IRG4PC50UD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
FeaturesFeatures
FeaturesFeatures
Features
E
G
n-channel
C
VCES = 600V
VCE(on) typ. = 1.65V
@VGE = 15V, IC = 27A
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case - IGBT ------ ------ 0.64
RθJC Junction-to-Case - Diode ------ ------ 0.83 °C/W
RθCS Case-to-Sink, flat, greased surface ------ 0.24 ------
RθJA Junction-to-Ambient, typical socket mount ----- ----- 40
Wt Weight ------ 6 (0.21) ------ g (oz)
Thermal Resistance
UltraFast CoPack IGBT
12/30/00
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 55
IC @ TC = 100°C Continuous Collector Current 27
ICM Pulsed Collector Current Q220 A
ILM Clamped Inductive Load Current R220
IF @ TC = 100°C Diode Continuous Forward Current 25
IFM Diode Maximum Forward Current 220
VGE Gate-to-Emitter Voltage ± 20 V
PD @ TC = 25°C Maximum Power Dissipation 200
PD @ TC = 100°C Maximum Power Dissipation 78
TJOperating Junction and -55 to +150
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw. 10 lbf•in (1.1 N•m)
• UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-247AC package
Benefits
• Generation 4 IGBT's offer highest efficiencies
available
IGBT's optimized for specific application conditions
• HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing
• Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBT's
PD 91471B
W
TO-247AC
www.irf.com 1
http://store.iiic.cc/
IRG4PC50UD
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) ---- 18 0 27 0 I C = 27A
Qge Gate - Emitter Charge (turn-on) ---- 25 38 nC VCC = 400V See Fig. 8
Qgc Gate - Collector Charge (turn-on) ---- 61 90 VGE = 15V
td(on) Turn-On Delay Time ---- 46 ---- TJ = 25°C
trRise Time ---- 25 ---- ns IC = 27A, VCC = 480V
td(off) Turn-Off Delay Time ---- 140 230 VGE = 15V, RG = 5.0
tfFall Time ---- 74 110 Energy losses include "tail" and
Eon Turn-On Switching Loss ---- 0.99 ---- diode reverse recovery.
Eoff Turn-Off Switching Loss ---- 0.59 ---- m J See Fig. 9, 10, 11, 18
Ets Total Switching Loss ---- 1.58 1.9
td(on) Turn-On Delay Time ---- 44 ---- TJ = 150°C, See Fig. 9, 10, 11, 18
trRise Time ---- 27 ---- ns IC = 27A, VCC = 480V
td(off) Turn-Off Delay Time ---- 240 ---- V GE = 15V, RG = 5.0
tfFall Time ---- 130 ---- Energy losses include "tail" and
Ets Total Switching Loss ---- 2.3 ---- mJ diode reverse recovery.
LEInternal Emitter Inductance ---- 13 ---- nH Measured 5mm from package
Cies Input Capacitance ---- 4000 ---- VGE = 0V
Coes Output Capacitance ---- 250 ---- pF VCC = 30V See Fig. 7
Cres Reverse Transfer Capacitance ---- 52 ---- ƒ = 1.0MHz
trr Diode Reverse Recovery Time ---- 50 75 ns TJ = 25°C See Fig.
---- 105 160 TJ = 125°C 14 IF = 25A
Irr Diode Peak Reverse Recovery Current ---- 4. 5 10 A TJ = 25°C See Fig.
---- 8.0 15 TJ = 125°C 15 VR = 200V
Qrr Diode Reverse Recovery Charge ---- 112 375 nC TJ = 25°C See Fig.
---- 420 1200 TJ = 125°C 16 di/dt 200A/µs
di(rec)M/dt Diode Peak Rate of Fall of Recovery ---- 250 ---- A/µs TJ = 25°C
During tb---- 160 ---- TJ = 125°C
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown VoltageS600 ---- ---- V VGE = 0V, IC = 250µA
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage ---- 0.60 ---- V/°CV
GE = 0V, IC = 1.0mA
VCE(on) Collector-to-Emitter Saturation Voltage ---- 1.65 2.0 IC = 27A VGE = 15V
---- 2.0 ---- V IC = 55A See Fig. 2, 5
---- 1.6 ---- IC = 27A, TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 ---- 6.0 V CE = VGE, I C = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage ---- -13 ---- m V/°CV
CE = VGE, IC = 250µA
gfe Forward Transconductance T16 24 ---- S VCE = 100V, IC = 27A
ICES Zero Gate Voltage Collector Current ---- ---- 250 µ A VGE = 0V, VCE = 600V
---- ---- 6500 VGE = 0V, VCE = 600V, TJ = 150°C
VFM Diode Forward Voltage Drop ---- 1.3 1. 7 V IC = 25A See Fig. 13
---- 1.2 1.5 IC = 25A, TJ = 150°C
IGES Gate-to-Emitter Leakage Current ---- ---- ±100 nA V GE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
http://store.iiic.cc/
IRG4PC50UD
www.irf.com 3
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics
0.1
1
10
100
1000
0110
CE
C
I , C ollector-to-E mitter Cu rre nt (A )
V , C o lle cto r-to -E mitte r V olta
g
e
(
V
)
T = 150°C
T = 25°C
J
J
A
V = 15V
20
µ
s PULSE WID TH
GE
1
10
100
1000
4 6 8 10 12
C
I , C olle c to r-to-E m itte r C u rre nt (A )
GE
T = 2 5°C
T = 150°C
J
J
V , G ate -to-Em itter V o lta
g
e
(
V
)
A
V = 10V
5µs PU LSE WIDTH
CC
0
10
20
30
40
0.1 1 10 100
f, Freq uen c
(k H z )
Load C urrent (A)
A
60% of rated
vo lta g e
D uty cycle : 50%
T = 1 25°C
T = 9 0 °C
Gate drive as specified
Turn -on lo sses include
effe c ts o f rev e rse re cov e ry
sink
J
Power Dissipation = 40W
http://store.iiic.cc/
IRG4PC50UD
4www.irf.com
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
1.0
1.5
2.0
2.5
-60 -40 -20 0 20 40 60 80 100 120 140 160
CE
V , Co llec to r- to - Emitter Volta g e ( V)
V = 15 V
80µs PU LSE WID TH
GE
A
T , Junction Tem perature
(
°C
)
J
I = 54A
I = 27A
I = 1 4A
C
C
C
0
10
20
30
40
50
60
25 50 75 100 125 150
Max i m u m DC C o l le c to r C urre n t (A )
T , Case Tem perature (°C)
C
V = 15V
GE
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
t , Rectangular P ulse Duration (sec)
1
thJC
D = 0.50
0.01
0.02
0.05
0.10
0.20
SINGLE PUL SE
(THERMAL RESPONSE)
Thermal Response (Z )
P
t
2
1
t
DM
N ote s:
1 . D u ty fac tor D = t / t
2. P e ak T = P x Z + T
12
JDM thJC C
http://store.iiic.cc/
IRG4PC50UD
www.irf.com 5
Fig. 9 - Typical Switching Losses vs. Gate
Resistance Fig. 10 - Typical Switching Losses vs.
Junction Temperature
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
4
8
12
16
20
0 40 80 120 160 200
GE
V , Gate-to-Emitter Voltage (V)
g
Q , Total Gate Char
g
e
(
nC
)
A
V = 400V
I = 27A
CE
C
1.0
1.5
2.0
2.5
3.0
0 102030405060
G
T ota l Sw itching Losses (mJ)
A
R , Gate Resistance (
)
V = 480 V
V = 15V
T = 25°C
I = 2 7 A
CC
GE
J
C
0.1
1
10
-60 -40 -20 0 20 40 60 80 100 120 140 160
Total Switching Losses (mJ)
A
T , Junction Temperature
(
°C
)
J
R = 5.0
V = 15V
V = 480V
I = 54A
I = 27A
I = 14A
G
GE
CC
C
C
C
0
2000
4000
6000
8000
1 10 100
CE
C, Capacitance (pF)
V , C o llecto r-to -E m itter V o lta
g
e
(
V
)
A
V = 0 V , f = 1 MH z
C = C + C , C S H OR T E D
C = C
C = C + C
C
ies
C
res
C
oes
GE
ie s g e g c c e
re s g c
o e s c e g c
http://store.iiic.cc/
IRG4PC50UD
6www.irf.com
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current Fig. 12 - Turn-Off SOA
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1
10
100
0.6 1.0 1.4 1.8 2.2 2.6
FM
F
Instantaneou s Forwa rd C urrent - I (A )
Forward Volta
g
e D ro p - V
(
V
)
T = 1 50 °C
T = 1 25 °C
T = 25 °C
J
J
J
1
10
100
1000
1 10 100 1000
C
CE
GE
V , C o lle ctor-to -E mitte r Vo lta g e (V )
I , Col l ector-t o-Emi t ter Current ( A)
SA FE O PERATING AR EA
V = 2 0V
T = 125°C
GE
J
0.0
2.0
4.0
6.0
8.0
0 102030405060
C
Total Sw itching Losses (m J)
I , Co lle c to r-to -E mitter Cu rre n t (A)
A
R = 5.0
T = 1 50°C
V = 480V
V = 1 5V
G
J
CC
GE
http://store.iiic.cc/
IRG4PC50UD
www.irf.com 7
Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di(rec)M/dt vs. dif/dt
0
300
600
900
1200
1500
100 1000
f
di /dt -
(
A/
µ
s
)
RR
Q - (n C )
I = 10 A
I = 2 5 A
I = 5 0A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
100
1000
10000
100 1000
f
d i /d t -
(
A/
µ
s
)
di(rec)M/dt - (A/µs)
I = 5 0 A
I = 25 A
I = 10 A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
1
10
100
100 1000
f
di /dt -
(
A/
µ
s
)
I - (A)
IRRM
I = 10 A
I = 2 5 A
I = 5 0A
F
F
F
V = 200V
T = 125 °C
T = 25°C
R
J
J
20
40
60
80
100
120
140
100 1000
f
di /dt -
(
A/
µ
s
)
t - (ns)
rr
I = 50A
I = 25A
I = 10A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
http://store.iiic.cc/
IRG4PC50UD
8www.irf.com
t1
Ic
Vce
t1 t2
90% Ic
10% V ce
td(off) tf
Ic
5% Ic
t1+5µS
Vce ic dt
90% V ge
+Vge
Eoff =
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
Vce ie dt
t2
t1
5% V ce
Ic
Ipk
Vcc 10% Ic
Vce
t1 t2
DUT VOLTAGE
AN D CURRE NT
GATE VO LTAGE D.U.T.
+Vg
10% +Vg
90% Ic
tr
td(on)
DIO DE REVE RSE
RECO VERY ENERG Y
tx
E on =
Erec = t4
t3
Vd id dt
t4
t3
DIO DE RECOVERY
WAVEFORMS
Ic
Vpk
10% V cc
Irr
10% Irr Vcc
trr
Qrr = trr
tx
id d t
Same typ e
device as
D.U.T.
D.U.T.
430µF
80%
of Vce
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
http://store.iiic.cc/
IRG4PC50UD
www.irf.com 9
Vg GATE SIG NAL
DEVICE U NDE R T EST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CUR REN T IN D1
t0 t1 t2
D.U.T.
V *
c
50V
L
1000V
6000µF
100 V
Figure 19. Clamped Inductive Load Test
Circuit
Figure 20. Pulsed Collector Current
Test Circuit
RL=480V
4 X IC @25°C
0 - 480V
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
http://store.iiic.cc/
IRG4PC50UD
10 www.irf.com
D imen sion s in Millimeters and (Inches)
CONF O RMS TO JEDE C OUTLINE TO -247AC
(
TO-3P
)
- D -
5.30 (.209)
4.70 (.185)
3.65 (.143)
3.55 (.140)
2.50 (.089)
1.50 (.059)
4
3X 0.80 (.031)
0.40 (.016)
2.60 (.102)
2.20 (.087)
3.40 (.133)
3.00 (.118)
3X
0.25 (.010)
M
C
A
S
4.30 (.170)
3.70 (.145)
- C -
2X
5.50 (.217)
4.50 (.177)
5.50 (.2 17)
0.25 (.01 0)
1.40 (.056)
1.00 (.039)
D
M
M
B
- A -
15.90 (.626)
15.30 (.602)
- B -
123
20.30 (.800)
19.70 (.775)
14.80 (.58 3)
14.20 (.55 9)
2.40 (.094)
2.00 (.079)
2X
2X
5.45 (.215)
*
NOTES:
1 DIME NSIONS & T OLE RANCIN G
P E R AN SI Y 14 .5 M, 1 98 2 .
2 C O NT RO L L IN G DIM E NS IO N : IN C H .
3 D IM ENS IO N S ARE S H OWN
M IL LIM E TE R S (INCHE S ).
4 C O NF OR MS T O J E D E C OU T L IN E
T O -2 4 7A C .
LEAD ASS IG NME NTS
1 - G A TE
2 - C O L L E C T OR
3 - E M IT TE R
4 - C O L L E C T OR
*
LON G ER LE A D E D (2 0mm)
VER SION AVAILABLE (TO-247AD)
TO OR DER ADD "-E" SUFFIX
TO PAR T NUM BER
Case Outline TO-247AC
Notes:
QRepetitive rating: VGE = 20V; pulse width limited by maximum junction temperature
(figure 20)
RVCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0 (figure 19)
SPulse width 80µs; duty factor 0.1%.
TPulse width 5.0µs, single shot.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 12/00
http://store.iiic.cc/
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
http://store.iiic.cc/