5–1
FEATURES
High Current Transfer Ratio
CNY17F-1, 40-80%
CNY17F-2, 63-125%
CNY17F-3, 100-200%
CNY17F-4, 160-320%
Breakdown V oltage, 5300 V AC
RMS
High Collector-Emitter Voltage
•V
CEO
=70 V
No Base Terminal Connection for Improved
Common Mode Interface Immunity
Field-Effect Stable by TRIOS*
Long Term Stability
Industry Standard Dual-in-Line Package
Underwriters Lab File #E52744
VDE #0884, Available with Option 1
Maximum Ratings
(T
A
=25
°
C)
Emitter
Reverse Voltage................................................ 6 V
DC Forward Current .................................... 60 mA
Surge Forward Current (t
10
µ
s) ...................2.5 A
Total Power Dissipation ............................ 100 mW
Detector
Collector-Emitter Breakdown Voltage ............. 70 V
Collector Current ..........................................50 mA
Collector Current (t
1 ms)......................... 100 mA
Total Power Dissipation ............................ 150 mW
Package
Isolation Test Voltage (between emitter and detector
referred to standard climate 23/50
DIN 50014) ....................................5300 VAC
RMS
Creepage.................................................... >7 mm
Clearance................................................... >7 mm
Isolation Thickness between Emitter
and Detector.........................................
0.4 mm
Comparative Tracking Index per
DIN IEC 112/VDE 0303, part 1 ......................175
Isolation Resistance (V
10
=500 V)
.................
10
11
Storage Temperature Range............–55 to +150
°
C
Ambient Temperature Range ...........–55 to +100
°
C
Junction Temperature ...................................100
°
C
Soldering Temperature
(max. 10 s, dip soldering:
distance to seating plane
1.5 mm)..........260
°
C
*
TRIOS—TR
ansparent
IO
n
Sh
ield
V
DE
DESCRIPTION
The CNY17F is an optocoupler consisting of a Gallium Arsenide infrared
emitting diode optically coupled to a silicon planar phototransistor
detector in a plastic plug-in DIP-6 package.
The coupling device is suitable for signal transmission between two
electrically separated circuits. The potential difference between the cir-
cuits to be coupled is not allowed to exceed the maximum permissible
reference voltages.
In contrast to the CNY17 Series, the base terminal of the F type is not
connected, resulting in a substantially improved common-mode interfer-
ence immunity.
Characteristics
(T
A
=25
°
C)
Symbol Unit Condition
Emitter
Forward Voltage V
F
1.25 (
1.65) V I
F
=60mA
Breakdown Voltage V
BR
≥≥
6VI
R
=10
µ
A
Reverse Current I
R
0.01 (
10)
µ
AV
R
=6 V
Capacitance C
O
25 pF V
R
=0 V, f=1 MHz
Thermal Resistance R
thJA
750 K/W
Detector
Capacitance C
CE
5.2 pF V
CE
=5 V, f=1
MHz
Thermal Resistance R
thJA
500 K/W
Package
Saturation Voltage,
Collector-Emitter V
CEsat
0.25 (
0.4) V I
F
=10 mA
I
C
=2.5 mA
Coupling
Capacitance C
C
0.6 pF
Dimensions in inches (mm)
.010 (.25)
.014 (.35)
.110 (2.79
)
.150 (3.81
)
.130 (3.30)
.150 (3.81)
.020 (.051) min.
.300 (7.62)
typ.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
.039
(1.00)
Min.
.018 (0.45)
.022 (0.55)
.
248 (6.30)
.
256 (6.50)
.335 (8.50)
.343 (8.70)
Pin One ID
6
5
4
12
3
18° typ.
.300 (7.62)
.347 (8.82)
4°
typ.
1
2
3
6
5
4
Base
Collector
Emitter
Anode
Cathode
NC
CNY17F SERIES
PHOTOTRANSISTOR
NO BASE CONNECTION
OPTOCOUPLER
5–2
CNY17F
Figure 3. Current transfer ratio versus diode
current
(T
A
=–25
°
C, V
CE
=5 V) I
C
/I
F
=f (I
F
)
Figure 4. Current transfer ratio versus diode
current
(T
A
=0
°
C, V
CE
=5 V) I
C
/I
F
=f (I
F
)
Figure 5. Current transfer ratio versus diode
current
(T
A
=25
°
C, V
CE
=5 V) I
C
/I
F
=f (I
F
)
Current T ransfer Ratio
(I
C
/I
F
at V
CE
=5 V, 25
°
C)
and Collector-Emitter Leakage Current by dash number
Figure 1. Linear operation
(without saturation)
I
F
=10 mA, V
CC
=5 V, T
A
=25
°
C
Figure 2. Switching operation
(with saturation)
-1 -2 -3 -4 Unit
I
C
/I
F
at V
CE
=5 V
(I
F
=10 mA) 40–80 63-125 100–200 160–320 %
I
C
/I
F
at V
CE
=5 V
(I
F
=1 mA) 30 (>13) 45 (>22) 70 (>34) 90 (>56) %
Collector-Emitter
Leakage Current
(V
CE
=10 V) (I
CEO
)2 (
50) 2 (
50) 5 (
100) 5 (
100) nA
Load Resistance R
L
75
Turn-On Time t
ON
3.0
µ
s
Rise Time t
R
2.0
µ
s
Turn-Off Time t
OFF
2.3
µ
s
Fall Time t
f
2.0
µ
s
Cut-Off Frequency f
CO
250 kHz
-1
(I
F
=20 mA) -2 and -3
(I
F
=10 mA) -4
(I
F
=5 mA)
Turn-On Time t
ON
3.0 4.2 6.0
µ
s
Rise Time t
R
2.0 3.0 4.6
µ
s
Turn-Off Time t
OFF
18 23 25
µ
s
Fall Time t
F
11 14 15
µ
s
RL=75
VCC=5
V
IC
47
IF
IF1 KVCC=5
V
47
5–3
CNY17F
Figure 12. Saturation voltage current
and modulation CNY17F-1
VCEsat=f (IC) (TA=25°C)
Figure 13. Saturation voltage versus
collector current and modulation depth
CNY17F-2 VCEsat=f (IC) (TA=25°C)
Figure 14. Saturation voltage versus
collector current and modulation depth
CNY17F-3 VCEsat=f (IC) (TA=25°C)
Figure 9. Output characteristics
CNY17F-2, -3 (TA=25°C) IC=f(VCE)
Figure 10. Forward voltage VF=f(IF)
Figure 11. Collector emitter off-state
current ICEO=f(V,T) (TA=75°C, IF=0)
Figure 6. Current transfer ratio versus
diode current (TA=50°C) V CE=5 V
Figure 7. Current transfer ratio versus
diode current (TA=75°C) V CE=5 V
Figure 8. Current transfer ratio versus
temperature (IF=10 mA, VCE=5 V)
IC/IF=f (T)
5–4 CNY17F
Figure 19. Transistor capacitance
C=f(VO)(TA=25°C, f=1 MHz)
Figure 17. Permissible power dissipa-
tion transistor and diode Ptot=f(TA)
Figure 18. Permissible forward current
diode IF=f(TA)
Figure 15. Saturation voltage versus
collector current and modulation depth
CNY17F-4 VCEsat=f (IC) (TA=25°C)
Figure 16. Permissible pulse load
D=parameter , TA=25°C, IF=f(tp)