and can be selected with FRQC[1:0]. The sensor
sampling frequency (fs) is derived from the internal clock frequency with Equation 3:
(3)
The eight sensors are sampled sequentially, which results in a default sensor sampling
rate fs.
In secondary-chip mode, the inter nal clock generator is stopped , and the circuit is clocked
from the CLK_IN input pin.
The tuning of the oscillator frequency and the programmable clock divider (see Figure 6)
allows changing the sen so r samp ling rat e, th e ad jus tm en t of the re ac tio n tim e and th e
power consumption of the PCF8885 over a wide range.
10.5 Register: MASK
[1] Default value.
All bits in this register can be written and read with the write-mask and read-mask
commands.
10.5.1 Channel masking
The channel masking register MASK allows individual sensor channels to be enabled or
disabled for particular applications or certain modes (for example only the on/off sensor
should be active).
Fig 6. Oscillator block diagram
fclk fosc n=
fsfclk 8=
DDD
  
&/.
)54&>@
)54)>@
IRVF
26&
IRVF
IRVF
IRVF
Table 11. MASK - channel enable mask register bit description
Bit Symbol Value Description
7 to 0 MSK[7:0] 00000000 to
11111111[1] enable or disable the respective sensor
channels IN0 to IN7
0 sensor channel is disabled
1 sensor channel is enabled
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 16 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
When bit MSKMODE in register CONFIG (see Table 7) is set logic 0, then the
disabled channels are continuo usly sampled, but switching event s are not refle cted in
register SENS and do not cause interrupts.
When bit MSKMODE in register CONFIG (see Table 7) is set logic 1, only channels
which are enabled are sampled. Reducing the number of sampled channels also
reduces the power consumption.
When a channel becomes newly enabled, the fast start-up method (see Section 12) is
used to reach the functional state quickly.
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 17 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
11. Power architecture
The circuit has an integrated voltage regulator, supplied by pin VDD. The regulator
provides an inte rn al VDD(INTREGD) supply of nominally 2.8 V.
If a stable and noise free external supply voltage with 2.5 V < VDD(ext) < 3.3 V is available
in the system, VDD(INTREGD) can be provided from an external source (see Figure 7). In
this ca se VDD and VDD(INTREGD) must both be connecte d to VDD(ext). To reduce the current
consumption, the internal voltage regulator should be shut down by setting bit VROF
logic 1 (see Table 7 on page 10).
While the analog p art of the circuit is power ed from VDD(INTREGD), the I2C interface and the
registers are powered from VDD. Therefore the I2C interface remains accessible in sleep
mode, and the register values are maintained when VDD(INTREGD) is powered off.
Figure 8 illustrates the behavior of the integrated voltage regulator. The gray area covers
the operational range of the PCF8885. The analog part of the circuit and the switch logic is
powered from VDD(INTREGD). The I2C interface and the registers are powered from VDD.
Therefore the I 2C interface remains accessible in sleep mod e, and the r egister va lues are
maintained when VDD(INTREGD) is powered off.
2.5 V < VDD(ext) <3.3V.
Fig 7. Connection of VDD(ext)
Fig 8. Integrated voltage regulator behavior
3&)
9''
9'',175(*'
9''H[W
DDD
DDD
9
''PD[
9
'',175(*'
9
'',175(*'
9
''
9
''PLQ
9
''PD[
9
''PLQ
RSHUDWLRQDOUDQJHRI3&)
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 18 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
12. Start-up procedure
After power-on the registers in the VDD domain are reset, which includes the VROF bit
controlling the voltage regulator. The regulator is therefore enabled, and the VDD(INTREGD)
domain is powered on. As soon as a sufficient VDD(INTREGD) level is reached, the
Power-On Reset (POR) is released.
After release of the POR in the VDD(INTREGD) domain, the circuit starts with the sensor
sampling in the fast start mode (increased charge-pump currents quickly charge the CPC
capacitors close to their target value). As soon as the capacitor voltages are close to the
target value, the fast start phase is terminated, and the capacitors are charged in fine
steps to the final value. When this state is reached, the logic enables the up and down
counters, and the sensors are operational.
This start-up mechanism is executed independently for each channel.
13. Characteristics of the I2C-bus
The PCF8885 has an I2C serial interface which operates as a slave receiver or
transmitter. SDA and SCL are the data I/O and clock lines for the se rial I2C Interface. SDA
is used as an input or as an open-drain output. SDA is actively pulled LOW and is
passively held HIGH by the external pull-up resistor on the I2C-bus.
In order to provide high link robustness, the I2C interface of the PCF8885 is Fast-mode
compatible and provides a robust addressing and command scheme.
13.1 Bit transfer
One data bi t is transferred durin g each clock pulse . The data o n the SDA line must remain
stable during the HIGH period of the clock pulse as changes in the data line at this time
are interpreted as a control signal (see Figure 9).
13.1.1 START and STOP conditions
Both data and clock lines remain HIGH when the bus is not busy.
A HIGH-to-LOW change of the data line, while the clock is HIGH, is defined as the START
condition (S).
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP
condition (P).
Fig 9. Bit transfer
PED
GDWDOLQH
VWDEOH
GDWDYDOLG
FKDQJH
RIGDWD
DOORZHG
6'$
6&/
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 19 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
The START an d STOP conditions are shown in Figure 10.
13.2 System configuration
A device generating a message is a transmitter; a device receiving a message is the
receiver. The device that controls the message is the master; and the devices which are
controlled by the master are the slaves. The system configuration is shown in Figure 11.
13.3 Acknowledge
The number of data bytes tran sf er re d be tween the START and STOP conditions from
transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge
cycle.
A slave receiver, which is addressed, must generate an acknowledg e after the
reception of each byte.
A master receiver must generate an acknowledge after the reception of each byte that
has been clocke d ou t of th e sl av e tra n sm i tte r.
The device that acknowledges must pull-down the SDA line during the acknowledge
clock pulse, so that the SDA line is stable LOW during the HIGH period of the
acknowledge related clock pulse (set-up and hold times must be considered).
A master receiver must signal an end of data to the transmitter by not generating an
acknowledge on the last byte that has been clocked out of the slave. In this event, the
transmitter mus t leave the data line HIGH to enable the master to generate a STOP
condition.
Acknowledgement on the I2C-bus is shown in Figure 12.
Fig 10. Defin itio n of START and STO P condition s
PEF
6'$
6&/
3
6723FRQGLWLRQ
6'$
6&/
6
67$57FRQGLWLRQ
Fig 11. System configuration
PJD
6'$
6&/
0$67(5
75$160,77(5
5(&(,9(5
0$67(5
75$160,77(5
6/$9(
75$160,77(5
5(&(,9(5
6/$9(
5(&(,9(5
0$67(5
75$160,77(5
5(&(,9(5
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 20 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
13.4 I2C-bus subaddress
Device selection depends on the I2C-bus slave address, on the transferred command
data, and on the hardware subaddress.
Two I2C-bus slave addresses are used to address the PCF8885 (see Table 12).
The least significant bit of the slave address is bit R/W (see Table 13).
Bit 1 of the slave address is defined by connecting input A0 to either V SS (logic 0) or VDD
(logic 1). Therefor e, two instance s of PCF8885 can be distinguish ed on the same I2C-bus.
13.5 I2C-bus protocol
The I2C-bus protocol is shown in Figure 13. The sequence is initiated with a START
condition (S) from the I2C-bus master which is followed by the slave address.
Fig 12. Acknowledgem ent on the I2C-bus
PEF
6
67$57
FRQGLWLRQ
FORFNSXOVHIRU
DFNQRZOHGJHPHQW
QRWDFNQRZOHGJH
DFNQRZOHGJH
GDWDRXWSXW
E\WUDQVPLWWHU
GDWDRXWSXW
E\UHFHLYHU
6&/IURP
PDVWHU
Table 12. I2C slave address byte
Bit Slave address
7
MSB 6543210
LSB
Slave address 010000A0R/W
Table 13. R/W-bit description
R/W Description
0 write data
1 read data
Fig 13. I2C-bus protocol write mode
$
6
FRPPDQG
VODYHDGGUHVV GDWD$$
3
5: 
DDD
$
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 21 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
After acknowledgement, a command is sent, and after a further acknowledge a data byte
is transmitted. After the last data byte, the I2C-bus master issues a STOP condition (P).
Alternatively a START may be asserted to RESTART an I2C-bus access.
13.6 Fast-mode Plus (Fm+) support
The Fast-mode Plus specification is suppo r ted . Bes i de s pr ov idin g a hig h tran sm issio n
speed, the main characteristic of Fast-mode Plus is th e increased drive strength , allowing
lower impedance buses to be driven, and therefore less noise sensitive. Details on the
Fast-mode Plus specification are given in Ref. 15 “UM10204.
13.7 Reading sensor data
The PCF8885 support s direct r eading of the sensor state fr om the SENS register. If - after
sending the address - the R/W bit is immediately set to logic 1 without sending a
command, the circ uit recognizes that it mu st imm e dia te ly re tu rn the cont en t of th e SENS
register (see Figure 14)
When the transaction, after reading the SENS register, is not terminated with a STOP bit,
the PCF8885 repeatedly sends the content of SENS again. This provides a facility to
observe the sensor activity continuously. This transaction is illustrated in Figure 15.
Using two PCF8885 in a cascade (see Section 13.8), one has to be the primary-chip and
the other the seco ndary-chi p. When the dir ect re ad transactio n is executed in a cascade d
configuration, the primary-chip transmits its SENS content register immediately after the
address byte, followed by the secondary-chip transmitting its SENS register content.
If the transaction - after reading the two SENS registers - is not terminated with a STOP
bit, the primary-chip and the secondary-chip continue sending the content of the SENS
registers alternately. Such a transaction is illustrated in Figure 16.
Fig 14. Reading sensor data
Fig 15. Continuously reading sensor data
$
6
VHQVRUGDWD
VODYHDGGUHVV $
$3
5:
DDD
$
6
VHQVRUGDWD
VODYHDGGUHVV VHQVRUGDWD$$$
5:
 VHQVRUGDWD
$3
DDD
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 22 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
It must be noted, that for this alternate data transfer only one PCF8885 has to be
addressed. By definition the primary-chip mu st be a ddr essed (A0 bit in the add re ss set to
logic 0). In this particular case, the secondary-chip reacts on the address of the
primary-chip. For all other transactions targeting the secondary-chip, it must be properly
addressed with A0 set to logic 1.
13.8 Device cascading
T wo PCF8885 device s can be connected to the same I2C-bus, which facilit ates up to 8 8
keypads.
The device provides the following features to guarantee robust operation and to simplify
the system design using two devices:
The 7-bit I2C addres s consists of 6 fixed bits an d 1 selectable bit. The level exte rn ally
applied to pin A0 (VDD or VSS) defines the LSB of the I2C slave address. In this way,
two PCF8885 can be addressed on the same bus without the need for different hard
coded I2C addresses.
The sensor activity can be sy nchronized, so that interference between the sensors of
the different chips is avoided. One chip is considered to be the primary-chip. It
provides the sample clock on pin CLK_OUT. The other chip is considered to be the
secondary-chip. It uses the clock provided by the primary-chip instead of the internal
clock. The primary-chip samples the sensors on the rising edge of the internal sample
clock. The CLK_IN signal is inverted to derive the sample clock in the secondary-chip.
Therefore the secondary-chip samples its sensors on the negative ed ge of the sample
clock of the primary-chip. In this way, no s imu ltaneous se nso r sam pling occurs.
Primary-chip or secondary-chip modes are e nabled by programming the configuration
register (see Table 7 on page 10).
The interrupt signal can be cascaded. The INT output of the primary-chip can be
connected to the INT_IN input of the secondary-chip. The INT output of the
secondary-chip is then an OR’ed combination of the two interrupts.
If two devices are cascaded and the int-over-I2C mode is desired, then it is suf ficient
to put the secondary-chip in int-over-I2C mode. The primary-chip still signals an
interrupt over the INT output to the INT_IN input of the secondary-chip.
Figure 25 on page 33 illustrates a typical example of an application using two PCF8885
circuits.
Fig 16. Reading sensor data, alternately from primary-chip and secondary-chip
$
6
VHUYHUVHQVRUGDWD
VODYHDGGUHVV FOLHQWVHQVRUGDWD$$$
5:
 VHQVRUGDWD
$3
DDD
VHUYHUVHQVRUGDWD $
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 23 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
14. Internal circuitry
15. Safety notes
Fig 17. Device protection diagram
966
9''
9
'',175(*'
,1WR,1
&3&WR&3&
&/.B,1,17,17B,17
(67
6/((3$&/.B287
6&/6'$
3&)
DDD
CAUTION
This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling
electrostatic sensitive devices.
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or
equivalent standards.
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 24 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
16. Limiting values
[1] Pass level; Human Body Model (HBM) according to Ref. 10 “ JESD22-A114.
[2] Pass level; Charged-Device Model (CDM), according to Ref. 11 “JESD22-C101.
[3] Pass level; latch-up testing, according to Ref. 12 “JESD78 at maximum ambient temperature (Tamb(max)).
[4] According to the store and transport requirements (see Ref. 17 “UM10569) the devices have to be stored at a temperature of +8 C to
+45 C and a humidity of 25 % to 75 %.
Table 14. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VDD supply voltage 0.5 +8.0 V
VDD(INTREGD) internal regulated supply voltage 0.5 +6.5 V
VIinput voltage on all input pins 0.5 +6.5 V
ISS ground supply current 50 +50 mA
ISDA current on pin SDA 30 +30 mA
II/O(n) input/output current on any other pin 10 +10 mA
Ptot total power dissipation - 100 mW
VESD electrostatic discharge voltage HBM [1] -2000 V
CDM [2] -750 V
Ilu latch-up current [3] - 100 mA
Tstg storage temperature [4] 60 +125 C
Tamb ambient temperature op erating device 40 +85 C
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 25 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
17. Static characteristics
[1] See Figure 8 for an illustration of the voltage regulation behavior and the related parameters.
[2] Idle state is the steady state after completed power-on, without any mode change and without any activity on the sensor plates, and the
voltages on the reservoir capacitors CCPC are settled.
[3] In case of an ESD event, the value may increase slightly.
[4] The insulation resistance of the capacitor should be at least 5 G.
Table 15. Static characteristics
VDD = 2.5V to 5.5V, V
SS =0V, T
amb =
40
C to +85
C; unless otherwise specified; min and max values are not production
tested, but verified on sampling basis.
Symbol Parameter Conditions Min Typ Max Unit
VDD supply voltage 2.5 - 5.5 V
VDD(ext) external supply voltage VDD connected to
VDD(INTREGD); internal
regulator disabled
2.5 - 3.3 V
VDD(INTREGD) internal regulated supply
voltage [1]
2.5 2.9 3.3 V
external supplied 2.5 - 3.3 V
IDD supply current idle state; fs= 1 kHz [2] -1020 A
IDD(sleep) sleep mode supply current - 100 500 nA
Digital inputs (CLK_IN, A0, INT_IN, TEST)
VIL LOW-level input voltage VSS -0.3V
DD V
VIH HIGH-level input voltage 0.7VDD -V
DD V
Digital outputs (INT, CLK_OUT)
VOL LOW-level output voltage IO=0.5mA V
SS -0.2V
DD V
VOH HIGH-level output voltage IO= 0.5 mA 0.8VDD -V
DD V
Analog pins (IN0 to IN7 and CPC0 to CPC7)
VCPC voltage on pin CPC usable control range VSS +0.5 - V
DD(INTREGD) 0.5 V
Cin input capacitance sensing plate and parasitic 10 - 40 pF
I2C interface pins (SDA, SCL)
VIL LOW-level input voltage 0.5 - 0.3VDD V
VIH HIGH-level input voltage 0.7VDD -5.5 V
IOL LOW-level output current VDD =5.0V; V
OL =0.4V 20 - - mA
ILleakage current [3] -0- A
Cicapacitance for each I/O pin - - 10 pF
External component s
CCPC capacitance on pin CPC [4] 22 100 470 nF
Cdec decoupling capacitance on pins VDD(INTREGD) and
VDD; ceramic chip capacitor -100- nF
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 26 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
fs=1kHz.
(1) VDD =2.5V.
(2) VDD =3.3V.
(3) VDD =5.5V.
Fig 18. IDD with respect to temperature
(1) VDD =2.5V.
(2) VDD =3.3V.
(3) VDD =5.5V.
Fig 19. IDD with respect to sampling frequency (internal clock)
DDD
      



7HPSHUDWUXUH&
,'
'
$



DDD
  







IVN+]
,'
'
$



PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 27 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
(1) VDD =2.5V.
(2) VDD =3.3V.
(3) VDD =5.5V.
Fig 20. IDD with respect to sampling frequency (external clock)
DDD
   






IVN+]
,'
'
$



PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 28 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
18. Dynamic characteristics
[1] Default value.
[2] For switching, 64 consecutive CUP pulses are needed.
Table 16. Dynamic characteristics
VDD = 2.5V to 5.5V, V
SS =0V, T
amb =
40
C to +85
C; unless otherwise specified; min and max values are not production
tested, but verified on sampling basis.
Symbol Parameter Conditions Min Typ Max Unit
System timing
tstartup start-up time CCPC =100nF; f
s= 1 kHz;
Cin =40pF -200-ms
fosc oscillator frequency in ternal RC oscillator;
FRQF[2:0] = 100 [1] 58 80 112 kHz
tsw switching time fs = 1 kHz [2] -64-ms
I2C interface characteristics (SDA, SCL)
tSP pulse width of spikes that must be
suppressed by the input filter 0- 50ns
fSCL SCL clock frequency 0 - 1000 kHz
tHD;STA hold time (repeated) START condition 0.26 - - s
tSU;STA set-up time for a repeated STAR T condition 0.26 - - s
tLOW LOW period of the SCL clock 0.5 - - s
tHIGH HIGH period of the SCL clock 0.26 - - s
tHD;DAT data hold time 0 - - ns
tSU;DAT data set-up time 50 - - ns
trrise time of both SDA and SCL signals - - 120 ns
tffall time of both SDA and SCL signals - - 120 ns
tSU;STO set-up time for STOP condition 0.26 - - s
tBUF bus free time between a STOP and START
condition 0.5 - - s
Cbcapacitive load for each bus line - - 550 pF
tVD;DAT data valid time - - 0.45 s
tVD;ACK data valid acknowledge time - - 0.45 s
tw(int) interrupt pulse width interrupt over I2C-2-s
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 29 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
18.1 I2C interface timing
(1) VDD = 2.5 V; Ci=41pF.
(2) VDD = 3.3 V; Ci=41pF.
(3) VDD = 5.5 V; Ci=41pF.
(4) VDD = 3.3 V; Ci=10pF.
Fig 21. Start-up time with respect to CCPC
DDD
   







&&3&Q)
WVWDUWXS
S
S
PV




Fig 22. I2C interface timing
DDD
WI


6'$
WI


6
WU




W+''$7
6&/
I6&/
VWFORFNF\FOH




WU
W9''$7
FRQW
FRQW
6'$
6&/
W6867$ W+'67$
6U
W63 W68672
W%8)
3 6
W+,*+
WKFORFN
W+'67$ W/2:


W9'$&.
WKFORFN
W68'$7
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 30 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
19. Application information
19.1 Single device application
(1) Pin CLK_IN can be tied to VSS or left open.
Fig 23. Single device application diagram
9''
5)
5&&)
RSW5&
RSW5&
RSW5&
RSW5&
538
,1>@
,1>@
,1>@
,1>@
,1>@
9''
9'',175(*'
Q)
Q)
7(67
966
Q)
&&3&>@
&3&>@ &3&>@
6&/
6'$
&/.B,1
,17B,1
&/.B287
,17
$
6/((3
3&)
538
9''
Q)
&&3&>@
WR0&8
WR0&8
DDD

PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 31 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
19.2 28 sensor grid application in 2-key mode
Fig 24. Application diagram for 28 sensors in 2-key mode
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1
,1 ,1
,1
DDD
,1
,1
,1
,1
,1
,1
,1
,1
3&)

 
    
   
  
 


















 
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 32 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
Table 17. Input combinations for a 28 sensor grid in 2-key mode
Sensor Inputs
IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0
100000011
200000101
300001001
400010001
500100001
601000001
710000001
800000110
900001010
10 00010010
11 00100010
12 01000010
13 10000010
14 00001100
15 00010100
16 00100100
17 01000100
18 10000100
19 00011000
20 00101000
21 01001000
22 10001000
23 00110000
24 01010000
25 10010000
26 01100000
27 10100000
28 11000000
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 33 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
19.3 Cascaded application
(1) If the SLEEP pin is not used, it must be connected to VSS.
(2) Pin CLK_IN can be tied to VSS or left open.
(3) Instead of the INT pin, interrupt over I2C-bus can be used. If the INT pin is not used, it must be left open.
Fig 25. Cascaded application diagram
,1>@
,1>@
,1>@
,1>@
,1>@
9''
9'',175(*'
Q)
7(67
966
&3&>@ &3&>@
6&/
6'$
&/.B,1
,17B,1
&/.B287
,17
$
6/((3
3&)
,1>@
,1>@
,1>@
,1>@
,1>@
9''
9'',175(*'
Q)
7(67
966
&3&>@ &3&>@
6&/
6'$
&/.B,1
,17B,1
&/.B287
,17
$
6/((3
3&)
6(16250$75,;
SULPDU\
VHFRQGDU\
9
''
538
Q)
538
WR
0&8
9''
Q)
9''
Q)
&&3&>@
Q)
&&3&>@
Q)
&&3&>@
Q)
&&3&>@



DDD

PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 34 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
Figure 25 shows the typical connections for a general application using two chips. For
simplicity, the sensors attached to the secondary-chip are not shown in this diagram. The
sensors of the secondary-chip can be arranged independently of the sensors of the
primary-chip or combined in a common larger matrix.
Both chips use different I2C addresse s programmed by the voltage le vel applied to pin A0.
The primary-chip has A0 connected to ground; the secondary-chip has A0 connected to
VDD(ext). In this way, each circuit is addressed individually.
In this case, the primary-chip is programmed to use the internal oscillator as clock
reference. The primary-chip is also programmed to enable the clock output. The
secondary-chip is programmed to use the clock output from the primary-chip as input
clock. The internal oscillator of the secondary-chip is shut down to save power in this
mode.
The interrupt output INT of the pr im ar y-c hip is rout ed to th e INT _I N input of the
secondary-chip, where it is OR’ed with the interrupt state of the secondary-chip.
The sensing plate cap acit ances ma y consist of a small met al area , for example be hind an
isolating layer. Illustrated in Figure 25 is a 4 4 sensor arrangement. In this configuration,
a sensor touch always excites two sensor plates at the same time.
The sensing plates are connected to a coaxial cable (for remote sensors) or a shielded
connection, which in turn is connected to the input pin IN. The connection capacitance
contributes to the input cap acit ance an d must not be neglected. An internal low pass filter
(not shown) is used to reduce RF interferen ce. An additional l ow pass filter con sisting of a
resistor RF and capacitor CF can be added to the input to improve RF immunity further
than required. For good performance, the total amount of capacitance on the input
(Cs+C
CABLE +C
F) should b e in th e p ro per r an ge, the op timum poin t bein g a round 30 pF.
Even if the external filtering is not required, placing CF can help to bring the input
capacitance to an optimal value. These conditions allow the control loop to adapt to the
static capacitance on CS and to compensat e fo r slow changes in the sensin g pl ate
capacitance. A higher capacitive input loading is possible, if an additional discharge
resistor RC is used. Resistor RC simply reduces the discharge time su ch that th e inter nal
timing requirements can be fulfilled.
The sensitivity of the sensors can be influenced by the sensing plate area and capacitors
CCPC. The sensitivity is redu ce d wh en C CPC is reduced. When maximum sensitivity is
desired, CCPC can be increased, but it also increases sensitivity to interference. The
CPC[0:7] pins have high impedance and are sensitive to leakage currents.
Remark: CCPC should be a high-quality foil or ceramic capacitor, for example an
X7R type.
For the choice of proper component values for a given application, the component
specifications in Section 17 on p age 25 must be followed.
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 35 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
20. Package outline
Fig 26. Package outline PCF8885TS (TSSOP28)
5HIHUHQFHV
2XWOLQH
YHUVLRQ
(XURSHDQ
SURMHFWLRQ ,VVXHGDWH
,(& -('(& -(,7$
3&)76 02,668(&
SFIWVBSR


8QLW
PP
PD[
QRP
PLQ
   
$
'LPHQVLRQV
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
76623SODVWLFVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 3&)76
$$

EF'

ș'K

  









 






((
(KH//
PP
VFDOH
;
$
ș



SLQLQGH[
H[SRVHG
SDG
E
H
$
$
(K
/
/
'
'K
(
(
F
GHWDLO;
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 36 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
21. Soldering of SMD packages
This text provides a very brief insight into a complex technology. A more in-depth account
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow
soldering description”.
21.1 Introduction to soldering
Soldering is one of the most common methods through which packages are attached to
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both
the mechanical and the electrical connection. There is no single soldering method that is
ideal for all IC packages. Wave soldering is often preferred when through-hole and
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high
densities that come with increased miniaturization.
21.2 Wave and reflow soldering
W ave soldering is a joinin g technology in which the joint s are made by solder coming from
a standing wave of liquid solder. The wave soldering process is suitable for the following:
Through-hole components
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless
packages which have solder lands underneath the body, cannot be wave soldered. Also,
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,
due to an increased probability of bridging.
The reflow soldering process involves applying solder paste to a board, followed by
component placement and exposure to a temperature profile. Leaded packages,
packages with solder balls, and leadless packages are all reflow solderable.
Key characteristics in both wave and reflow soldering are:
Board specifications, including the board finish, solder masks and vias
Package footprints, including solder thieves and orientation
The moisture sensitivity level of the packages
Package placement
Inspection and repair
Lead-free soldering versus SnPb soldering
21.3 Wave soldering
Key characteristics in wave soldering are:
Process issues, such as application of adhesi ve and flux, clinching of leads, board
transport, the solder wave parameters, and the time during which components are
exposed to the wave
Solder bath specifications, including temperature and impurities
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 37 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
21.4 Reflow soldering
Key characteristics in reflow soldering are:
Lead-free ve rsus SnPb soldering; note th at a lead-free reflow process usua lly leads to
higher minimum peak temperatures (see Figure 27) than a SnPb process, thus
reducing the process window
Solder paste printing issues including smearing, release, and adjusting the process
window for a mix of large and small components on one board
Reflow temperature profile; this profile includes preheat, reflow (in which the board is
heated to the peak temperature) and cooling down. It is imperative that the peak
temperature is high enoug h for the solder to make reliable solder joint s (a solder paste
characteristic). In addition, the peak temperature must be low enough that the
packages and/or boards are not damaged. The peak temperature of the package
depends on package thickness and volume and is classified in accordance with
Table 18 and 19
Moisture sensitivity precautions, as indicated on the packing, must be respected at all
times.
Studies have shown that small packages reach higher temperatures during reflow
soldering, see Figure 27.
Table 18. SnPb eutectic process (from J-STD-0 20D)
Package thickness (mm) Package reflow temperature (C)
Volume (mm3)
< 350 350
< 2.5 235 220
2.5 220 220
Table 19. Lead-free process (from J-STD-020D)
Package thickness (mm) Package reflow temperature (C)
Volume (mm3)
< 350 350 to 2000 > 2000
< 1.6 260 260 260
1.6 to 2.5 260 250 245
> 2.5 250 245 245
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 38 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
For further information on temperature profiles, refer to Application Note AN10365
“Surface mount reflow soldering description”.
22. Abbreviations
MSL: Moisture Sensitivity Level
Fig 27. Temperature profiles for large and small components
001aac844
temperature
time
minimum peak temperature
= minimum soldering temperature
maximum peak temperature
= MSL limit, damage level
peak
temperature
Table 20. Abbreviations
Acronym Description
CMOS Complementary Metal Oxide Semiconductor
HBM Human Body Model
IC Integrated Circuit
MM Machine Model
MOS Metal Oxide Semiconductor
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
MSL Moisture Sensitivity Level
PCB Printed-Circuit Board
RC Resistance-Capacitance
RF Radio Frequency
SMD Surface Mount Device
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 39 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
23. References
[1] AN10365 — Surface mount reflow soldering description
[2] AN10832 — PCF8883 - capacitive proximity switch with auto-calibration
[3] AN10853 — Handling precautions of ESD sensitive devices
[4] AN11122 — Water and cond en sa tio n sa fe touc h se ns in g with the NX P
capacitive touch sensors
[5] AN11157 — Capacitive touch sensin g with high EMC performance, Application Note
[6] AN11155 — General design guidelines for the NXP capacitive sensors
[7] IEC 60134 — Rating syst ems for electronic tubes and valves and analogous
semiconductor devices
[8] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena
[9] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for
Nonhermetic Solid State Surface Mount Devices
[10] JESD22-A114 — Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM)
[11] JESD22-C10 1 — Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components
[12] JESD7 8 — IC Latch-Up Test
[13] JESD625-A — Requirements for Handling Electrostatic-Discharge-Sensitive
(ESDS) Devices
[14] SNV-FA-01-02 — Marking Formats Integrated Circuits
[15] UM102 04 — I2C-bus specification and user manual
[16] UM105 05 — OM11057 quick start guide
[17] UM105 69 — Store and transport requirements
[18] UM106 64 — PCA8885 and PCF8885 evaluation board OM11056
[19] UM107 20 — User manual for the TFT touch demo board OM11058
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 40 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
24. Revision history
Table 21. Revision history
Document ID Release date Data sheet status Chang e notice Supersedes
PCF8885 v.3 20140317 Product data sheet - PCF8885 v.2
Modifications: The format of this data sheet has been redesigned to comply with the new identity
guidelines of NXP Semiconductors.
Legal texts have been adapted to the new company name where appropriate.
Emphasized the X7R statement
Changed product and ordering information Section 4
Adjusted Figure 3, Figure 4, Figure 13, Figure 15
Added Table 13
Added Section 15
PCF8885 v.2 20121025 Product data sheet - PCF8885 v.1
PCF8885 v.1 20120221 Product data sheet - -
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 41 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
25. Legal information
25.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of de vice(s) descr ibed in th is docume nt may have cha nged since this docume nt was publis hed and ma y dif fer in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
25.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liab ility for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and tit le. A short data sh eet is intended
for quick reference only and shou ld not be rel ied u pon to cont ain det ailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall pre vail.
Product specificat ion The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to off er functions and qualities beyond those described in the
Product data sheet.
25.3 Disclaimers
Limited warr a nty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Se miconductors takes no
responsibility for the content in this document if provided by an inf ormation
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incident al,
punitive, special or consequ ential damages (including - wit hout limitatio n - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whethe r or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulat ive liability toward s
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all informa tion supplied prior
to the publication hereof .
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applicat ions where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in perso nal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconducto rs products in such equipment or
applications and ther efore such inclu sion and/or use is at the cu stomer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty tha t such application s will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and ope ration of their applications
and products using NXP Semiconductors product s, and NXP Semiconductors
accepts no liability for any assistance with applications or cu stomer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suit able and fit for the custome r’s applications and
products planned, as well as fo r the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by custo mer’s
third party customer(s). Customer is responsible for doing all necessary
testing for th e customer’s applications and product s using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third p arty
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanent ly and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individua l agreement. In case an individual
agreement is concluded only the ter ms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing i n this document may be interpreted or
construed as an of fer t o sell product s that is open for accept ance or t he grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specif ication for product development.
Preliminary [short] dat a sheet Qualification This document contains data from the preliminary specification.
Product [short] dat a sheet Production This document contains the prod uct specification.
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 42 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics se ctions of this
document, and as such is not complete, exhaustive or legally binding.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is a utomotive qualified,
the product is not suitable for automotive use. It i s neither qua lified nor test ed
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automot ive specifications and standard s, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applicat ions, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting fr om customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-En glish (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
25.4 Trademarks
Notice: All referenced b rands, produc t names, service names and trademarks
are the property of their respect i ve ow ners.
I2C-bus — logo is a trademark of NXP Semi conductors N.V.
26. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 43 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
27. Tables
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .2
Table 2. Ordering options. . . . . . . . . . . . . . . . . . . . . . . . .2
Table 3. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2
Table 4. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .4
Table 5. Commands of PCF8885. . . . . . . . . . . . . . . . . . .8
Table 6. Register overview . . . . . . . . . . . . . . . . . . . . . .10
Table 7. CONFIG - configuration register
bit description . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 8. Main operating modes . . . . . . . . . . . . . . . . . .11
Table 9. SENS - sensor state register
bit description . . . . . . . . . . . . . . . . . . . . . . . . . .13
Table 10. CLKREG - clock setting register
bit description . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 11. MASK - channel enable mask register
bit description . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 12. I2C slave address byte . . . . . . . . . . . . . . . . . . .20
Table 13. R/W-bit description . . . . . . . . . . . . . . . . . . . . . .20
Table 14. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 15. Static characteristics . . . . . . . . . . . . . . . . . . . .25
Table 16. Dynamic characteristics . . . . . . . . . . . . . . . . . .28
Table 17. Input combinations for a 28 sensor
grid in 2-key mode . . . . . . . . . . . . . . . . . . . . . .32
Table 18. SnPb eutectic process (from J-STD-020D) . . .37
Table 19. Lead-free process (from J-STD-020D) . . . . . .37
Table 20. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 21. Revision history . . . . . . . . . . . . . . . . . . . . . . . .40
PCF8885 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3 — 17 March 2014 44 of 45
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
28. Figures
Fig 1. Block diagram of PCF8885 . . . . . . . . . . . . . . . . . .3
Fig 2. Pin configuration for TSSOP28 (PCF8885TS). . . .4
Fig 3. Timing diagram of sensor sampling. . . . . . . . . . . .6
Fig 4. Functional diagram of sensor operation. . . . . . . . .7
Fig 5. Interrupt over the I2C-bus . . . . . . . . . . . . . . . . . .13
Fig 6. Oscillator block diagram. . . . . . . . . . . . . . . . . . . .15
Fig 7. Connection of VDD(ext) . . . . . . . . . . . . . . . . . . . . .17
Fig 8. Integrated voltage regulator behavior . . . . . . . . .17
Fig 9. Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Fig 10. Definition of START and STOP conditions. . . . . .19
Fig 11. System configuration. . . . . . . . . . . . . . . . . . . . . .19
Fig 12. Acknowledgeme nt on the I2C-bus . . . . . . . . . . . .20
Fig 13. I2C-bus protocol write mode . . . . . . . . . . . . . . . .20
Fig 14. Reading sensor data . . . . . . . . . . . . . . . . . . . . . .21
Fig 15. Continuously reading sensor data . . . . . . . . . . . .21
Fig 16. Reading sensor data, alternately from
primary-chip and secondary-chip. . . . . . . . . . . . .22
Fig 17. Device protection diagram. . . . . . . . . . . . . . . . . .23
Fig 18. IDD with respect to temperature . . . . . . . . . . . . . .26
Fig 19. IDD with respect to sampling frequency
(internal clock) . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Fig 20. IDD with respect to sampling frequency
(external clock) . . . . . . . . . . . . . . . . . . . . . . . . . .27
Fig 21. Start-up time with respect to CCPC. . . . . . . . . . . .29
Fig 22. I2C interface timing . . . . . . . . . . . . . . . . . . . . . . .29
Fig 23. Single device application di agram . . . . . . . . . . . .30
Fig 24. Application diagram for 28 sensors
in 2-key mode . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Fig 25. Cascaded application diagram . . . . . . . . . . . . . .33
Fig 26. Package outline PCF8885TS (TSSOP28). . . . . .35
Fig 27. Temperature profiles for large and small
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
NXP Semiconductors PCF8885
Capacitive 8-channel touch and proximity sensor with auto-calibration
© NXP Semiconductors N.V. 2014. All rights reserved.
For more information, please visit: http://www.nxp.co m
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 17 March 2014
Document identifier: PCF8885
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
29. Contents
1 General description. . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4 Ordering information. . . . . . . . . . . . . . . . . . . . . 2
4.1 Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2
5 Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
7 Pinning information. . . . . . . . . . . . . . . . . . . . . . 4
7.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
7.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
8 Functional description . . . . . . . . . . . . . . . . . . . 6
9 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9.1 Command overview . . . . . . . . . . . . . . . . . . . . . 8
9.2 Command: soft-reset . . . . . . . . . . . . . . . . . . . . 8
9.3 Commands: Sleep and wake-up . . . . . . . . . . . 8
9.4 Command: read-sensor . . . . . . . . . . . . . . . . . . 9
10 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10.1 Register overview. . . . . . . . . . . . . . . . . . . . . . 10
10.2 Register: CONFIG . . . . . . . . . . . . . . . . . . . . . 10
10.2.1 Operating modes . . . . . . . . . . . . . . . . . . . . . . 11
10.2.1.1 Main operating modes . . . . . . . . . . . . . . . . . . 11
10.2.1.2 Switching modes . . . . . . . . . . . . . . . . . . . . . . 11
10.2.1.3 Key-press modes . . . . . . . . . . . . . . . . . . . . . . 12
10.2.2 Interrupt generation . . . . . . . . . . . . . . . . . . . . 12
10.2.2.1 Interrupt output INT . . . . . . . . . . . . . . . . . . . . 12
10.2.2.2 Interrupt over the I2C-bus. . . . . . . . . . . . . . . . 13
10.3 Register: SENS . . . . . . . . . . . . . . . . . . . . . . . 13
10.4 Register: CLKREG . . . . . . . . . . . . . . . . . . . . . 14
10.4.1 Clock generation and frequency adjustment . 14
10.5 Register: MASK . . . . . . . . . . . . . . . . . . . . . . . 15
10.5.1 Channel masking . . . . . . . . . . . . . . . . . . . . . . 15
11 Power architecture . . . . . . . . . . . . . . . . . . . . . 17
12 Start-up procedure. . . . . . . . . . . . . . . . . . . . . . 18
13 Characteristics of the I2C-bus . . . . . . . . . . . . 18
13.1 Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13.1.1 START and STOP conditions . . . . . . . . . . . . . 18
13.2 System configuration . . . . . . . . . . . . . . . . . . . 19
13.3 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 19
13.4 I2C-bus subaddress . . . . . . . . . . . . . . . . . . . . 20
13.5 I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 20
13.6 Fast-mode Plus (Fm+) support . . . . . . . . . . . 21
13.7 Reading sensor data. . . . . . . . . . . . . . . . . . . . 21
13.8 Device cascading . . . . . . . . . . . . . . . . . . . . . . 22
14 Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 23
15 Safety notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
16 Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 24
17 Static characteristics . . . . . . . . . . . . . . . . . . . 25
18 Dynamic characteristics. . . . . . . . . . . . . . . . . 28
18.1 I2C interface timing. . . . . . . . . . . . . . . . . . . . . 29
19 Application information . . . . . . . . . . . . . . . . . 30
19.1 Single device application . . . . . . . . . . . . . . . . 30
19.2 28 sensor grid ap plication in 2-key mode . . . 31
19.3 Cascaded application. . . . . . . . . . . . . . . . . . . 33
20 Package outline. . . . . . . . . . . . . . . . . . . . . . . . 35
21 Soldering of SMD packages. . . . . . . . . . . . . . 36
21.1 Introduction to soldering. . . . . . . . . . . . . . . . . 36
21.2 Wave and reflow soldering. . . . . . . . . . . . . . . 36
21.3 Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 36
21.4 Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 37
22 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 38
23 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
24 Revision history . . . . . . . . . . . . . . . . . . . . . . . 40
25 Legal information . . . . . . . . . . . . . . . . . . . . . . 41
25.1 Data sheet status. . . . . . . . . . . . . . . . . . . . . . 41
25.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
25.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 41
25.4 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 42
26 Contact information . . . . . . . . . . . . . . . . . . . . 42
27 Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
28 Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
29 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
NXP:
PCF8885TS/1,118