PROFET® BTS621L1
Data Sheet 1 2013-10-11
Smart Two Channel High-Side Power Switch
Features
Overload protection
Current limitation
Short circuit protection
Thermal shutdown
Overvoltage protection (including load dump)
Fast demagnetization of inductive loads
Reverse battery protection
1
)
Undervoltage and overvoltage shutdown with
auto-restart and hysteresis
Open drain diagnostic output
Open load detection in ON-state
CMOS compatible input
Loss of ground and loss of Vbb protection
Electrostatic discharge (ESD) protection
Green Product (RoHS compliant)
AEC Qualified
Application
C compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
All types of resistive, inductive and capacitve loads
Replaces electromechanical relays, fuses and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic
feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions.
1
) With external current limit (e.g. resistor RGND=150 ) in GND connection, resistor in series with ST
connection, reverse load current limited by connected load.
Product Summary
Overvoltage protection
Vbb(AZ)
43
V
Operating voltage
Vbb(on)
5.0 ... 34
channels:
each
both
parallel
On-state resistance
RON
100
50
m
Load current (ISO)
IL(ISO)
4.4
8.5
A
Current limitation
IL(SCr)
8
8
A
PG-TO263-7-2
+ V
bb
IN1
ST
Signal GND
ESD
PROFET
OUT1
GND
Logic
Voltage
sensor
Voltage
source
Open load
detection 1
Short to Vbb
Level shifter
Temperature
sensor 1
Rectifier 1
Limit for
unclamped
ind. loads 1
Gate 1
protection
Current
limit 1
3
5
2
4
1
Load GND
Load
V
Logic
Overvoltage
protection
OUT2
Open load
detection 2
Short to Vbb
Level shifter
Temperature
sensor 2
Rectifier 2
Limit for
unclamped
ind. loads 2
Gate 2
protection
Current
limit 2
7
IN2
6
GND
R
R
O1
O2
Charge
pump 1
Charge
pump 2
BTS621L1
Data Sheet 2 2013-10-11
Pin
Symbol
Function
1
OUT1 (Load, L)
Output 1, protected high-side power output of channel 1
2
GND
Logic ground
3
IN1
Input 1, activates channel 1 in case of logical high signal
4
Vbb
Positive power supply voltage,
the tab is shorted to this pin
5
ST
Diagnostic feedback: open drain, low on failure
6
IN2
Input 2, activates channel 2 in case of logical high signal
7
OUT2 (Load, L)
Output 2, protected high-side power output of channel 2
Maximum Ratings at Tj = 25 °C unless otherwise specified
Parameter
Symbol
Values
Unit
Supply voltage (overvoltage protection see page 4)
Vbb
43
V
Supply voltage for short circuit protection
Tj Start=-40 ...+150°C
Vbb
34
V
Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V
RI3)= 2 , RL= 2.7 , td= 200 ms, IN= low or high
VLoad dump4)
60
V
Load current (Short circuit current, see page 5)
IL
self-limited
A
Operating temperature range
Storage temperature range
Tj
Tstg
-40 ...+150
-55 ...+150
°C
Power dissipation (DC), TC 25 °C
Ptot
75
W
Inductive load switch-off energy dissipation, single pulse
Vbb = 12V, Tj,start = 150°C, TC = 150°C const.
one channel, IL = 4.4 A, ZL = 32 mH, 0 :
EAS
395
mJ
both channels parallel, IL = 8.5 A, ZL = 17 mH, 0 :
790
see diagrams on page 9
Electrostatic discharge capability (ESD) IN:
(Human Body Model) all other pins:
acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993
VESD
1.0
2.0
kV
Input voltage (DC)
VIN
-10 ... +16
V
Current through input pin (DC)
Current through status pin (DC)
see internal circuit diagrams page 7
IIN
IST
2.0
5.0
mA
2
) Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a
150 resistor in the GND connection and a 15 k resistor in series with the status pin. A resistor for the
protection of the input is integrated.
3
) RI = internal resistance of the load dump test pulse generator
4
) VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
BTS621L1
Data Sheet 3 2013-10-11
Thermal Characteristics
Parameter and Conditions
Symbol
Values
Unit
min
typ
max
Thermal resistance chip - case, both channels:
each channel:
junction - ambient (free air):
RthJC
RthJA
--
--
--
--
--
--
1.7
3.4
75
K/W
SMD version, device on PCB5):
35
5
) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70m thick) copper area for Vbb
connection. PCB is vertical without blown air.
Electrical Characteristics
Parameter and Conditions, each channel
Symbol
Values
Unit
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
min
typ
max
Load Switching Capabilities and Characteristics
On-state resistance (pin 4 to 1 or 7)
IL = 2 A Tj=25 °C:
each channel Tj=150 °C:
RON
--
80
160
100
200
m
Nominal load current, ISO Norm (pin 4 to 1 or 7)
VON = 0.5 V, TC = 85 °C each channel:
both channels parallel:
IL(ISO)
3.5
6.8
4.4
8.5
--
--
A
Output current (pin 1 or 7) while GND disconnected
or GND pulled up, Vbb=30 V, VIN= 0, see diagram
page 8
IL(GNDhigh)
--
--
10
mA
Turn-on time IN to 90% VOUT:
Turn-off time IN to 10% VOUT:
RL = 12 , Tj =-40...+150°C
ton
toff
80
80
200
200
400
400
s
Slew rate on
10 to 30% VOUT, RL = 12 , Tj =-40...+150°C
dV /dton
0.1
--
1
V/s
Slew rate off
70 to 40% VOUT, RL = 12 , Tj =-40...+150°C
-dV/dtoff
0.1
--
1
V/s
BTS621L1
Parameter and Conditions, each channel
Symbol
Values
Unit
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
min
typ
max
Data Sheet 4 2013-10-11
Operating Parameters
Operating voltage6) Tj =-40...+150°C:
Vbb(on)
5.0
--
34
V
Undervoltage shutdown Tj =-40...+150°C:
Vbb(under)
3.5
--
5.0
V
Undervoltage restart Tj =-40...+25°C:
Tj =+150°C:
Vbb(u rst)
--
--
5.0
7.0
V
Undervoltage restart of charge pump
see diagram page 13 Tj =-40...+150°C:
Vbb(ucp)
--
5.6
7.0
V
Undervoltage hysteresis
Vbb(under) = Vbb(u rst) - Vbb(under)
Vbb(under)
--
0.2
--
V
Overvoltage shutdown Tj =-40...+150°C:
Vbb(over)
34
--
43
V
Overvoltage restart Tj =-40...+150°C:
Vbb(o rst)
33
--
--
V
Overvoltage hysteresis Tj =-40...+150°C:
Vbb(over)
--
0.5
--
V
Overvoltage protection7) Tj =-40...+150°C:
Ibb=40 mA
Vbb(AZ)
42
47
--
V
Standby current (pin 4)
VIN=0 Tj=-40...+25°C:
Tj= 150°C:
Ibb(off)
--
--
14
17
30
35
A
Leakage output current (included in Ibb(off))
VIN=0
IL(off)
--
--
12
A
Operating current (Pin 2)8), VIN=5 V
both channels on, Tj =-40...+150°C
IGND
--
4
6
mA
Operating current (Pin 2)8)
one channel on, Tj =-40...+150°C:
IGND
--
2
3
mA
6
) At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT Vbb - 2 V
7
) See also VON(CL) in table of protection functions and circuit diagram page 8.
8
) Add IST, if IST > 0, add IIN, if VIN>5.5 V
BTS621L1
Parameter and Conditions, each channel
Symbol
Values
Unit
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
min
typ
max
Data Sheet 5 2013-10-11
Protection Functions
9
)
Initial peak short circuit current limit (pin 4 to 1
or 7)
IL(SCp)
Tj =-40°C:
Tj =25°C:
Tj =+150°C:
11
9
5
18
14
8
25
22
14
A
Repetitive short circuit shutdown current limit
IL(SCr)
Tj = Tjt (see timing diagrams, page 11)
--
8
--
A
Output clamp (inductive load switch off)
at VOUT = Vbb - VON(CL) IL= 40 mA, Tj =-40..+150°C:
VON(CL)
41
47
53
V
Thermal overload trip temperature
Tjt
150
--
--
°C
Thermal hysteresis
Tjt
--
10
--
K
Reverse battery (pin 4 to 2) 10)
-Vbb
--
--
32
V
Reverse battery voltage drop (Vout > Vbb)
IL = -2.9 A, each channel Tj=150 °C:
-VON(rev)
--
610
--
mV
Diagnostic Characteristics
Open load detection current Tj=-40 °C:
(on-condition) Tj=25 ..150°C:
IL (OL)
20
20
--
--
400
300
mA
Open load detection voltage11) (off-condition)
Tj=-40..150°C:
VOUT(OL)
2
3
4
V
Internal output pull down
(pin 1 or 7 to 2), VOUT=5 V, Tj=-40..150°C
RO
4
10
30
k
9
) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are
not designed for continuous repetitive operation.
10
) Requires 150 resistor in GND connection. The reverse load current through the intrinsic drain-source
diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal
operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature
protection is not active during reverse current operation! Input and Status currents have to be limited (see
max. ratings page 2 and circuit page 8).
11
) External pull up resistor required for open load detection in off state.
BTS621L1
Parameter and Conditions, each channel
Symbol
Values
Unit
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
min
typ
max
Data Sheet 6 2013-10-11
Input and Status Feedback12)
Input resistance
Tj=-40..150°C, see circuit page 7
RI
2.5
3.5
6
k
Input turn-on threshold voltage Tj =-40..+150°C:
VIN(T+)
1.7
--
3.5
V
Input turn-off threshold voltage Tj =-40..+150°C:
VIN(T-)
1.5
--
--
V
Input threshold hysteresis
VIN(T)
--
0.5
--
V
Off state input current (pin 3 or 6), VIN = 0.4 V,
Tj =-40..+150°C
IIN(off)
1
--
50
A
On state input current (pin 3 or 6), VIN = 3.5 V,
Tj =-40..+150°C
IIN(on)
20
50
90
A
Delay time for status with open load after switch
off (other channel in off state)
(see timing diagrams, page 12), Tj =-40..+150°C
td(ST OL4)
100
320
800
s
Delay time for status with open load after switch
off (other channel in on state)
(see timing diagrams, page 12), Tj =-40..+150°C
td(ST OL5)
--
5
20
s
Status invalid after positive input slope
(open load) Tj=-40 ... +150°C:
td(ST)
--
200
600
s
Status output (open drain)
Zener limit voltage Tj =-40...+150°C, IST = +1.6 mA:
ST low voltage Tj =-40...+25°C, IST = +1.6 mA:
Tj = +150°C, IST = +1.6 mA:
VST(high)
VST(low)
5.4
--
--
6.1
--
--
--
0.4
0.6
V
12
) If a ground resistor RGND is used, add the voltage drop across this resistor.
BTS621L1
Data Sheet 7 2013-10-11
Truth Table
IN1
IN2
OUT1
OUT2
ST
BTS621L1
Normal operation
L
L
H
H
L
H
L
H
L
L
H
H
L
H
L
H
H
H
H
H
Open load
Channel 1
L
L
H
L
H
X
Z
Z
H
L
H
X
H(L13))
H
L
Channel 2
L
H
X
L
L
H
L
H
X
Z
Z
H
H(L13))
H
L
Short circuit to Vbb
Channel 1
L
L
H
L
H
X
H
H
H
L
H
X
L14)
H
H(L15))
Channel 2
L
H
X
L
L
H
L
H
X
H
H
H
L14)
H
H(L15))
Overtemperature
both channel
L
X
H
L
H
X
L
L
L
L
L
L
H
L
L
Channel 1
L
H
X
X
L
L
X
X
H
L
Channel 2
X
X
L
H
X
X
L
L
H
L
Undervoltage/ Overvoltage
X
X
L
L
H
L = "Low" Level X = don't care Z = high impedance, potential depends on external circuit
H = "High" Level Status signal after the time delay shown in the diagrams (see fig 5. page 12...13)
13
) With additional external pull up resistor
14
) An external short of output to Vbb, in the off state, causes an internal current from output to ground. If RGND
is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious.
15
) Low resistance to Vbb may be detected in the ON-state by the no-load-detection
Terms
PROFET
V
IN2
ST OUT2
GND
bb
VST
VIN1
IST
IIN1
Vbb Ibb
IL2
VOUT2
IGND
VON2
1
2
4
3
5
IN1
VIN2
IIN2
VOUT1
VON1
IL1
OUT1
6
7
RGND
Input circuit (ESD protection)
IN
GND
I
R
ESD-ZD I
I
I
ESD zener diodes are not to be used as voltage clamp
at DC conditions. Operation in this mode may result in
a drift of the zener voltage (increase of up to 1 V).
BTS621L1
Data Sheet 8 2013-10-11
Status output
ST
GND
ESD-
ZD
+5V
RST(ON)
ESD-Zener diode: 6.1 V typ., max 5 mA;
RST(ON) < 380 at 1.6 mA, ESD zener diodes are not
to be used as voltage clamp at DC conditions.
Operation in this mode may result in a drift of the zener
voltage (increase of up to 1 V).
Inductive and overvoltage output clamp
+ Vbb
OUT
GND PROFET
VZ
VON
VON clamped to 47 V typ.
Overvolt. and reverse batt. protection
+ Vbb
IN2
ST
ST
R
GND
GND
R
Signal GND
Logic
VZ2
IN1 RI
VZ1
VZ1 = 6.1 V typ., VZ2 = 47 V typ., RI= 3.5 k typ
RGND= 150
Open-load detection
ON-state diagnostic condition: VON < RON * IL(OL); IN
high
Open load
detection
Logic
unit
+ Vbb
OUT
ON VON
OFF-state diagnostic condition: VOUT > 3 V typ.; IN low
Open load
detection
Logic
unit
VOUT
Signal GND
REXT
RO
OFF
GND disconnect
PROFET
V
IN2
ST OUT2
GND
bb
Vbb Ibb
1
2
4
3
5
IN1 OUT1
6
7
VIN1VIN2 VST VGND
Any kind of load. In case of Input=high is VOUT VIN - VIN(T+) .
Due to VGND >0, no VST = low signal available.
BTS621L1
Data Sheet 9 2013-10-11
GND disconnect with GND pull up
PROFET
V
IN2
ST OUT2
GND
bb
Vbb
1
2
4
3
5
IN1 OUT1
6
7
VIN1
VIN2
VST VGND
Any kind of load. If VGND > VIN - VIN(T+) device stays off
Due to VGND >0, no VST = low signal available.
Vbb disconnect with energized inductive
load
PROFET
V
IN2
ST OUT2
GND
bb
Vbb
1
2
4
3
5
IN1 OUT1
6
7
high
Normal load current can be handled by the PROFET
itself.
Vbb disconnect with charged external
inductive load
PROFET
V
IN2
ST OUT2
GND
bb 1
2
4
3
5
IN1 OUT1
6
7
Vbb
high
D
If other external inductive loads L are connected to the PROFET,
additional elements like D are necessary.
Inductive Load switch-off energy
dissipation
PROFET
V
IN
ST
OUT
GND
bb
=
E
E
E
EAS
bb
L
R
ELoad
L
RL
{ZL
Energy stored in load inductance:
EL = 1/2·L·I2
L
While demagnetizing load inductance, the energy
dissipated in PROFET is
EAS= Ebb + EL - ER= VON(CL)·iL(t) dt,
with an approximate solution for RL 0 :
EAS= IL· L
2·RL·(Vbb + |VOUT(CL)|)· ln (1+ IL·RL
|VOUT(CL)| )
Maximum allowable load inductance for
a single switch off (both channels parallel)
L = f (IL ); Tj,start = 150°C,TC = 150°C const.,
Vbb = 12 V, RL = 0
L [mH]
1
10
100
1000
10000
3 5 7 9 11
IL [A]
BTS621L1
Data Sheet 10 2013-10-11
Typ. transient thermal impedance chip case
ZthJC = f(tp), one Channel active
ZthJC [K/W]
0.01
0.1
1
10
1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1
0
0.01
0.02
0.05
0.1
0.2
0.5
D=
tp [s]
Typ. transient thermal impedance chip case
ZthJC = f(tp), both Channel active
ZthJC [K/W]
0.01
0.1
1
1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1
0
0.01
0.02
0.05
0.1
0.2
0.5
D=
tp [s]
BTS621L1
Data Sheet 11 2013-10-11
Timing diagrams
Both channels are symmetric and consequently the diagrams
are valid for each channel as well as for permuted channels
Figure 1a: Vbb turn on:
IN2
V
OUT1
t
V
bb
ST open drain
IN1
V
OUT2
Figure 2a: Switching a lamp:
IN
ST
OUT
L
t
V
I
Figure 2b: Switching an inductive load
IN
ST
L
t
V
I
*)
OUT
t
d(ST)
I
L(OL)
*) if the time constant of load is too large, open-load-status may
occur
Figure 3a: Short circuit
shut down by overtempertature, reset by cooling
IN
ST
L
t
I
other channel: normal operation
L(SCr)
I
I
L(SCp)
Heating up may require several milliseconds, depending on
external conditions
BTS621L1
Data Sheet 12 2013-10-11
Figure 4a: Overtemperature:
Reset if Tj <Tjt
IN
ST
OUT
J
t
V
T
Figure 5a: Open load: detection in ON-state, open
load occurs in on-state
IN2 channel 2: normal operation
OUT1
t
V
ST
IN1
I
L1
t
d(ST OL1)
t
d(ST OL2)
t
d(ST OL1)
t
d(ST OL2)
open
load
open
load
normal
load
channel 1:
td(ST OL1) = 30 s typ., td(ST OL2) = 20 s typ
Figure 5b: Open load: detection in ON-state, turn
on/off to open load
OUT1
t
V
ST
IN1
I
L1
t
d(ST)
t
d(ST OL4)
t
d(ST)
t
d(ST OL5)
IN2 channel 2: normal operation
channel 1: open load
Figure 5c: Open load: detection in ON- and OFF-state
(with REXT), turn on/off to open load
t
V
ST
IN1
I
L1
t
d(ST)
d(ST OL5)
channel 1: open load
t
d(ST)
t
OUT1
IN2 channel 2: normal operation
td(ST OL5) depends on external circuitry because of high
impedance
BTS621L1
Data Sheet 13 2013-10-11
Figure 6a: Undervoltage:
IN
V
OUT
t
V
bb
ST open drain
V
V
bb(under)
bb(u rst)
bb(u cp)
V
Figure 6b: Undervoltage restart of charge pump
bb(under)
V
V
bb(u rst)
V
bb(over)
V
bb(o rst)
V
bb(u cp)
off-state
on-state
V
ON(CL)
V
bb
V
on
off-state
charge pump starts at Vbb(ucp) =5.6 V typ.
Figure 7a: Overvoltage:
IN
V
OUT
t
V
bb
ST
ON(CL)
V
V
bb(over)
V
bb(o rst)
BTS621L1
Data Sheet 14 2013-10-11
Package and Ordering Code
All dimensions in mm
PG-TO263-7-2 Ordering code
BTS621L1 E3128A
SP001104826
Published by
Infineon Technologies AG,
D-81726 München
© Infineon Technologies AG 2013
All Rights Reserved.
The information herein is given to describe certain
components and shall not be considered as a guarantee of
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not
limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
For further information on technology, delivery terms and
conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon
Technologies Representatives worldwide (see address list).
Due to technical requirements components may contain
dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies
Office.
Infineon Technologies Components may only be used in life-
support devices or systems with the express written
approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the
failure of that life-support device or system, or to affect the
safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the
human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to
assume that the health of the user or other persons may be
endangered.