© Semiconductor Components Industries, LLC, 2012
February, 2012 Rev. 3
1Publication Order Number:
NCP4626/D
NCP4626
300 mA, Low Dropout
Voltage Regulator with
Reverse Current Protection
The NCP4626 is a CMOS 300 mA low dropout linear regulator with
a wide input voltage range of 3.5 V to 16 V, low supply current and
high output voltage accuracy. Through an ECO mode selector pin the
device can be operated in low power mode to reduce quiescent current
or fast mode for better transient response and lower dropout. The
NCP4626 is suitable for applications where the VOUT pin voltage
may be higher than the VIN pin voltage as it is protected against
reverse current. The device has a maximum input voltage tolerance of
18 V, comes with or without an autodischarge feature on the output,
and is available in a choice of XDFN, SOT89 and SOT23 packages.
Features
Operating Input Voltage Range: 3.5 V to 16.0 V
Output Voltage Range: 2.0 to 15.0 V (available in 0.1 V steps)
Low Quiescent current (6 uA typ.) in Low Power Mode
Dropout Voltage:
550 mV typ. (IOUT = 300 mA, VOUT = 5 V, Fast Mode)
700 mV typ. (IOUT = 300 mA, VOUT = 5 V, Low Power Mode)
Output Voltage Accuracy: ±1.5% (Fast Mode)
±2.5% (Low Power Mode)
High PSRR: 60 dB at 1 kHz
Current Fold Back Protection
Thermal Shutdown Protection
Stable with a CIN = 2.2 mF and COUT = 4.7 mF Ceramic Capacitors
Available in 1.6x1.6 XDFN6, SOT895 and SOT235 Package
These are PbFree Devices
Typical Applications
Digital Home Appliances
Audio Visual Equipment
Battery backup circuits
VIN VOUT
CE
GND
C1 C2
2m2
VIN VOUT
NCP4626x
AE
4m7
Figure 1. Typical Application Schematic
http://onsemi.com
See detailed ordering and shipping information in the package
dimensions section on page 25 of this data sheet.
ORDERING INFORMATION
XDFN6
CASE 711AC
XXX, XXXX = Specific Device Code
M, MM = Date Code
A = Assembly Location
Y = Year
W = Work Week
G= PbFree Package
MARKING
DIAGRAMS
(*Note: Microdot may be in either location)
SOT89 5
CASE 528AB
SOT235
CASE 1212
XXX
XMM
1
1
6
XXX
XMM
1
XXXMM
1
NCP4626
http://onsemi.com
2
NCP4626Hxxxxxxxx NCP4626Dxxxxxxxx
Figure 2. Simplified Schematic Block Diagram
Short
Protection
Vref
VIN
CE
GND
VOUT
ECO
Peak
Current
Protection
Reverse
Detector
Thermal Shutdown
Short
Protection
Vref
VIN
CE
GND
VOUT
ECO
Peak
Current
Protection
Reverse
Detector
Thermal Shutdown
PIN FUNCTION DESCRIPTION
Pin No.
XDFN
(Note 1)
Pin No.
SOT89
Pin No.
SOT23 Pin Name Description
1 4 1 ECO Mode selector pin. H – fast mode, L – low power mode
3 5 5 VIN Input voltage pin
4 1 4 VOUT Output voltage pin
5 2 2 GND Ground pin
6 3 3 CE Chip enable pin ( “H” enabled)
2 NC No connection
1. Tab is connected to GND. Tab should be connected to GND, but leaving it unconnected is also acceptable
NCP4626
http://onsemi.com
3
ABSOLUTE MAXIMUM RATINGS
Rating Symbol Value Unit
Input Voltage (Note 2) VIN 0.3 to 18.0 V
Output Voltage VOUT 0.3 to 18.0 V
Chip Enable Input VCE 0.3 to 18.0 V
Mode Selector Input VECO 0.3 to VIN + 0.3 18.0 V
Output Current IOUT 400 mA
Power Dissipation XDFN PD640 mW
Power Dissipation SOT89 900
Power Dissipation SOT23 420
Maximum Junction Temperature TJ(MAX) 150 °C
Operation Temperature Rnage TA40 to 85 °C
Storage Temperature TSTG 55 to 125 °C
ESD Capability, Human Body Model (Note 3) ESDHBM 2000 V
ESD Capability, Machine Model (Note 3) ESDMM 200 V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
2. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
3. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Characteristics, XDFN6
Thermal Resistance, JunctiontoAir
RqJA 156 °C/W
Thermal Characteristics, SOT235
Thermal Resistance, JunctiontoAir
RqJA 238 °C/W
Thermal Characteristics, SOT895
Thermal Resistance, JunctiontoAir
RqJA 111 °C/W
ELECTRICAL CHARACTERISTICS 40°C TA 85°C; VIN = VCE = VOUT(NOM) + 3.0 V; IOUT = 1 mA, CIN = 2.2 mF, COUT = 4.7 mF,
unless otherwise noted. Typical values are at TA = +25°C
Parameter Test Conditions Symbol Min Typ Max Unit
Operating Input Voltage 2.0 V VOUT < 3.0 V VIN 3.5 14.0 V
3.0 V VOUT 16.0
Output Voltage Fast Mode, VECO = VIN TA = +25 °CVOUT x0.985 x1.015 V
TA = 40 to 85°C x0.970 x1.030
Low Power Mode,
VECO = VIN
TA = +25 °C x0.975 x1.025
TA = 40 to 85°C x0.960 x1.040
Output Voltage Deviation Fast mode to Low Power mode and back DVOUT 1.5 0 1.5 %
Output Voltage Temp.
Coefficient
TA = 40 to 85°C±80 ppm/°C
Line Regulation VIN = VOUT + 0.5 V to 16 V
(If VOUT <3.0 V, 3.5 V to 14 V)
LineReg 0.02 0.10 %/V
NCP4626
http://onsemi.com
4
ELECTRICAL CHARACTERISTICS 40°C TA 85°C; VIN = VCE = VOUT(NOM) + 3.0 V; IOUT = 1 mA, CIN = 2.2 mF, COUT = 4.7 mF,
unless otherwise noted. Typical values are at TA = +25°C
Parameter UnitMaxTypMinSymbolTest Conditions
Load Regulation IOUT = 1 mA to 300 mA Fast Mode, VECO = VIN LoadReg 50 120 mV
Low Power, VECO =
GND
60 130
Dropout Voltage IOUT = 300 mA, Fast
Mode, VECO = VIN
2.0 V VOUT < 2.5 V VDO 1.20 1.80 V
2.5 V VOUT < 3.3 V 1.00 1.50
3.3 V VOUT < 5.0 V 0.75 1.00
5.0 V VOUT < 12.0 V 0.55 0.75
12.0 V VOUT 0.40 0.60
IOUT = 300 mA, Low
Power Mode, VECO =
GND
2.0 V VOUT < 2.5 V 2.50 3.00
2.5 V VOUT < 3.3 V 2.00 2.50
3.3 V VOUT < 5.0 V 1.50 1.80
5.0 V VOUT < 12.0 V 0.70 1.00
12.0 V VOUT 0.40 0.60
Output Current IOUT 300 mA
Short Current Limit VOUT = 0 V ISC 50 mA
Quiescent Current VECO = VIN, IOUT = 0 mA IQ50 100 mA
VECO = GND, IOUT = 0 mA 6 15
Standby Current VIN = 16.0 V
(If VOUT < 3.0 V, VIN = 14.0 V), TA = 25°C
ISTB 0.1 1 mA
CE and ECO Pin Threshold
Voltage
CE Input Voltage “H” VCEH 1.6 VIN V
CE Input Voltage “L” VCEL 0 0.6
Power Supply Rejection Ratio VIN = VECO = VOUT +
1.0 V, DVIN= 0.2 VPP
, f
= 1 kHz
2.0 V VOUT < 5.0 V PSRR 70 dB
5.0 V VOUT 60
Output Noise Voltage VIN = 6.0 V, VOUT = 3.0 V, IOUT = 30 mA,
f = 10 Hz to 100 kHz
VN90 mVrms
Thermal Shutdown Temperature TSD 150 °C
Thermal Shutdown Release
Temperature
TSDR 130 °C
Reverse Current VOUT > 0.6 V, 0 V VIN 16 V IREV 0 0.1 mA
Low Output Nch Tr. On
Resistance
D Version only, VIN = 5 V, VCE = 0 V, VOUT =
0.3 V
RLOW 150 W
NCP4626
http://onsemi.com
5
TYPICAL CHARACTERISTICS
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 100 200 300 400 500 600 700
Figure 3. Output Voltage vs. Output Current
3.0 V, ECO = L
IOUT (mA)
VOUT (V)
VIN = 4.5 V
4.8 V
5.0 V
5.5 V
6.0 V
Figure 4. Output Voltage vs. Output Current
3.0 V, ECO = H
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 100 200 300 400 500 600 700
VOUT (V)
IOUT (mA)
VIN = 4.5 V
5.0 V
5.5 V
6.0 V 4.8 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 100 200 300 400 500 600 700
Figure 5. Output Voltage vs. Output Current
3.3 V, ECO = L
VOUT (V)
IOUT (mA)
5.0 V
5.5 V
6.0 V
6.5 V
VIN = 4.8 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 100 200 300 400 500 600 700
IOUT (mA)
VOUT (V)
Figure 6. Output Voltage vs. Output Current
3.3 V, ECO = H
5.0 V
5.5 V
6.0 V
6.5 V
VIN = 4.8 V
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0 100 200 300 400 500 600 700
Figure 7. Output Voltage vs. Output Current
5.0 V, ECO = L
VOUT (V)
IOUT (mA)
7.0 V 5.5 V
6.0 V
VIN = 5.7 V
8.0 V
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0 100 200 300 400 500 600 700
IOUT (mA)
VOUT (V)
Figure 8. Output Voltage vs. Output Current
5.0 V, ECO = H
7.0 V
5.5 V
6.0 V
VIN = 5.7 V
8.0 V
NCP4626
http://onsemi.com
6
TYPICAL CHARACTERISTICS
0.0
0.3
0.6
0.9
1.2
1.5
0 50 100 150 200 250 300
VDO (V)
TJ = 85°C
25°C
40°C
IOUT (mA)
Figure 9. Dropout Voltage vs. Output Current
3.0 V Version, ECO = L
0.0
0.3
0.6
0.9
1.2
1.5
0 50 100 150 200 250 300
VDO (V)
IOUT (mA)
Figure 10. Dropout Voltage vs. Output Current
3.0 V Version, ECO = H
TJ = 85°C
25°C
40°C
0.0
0.3
0.6
0.9
1.2
1.5
0 50 100 150 200 250 300
VDO (V)
IOUT (mA)
Figure 11. Dropout Voltage vs. Output Current
3.3 V Version, ECO = L
TJ = 85°C
25°C
40°C
0.0
0.3
0.6
0.9
1.2
1.5
0 50 100 150 200 250 300
VDO (V)
IOUT (mA)
Figure 12. Dropout Voltage vs. Output Current
3.3 V Version, ECO = H
TJ = 85°C
25°C
40°C
0.0
0.2
0.4
0.6
0.8
1.0
0 50 100 150 200 250 300
VDO (V)
IOUT (mA)
Figure 13. Dropout Voltage vs. Output Current
5.0 V Version, ECO = L
TJ = 85°C
25°C
40°C
0.0
0.2
0.4
0.6
0.8
1.0
0 50 100 150 200 250 300
VDO (V)
IOUT (mA)
Figure 14. Dropout Voltage vs. Output Current
5.0 V Version, ECO = H
TJ = 85°C
25°C
40°C
NCP4626
http://onsemi.com
7
TYPICAL CHARACTERISTICS
2.95
2.96
2.97
2.98
2.99
3.00
3.01
3.02
3.03
3.04
3.05
40 200 20406080
TJ, JUNCTION TEMPERATURE (°C)
VOUT (V)
Figure 15. Output Voltage vs. Temperature,
3.0 V Version, ECO = L
VIN = 6.0 V
IOUT = 1 mA
2.95
2.96
2.97
2.98
2.99
3.00
3.01
3.02
3.03
3.04
3.05
TJ, JUNCTION TEMPERATURE (°C)
VOUT (V)
Figure 16. Output Voltage vs. Temperature,
3.0 V Version, ECO = H
VIN = 6.0 V
IOUT = 1 mA
40 200 20406080
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
40 200 20406080
TJ, JUNCTION TEMPERATURE (°C)
VOUT (V)
Figure 17. Output Voltage vs. Temperature,
3.3 V Version, ECO = L
VIN = 6.3 V
IOUT = 1 mA
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
TJ, JUNCTION TEMPERATURE (°C)
VOUT (V)
Figure 18. Output Voltage vs. Temperature,
3.3 V Version, ECO = H
VIN = 6.3 V
IOUT = 1 mA
40 200 20406080
4.95
4.96
4.97
4.98
4.99
5.00
5.01
5.02
5.03
5.04
5.05
TJ, JUNCTION TEMPERATURE (°C)
VOUT (V)
Figure 19. Output Voltage vs. Temperature,
5.0 V Version, ECO = L
VIN = 8.0 V
IOUT = 1 mA
40 200 20406080 4.95
4.96
4.97
4.98
4.99
5.00
5.01
5.02
5.03
5.04
5.05
TJ, JUNCTION TEMPERATURE (°C)
VOUT (V)
Figure 20. Output Voltage vs. Temperature,
5.0 V Version, ECO = H
40 200 20406080
VIN = 8.0 V
IOUT = 1 mA
NCP4626
http://onsemi.com
8
TYPICAL CHARACTERISTICS
0
1
2
3
4
5
6
7
8
9
10
0246810121416
IGND (mA)
VIN, INPUT VOLTAGE (V)
Figure 21. Supply Current vs. Input Voltage,
3.0 V Version, ECO = L
0
10
20
30
40
50
60
70
0246810121416
VIN, INPUT VOLTAGE (V)
Figure 22. Supply Current vs. Input Voltage,
3.0 V Version, ECO = H
IGND (mA)
0
1
2
3
4
5
6
7
8
9
10
0246810121416
IGND (mA)
VIN, INPUT VOLTAGE (V)
Figure 23. Supply Current vs. Input Voltage,
3.3 V Version, ECO = L
0
10
20
30
40
50
60
70
0246810121416
VIN, INPUT VOLTAGE (V)
Figure 24. Supply Current vs. Input Voltage,
3.3 V Version, ECO = H
IGND (mA)
0
1
2
3
4
5
6
7
8
9
10
0246810121416
IGND (mA)
VIN, INPUT VOLTAGE (V)
Figure 25. Supply Current vs. Input Voltage,
5.0 V Version, ECO = L
0
10
20
30
40
50
60
70
0246810121416
VIN, INPUT VOLTAGE (V)
Figure 26. Supply Current vs. Input Voltage,
5.0 V Version, ECO = H
IGND (mA)
NCP4626
http://onsemi.com
9
TYPICAL CHARACTERISTICS
0
1
2
3
4
5
6
7
8
9
10
IGND (mA)
TJ, JUNCTION TEMPERATURE (°C)
Figure 27. Supply Current vs. Temperature,
3.0 V Version, ECO = L
VIN = 6.0 V
40 20 0 20 40 60 80
0
10
20
30
40
50
60
70
40 200 20406080
TJ, JUNCTION TEMPERATURE (°C)
Figure 28. Supply Current vs. Temperature,
3.0 V Version, ECO = H
IGND (mA)
VIN = 6.0 V
0
1
2
3
4
5
6
7
8
9
10
IGND (mA)
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Supply Current vs. Temperature,
3.3 V Version, ECO = L
VIN = 6.3 V
40 20 0 20 40 60 80
0
10
20
30
40
50
60
70
TJ, JUNCTION TEMPERATURE (°C)
Figure 30. Supply Current vs. Temperature,
3.3 V Version, ECO = H
IGND (mA)
VIN = 6.3 V
0
1
2
3
4
5
6
7
8
9
10
IGND (mA)
TJ, JUNCTION TEMPERATURE (°C)
Figure 31. Supply Current vs. Temperature,
5.0 V Version, ECO = L
VIN = 8.0 V
40 20 0 20 40 60 80
40 20 0 20 40 60 80
0
10
20
30
40
50
60
70
TJ, JUNCTION TEMPERATURE (°C)
Figure 32. Supply Current vs. Temperature,
5.0 V Version, ECO = H
IGND (mA)
VIN = 8.0 V
40 20 0 20 40 60 80
NCP4626
http://onsemi.com
10
TYPICAL CHARACTERISTICS
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0246810121416
VIN, INPUT VOLTAGE (V)
IOUT = 50 mA
30 mA
1 mA
Figure 33. Output Voltage vs. Input Voltage,
3.0 V Version, ECO = L
VOUT (V)
0 mA
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0246810121416
VIN, INPUT VOLTAGE (V)
Figure 34. Output Voltage vs. Input Voltage,
3.0 V Version, ECO = H
VOUT (V)
IOUT = 50 mA
30 mA
1 mA
0 mA
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 2 4 6 8 10 12 14 16
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
IOUT = 50 mA
30 mA
1 mA
0 mA
VIN, INPUT VOLTAGE (V)
Figure 35. Output Voltage vs. Input Voltage,
3.3 V Version, ECO = L
VOUT (V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0246810121416
VIN, INPUT VOLTAGE (V)
Figure 36. Output Voltage vs. Input Voltage,
3.3 V Version, ECO = H
VOUT (V)
IOUT = 50 mA
30 mA
1 mA
0 mA
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0246810121416
VIN, INPUT VOLTAGE (V)
Figure 37. Output Voltage vs. Input Voltage,
5.0 V Version, ECO = L
VOUT (V)
IOUT = 50 mA
30 mA
1 mA
0 mA
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0246810121416
VIN, INPUT VOLTAGE (V)
Figure 38. Output Voltage vs. Input Voltage,
5.0 V Version, ECO = H
VOUT (V)
IOUT = 50 mA
30 mA
1 mA
0 mA
NCP4626
http://onsemi.com
11
TYPICAL CHARACTERISTICS
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Figure 39. PSRR, 3.0 V Version, VIN = 6.0 V,
ECO = L
PSRR (dB)
FREQUENCY (kHz)
IOUT = 1 mA
30 mA
150 mA
300 mA
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Figure 40. PSRR, 3.0 V Version, VIN = 6.0 V,
ECO = H
PSRR (dB)
FREQUENCY (kHz)
IOUT = 1 mA
30 mA
150 mA
300 mA
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Figure 41. PSRR, 3.3 V Version, VIN = 6.3 V,
ECO = L
PSRR (dB)
FREQUENCY (kHz)
IOUT = 1 mA
30 mA
150 mA
300 mA
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Figure 42. PSRR, 3.3 V Version, VIN = 6.3 V,
ECO = H
PSRR (dB)
FREQUENCY (kHz)
IOUT = 1 mA
30 mA
150 mA
300 mA
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Figure 43. PSRR, 5.0 V Version, VIN = 8.0 V,
ECO = L
PSRR (dB)
FREQUENCY (kHz)
IOUT = 1 mA
30 mA
150 mA
300 mA
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Figure 44. PSRR, 5.0 V Version, VIN = 8.0 V,
ECO = H
PSRR (dB)
FREQUENCY (kHz)
IOUT = 1 mA
30 mA
150 mA
300 mA
NCP4626
http://onsemi.com
12
TYPICAL CHARACTERISTICS
Figure 45. Output Voltage Noise, 3.0 V Version,
VIN = 6.0 V, IOUT = 30 mA, ECO = L
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
0.01 0.1 1 10 100 1000
VN (mVrms/Hz)
FREQUENCY (kHz)
Figure 46. Output Voltage Noise, 3.0 V Version,
VIN = 6.0 V, IOUT = 30 mA, ECO = H
0
2.0
4.0
6.0
8.0
10
12
14
0.01 0.1 1 10 100 1000
VN (mVrms/Hz)
FREQUENCY (kHz)
Figure 47. Output Voltage Noise, 3.3 V version,
VIN = 6.3 V, IOUT = 30 mA, ECO = L
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
0.01 0.1 1 10 100 1000
VN (mVrms/Hz)
FREQUENCY (kHz)
Figure 48. Output Voltage Noise, 3.3 V Version,
VIN = 6.3 V, IOUT = 30 mA, ECO = H
0
2.0
4.0
6.0
8.0
10
12
14
0.01 0.1 1 10 100 1000
VN (mVrms/Hz)
FREQUENCY (kHz)
Figure 49. Output Voltage Noise, 5.0 V Version,
VIN = 8.0 V, IOUT = 30 mA, ECO = L
0
2.0
4.0
6.0
8.0
10
12
14
0.01 0.1 1 10 100 1000
VN (mVrms/Hz)
FREQUENCY (kHz)
Figure 50. Output Voltage Noise, 5.0 V Version,
VIN = 8.0 V, IOUT = 30 mA, ECO = H
0
2.0
4.0
6.0
8.0
10
12
14
0.01 0.1 1 10 100 1000
VN (mVrms/Hz)
FREQUENCY (kHz)
NCP4626
http://onsemi.com
13
TYPICAL CHARACTERISTICS
Figure 51. Line Transients, 3.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = L
2.85
2.90
2.95
3.00
3.05
3.10
3.15
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
5.0
5.5
6.0
6.5
VOUT (V)
t (ms)
VIN (V)
Figure 52. Line Transients, 3.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = H
2.985
2.990
2.995
3.000
3.005
3.010
0 40 80 120 160 200 240 280 320 360 400
5.0
5.5
6.0
6.5
VOUT (V)
t (ms)
VIN (V)
Figure 53. Line Transients, 3.3 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = L
3.15
3.20
3.25
3.30
3.35
3.40
3.45
5.3
5.8
6.3
6.8
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
VOUT (V)
t (ms)
VIN (V)
NCP4626
http://onsemi.com
14
TYPICAL CHARACTERISTICS
Figure 54. Line Transients, 3.3 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = H
3.285
3.290
3.295
3.300
3.305
3.310
0 40 80 120 160 200 240 280 320 360 400
5.3
5.8
6.3
6.8
VOUT (V)
t (ms)
VIN (V)
Figure 55. Line Transients, 5.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = L
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
4.85
4.90
4.95
5.00
5.05
5.10
5.15
7.0
7.5
8.0
8.5
VOUT (V)
t (ms)
VIN (V)
Figure 56. Line Transients, 5.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA, ECO = H
4.985
4.990
4.995
5.000
5.005
5.010
0 40 80 120 160 200 240 280 320 360 400
7.0
7.5
8.0
8.5
VOUT (V)
t (ms)
VIN (V)
NCP4626
http://onsemi.com
15
TYPICAL CHARACTERISTICS
Figure 57. Load Transients, 3.0 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = L
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
VOUT (V)
t (ms)
IOUT (mA)
2.7
2.8
2.9
3.0
3.1
3.2
0
15
30
45
Figure 58. Load Transients, 3.0 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = H
2.97
2.98
2.99
3.00
3.01
3.02
0 40 80 120 160 200 240 280 320 360 400
0
15
30
45
VOUT (V)
t (ms)
IOUT (mA)
Figure 59. Load transients, 3.3 V version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = L
3.0
3.1
3.2
3.3
3.4
3.5
0
15
30
45
VOUT (V)
t (ms)
IOUT (mA)
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
NCP4626
http://onsemi.com
16
TYPICAL CHARACTERISTICS
Figure 60. Load Transients, 3.3 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = H
3.27
3.28
3.29
3.30
3.31
3.32
0 40 80 120 160 200 240 280 320 360 400
0
15
30
45
VOUT (V)
t (ms)
IOUT (mA)
Figure 61. Load Transients, 5.0 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = L
4.7
4.8
4.9
5.0
5.1
5.2
0
15
30
45
VOUT (V)
t (ms)
IOUT (mA)
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Figure 62. Load Transients, 5.0 V Version,
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = H
4.97
4.98
4.99
5.00
5.01
5.02
0 40 80 120 160 200 240 280 320 360 400
0
15
30
45
VOUT (V)
t (ms)
IOUT (mA)
NCP4626
http://onsemi.com
17
TYPICAL CHARACTERISTICS
Figure 63. Load Transients, 3.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = L
2.7
2.8
2.9
3.0
3.1
3.2
0
50
100
150
VOUT (V)
t (ms)
IOUT (mA)
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Figure 64. Load Transients, 3.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = H
2.97
2.98
2.99
3.00
3.01
3.02
0 40 80 120 160 200 240 280 320 360 400
0
50
100
150
VOUT (V)
t (ms)
IOUT (mA)
Figure 65. Load Transients, 3.3 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = L
3.0
3.1
3.2
3.3
3.4
3.5
0
50
100
150
VOUT (V)
t (ms)
IOUT (mA)
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
NCP4626
http://onsemi.com
18
TYPICAL CHARACTERISTICS
Figure 66. Load Transients, 3.3 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = H
3.28
3.28
3.29
3.30
3.31
3.32
0 40 80 120 160 200 240 280 320 360 400
0
50
100
150
VOUT (V)
t (ms)
IOUT (mA)
Figure 67. Load Transients, 5.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = L
4.7
4.8
4.9
5.0
5.1
5.2
0
50
100
150
VOUT (V)
t (ms)
IOUT (mA)
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Figure 68. Load Transients, 5.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = H
4.97
4.98
4.99
5.00
5.01
5.02
0 40 80 120 160 200 240 280 320 360 400
0
50
100
150
VOUT (V)
t (ms)
IOUT (mA)
NCP4626
http://onsemi.com
19
TYPICAL CHARACTERISTICS
Figure 69. Load Transients, 3.0 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = L
1.5
2.0
2.5
3.0
3.5
4.0
4.5
012345678910
0
150
300
450
VOUT (V)
t (ms)
IOUT (mA)
Figure 70. Load Transients, 3.0 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.0 V,
ECO = H
2.9
2.9
3.0
3.0
3.1
3.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
150
300
450
VOUT (V)
t (ms)
IOUT (mA)
Figure 71. Load Transients, 3.3 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = L
1.8
2.3
2.8
3.3
3.8
4.3
4.8
012345678910
0
150
300
450
VOUT (V)
t (ms)
IOUT (mA)
NCP4626
http://onsemi.com
20
TYPICAL CHARACTERISTICS
Figure 72. Load Transients, 3.3 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.3 V,
ECO = H
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
VOUT (V)
t (ms)
IOUT (mA)
3.15
3.20
3.25
3.30
3.35
3.40
0
150
300
450
Figure 73. Load Transients, 5.0 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = L
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
012345678910
0
150
300
450
VOUT (V)
t (ms)
IOUT (mA)
Figure 74. Load Transients, 5.0 V Version,
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 8.0 V,
ECO = H
4.85
4.90
4.95
5.00
5.05
5.10
0
150
300
450
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
VOUT (V)
t (ms)
IOUT (mA)
NCP4626
http://onsemi.com
21
TYPICAL CHARACTERISTICS
Figure 75. Startup, 3.0 V Version, VIN = 6.0 V,
ECO = L
1
0
1
2
3
4
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
0
3
6
9
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mA
IOUT = 30 mA
Chip Enable
Figure 76. Startup, 3.0 V Version, VIN = 6.0 V,
ECO = H
1
0
1
2
3
4
0 20 40 60 80 100 120 140 160 180 200
0
3
6
9
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mA
IOUT = 30 mA
Chip Enable
Figure 77. Startup, 3.3 V Version, VIN = 6.3 V,
ECO = L
1
0
1
2
3
4
0.00
3.15
6.30
9.45
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mA
IOUT = 30 mA
Chip Enable
NCP4626
http://onsemi.com
22
TYPICAL CHARACTERISTICS
Figure 78. Startup, 3.3 V Version, VIN = 6.3 V,
ECO = H
1
0
1
2
3
4
0 20 40 60 80 100 120 140 160 180 200
0.00
3.15
6.30
9.45
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mA
IOUT = 30 mA
Chip Enable
Figure 79. Start-up, 5.0 V Version, VIN = 8.0 V,
ECO = L
1
0
1
2
3
4
5
0
4
8
12
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mA
IOUT = 30 mA
Chip Enable
Figure 80. Start-up, 5.0 V Version, VIN = 8.0 V,
ECO = H
1
0
1
2
3
4
5
0 20 40 60 80 100 120 140 160 180 200
0
4
8
12
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mA
IOUT = 30 mA
Chip Enable
NCP4626
http://onsemi.com
23
TYPICAL CHARACTERISTICS
Figure 81. Shutdown, 3.0 V Version D,
VIN = 6.0 V
1
0
1
2
3
4
0
3
6
9
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mAIOUT = 30 mA
Chip Enable
Figure 82. Shutdown, 3.3 V Version D,
VIN = 6.3 V
1
0
1
2
3
4
0.00
3.15
6.30
9.45
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mA
IOUT = 30 mA
Chip Enable
Figure 83. Shutdown, 5.0 V Version D,
VIN = 8.0 V
1
0
1
2
3
4
5
0
4
8
12
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
VOUT (V)
t (ms)
VCE (V)
IOUT = 150 mA
IOUT = 1 mA
IOUT = 30 mA
Chip Enable
NCP4626
http://onsemi.com
24
APPLICATION INFORMATION
A typical application circuit for NCP4626 series is shown
in Figure 84.
VIN VOUT
CE
GND
C1 C2
2m2
VIN VOUT
NCP4626x
AE
4m7
Figure 84. Typical Application Schematic
Input Decoupling Capacitor (C1)
A 2.2 mF (or larger) ceramic input decoupling capacitor
should be connected as close as possible to the input and
ground pin of the NCP4626. Higher capacitor values and
lower ESR improves line transient response.
Output Decoupling Capacitor (C2)
A 4.7 mF (or larger) ceramic output decoupling capacitor
is sufficient to achieve stable operation of the IC. It is
necessary to use a capacitor with good frequency
characteristics and low ESR. The capacitor should be
connected as close as possible to the output and ground pins.
Larger capacitor values and lower ESR improves dynamic
parameters.
Enable Operation
The enable pin CE may be used to turn the regulator on and
off. The IC is switched on when a high level voltage is
applied to the CE pin. The enable pin has an internal pull
down resistor. If the enable function is not needed, connect
the CE pin to VIN.
Output Discharger
The D version of the NCP4626 includes a transistor
between VOUT and GND that is used for faster discharging
of the output capacitor. This function is activated when the
IC goes into disable mode.
Current Limit
This regulator includes fold-back type current limit
circuit. This type of protection doesn’t limit current up to
current capability in normal operation, but when over
current occurs, output voltage and current decrease until
over current condition ends. Typical characteristics of this
protection type can be observed in the Output Voltage versus
Output Current graphs shown in the typical characteristics
chapter of this datasheet.
ECO Function
The IC can be switched between two modes by ECO pin.
One mode is low power mode, where IC’s self current
consumption is low, but IC has slower dynamic behavior or
in to fast mode, where current consumption is higher, but the
IC has better dynamic response and lower dropout voltage.
Do not leave the ECO pin unconnected or between VCEH
and VCEL voltage levels as this may cause indefinite and
unexpected currents flows internally.
Thermal Considerations
As power across the IC increases, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and the ambient temperature
effect the rate of temperature rise for the part. That is to say,
when the device has good thermal conductivity through the
PCB, the junction temperature will be relatively low with
high power dissipation applications.
The IC includes internal thermal shutdown circuit that
stops the regulator operating if the junction temperature is
higher than 150°C. After shutdown, when the junction
temperature decreases below 130°C, the voltage regulator
would restarts. As long as the high power dissipation
condition exists, the regulator will start and stop repeatedly
to protect itself against overheating. Care should be taken in
the PCB layout to try to avoid this temperature cycling
condition.
PCB Layout
Make the VIN and GND lines as large as possible. If their
impedance is high, noise pickup or unstable operation may
result. Connect capacitors C1 and C2 as close as possible to
the IC, and make wiring as short as possible. The tab under
the XDFN package is internally connected to GND: it is best
practice to connect it to GND on the PCB, but leaving it
unconnected is also acceptable.
NCP4626
http://onsemi.com
25
ORDERING INFORMATION
Device
Nominal Output
Voltage Description Marking Package Shipping
NCP4626DSN030T1G 3.0 V Auto discharge 630 SOT23
(PbFree)
3000 / Tape & Reel
NCP4626DSN033T1G 3.3 V Auto discharge 633 SOT23
(PbFree)
3000 / Tape & Reel
NCP4626DSN045T1G 4.5 V Auto discharge 645 SOT23
(PbFree)
3000 / Tape & Reel
NCP4626DSN050T1G 5.0 V Auto discharge 650 SOT23
(PbFree)
3000 / Tape & Reel
NCP4626HSN030T1G 3.0 V Standard 430 SOT23
(PbFree)
3000 / Tape & Reel
NCP4626HSN033T1G 3.3 V Standard 433 SOT23
(PbFree)
3000 / Tape & Reel
NCP4626HSN045T1G 4.5 V Standard 445 SOT23
(PbFree)
3000 / Tape & Reel
NCP4626HSN050T1G 5.0 V Standard 450 SOT23
(PbFree)
3000 / Tape & Reel
NCP4626DMX030TCG 3.0 V Auto discharge CH11 XDFN
(PbFree)
5000 / Tape & Reel
NCP4626DMX033TCG 3.3 V Auto discharge CH14 XDFN
(PbFree)
5000 / Tape & Reel
NCP4626DMX045TCG 4.5 V Auto discharge CH26 XDFN
(PbFree)
5000 / Tape & Reel
NCP4626DMX050TCG 5.0 V Auto discharge CH31 XDFN
(PbFree)
5000 / Tape & Reel
NCP4626HMX030TCG 3.0 V Standard CF11 XDFN
(PbFree)
5000 / Tape & Reel
NCP4626HMX033TCG 3.3 V Standard CF14 XDFN
(PbFree)
5000 / Tape & Reel
NCP4626HMX045TCG 4.5 V Standard CF26 XDFN
(PbFree)
5000 / Tape & Reel
NCP4626HMX050TCG 5.0 V Standard CF31 XDFN
(PbFree)
5000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*To order other package and voltage variants, please contact your ON Semiconductor sales representative.
NCP4626
http://onsemi.com
26
PACKAGE DIMENSIONS
XDFN6 1.6x1.6, 0.5P
CASE 711AC01
ISSUE O
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
ÉÉÉ
ÉÉÉ
ÉÉÉ
A
B
E
D
D2
E2
BOTTOM VIEW
b
e
6X
E33X
2X
0.05 C
PIN ONE
REFERENCE
TOP VIEW
2X
0.05 C
NOTE 3
AA1
0.05 C
0.05 C
CSEATING
PLANE
SIDE VIEW
L
2X
13
46
DIM MIN MAX
MILLIMETERS
A−−− 0.40
A1 0.00 0.05
E3 0.15 REF
b0.15 0.25
D1.60 BSC
D2 1.25 1.35
E1.60 BSC
E2 0.65 0.75
e0.50 BSC
L0.15 0.25
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
MOUNTING FOOTPRINT*
1.70
0.77
0.50
0.38
6X 1.79
DIMENSIONS: MILLIMETERS
0.36
1
6X
RECOMMENDED
L1 0.05 BSC
L1
A
M
0.05 BC
A
M
0.05 BC
A
M
0.05 BC
PITCH
PACKAGE
OUTLINE
NCP4626
http://onsemi.com
27
PACKAGE DIMENSIONS
SOT89, 5 LEAD
CASE 528AB01
ISSUE O
MOUNTING FOOTPRINT*
RECOMMENDED
C0.10
TOP VIEW
SIDE VIEW
BOTTOM VIEW
C
H
1
DIM MIN MAX
MILLIMETERS
A1.40 1.60
b1 0.37 0.57
b0.32 0.52
c0.30 0.50
D4.40 4.60
D2 1.40 1.80
E2.40 2.60
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. LEAD THICKNESS INCLUDES LEAD FINISH.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS.
5. DIMENSIONS L, L2, L3, L4, L5, AND H ARE MEAS-
URED AT DATUM PLANE C.
e1.40 1.60
L1.10 1.50
H4.25 4.45
L2 0.80 1.20
L3 0.95 1.35
L4 0.65 1.05
L5 0.20 0.60
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
D
E
Ac
23
54
L
L5
ee
bb1 L2
D2
L4
L3
2X
0.62
DIMENSIONS: MILLIMETERS
1
2X 1.50
1.30
2.79 0.45 1.50
1.65
4.65
4X 0.57
1.75
1
NCP4626
http://onsemi.com
28
PACKAGE DIMENSIONS
SOT23 5LEAD
CASE 121201
ISSUE A
DIM MIN MAX
MILLIMETERS
A1 0.00 0.10
A2 1.00 1.30
b0.30 0.50
c0.10 0.25
D2.70 3.10
E2.50 3.10
E1 1.50 1.80
e0.95 BSC
L
L1 0.45 0.75
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DATUM C IS THE SEATING PLANE.
A
1
5
23
4
D
E1
B
L1
E
eC
M
0.10 C S
BS
A
b
5X
A2
A1
S
0.05
C
L
0.20 ---
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
0.95
DIMENSIONS: MILLIMETERS
PITCH
5X
3.30
0.56
5X
0.85
A--- 1.45
RECOMMENDED
A
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
NCP4626/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative