R < B L QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs DS124 (v1.2) December 4, 2006 Product Specification Summary of Radiation Hardened QProTM Virtex-II Features * * * * * * * * * * * * * Industry First Radiation Hardened Platform FPGA Solution Guaranteed total ionizing dose to 200K Rad(Si) Latch-up immune to LET > 160 MeV-cm2/mg SEU in GEO upsets < 1.5E-6 per device day achievable with recommended redundancy implementation Certified to MIL-PRF-38535 (Qualified Manufacturer Listing) Guaranteed over the full military temperature range (-55C to +125C) 0.15 m 8-Layer Metal Process with 0.12 m High-Speed Transistors Ceramic and Plastic Wire-Bond and Flip-Chip Grid Array Packages IP-Immersion Architecture Densities from 1M to 6M system gates 300+ MHz internal clock speed (Advance Data) 622+ Mb/s I/O (Advance Data) SelectRAMTM Memory Hierarchy 2.5 Mb of dual-port RAM in 18 Kbit block SelectRAM resources Up to 1 Mb of distributed SelectRAM resources High-Performance Interfaces to External Memory DRAM interfaces - SDR/DDR SDRAM - Network FCRAM - Reduced Latency DRAM SRAM interfaces - SDR/DDR SRAM - QDR SRAM CAM interfaces Arithmetic Functions Dedicated 18-bit x 18-bit multiplier blocks Fast look-ahead carry logic chains Flexible Logic Resources Up to 67,584 internal registers/latches with Clock Enable Up to 67,584 look-up tables (LUTs) or cascadable 16-bit shift registers Wide multiplexers and wide-input function support Horizontal cascade chain and sum-of-products support Internal 3-state busing * * * * * * * High-Performance Clock Management Circuitry Up to 12 DCM (Digital Clock Manager) modules - Precise clock de-skew - Flexible frequency synthesis - High-resolution phase shifting 16 global clock multiplexer buffers Active Interconnect Technology Fourth generation segmented routing structure Predictable, fast routing delay, independent of fanout SelectIOTM-Ultra Technology Up to 824 user I/Os 19 single-ended and six differential standards Programmable sink current (2 mA to 24 mA) per I/O Digitally Controlled Impedance (DCI) I/O: on-chip termination resistors for single-ended I/O standards Differential Signaling - 622 Mb/s Low-Voltage Differential Signaling I/O (LVDS) with current mode drivers - Bus LVDS I/O - Lightning Data Transport (LDT) I/O with current driver buffers - Low-Voltage Positive Emitter-Coupled Logic (LVPECL) I/O - Built-in DDR input and output registers Proprietary high-performance SelectLink Technology - High-bandwidth data path - Double Data Rate (DDR) link - Web-based HDL generation methodology Supported by Xilinx Foundation SeriesTM and Alliance SeriesTM Development Systems Integrated VHDL and Verilog design flows Compilation of 10M system gates designs Internet Team Design (ITD) tool SRAM-Based In-System Configuration Fast SelectMAP configuration IEEE 1532 support Partial reconfiguration Unlimited reprogrammability Readback capability 1.5V (VCCINT) Core Power Supply, Dedicated 3.3V VCCAUX Auxiliary and VCCO I/O Power Supplies IEEE 1149.1 Compatible Boundary-Scan Logic Support (c) 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their respective owners. All specifications are subject to change without notice. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 1 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs General Description The QPro Virtex-II radiation hardened family includes platform FPGAs developed for high performance, high-density, aerospace designs that are based on IP cores and customized modules. The family delivers complete solutions for telecommunication, networking, video, and DSP applications, including PCI, LVDS, and DDR interfaces. The leading-edge 0.15 m/0.12 m CMOS 8-layer metal process and the Virtex-II architecture are optimized for high speed with low power consumption. Combining a wide variety of flexible features and a large range of densities up to 6 million system gates, the Virtex-II family enhances programmable logic design capabilities and is a powerful alternative to mask-programmed gates arrays and other one-time-programmable devices. As shown in Table 1, the QPro Virtex-II radiation hardened family comprises three members, ranging from 1M to 6M system gates. Table 1: Virtex-II Field-Programmable Gate Array Family Members Device System Gates CLB (1 CLB = 4 slices = Max 128 bits) Array Row x Col. Slices Maximum Distributed RAM Kbits SelectRAM Blocks Multiplier Blocks 18 Kbit Blocks Max RAM (Kbits) DCMs Max I/O Pads(1) XQR2V1000 1M 40 x 32 5,120 160 40 40 720 8 432 XQR2V3000 3M 64 x 56 14,336 448 96 96 1,728 12 720 XQR2V6000 6M 96 x 88 33,792 1,056 144 144 2,592 12 1,104 Notes: 1. See details in Table 2. Packaging page 7) details the maximum number of I/Os for each device and package using wire-bond or flip-chip technology. Offerings include ball grid array (BGA) packages with 1.00 mm and 1.27 mm pitches. In addition to traditional wire-bond interconnects, flip-chip interconnect is used in some of the CGA offerings. The use of flip-chip interconnect offers more I/Os than is possible in wire-bond versions of the similar packages. Flip-chip construction offers the combination of high pin count with high thermal capacity. Table 2: Maximum Number of User I/O Pads Device Wire-Bond Flip-Chip XQR2V1000 328 - XQR2V3000 516 - XQR2V6000 - 824 Table 2 shows the maximum number of user I/Os available. The Virtex-II device/package combination table (Table 6, DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 2 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Radiation Assurance The VirtexTM-II Radiation Hardened Platform FPGAs are guaranteed for Total Ionizing Dose (TID) life and Single Event Latch-Up immunity (SEL). verified in a heavy ion environment under vacuum, and tested with an LET that exceeds Space environment phenomenon, to a fluence that exceeds 1E7 particles/cm2. Total Ionizing Dose Single Event Upset Each Wafer Lot is sampled and tested per Method 1019.5 to assure that device performance meets or exceeds the guaranteed DC electrical specification requirements, as well as AC and Timing parameters at maximum guaranteed total dose levels. Additional experiments are conducted in heavy ion, proton, and neutron environments in order to measure and document the susceptibility and consequence of SEU(s). An industry consortium oversees and validates the test methods, empirical data collected, and resulting analysis. Conclusions are published on the website as well as International Conferences. The Single Event Effects Consortium Reports can be found at Single Event Latch-Up The Radiation hardened Virtex-II technology incorporates a thin epitaxial layer in the wafer manufacturing process for latch-up immunity assurance. The qualified mask set is http://www.xilinx.com/products/hirel_qml.htm Radiation Specifications(1) Table 3: Minimum Radiation Tolerances Symbol Description Min Max Units TID Total Ionizing Dose Method 1019.5, Dose Rate ~50.0 rad(Si)/sec 200 - krad(Si) SEL Single Event Latch-up Immunity Heavy Ion Linear Energy Transfer (LET) 160 - (MeV-cm2/mg) SEFI Single Event Functional Interrupt GEO 36,000km Typical Day 1.5E-6 Upsets/Device/Day Notes: 1. For more information, refer to "Single Event Effects Consortium Report, Static SEU Response for the Rad Hard Virtex-II" at http://www.xilinx.com/products/hirel_qml.htm. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 3 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Architecture Virtex-II Array Overview * Block SelectRAM memory modules provide large 18 Kbit storage elements of dual-port RAM. Virtex-II devices are user-programmable gate arrays with various configurable elements. The Virtex-II architecture is optimized for high-density and high-performance logic designs. As shown in Figure 1, the programmable device is comprised of input/output blocks (IOBs) and internal configurable logic blocks (CLBs). * Multiplier blocks are 18-bit x 18-bit dedicated multipliers. * DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital solutions for clock distribution delay compensation, clock multiplication and division, coarse- and fine-grained clock phase shifting. Programmable I/O blocks provide the interface between package pins and the internal configurable logic. Most popular and leading-edge I/O standards are supported by the programmable IOBs. A new generation of programmable routing resources called Active Interconnect Technology interconnects all of these elements. The general routing matrix (GRM) is an array of routing switches. Each programmable element is tied to a switch matrix, allowing multiple connections to the general routing matrix. The overall programmable interconnection is hierarchical and designed to support high-speed designs. The internal configurable logic includes four major elements organized in a regular array: * Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and synchronous logic, including basic storage elements. BUFTs (3-state buffers) associated with each CLB element drive dedicated segmentable horizontal routing resources. All programmable elements, including the routing resources, are controlled by values stored in static memory cells. These values are loaded in the memory cells during configuration and can be reloaded to change the functions of the programmable elements. DCM DCM IOB Global Clock Mux Configurable Logic Programmable I/Os CLB Block SelectRAM Multiplier DS031_28_100900 Figure 1: Virtex-II Architecture Overview DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 4 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Virtex-II Features The function generators F and G are configurable as 4-input look-up tables (LUTs), as 16-bit shift registers, or as 16-bit distributed SelectRAM memory. This section briefly describes Virtex-II features. Input/Output Blocks (IOBs) IOBs are programmable and can be categorized as follows: Each CLB has internal fast interconnect and connects to a switch matrix to access general routing resources. * Input block with an optional single-data-rate or double-data-rate (DDR) register * Output block with an optional single-data-rate or DDR register, and an optional 3-state buffer, to be driven directly or through a single or DDR register * Bidirectional block (any combination of input and output configurations) These registers are either edge-triggered D-type flip-flops or level-sensitive latches. IOBs support the following single-ended I/O standards: * LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V) * PCI compatible (33 MHz) at 3.3V * CardBus compliant (33 MHz) at 3.3V * GTL and GTLP * HSTL (Class I, II, III, and IV) * SSTL (3.3V and 2.5V, Class I and II) * AGP-2X In addition, the two storage elements are either edge-triggered D-type flip-flops or level-sensitive latches. Block SelectRAM Memory The block SelectRAM memory resources are 18 Kb of dual-port RAM, programmable from 16K x 1 bit to 512 x 36 bits, in various depth and width configurations. Each port is totally synchronous and independent, offering three "read-during-write" modes. Block SelectRAM memory is cascadable to implement large embedded storage blocks. Supported memory configurations for dual-port and single-port modes are shown in Table 4. A multiplier block is associated with each SelectRAM memory block. The multiplier block is a dedicated 18 x 18-bit multiplier and is optimized for operations based on the block SelectRAM content on one port. The 18 x 18 multiplier can be used independently of the block SelectRAM resource. Read/multiply/accumulate operations and DSP filter structures are extremely efficient. The digitally controlled impedance (DCI) I/O feature automatically provides on-chip termination for each I/O element. Both the SelectRAM memory and the multiplier resource are connected to four switch matrices to access the general routing resources. Table 4: Dual-Port And Single-Port Configurations The IOB elements also support the following differential signaling I/O standards: * LVDS * BLVDS (Bus LVDS) * ULVDS * LDT * LVPECL CLB resources include four slices and two 3-state buffers. Each slice is equivalent and contains: * Two storage elements * Arithmetic logic gates * Large multiplexers * Wide function capability * Fast carry look-ahead chain * Horizontal cascade chain (OR gate) DS124 (v1.2) December 4, 2006 Product Specification 8K x 2 bits 1K x 18 bits 4K x 4 bits 512 x 36 bits The DCM and global clock multiplexer buffers provide a complete solution for designing high-speed clocking schemes. Configurable Logic Blocks (CLBs) Two function generators (F and G) 2K x 9 bits Global Clocking Two adjacent pads are used for each differential pair. Two or four IOB blocks connect to one switch matrix to access the routing resources. * 16K x 1 bit Up to 12 DCM blocks are available. To generate de-skewed internal or external clocks, each DCM can be used to eliminate clock distribution delay. The DCM also provides 90-, 180-, and 270-degree phase-shifted versions of its output clocks. Fine-grained phase shifting offers high-resolution phase adjustments in increments of 1/256 of the clock period. Very flexible frequency synthesis provides a clock output frequency equal to any M/D ratio of the input clock frequency, where M and D are two integers. For the exact timing parameters, see "QPro Virtex-II Switching Characteristics," page 53. Virtex-II devices have 16 global clock MUX buffers with up to eight clock nets per quadrant. Each global clock MUX buffer can select one of the two clock inputs and switch glitch-free from one clock to the other. Each DCM block is able to drive up to four of the 16 global clock MUX buffers. www.xilinx.com 5 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Routing Resources Boundary Scan The IOB, CLB, block SelectRAM, multiplier, and DCM elements all use the same interconnect scheme and the same access to the global routing matrix. Timing models are shared, greatly improving the predictability of the performance of high-speed designs. Boundary-scan instructions and associated data registers support a standard methodology for accessing and configuring Virtex-II devices that complies with IEEE standards 1149.1 -- 1993 and 1532. A system mode and a test mode are implemented. In system mode, a Virtex-II device performs its intended mission even while executing non-test boundary-scan instructions. In test mode, boundary-scan test instructions control the I/O pins for testing purposes. The Virtex-II Test Access Port (TAP) supports BYPASS, PRELOAD, SAMPLE, IDCODE, and USERCODE non-test instructions. The EXTEST, INTEST, and HIGHZ test instructions are also supported. There are a total of 16 global clock lines with eight available per quadrant. In addition, 24 vertical and horizontal long lines per row or column as well as massive secondary and local routing resources provide fast interconnect. Virtex-II buffered interconnects are relatively unaffected by net fanout, and the interconnect layout is designed to minimize crosstalk. Horizontal and vertical routing resources for each row or column include: * 24 long lines * 120 hex lines * 40 double lines * 16 direct connect lines (total in all four directions) DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 6 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Virtex-II Device/Package Combinations and Maximum I/O Wire-bond and flip-chip packages are available. Table 5 shows the maximum possible number of user I/Os in wire-bond and flip-chip packages. Table 6 shows the number of available user I/Os for all device/package combinations. * FG denotes wire-bond fine-pitch Plastic BGA (1.00 mm pitch). * BG denotes wire-bond standard Plastic BGA (1.27 mm pitch). * CG denotes wire-bond fine-pitch Hermetic Ceramic Column Grid Array (1.27 mm pitch). * CF denotes flip-chip fine-pitch non-Hermetic Ceramic Column Grid Array (1.00 mm pitch). The number of I/Os per package include all user I/Os except the 15 control pins (CCLK, DONE, M0, M1, M2, PROG_B, PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN, DXP, and RSVD) and VBATT. Table 5: Package Information Package FG456 BG575 BG728 & CG717 CF1144 Pitch (mm) 1.00 1.27 1.27 1.00 Size (mm) 23 x 23 31 x 31 35 x 35 35 x 35 Table 6: Virtex-II Device/Package Combinations and Maximum Number of Available I/Os Package Available I/Os XQR2V1000 XQR2V3000 XQR2V6000 FG456 324 - - BG575 328 - - BG728 - 516 - CG717 - 516 - CF1144 - - 824 Notes: 1. 2. The BG728 and CG717 packages are pinout (footprint) compatible. The CF1144 is pinout (footprint) compatible with the FF1152. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 7 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Virtex-II Ordering Information Example: XQR2V3000 -4 CG 717 V Device Type Product Grade Speed Grade(1) Number of Pins Package Type Device Ordering Options Device Type Package Product Grade Manufacturing Flow(2) XQR2V1000 FG456 456-ball Plastic Fine Pitch BGA Package M M-Grade XQR2V3000 BG575 575-ball Plastic BGA Package V QPRO-PLUS XQR2V6000 BG728 728-ball Plastic BGA Package H QPRO-FCC CG717 717-column Hermetic Ceramic CGA Package N Class N CF1144 1144-column Non-hermetic Ceramic Flip-Chip Package R QPRO+PLUS PEM Temperature Range Military Ceramic TC = -55C to +125C Military Plastic TJ = -55C to +125C Notes: 1. 2. -4 is the only supported speed grade. A detailed explanation of the Manufacturing and Test Flows is available at http://www.xilinx.com/products/milaero/rpt003.pdf Valid Ordering Combinations Grade XQR2V1000 XQR2V3000 N XQR2V1000-4FG456N XQR2V3000-4BG728N XQR2V6000 XQR2V1000-4BG575N R XQR2V1000-4FG456R XQR2V3000-4BG728R XQR2V1000-4BG575R M XQR2V3000-4CG717M V XQR2V3000-4CG717V XQR2V6000-4CF1144M1 XQR2V6000-4CF1144H1 H Notes: 1. CF1144 is non-Hermetic Ceramic. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 8 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Detailed Description Input/Output Blocks (IOBs) Table 7: Supported Single-Ended I/O Standards Virtex-II I/O blocks (IOBs) are provided in groups of two or four on the perimeter of each device. Each IOB can be used as an input and/or an output for single-ended I/Os. Two IOBs can be used as a differential pair. A differential pair is always connected to the same switch matrix, as shown in Figure 2. IOB blocks are designed for high-performance I/Os, supporting 19 single-ended standards, as well as differential signaling with LVDS, LDT, Bus LVDS, and LVPECL. IOB PAD4 Differential Pair IOB PAD3 Switch Matrix IOB PAD2 Differential Pair IOB PAD1 Output VCCO Input VCCO Input VREF Board Termination Voltage (VTT) 3.3 3.3 N/A N/A GTL Note 1 Note 1 0.8 1.2 GTLP Note 1 Note 1 1.0 1.5 HSTL_I 1.5 N/A 0.75 0.75 HSTL_II 1.5 N/A 0.75 0.75 HSTL_III 1.5 N/A 0.9 1.5 HSTL_IV 1.5 N/A 0.9 1.5 HSTL_I 1.8 N/A 0.9 0.9 HSTL_II 1.8 N/A 0.9 0.9 HSTL_III 1.8 N/A 1.1 1.8 HSTL_IV 1.8 N/A 1.1 1.8 SSTL2_I 2.5 N/A 1.25 1.25 SSTL2_II 2.5 N/A 1.25 1.25 SSTL3_I 3.3 N/A 1.5 1.5 SSTL3_II 3.3 N/A 1.5 1.5 AGP-2X/AGP 3.3 N/A 1.32 N/A I/O Standard PCI-X DS031_30_101600 Notes: Figure 2: Virtex-II Input/Output Tile 1. Note: Differential I/Os must use the same clock. Supported I/O Standards Table 8: Supported Differential Signal I/O Standards Virtex-II IOB blocks feature SelectI/O-Ultra inputs and outputs that support a wide variety of I/O signaling standards. In addition to the internal supply voltage (VCCINT = 1.5V), output driver supply voltage (VCCO) is dependent on the I/O standard (see Table 7). An auxiliary supply voltage (VCCAUX = 3.3 V) is required, regardless of the I/O standard used. For exact supply voltage absolute maximum ratings, see "DC Input and Output Levels," page 51. Table 7: Supported Single-Ended I/O Standards Output VCCO Input VCCO Input VREF Board Termination Voltage (VTT) LVTTL 3.3 3.3 N/A N/A LVCMOS33 3.3 3.3 N/A N/A LVCMOS25 2.5 2.5 N/A N/A LVCMOS18 1.8 1.8 N/A N/A LVCMOS15 1.5 1.5 N/A N/A PCI33_3 3.3 3.3 N/A N/A PCI66_3 3.3 3.3 N/A N/A I/O Standard DS124 (v1.2) December 4, 2006 Product Specification VCCO of GTL or GTLP should not be lower than the termination voltage or the voltage seen at the I/O pad. Output VCCO Input VCCO Input VREF Output VOD LVPECL_33 3.3 N/A N/A 490 mV to 1.22V LDT_25 2.5 N/A N/A 0.430 - 0.670 LVDS_33 3.3 N/A N/A 0.250 - 0.400 LVDS_25 2.5 N/A N/A 0.250 - 0.400 LVDSEXT_33 3.3 N/A N/A 0.330 - 0.700 LVDSEXT_25 2.5 N/A N/A 0.330 - 0.700 BLVDS_25 2.5 N/A N/A 0.250 - 0.450 ULVDS_25 2.5 N/A N/A 0.430 - 0.670 I/O Standard All of the user IOBs have fixed-clamp diodes to VCCO and to ground. As outputs, these IOBs are not compatible or compliant with 5V I/O standards. As inputs, these IOBs are not normally 5V tolerant, but can be used with 5V I/O standards when external current-limiting resistors are used. For more details, see the "5V Tolerant I/Os" Tech Topic at http://www.xilinx.com. www.xilinx.com 9 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 9 lists supported I/O standards with Digitally Controlled Impedance. See "Digitally Controlled Impedance (DCI)," page 16. IOB DDR mux Table 9: Supported DCI I/O Standards I/O Standard LVDCI_33 (1) Input Reg OCK1 Output VCCO Input VCCO Input VREF Termination Type 3.3 3.3 N/A Series Reg OCK2 Reg ICK1 3-State LVDCI_DV2_33 (1) 3.3 3.3 N/A Series LVDCI_25 (1) 2.5 2.5 N/A Series LVDCI_DV2_25 (1) 2.5 2.5 N/A Series LVDCI_18 (1) 1.8 1.8 N/A Series Reg LVDCI_DV2_18 (1) 1.8 1.8 N/A Series OCK1 LVDCI_15 (1) 1.5 1.5 N/A Series LVDCI_DV2_15 (1) 1.5 1.5 N/A Series Reg GTL_DCI 1.2 1.2 0.8 Single OCK2 GTLP_DCI 1.5 1.5 1.0 Single HSTL_I_DCI 1.5 1.5 0.75 Split HSTL_II_DCI 1.5 1.5 0.75 Split Figure 3: Virtex-II IOB Block HSTL_III_DCI 1.5 1.5 0.9 Single HSTL_IV_DCI 1.5 1.5 0.9 Single unique clock driver for every clock load. Virtex-II devices can produce many copies of a clock with very little skew. HSTL_I_DCI 1.8 N/A 0.9 Split HSTL_II_DCI 1.8 N/A 0.9 Split HSTL_III_DCI 1.8 N/A 1.1 Single HSTL_IV_DCI 1.8 N/A 1.1 Single SSTL2_I_DCI (2) 2.5 2.5 1.25 Split SSTL2_II_DCI (2) 2.5 2.5 1.25 Split SSTL3_I_DCI (2) 3.3 3.3 1.5 Split SSTL3_II_DCI (2) 3.3 3.3 1.5 Split 2. ICK2 DDR mux PAD Output DS031_29_100900 Notes: 1. Reg LVDCI_XX and LVDCI_DV2_XX are LVCMOS controlled impedance buffers, matching the reference resistors or half of the reference resistors. These are SSTL compatible. Logic Resources IOB blocks include six storage elements, as shown in Figure 3. Each group of two registers has a clock enable signal (ICE for the input registers, OCE for the output registers, and TCE for the 3-state registers). The clock enable signals are active High by default. If left unconnected, the clock enable for that storage element defaults to the active state. Each IOB block has common synchronous or asynchronous set and reset (SR and REV signals). SR forces the storage element into the state specified by the SRHIGH or SRLOW attribute. SRHIGH forces a logic "1". SRLOW forces a logic "0". When SR is used, a second input (REV) forces the storage element into the opposite state. The reset condition predominates over the set condition. The initial state after configuration or global initialization state is defined by a separate INIT0 and INIT1 attribute. By default, the SRLOW attribute forces INIT0, and the SRHIGH attribute forces INIT1. For each storage element, the SRHIGH, SRLOW, INIT0, and INIT1 attributes are independent. Synchronous or asynchronous set/reset is consistent in an IOB block. Each storage element can be configured either as an edge-triggered D-type flip-flop or as a level-sensitive latch. On the input, output, and 3-state path, one or two DDR registers can be used. All the control signals have independent polarities. Any inverter placed on a control input is automatically absorbed. Double data rate is directly accomplished by the two registers on each path, clocked by the rising edges (or falling edges) from two different clock nets. The two clock signals are generated by the DCM and must be 180 degrees out of phase, as shown in Figure 4. There are two input, output, and 3-state data signals, each being alternately clocked out. * * * * * * * The DDR mechanism shown in Figure 4 can be used to mirror a copy of the clock on the output. This is useful for propagating a clock along the data that has an identical delay. It is also useful for multiple clock generation, where there is a DS124 (v1.2) December 4, 2006 Product Specification Each register or latch (independent of all other registers or latches) (see Figure 5) can be configured as follows: No set or reset Synchronous set Synchronous reset Synchronous set and reset Asynchronous set (preset) Asynchronous reset (clear) Asynchronous set and reset (preset and clear) The synchronous reset overrides a set, and an asynchronous clear overrides a preset. www.xilinx.com 10 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs DCM 180 0 FDDR FDDR D1 D1 Q1 CLOCK Q1 CLK1 CLK1 Q DDR MUX DDR MUX D2 Q D2 Q2 Q2 CLK2 CLK2 (50/50 duty cycle clock) DS031_26_100900 Figure 4: Double Data Rate Registers (O/T) 1 FF LATCH (O/T) CE (O/T) CLK1 D1 Q1 Attribute INIT1 INIT0 SRHIGH SRLOW CE CK1 SR REV SR Shared by all registers REV FF1 DDR MUX FF2 (OQ or TQ) FF LATCH D2 (O/T) CLK2 Q2 CE CK2 SR REV Attribute INIT1 INIT0 SRHIGH SRLOW (O/T) 2 Reset Type SYNC ASYNC DS031_25_110300 Figure 5: Register/Latch Configuration in an IOB Block DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 11 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Input/Output Individual Options Each device pad has optional pull-up and pull-down resistors in all SelectI/O-Ultra configurations. Each device pad has an optional weak-keeper in LVTTL, LVCMOS, and PCI SelectI/O-Ultra configurations, as illustrated in Figure 6. Values of the optional pull-up and pull-down resistors are in the range 10 - 60 K, which is the specification for VCCO when operating at 3.3V (from 3.0V to 3.6V only). The clamp diode is always present, even when power is not. The optional weak-keeper circuit is connected to each output. When selected, this circuit monitors the voltage on the pad and weakly drives the pin High or Low. If the pin is connected to a multiple-source signal, the weak-keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. Pull-up or pull-down resistors override the weak-keeper circuit. LVTTL sinks and sources current up to 24 mA. The current is programmable for LVTTL and LVCMOS SelectI/O-Ultra standards (see Table 10). Drive-strength and slew-rate controls for each output driver minimize bus transients. For LVDCI and LVDCI_DV2 standards, drive strength and slew-rate controls are not available. VCCO Clamp Diode OBUF VCCO Program Current Weak Keeper 10-60K PAD VCCO 10-60K VCCAUX = 3.3V VCCINT = 1.5V Program Delay IBUF DS031_23_011601 Figure 6: LVTTL, LVCMOS, or PCI SelectI/O-Ultra Standards Table 10: LVTTL and LVCMOS Programmable Currents (Sink and Source) SelectI/O-Ultra Programmable Current (Worst-Case Guaranteed Minimum) LVTTL 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS33 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS25 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVCMOS18 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a LVCMOS15 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 12 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Figure 7 shows the SSTL2, SSTL3, and HSTL configurations. HSTL can sink current up to 48 mA. (HSTL IV). VCCO Output Path The output path includes a 3-state output buffer that drives the output signal onto the pad. The output and/or the 3-state signal can be routed to the buffer directly from the internal logic or through an output/3-state flip-flop or latch, or through the DDR output/3-state registers. Clamp Diode Each output driver can be individually programmed for a wide range of low-voltage signaling standards. In most signaling standards, the output High voltage depends on an externally supplied VCCO voltage. The need to supply VCCO imposes constraints on which standards can be used in the same bank. See "I/O Banking," page 13 description below. PAD I/O Banking VCCAUX = 3.3V VCCINT = 1.5V DS031_24_100900 Figure 7: SSTL or HSTL SelectI/O-Ultra Standards All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Virtex-II devices use two memory cells to control the configuration of an I/O as an input. This is to reduce the probability of an I/O configured as an input from flipping to an output when subjected to a single event upset (SEU) in space applications. Some of the I/O standards described above require VCCO and VREF voltages. These voltages are externally supplied and connected to device pins that serve groups of IOB blocks, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. Eight I/O banks result from dividing each edge of the FPGA into two banks, as shown in Figure 8 and Figure 9. Each bank has multiple VCCO pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. Bank 1 Bank 5 Bank 4 Bank 6 All Virtex-II IOBs support IEEE 1149.1 compatible boundary-scan testing. Input Path The Virtex-II IOB input path routes input signals directly to internal logic and/or through an optional input flip-flop or latch, or through the DDR input registers. An optional delay element at the D-input of the storage element eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the Virtex-II device, and when used, ensures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signaling standards supported. In some of these standards the input buffer utilizes a user-supplied DS124 (v1.2) December 4, 2006 Product Specification Bank 0 Bank 7 Prior to configuration, all outputs not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive. The dedicated pin HSWAP_EN controls the pull-up resistors prior to configuration. By default, HSWAP_EN is driven High, which disables the pull-up resistors on user I/O pins. When HSWAP_EN is driven Low, the pull-up resistors are activated on user I/O pins. Bank 2 VREF Bank 3 OBUF threshold voltage, VREF. The need to supply VREF imposes constraints on which standards can be used in the same bank. See "I/O Banking," page 13 description below. ug002_c2_014_112900 Figure 8: Virtex-II I/O Banks: Top View for Wire-Bond Packages (CS, FG, & BG) Some input standards require a user-supplied threshold voltage (VREF), and certain user-I/O pins are automatically configured as VREF inputs. Approximately one in six of the I/O pins in the bank assume this role. www.xilinx.com 13 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Rules for Combining I/O Standards in the Same Bank The following rules must be obeyed to combine different input, output, and bidirectional standards in the same bank: 1. Combining output standards only. Output standards with the same output VCCO requirement can be combined in the same bank. Compatible example: Bank 6 Bank 3 Bank 7 Bank 0 Bank 2 Bank 1 Bank 4 SSTL2_I and LVDS_25_DCI outputs Incompatible example: Bank 5 SSTL2_I (output VCCO = 2.5V) and LVCMOS33 (output VCCO = 3.3V) outputs ds031_66_112900 Figure 9: Virtex-II I/O Banks: Top View for Flip-Chip Packages (FF & BF) VREF pins within a bank are interconnected internally, and consequently only one VREF voltage can be used within each bank. However, for correct operation, all VREF pins in the bank must be connected to the external reference voltage source. The VCCO and the VREF pins for each bank appear in the device pinout tables. Within a given package, the number of VREF and VCCO pins can vary depending on the size of device. In larger devices, more I/O pins convert to VREF pins. Since these are always a superset of the VREF pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All VREF pins for the largest device anticipated must be connected to the VREF voltage and are not used for I/O. In smaller devices, some VCCO pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or, if necessary, they can be connected to VCCO to permit migration to a larger device. 2. Combining input standards only. Input standards with the same input VCCO and input VREF requirements can be combined in the same bank. Compatible example: LVCMOS15 and HSTL_IV inputs Incompatible example: LVCMOS15 (input VCCO = 1.5V) and LVCMOS18 (input VCCO = 1.8V) inputs Incompatible example: HSTL_I_DCI_18 (VREF = 0.9V) and HSTL_IV_DCI_18 (VREF = 1.1V) inputs 3. Combining input standards and output standards. Input standards and output standards with the same input VCCO and output VCCO requirement can be combined in the same bank. Compatible example: LVDS_25 output and HSTL_I input Incompatible example: LVDS_25 output (output VCCO = 2.5V) and HSTL_I_DCI_18 input (input VCCO = 1.8V) 4. Combining bidirectional standards with input or output standards. When combining bidirectional I/O with other standards, make sure the bidirectional standard can meet rules 1 through 3 above. 5. Additional rules for combining DCI I/O standards. a. No more than one Single Termination type (input or output) is allowed in the same bank. Incompatible example: HSTL_IV_DCI input and HSTL_III_DCI input b. No more than one Split Termination type (input or output) is allowed in the same bank. Incompatible example: HSTL_I_DCI input and HSTL_II_DCI input The implementation tools will enforce these design rules. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 14 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 11 summarizes all standards and voltage supplies. Table 11: Summary of Voltage Supply Requirements for All Input and Output Standards I/O Standard VCCO VREF Table 11: Summary of Voltage Supply Requirements for All Input and Output Standards (Continued) Termination Type VCCO I/O Standard VREF Output Input 1.1 N/R N/R 1.1 N/R N/R 0.9 N/R N/R 0.9 N/R N/R SSTL18_I 0.9 N/R N/R N/R SSTL18_II 0.9 N/R N/R N/R N/R LVCMOS18 N/R N/R N/R N/R N/R N/R LVDCI_18 N/R Series N/R N/R Series N/R LVDCI_DV2_18 N/R Series N/R LVDCI_DV2_33 N/R Series N/R HSTL_III_DCI_18 1.1 N/R Single PCI33_3 N/R N/R N/R HSTL_IV_DCI_18 1.1 Single Single N/R N/R N/R HSTL_I_DCI_18 0.9 N/R Split PCIX N/R N/R N/R HSTL_II_DCI_18 0.9 Split Split LVDS_33_DCI N/R N/R Split SSTL18_I_DCI 0.9 N/R Split LVDSEXT_33_DCI N/R N/R Split SSTL18_II_DCI 0.9 Split Split SSTL3_I_DCI 1.5 N/R Split HSTL_III 0.9 N/R N/R SSTL3_II_DCI 1.5 Split Split HSTL_IV 0.9 N/R N/R LVDS_25 N/R N/R N/R HSTL_I 0.75 N/R N/R LVDSEXT_25 N/R N/R N/R HSTL_II 0.75 N/R N/R LDT_25 N/R N/R N/R LVCMOS15 N/R N/R N/R N/R N/R N/R LVDCI_15 N/R Series N/R BLVDS_25 N/R N/R N/R LVDCI_DV2_15 N/R Series N/R SSTL2_I 1.25 N/R N/R GTLP_DCI 1 Single Single 1.25 N/R N/R HSTL_III_DCI 0.9 N/R Single N/R N/R N/R HSTL_IV_DCI 0.9 Single Single LVDCI_25 N/R Series N/R HSTL_I_DCI 0.75 N/R Split LVDCI_DV2_25 N/R Series N/R HSTL_II_DCI 0.75 Split Split N/R N/R Split GTL_DCI 0.8 Single Single LVDSEXT_25_DCI N/R N/R Split GTLP 1 N/R N/R SSTL2_I_DCI 1.25 N/R Split GTL 0.8 N/R N/R SSTL2_II_DCI 1.25 Split Split Notes: Output Input Input Output Input Input Termination Type Output Input N/R (1) N/R N/R HSTL_III_18 N/R N/R N/R HSTL_IV_18 N/R N/R N/R HSTL_I_18 1.5 N/R N/R HSTL_II_18 SSTL3_II 1.5 N/R N/R AGP 1.32 N/R LVTTL N/R LVCMOS33 LVDS_33 LVDSEXT_33 LVPECL_33 N/R SSTL3_I LVDCI_33 3.3 3.3 PCI66_3 ULVDS_25 SSTL2_II LVCMOS25 LVDS_25_DCI N/R 2.5 2.5 1. DS124 (v1.2) December 4, 2006 Product Specification N/R 1.8 1.8 N/R 1.5 1.5 1.2 1.2 N/R N/R N/R = no requirement. www.xilinx.com 15 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Digitally Controlled Impedance (DCI) Today's chip output signals with fast edge rates require termination to prevent reflections and maintain signal integrity. High pin count packages (especially ball grid arrays) can not accommodate external termination resistors. Virtex-II XCITE DCI provides controlled impedance drivers and on-chip termination for single-ended and differential I/Os. This eliminates the need for external resistors, and improves signal integrity. The DCI feature can be used on any IOB by selecting one of the DCI I/O standards. Controlled Impedance Drivers (Series Termination) DCI can be used to provide a buffer with a controlled output impedance. It is desirable for this output impedance to match the transmission line impedance (Z). Virtex-II input buffers also support LVDCI and LVDCI_DV2 I/O standards. IOB Z When applied to inputs, DCI provides input parallel termination. When applied to outputs, DCI provides controlled impedance drivers (series termination) or output parallel termination. DCI operates independently on each I/O bank. When a DCI I/O standard is used in a particular I/O bank, external reference resistors must be connected to two dual-function pins on the bank. These resistors, the voltage reference of the N transistor (VRN), and the voltage reference of the P transistor (VRP) are shown in Figure 10. Z Virtex-II DCI VCCO = 3.3 V, 2.5 V, 1.8 V or 1.5 V DS031_51_110600 Figure 11: Internal Series Termination Table 12: SelectI/O-Ultra Controlled Impedance Buffers 1 Bank DCI VCCO DCI DCI Half Impedance 3.3 V LVDCI_33 LVDCI_DV2_33 2.5 V LVDCI_25 LVDCI_DV2_25 1.8 V LVDCI_18 LVDCI_DV2_18 1.5 V LVDCI_15 LVDCI_DV2_15 DCI Controlled Impedance Drivers (Parallel Termination) DCI DCI also provides on-chip termination for SSTL3, SSTL2, HSTL (Class I, II, III, or IV), and GTL/GTLP receivers or transmitters on bidirectional lines. DCI VCCO RREF (1%) Table 13 lists the on-chip parallel terminations available in Virtex-II devices. VCCO must be set according to Table 9. Note that there is a VCCO requirement for GTL_DCI and GTLP_DCI, due to the on-chip termination resistor. VRN VRP RREF (1%) Table 13: SelectI/O-Ultra Buffers with On-Chip Parallel Termination GND DS031_50_101200 I/O Standard External Termination On-Chip Termination SSTL3 Class I SSTL3_I SSTL3_I_DCI (1) When used with a terminated I/O standard, the value of resistors are specified by the standard (typically 50 ). When used with a controlled impedance driver, the resistors set the output impedance of the driver within the specified range (25 to 100 ). For all series and parallel terminations listed in Table 12 and Table 13, the reference resistors must have the same value for any given bank. One percent resistors are recommended. SSTL3 Class II SSTL3_II SSTL3_II_DCI (1) SSTL2 Class I SSTL2_I SSTL2_I_DCI (1) SSTL2 Class II SSTL2_II SSTL2_II_DCI (1) HSTL Class I HSTL_I HSTL_I_DCI HSTL Class II HSTL_II HSTL_II_DCI HSTL Class III HSTL_III HSTL_III_DCI The DCI system adjusts the I/O impedance to match the two external reference resistors or half of the reference resistors, and compensates for impedance changes due to voltage and/or temperature fluctuations. The adjustment is done by turning parallel transistors in the IOB on or off. HSTL Class IV HSTL_IV HSTL_IV_DCI GTL GTL GTL_DCI GTLP GTLP GTLP_DCI Figure 10: DCI in a Virtex-II Bank Notes: 1. DS124 (v1.2) December 4, 2006 Product Specification SSTL Compatible www.xilinx.com 16 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Figure 12 provides examples illustrating the use of the HSTL_I_DCI, HSTL_II_DCI, HSTL_III_DCI, and HSTL_IV_DCI I/O standards. For a complete list, refer to UG002, Virtex-II Platform FPGA User Guide. HSTL_I HSTL_II VCCO/2 VCCO/2 R Conventional VCCO VCCO 2R VCCO 2R N/A R Z0 2R Virtex-II DCI Virtex-II DCI VCCO VCCO VCCO Virtex-II DCI Recommended Z0 Virtex-II DCI Virtex-II DCI VCCO R Z0 R R 2R 2R VCCO Z0 2R Virtex-II DCI 2R Reference Resistor R 2R Virtex-II DCI VCCO Bidirectional VCCO Z0 Virtex-II DCI Virtex-II DCI Virtex-II DCI 2R Z0 R Z0 Virtex-II DCI 2R VCCO R Z0 2R VCCO VCCO R 2R Virtex-II DCI VCCO 2R Z0 Virtex-II DCI DCI Transmit DCI Receive Virtex-II DCI VCCO R Z0 R Z0 Virtex-II DCI VCCO/2 2R VCCO R Z0 Virtex-II DCI VCCO Conventional Transmit DCI Receive VCCO R 2R Virtex-II DCI R Z0 VCCO Z0 VCCO R Z0 R Z0 VCCO R VCCO/2 2R R HSTL_IV VCCO R Z0 VCCO/2 DCI Transmit Conventional Receive VCCO/2 R Z0 HSTL_III Z0 N/A Virtex-II DCI Virtex-II DCI Virtex-II DCI VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 50 50 50 50 DS031_65a_100201 Figure 12: HSTL DCI Usage Examples DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 17 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Figure 13 provides examples illustrating the use of the SSTL2_I_DCI, SSTL2_II_DCI, SSTL3_I_DCI, and SSTL3_II_DCI I/O standards. For a complete list, see the Virtex-II Platform FPGA User Guide. SSTL2_I SSTL2_II SSTL3_I VCCO/2 VCCO/2 VCCO/2 R VCCO/2 R Conventional R/2 Z0 25(1) VCCO 25(1) R R/2 R 2R 25 R/2 2R R/2 2R 2R Z0 2R Virtex-II DCI VCCO VCCO 25(1) 2R 2R Z0 2R 2R 2R Virtex-II DCI Virtex-II DCI Virtex-II DCI Virtex-II DCI N/A Virtex-II DCI VCCO VCCO 25 (1) Z0 2R 2R 25 (1) N/A Virtex-II DCI Virtex-II DCI 25(1) 2R 2R Virtex-II DCI Reference Resistor 2R 2R Virtex-II DCI Bidirectional R/2 Z0 2R 2R 2R R Z0 VCCO 25(1) 2R Z0 VCCO VCCO/2 Virtex-II DCI VCCO VCCO 25(1) R 2R Virtex-II DCI VCCO 25(1) R/2 2R VCCO/2 2R Z0 Virtex-II DCI DCI Transmit DCI Receive VCCO 2R VCCO Virtex-II DCI 2R Z0 Z0 (1) 2R VCCO R 2R 25 Z0 Virtex-II DCI VCCO/2 VCCO VCCO/2 Z0 Virtex-II DCI Z0 R/2 R Z0 R Z0 (1) 2R Conventional Transmit DCI Receive VCCO/2 R VCCO/2 Z0 Virtex-II DCI VCCO/2 R R Z0 R/2 VCCO/2 DCI Transmit Conventional Receive SSTL3_II VCCO VCCO 2R 2R Z0 2R 2R Virtex-II DCI Virtex-II DCI Virtex-II DCI VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 VRN = VRP = R = Z0 50 50 50 50 Recommended Z0(2) 25(1) Notes: 1. The SSTL-compatible 25 series resistor is accounted for in the DCI buffer, and it is not DCI controlled. 2. Z0 is the recommended PCB trace impedance. DS031_65b_112502 Figure 13: SSTL DCI Usage Examples DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 18 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Figure 14 provides examples illustrating the use of the LVDS_DCI and LVDSEXT_DCI I/O standards. For a complete list, see the Virtex-II Platform FPGA User Guide. LVDS_DCI and LVDSEXT_DCI Receiver Z0 2R Conventional Z0 Virtex-II LVDS VCCO 2R Z0 2R Conventional Transmit DCI Receive VCCO 2R Z0 2R Virtex-II LVDS DCI Reference Resistor VRN = VRP = R = Z0 Recommended Z0 50 DS031_65c_082102 Figure 14: LVDS DCI Usage Examples DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 19 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Configurable Logic Blocks (CLBs) The Virtex-II configurable logic blocks (CLB) are organized in an array and are used to build combinatorial and synchronous logic designs. Each CLB element is tied to a switch matrix to access the general routing matrix, as shown in Figure 15. A CLB element comprises four similar slices with fast local feedback within the CLB. The four slices are split into two columns of two slices with two independent carry logic chains and one common shift chain. . COUT TBUF X0Y1 TBUF X0Y0 Slice X1Y1 Slice X1Y0 COUT Switch Matrix SHIFT CIN Slice X0Y1 Fast Connects to neighbors Slice X0Y0 CIN DS031_32_101600 Figure 15: Virtex-II CLB Element Slice Description Each slice includes two 4-input function generators, carry logic, arithmetic logic gates, wide function multiplexers and two storage elements. As shown in Figure 16, each 4-input function generator is programmable as a 4-input LUT, 16 bits of distributed SelectRAM memory, or a 16-bit variable-tap shift register element. ORCY RAM16 MUXFx SRL16 LUT G CY Register RAM16 MUXF5 SRL16 LUT F CY Register Arithmetic Logic DS031_31_100900 Figure 16: Virtex-II Slice Configuration DS124 (v1.2) December 4, 2006 Product Specification The output from the function generator in each slice drives both the slice output and the D input of the storage element. Figure 17 shows a more detailed view of a single slice. Configurations Look-Up Table Virtex-II function generators are implemented as 4-input look-up tables (LUTs). Four independent inputs are provided to each of the two function generators in a slice (F and G). These function generators are each capable of implementing any arbitrarily defined Boolean function of four inputs. The propagation delay is therefore independent of the function implemented. Signals from the function generators can exit the slice (X or Y output), can input the XOR dedicated gate (see arithmetic logic), or input the carry-logic multiplexer (see fast look-ahead carry logic), or feed the D input of the storage element, or go to the MUXF5 (not shown in Figure 17). In addition to the basic LUTs, the Virtex-II slice contains logic (MUXF5 and MUXFX multiplexers) that combines function generators to provide any function of five, six, seven, or eight inputs. The MUXFXs are either MUXF6, MUXF7, or MUXF8 according to the slice considered in the CLB. Selected functions up to nine inputs (MUXF5 multiplexer) can be implemented in one slice. The MUXFX can also be a MUXF6, MUXF7, or MUXF8 multiplexer to map any functions of six, seven, or eight inputs and selected wide logic functions. Register/Latch The storage elements in a Virtex-II slice can be configured as either edge-triggered D-type flip-flops or level-sensitive latches. The D input can be directly driven by the X or Y output via the DX or DY input, or by the slice inputs bypassing the function generators via the BX or BY input. The clock enable signal (CE) is active High by default. If left unconnected, the clock enable for that storage element defaults to the active state. In addition to clock (CK) and clock enable (CE) signals, each slice has set and reset signals (SR and BY slice inputs). SR forces the storage element into the state specified by the attribute SRHIGH or SRLOW. SRHIGH forces a logic "1" when SR is asserted. SRLOW forces a logic "0". When SR is used, a second input (BY) forces the storage element into the opposite state. The reset condition is predominant over the set condition (Figure 18). The initial state after configuration or global initial state is defined by a separate INIT0 and INIT1 attribute. By default, setting the SRLOW attribute sets INIT0, and setting the SRHIGH attribute sets INIT1. www.xilinx.com 20 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs For each slice, set and reset can be set to be synchronous or asynchronous. Virtex-II devices also have the ability to set INIT0 and INIT1 independent of SRHIGH and SRLOW. Control signals CLK, CE, and SR are common to both storage elements in one slice. All control signals have independent polarities. Any inverter placed on a control input is automatically absorbed. The set and reset functionality of a register or a latch can be configured as follows: * * Synchronous set * Synchronous reset * Synchronous set and reset * Asynchronous set (preset) * Asynchronous reset (clear) * Asynchronous set and reset (preset and clear) The synchronous reset has precedence over a set, and an asynchronous clear has precedence over a preset. No set or reset COUT SHIFTIN ORCY SOPIN SOPOUT 0 Dual-Port Shift-Reg G4 G3 G2 G1 WG4 WG3 WG2 WG1 A4 LUT A3 RAM A2 ROM A1 D WG4 G WG3 WG2 MC15 WG1 DI WS YBMUX YB MUXCY 1 0 1 GYMUX Y DY XORG FF LATCH ALTDIG MULTAND 1 0 DYMUX G2 PROD G1 CYOG BY CE CLK D Q Q Y CE CK SR REV BY SLICEWE[2:0] WSG WE[2:0] WE CLK WSF SR SHIFTOUT DIG MUXCY 1 0 CE CLK Shared between x & y Registers SR CIN DS031_01_112502 Figure 17: Virtex-II Slice (Top Half) DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 21 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 14: Distributed SelectRAM Configurations FFY FF LATCH DY D Q CE CK SR REV BY YQ Attribute INIT1 INIT0 SRHIGH SRLOW FFX FF LATCH DX CE CLK D Q CE CK SR REV SR BX Attribute INIT1 INIT0 SRHIGH SRLOW Reset Type SYNC ASYNC Figure 18: Register/Latch Configuration in a Slice Distributed SelectRAM Memory Each function generator (LUT) can implement a 16 x 1-bit synchronous RAM resource called a distributed SelectRAM element. The SelectRAM elements are configurable within a CLB to implement the following: Single-Port 16 x 8 bit RAM * Single-Port 32 x 4 bit RAM * Single-Port 64 x 2 bit RAM * Single-Port 128 x 1 bit RAM * Dual-Port 16 x 4 bit RAM * Dual-Port 32 x 2 bit RAM * Dual-Port 64 x 1 bit RAM 16 x 1S 1 16 x 1D 2 32 x 1S 2 32 x 1D 4 64 x 1S 4 64 x 1D 8 128 x 1S 8 1. S = single-port configuration, and D = dual-port configuration. For single-port configurations, distributed SelectRAM memory has one address port for synchronous writes and asynchronous reads. For dual-port configurations, distributed SelectRAM memory has one port for synchronous writes and asynchronous reads and another port for asynchronous reads. The function generator (LUT) has separated read address inputs (A1, A2, A3, A4) and write address inputs (WG1/WF1, WG2/WF2, WG3/WF3, WG4/WF4). In single-port mode, read and write addresses share the same address bus. In dual-port mode, one function generator (R/W port) is connected with shared read and write addresses. The second function generator has the A inputs (read) connected to the second read-only port address and the W inputs (write) shared with the first read/write port address. Figure 19, Figure 20, and Figure 21 illustrate various example configurations . RAM 16x1S A[3:0] RAM A[4:1] 4 4 Distributed SelectRAM memory modules are synchronous (write) resources. The combinatorial read access time is extremely fast, while the synchronous write simplifies high-speed designs. A synchronous read can be implemented with a storage element in the same slice. The distributed SelectRAM memory and the storage element share the same clock input. A Write Enable (WE) input is active High, and is driven by the SR input. Table 14 shows the number of LUTs (2 per slice) occupied by each distributed SelectRAM configuration. DS124 (v1.2) December 4, 2006 Product Specification Number of LUTs Notes: XQ DS031_22_110600 * RAM WG[4:1] WS D WE WCLK Output D D Q DI Registered Output (BY) WSG (SR) WE CK (optional) DS031_02_110303 Figure 19: Distributed SelectRAM (RAM16x1S) www.xilinx.com 22 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Similar to the RAM configuration, each function generator (LUT) can implement a 16 x 1-bit ROM. Five configurations are available: ROM16x1, ROM32x1, ROM64x1, ROM128x1, and ROM256x1. The ROM elements are cascadable to implement wider or/and deeper ROM. ROM contents are loaded at configuration. Table 15 shows the number of LUTs occupied by each configuration. RAM 32x1S A[4] (BX) RAM 4 A[3:0] D G[4:1] WG[4:1] WS D WE WCLK DI (BY) Table 15: ROM Configuration WSG WE0 WE CK WSF (SR) Output F5MUX WS DI RAM D 4 D Q Registered Output (optional) F[4:1] ROM Number of LUTs 16 x 1 1 32 x 1 2 64 x 1 4 128 x 1 8 (1 CLB) 256 x 1 16 (2 CLBs) WF[4:1] Shift Registers DS031_03_110100 Figure 20: Single-Port Distributed SelectRAM (RAM32x1S) RAM 16x1D 4 DPRA[3:0] 4 A[3:0] dual_port RAM G[4:1] D WS D DPO WG[4:1] DI (BY) Each function generator can also be configured as a 16-bit shift register. The write operation is synchronous with a clock input (CLK) and an optional clock enable, as shown in Figure 22. A dynamic read access is performed through the 4-bit address bus, A[3:0]. The configurable 16-bit shift register cannot be set or reset. The read is asynchronous, however, the storage element or flip-flop is available to implement a synchronous read. The storage element should always be used with a constant address. For example, when building an 8-bit shift register and configuring the addresses to point to the seventh bit, the eighth bit can be the flip-flop. The overall system performance is improved by using the superior clock-to-out of the flip-flops. WSG SRLC16 SHIFTIN WE CK SHIFT-REG A[3:0] A[3:0] 4 dual_port RAM G[4:1] D A[4:1] Output D MC15 D WS SPO Q DI Registered Output D(BY) WG[4:1] WS 4 WSG DI CE (SR) CLK (optional) WE CK WSG WE WCLK (SR) WE CK SHIFTOUT DS031_05_110600 Figure 22: Shift Register Configurations DS031_04_110100 Figure 21: Dual-Port Distributed SelectRAM (RAM16x1D) DS124 (v1.2) December 4, 2006 Product Specification An additional dedicated connection between shift registers allows connecting the last bit of one shift register to the first bit of the next, without using the ordinary LUT output (Figure 23) Longer shift registers can be built with dynamic access to any bit in the chain. The shift register chaining www.xilinx.com 23 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs and the MUXF5, MUXF6, and MUXF7 multiplexers allow up to a 128-bit shift register with addressable access to be implemented in one CLB. 1 Shift Chain in CLB DI D SRLC16 MC15 IN DI D SRLC16 MC15 FF Virtex-II function generators and associated multiplexers can implement the following: * 4:1 multiplexer in one slice * 8:1 multiplexer in two slices * 16:1 multiplexer in one CLB element (4 slices) * 32:1 multiplexer in two CLB elements (8 slices) Each Virtex-II slice has one MUXF5 multiplexer and one MUXFX multiplexer. The MUXFX multiplexer implements the MUXF6, MUXF7, or MUXF8, as shown in Figure 24. Each CLB element has two MUXF6 multiplexers, one MUXF7 multiplexer and one MUXF8 multiplexer. Examples of multiplexers are shown in the Virtex-II Platform FPGA User Guide. Any LUT can implement a 2:1 multiplexer. FF SLICE S3 SHIFTOUT Fast Lookahead Carry Logic SHIFTIN SLICE S2 Multiplexers DI D SRLC16 MC15 FF DI D SRLC16 MC15 FF Dedicated carry logic provides fast arithmetic addition and subtraction. The Virtex-II CLB has two separate carry chains, as shown in the Figure 25. The height of the carry chains is two bits per slice. The carry chain in the Virtex-II device is running upward. The dedicated carry path and carry multiplexer (MUXCY) can also be used to cascade function generators for implementing wide logic functions. SHIFTOUT Arithmetic Logic The arithmetic logic includes an XOR gate that allows a 2-bit full adder to be implemented within a slice. In addition, a dedicated AND (MULT_AND) gate (shown in Figure 17, page 21) improves the efficiency of multiplier implementation. SHIFTIN DI D SRLC16 MC15 FF DI D SRLC16 MC15 FF SLICE S1 SHIFTOUT SHIFTIN DI D SRLC16 MC15 FF DI D SRLC16 MC15 FF SLICE S0 OUT CLB CASCADABLE OUT DS031_06_110200 Figure 23: Cascadable Shift Register DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 24 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs F8 . G F5 Slice S3 MUXF8 combines the two MUXF7 outputs (Two CLBs) F6 F G F5 Slice S2 MUXF6 combines the two MUXF5 outputs from slices S2 and S3 F7 F F5 G Slice S1 MUXF7 combines the two MUXF6 outputs from slices S0 and S2 Slice S0 MUXF6 combines the two MUXF5 outputs from slices S0 and S1 F6 F F5 G F CLB DS031_08_100201 Figure 24: MUXF5 and MUXFX multiplexers DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 25 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs COUT to S0 of the next CLB COUT to CIN of S2 of the next CLB O I MUXCY FF LUT (First Carry Chain) SLICE S3 O I MUXCY FF LUT CIN COUT O I MUXCY FF LUT SLICE S2 O I O I MUXCY MUXCY FF LUT FF LUT O I SLICE S1 MUXCY FF LUT CIN COUT O I (Second Carry Chain) MUXCY FF LUT O I SLICE S0 MUXCY FF LUT CIN CIN CLB DS031_07_110200 Figure 25: Fast Carry Logic Path DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 26 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Sum of Products connected to the output of the top MUXCY in the same slice, as shown in Figure 26. Each Virtex-II slice has a dedicated OR gate named ORCY, ORing together outputs from the slices carryout and the ORCY from an adjacent slice. The ORCY gate with the dedicated Sum of Products (SOP) chain are designed for implementing large, flexible SOP chains. One input of each ORCY is connected through the fast SOP chain to the output of the previous ORCY in the same slice row. The second input is ORCY LUTs and MUXCYs can implement large AND gates or other combinatorial logic functions. Figure 27 illustrates LUT and MUXCY resources configured as a 16-input AND gate. ORCY ORCY ORCY SOP 4 LUT MUXCY 4 LUT Slice 1 4 LUT MUXCY 4 LUT MUXCY LUT MUXCY MUXCY LUT Slice 3 4 LUT MUXCY 4 LUT MUXCY Slice 0 4 4 LUT VCC LUT Slice 1 4 LUT MUXCY 4 LUT MUXCY Slice 2 4 MUXCY 4 Slice 3 4 LUT MUXCY 4 LUT MUXCY Slice 0 4 MUXCY LUT VCC MUXCY MUXCY Slice 2 4 LUT VCC MUXCY VCC CLB CLB ds031_64_110300 Figure 26: Horizontal Cascade Chain OUT 4 LUT MUXCY 0 1 "0" 4 LUT Slice MUXCY 0 1 "0" 16 4 AND OUT MUXCY 0 1 LUT "0" 4 LUT Slice MUXCY 0 1 VCC DS031_41_110600 Figure 27: Wide-Input AND Gate (16 Inputs) DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 27 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs 3-State Buffers Introduction The 3-state buffer logic is implemented using AND-OR logic rather than 3-state drivers, so that timing is more predictable and less load dependent especially with larger devices. Each Virtex-II CLB contains two 3-state drivers (TBUFs) that can drive on-chip buses. Each 3-state buffer has its own 3-state control pin and its own input pin. Locations/Organization Each of the four slices have access to the two 3-state buffers through the switch matrix, as shown in Figure 28. TBUFs in neighboring CLBs can access slice outputs by direct connects. The outputs of the 3-state buffers drive horizontal routing resources used to implement 3-state buses. Four horizontal routing resources per CLB are provided for on-chip 3-state buses. Each 3-state buffer has access alternately to two horizontal lines, which can be partitioned as shown in Figure 29. The switch matrices corresponding to SelectRAM memory and multiplier or I/O blocks are skipped. Number of 3-State Buffers TBUF TBUF Table 16 shows the number of 3-state buffers available in each Virtex-II device. The number of 3-state buffers is twice the number of CLB elements Slice S3 Switch Matrix Slice S2 . Table 16: Virtex-II 3-State Buffers Slice S1 3-State Buffers per Row Total Number of 3-State Buffers XQR2V1000 64 2,560 XQR2V3000 112 7,168 XQR2V6000 176 16,896 Device Slice S0 DS031_37_060700 Figure 28: Virtex-II 3-State Buffers 3 - state lines Programmable connection Switch matrix CLB-II Switch matrix CLB-II DS031_09_032700 Figure 29: 3-State Buffer Connection to Horizontal Lines CLB/Slice Configurations Table 17 summarizes the logic resources in one CLB. All of the CLBs are identical and each CLB or slice can be implemented in one of the configurations listed. Table 18 shows the available resources in all CLBs. Table 17: Logic Resources in One CLB Slices LUTs Flip-Flops MULT_ANDs Arithmetic & Carry Chains SOP Chains Distributed SelectRAM Shift Registers TBUF 4 8 8 8 2 2 128 bits 128 bits 2 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 28 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 18: Virtex-II Logic Resources Available in All CLBs CLB Array: Row x Column Number of Slices Number of LUTs Max Distributed SelectRAM or Shift Register (bits) Number of Flip-Flops Number of Carry Chains (1) Number of SOP Chains (1) XQR2V1000 40 x 32 5,120 10,240 163,840 10,240 64 80 XQR2V3000 64 x 56 14,336 28,672 458,752 28,672 112 128 XQR2V6000 96 x 88 33,792 67,584 1,081,344 67,584 176 192 Device Notes: 1. The carry chains and SOP chains can be split or cascaded. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 29 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs 18 Kbit Block SelectRAM Resources Introduction Virtex-II devices incorporate large amounts of 18 Kbit block SelectRAM. These complement the distributed SelectRAM resources that provide shallow RAM structures implemented in CLBs. Each Virtex-II block SelectRAM is an 18 Kbit true dual-port RAM with two independently clocked and independently controlled synchronous ports that access a common storage area. Both ports are functionally identical. CLK, EN, WE, and SSR polarities are defined through configuration. Each port has the following types of inputs: Clock and Clock Enable, Write Enable, Set/Reset, and Address, as well as separate Data/parity data inputs (for writes) and Data/parity data outputs (for reads). 1K x 18-bit, or 512 x 36-bit configurations and to 16 Kbit memory locations in any of the 16K x 1-bit, 8K x 2-bit, or 4K x 4-bit configurations. The advantage of 9-bit, 18-bit, and 36-bit widths is the ability to store a parity bit for every eight bits. Parity bits must be generated or checked externally in user logic. In such cases, the width is viewed as 8 + 1, 16 + 2, or 32 + 4. These extra parity bits are stored and behave exactly as the other bits, including the timing parameters. Video applications can use the 9-bit ratio of Virtex-II block SelectRAM memory to advantage. Each block SelectRAM cell is a fully synchronous memory, as illustrated in Figure 30. Input data bus and output data bus widths are identical. 18 Kbit Block SelectRAM Operation is synchronous. The block SelectRAM behaves like a register. Control, address, and data inputs must (and need only) be valid during the set-up time window prior to a rising (or falling, a configuration option) clock edge. Data outputs change as a result of the same clock edge. DI DIP ADDR WE EN SSR Configuration DO DOP CLK The Virtex-II block SelectRAM supports various configurations, including single- and dual-port RAM and various data/address aspect ratios. Supported memory configurations for single- and dual-port modes are shown in Table 19. Table 19: Dual- and Single-Port Configurations 16K x 1 bit 2K x 9 bits 8K x 2 bits 1K x 18 bits 4K x 4 bits 512 x 36 bits DS031_10_071602 Figure 30: 18 Kbit Block SelectRAM Memory in Single-Port Mode Dual-Port Configuration As a dual-port RAM, each port of block SelectRAM has access to a common 18 Kbit memory resource. These are fully synchronous ports with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion. Single-Port Configuration As a single-port RAM, the block SelectRAM has access to the 18 Kbit memory locations in any of the 2K x 9-bit, Table 20 illustrates the different configurations available on Ports A and B. Table 20: Dual-Port Mode Configurations Port A 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1 Port B 16K x 1 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36 Port A 8K x 2 8K x 2 8K x 2 8K x 2 8K x 2 Port B 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36 Port A 4K x 4 4K x 4 4K x 4 4K x 4 Port B 4K x 4 2K x 9 1K x 18 512 x 36 Port A 2K x 9 2K x 9 2K x 9 Port B 2K x 9 1K x 18 512 x 36 Port A 1K x 18 1K x 18 Port B 1K x 18 512 x 36 Port A 512 x 36 Port B 512 x 36 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 30 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs If both ports are configured in either 2K x 9-bit, 1K x 18-bit, or 512 x 36-bit configurations, the 18 Kbit block is accessible from Port A or B. If both ports are configured in either 16K x 1-bit, 8K x 2-bit, or 4K x 4-bit configurations, the 16 Kbit block is accessible from Port A or Port B. All other configurations result in one port having access to an 18 Kbit memory block and the other port having access to a 16 Kbit subset of the memory block equal to 16 Kbits. Read/Write Operations Each block SelectRAM cell is a fully synchronous memory, as illustrated in Figure 31. The two ports have independent inputs and outputs and are independently clocked. The write operation is also fully synchronous. Data and address are presented, and the write operation is enabled by control signals WEA or WEB in addition to ENA or ENB. Then, again depending on the clock input mode, a rising or falling clock edge causes the data to be loaded into the memory cell addressed. 18 Kbit Block SelectRAM DIA DIPA ADDRA WEA ENA SSRA CLKA A write operation performs a simultaneous read operation. Three different options are available, selected by configuration: 1. WRITE_FIRST DOA DOPA The WRITE_FIRST option is a transparent mode. The same clock edge that writes the data input (DI) into the memory also transfers DI into the output registers DO as shown in Figure 32. DIB DIPB ADDRB WEB ENB SSRB CLKB The Virtex-II block SelectRAM read operation is fully synchronous. An address is presented, and the read operation is enabled by control signals WEA and WEB in addition to ENA or ENB. Then, depending on clock polarity, a rising or falling clock edge causes the stored data to be loaded into output registers. 2. READ_FIRST The READ_FIRST option is a read-before-write mode. The same clock edge that writes data input (DI) into the memory also transfers the prior content of the memory cell addressed into the data output registers DO, as shown in Figure 33. DOB DOPB DS031_11_071602 Figure 31: 18 Kbit Block SelectRAM in Dual-Port Mode Port Aspect Ratios Table 21 shows the depth and the width aspect ratios for the 18 Kbit block SelectRAM. Virtex-II block SelectRAM also includes dedicated routing resources to provide an efficient interface with CLBs, block SelectRAM, and multipliers. 3. NO_CHANGE The NO_CHANGE option maintains the content of the output registers, regardless of the write operation. The clock edge during the write mode has no effect on the content of the data output register DO. When the port is configured as NO_CHANGE, only a read operation loads a new value in the output register DO, as shown in Figure 34. Table 21: 18 Kbit Block SelectRAM Port Aspect Ratio Width Depth Address Bus Data Bus Parity Bus 1 16,384 ADDR[13:0] DATA[0] N/A 2 8,192 ADDR[12:0] DATA[1:0] N/A 4 4,096 ADDR[11:0] DATA[3:0] N/A 9 2,048 ADDR[10:0] DATA[7:0] Parity[0] 18 1,024 ADDR[9:0] DATA[15:0] Parity[1:0] 36 512 ADDR[8:0] DATA[31:0] Parity[3:0] DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 31 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Data_in DI Internal Memory DO Data_out = Data_in CLK WE Data_in New Address aa RAM Contents Old New New Data_out DS031_14_102000 Figure 32: WRITE_FIRST Mode Data_in DI Internal Memory DO Prior stored data CLK WE Data_in New Address aa RAM Contents Old New Data_out Old DS031_13_102000 Figure 33: READ_FIRST Mode Data_in DI Internal Memory DO No change during write CLK WE Data_in New Address aa RAM Contents Old Data_out New Last Read Cycle Content (no change) DS031_12_102000 Figure 34: NO_CHANGE Mode DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 32 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Control Pins and Attributes number of CLBs in a column divided by four. Column locations are shown in Table 23. Virtex-II SelectRAM memory has two independent ports with the control signals described in Table 22. All control inputs including the clock have an optional inversion. Table 23: SelectRAM Memory Floor Plan Device Table 22: Control Functions SelectRAM Blocks Columns Per Column Total 4 10 40 Control Signal Function XQR2V1000 CLK Read and Write Clock XQR2V3000 6 16 96 XQR2V6000 6 24 144 EN Enable affects Read, Write, Set, Reset WE Write Enable SSR Set DO register to SRVAL (attribute) Total Amount of SelectRAM Memory Initial memory content is determined by the INIT_xx attributes. Separate attributes determine the output register value after device configuration (INIT) and SSR is asserted (SRVAL). Both attributes (INIT_B and SRVAL) are available for each port when a block SelectRAM resource is configured as dual-port RAM. Locations Table 24 shows the amount of block SelectRAM memory available for each Virtex-II device. The 18 Kbit SelectRAM blocks are cascadable to implement deeper or wider single- or dual-port memory resources. Table 24: Virtex-II SelectRAM Memory Available Total SelectRAM Memory Device Blocks in Kbits in Bits 40 720 737,280 XQR2V3000 96 1,728 1,769,472 XQR2V6000 144 2,592 2,654,208 XQR2V1000 Virtex-II SelectRAM memory blocks are located in either four or six columns. The number of blocks per column depends of the device array size and is equivalent to the 2 CLB columns 2 CLB columns 2 CLB columns n CLB columns 2 CLB columns 2 CLB columns 2 CLB columns 2 CLB columns 2 CLB columns n CLB columns SelectRAM Blocks SelectRAM Blocks 2 CLB columns n CLB columns n CLB columns 2 CLB columns 2 CLB columns n CLB columns 2 CLB columns n CLB columns SelectRAM Blocks ds031_38_110403 Figure 35: Block SelectRAM (2-column, 4-column, and 6-column) DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 33 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs 18-Bit x 18-Bit Multipliers Introduction Configuration A Virtex-II multiplier block is an 18-bit by 18-bit 2's complement signed multiplier. Virtex-II devices incorporate many embedded multiplier blocks. These multipliers can be associated with an 18 Kbit block SelectRAM resource or can be used independently. They are optimized for high-speed operations and have a lower power consumption compared to an 18-bit x 18-bit multiplier in slices. The multiplier block is an 18-bit by 18-bit signed multiplier (2's complement). Both A and B are 18-bit-wide inputs, and the output is 36 bits.Figure 37 shows a multiplier block. Each SelectRAM memory and multiplier block is tied to four switch matrices, as shown in Figure 36. MULT 18 x 18 Multiplier Block A[17:0] P[35:0] B[17:0] Switch Matrix DS031_40_100400 Figure 37: Multiplier Block 18-Kbit block SelectRAM Switch Matrix 18 x 18 Multiplier Locations/Organization Switch Matrix Multiplier organization is identical to the 18 Kbit SelectRAM organization, because each multiplier is associated with an 18 Kbit block SelectRAM resource. In addition to the built-in multiplier blocks, the CLB elements have dedicated logic to implement efficient multipliers in logic. (Refer to "Configurable Logic Blocks (CLBs)," page 20). Switch Matrix Table 25: Multiplier Floor Plan Device DS031_33_101000 Figure 36: SelectRAM and Multiplier Blocks Columns Multipliers Per Column Total XQR2V1000 4 10 40 Association with Block SelectRAM Memory XQR2V3000 6 16 96 The interconnect is designed to allow SelectRAM memory and multiplier blocks to be used at the same time, but some interconnect is shared between the SelectRAM and the multiplier. Thus, SelectRAM memory can be used only up to 18 bits wide when the multiplier is used, because the multiplier shares inputs with the upper data bits of the SelectRAM memory. XQR2V6000 6 24 144 This sharing of the interconnect is optimized for an 18-bit-wide block SelectRAM resource feeding the multiplier. The use of SelectRAM memory and the multiplier with an accumulator in LUTs allows for implementation of a digital signal processor (DSP) multiplier-accumulator (MAC) function, which is commonly used in finite and infinite impulse response (FIR and IIR) digital filters. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 34 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs 2 CLB columns n CLB columns 2 CLB columns 2 CLB columns 2 CLB columns n CLB columns Multiplier Blocks 2 CLB columns 2 CLB columns 2 CLB columns 2 CLB columns Multiplier Blocks 2 CLB columns n CLB columns n CLB columns 2 CLB columns 2 CLB columns n CLB columns n CLB columns 2 CLB columns Multiplier Blocks DS031_39_110403 Figure 38: Multipliers (2-column, 4-column, and 6-column) DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 35 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Global Clock Multiplexer Buffers Virtex-II devices have 16 clock input pins that can also be used as regular user I/Os. Eight clock pads are on the top edge of the device, in the middle of the array, and eight are on the bottom edge, as illustrated in Figure 39. Clock Pad Clock Pad I The global clock multiplexer buffer represents the input to dedicated low-skew clock tree distribution in Virtex-II devices. Like the clock pads, eight global clock multiplexer buffers are on the top edge of the device and eight are on the bottom edge. CLKIN Clock Buffer DCM CLKOUT 0 I Clock Distribution Clock Buffer 8 clock pads 0 Clock Distribution DS031_43_101000 Virtex-II Device Figure 40: Virtex-II Clock Distribution Configurations Global clocks are driven by dedicated clock buffers (BUFG), which can also be used to gate the clock (BUFGCE) or to multiplex between two independent clock inputs (BUFGMUX). 8 clock pads The most common configuration option of this element is as a buffer. A BUFG function in this (global buffer) mode, is shown in Figure 41. DS031_42_101000 Figure 39: Virtex-II Clock Pads Each global clock buffer can be driven by either the clock pad to distribute a clock directly to the device, or the Digital Clock Manager (DCM), discussed in "Digital Clock Manager (DCM)." Each global clock buffer can also be driven by local interconnects. The DCM has clock output(s) that can be connected to global clock buffer inputs, as shown in Figure 40. Global clock buffers are used to distribute the clock to some or all synchronous logic elements (such as registers in CLBs and IOBs, and SelectRAM blocks). Eight global clocks can be used in each quadrant of the Virtex-II device. Designers should consider the clock distribution detail of the device prior to pin-locking and floorplanning (see the Virtex-II Platform FPGA User Guide. BUFG I O DS031_61_101200 Figure 41: Virtex-II BUFG Function The Virtex-II global clock buffer BUFG can also be configured as a clock enable/disable circuit (Figure 43), as well as a two-input clock multiplexer (Figure 44). A functional description of these two options is provided below. Each of them can be used in either of two modes, selected by configuration: rising clock edge or falling clock edge. Figure 42 shows clock distribution in Virtex-II devices. In each quadrant, up to eight clocks are organized in clock rows. A clock row supports up to 16 CLB rows (eight up and eight down). For the largest devices a new clock row is added, as necessary. To reduce power consumption, any unused clock branches remain static. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 36 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs 8 BUFGMUX NE NW NW 8 BUFGMUX NE 8 8 8 max 16 Clocks 16 Clocks 8 SW 8 BUFGMUX SE 8 SE SW 8 BUFGMUX DS031_45_120200 Figure 42: Virtex-II Clock Distribution This section describes the rising clock edge option. For the opposite option, falling clock edge, just change all "rising" references to "falling" and all "High" references to "Low", except for the description of the CE or S levels. The rising clock edge option uses the BUFGCE and BUFGMUX primitives. The falling clock edge option uses the BUFGCE_1 and BUFGMUX_1 primitives. BUFGCE BUFGMUX BUFGMUX can switch between two unrelated, even asynchronous clocks. Basically, a Low on S selects the I0 input, and a High on S selects the I1 input. Switching from one clock to the other is done in such a way that the output High and Low time is never shorter than the shortest High or Low time of either input clock. As long as the presently selected clock is High, any level change of S has no effect. If the CE input is active (High) prior to the incoming rising clock edge, this Low-to-High-to-Low clock pulse passes through the clock buffer. Any level change of CE during the incoming clock High time has no effect. BUFGMUX I0 I1 O BUFGCE I S O DS031_63_112900 CE Figure 44: Virtex-II BUFGMUX Function DS031_62_101200 Figure 43: Virtex-II BUFGCE Function If the CE input is inactive (Low) prior to the incoming rising clock edge, the following clock pulse does not pass through the clock buffer, and the output stays Low. Any level change of CE during the incoming clock High time has no effect. CE must not change during a short setup window just prior to the rising clock edge on the BUFGCE input I. Violating this setup time requirement can result in an undefined runt pulse output. If the presently selected clock is Low while S changes, or if it goes Low after S has changed, the output is kept Low until the other ("to-be-selected") clock has made a transition from High to Low. At that instant, the new clock starts driving the output. The two clock inputs can be asynchronous with regard to each other, and the S input can change at any time, except for a short setup time prior to the rising edge of the presently selected clock, that is, prior to the rising edge of the BUFGMUX output O. Violating this setup time requirement can result in an undefined runt pulse output. All Virtex-II devices have 16 global clock multiplexer buffers. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 37 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Local Clocking Figure 45 shows a switchover from CLK0 to CLK1. In Figure 45: * The current clock is CLK0. * S is activated High. * If CLK0 is currently High, the multiplexer waits for CLK0 to go Low. * Once CLK0 is Low, the multiplexer output stays Low until CLK1 transitions High to Low. * When CLK1 transitions from High to Low, the output switches to CLK1. In addition to global clocks, there are local clock resources in the Virtex-II devices. There are more than 72 local clocks in the Virtex-II family. These resources can be used for many different applications, including but not limited to memory interfaces. For example, even using only the left and right I/O banks, Virtex-II FPGAs can support up to 50 local clocks for DDR SDRAM. These interfaces can operate beyond 200 MHz on Virtex-II devices. No glitches or short pulses can appear on the output. Wait for Low S CLK0 Switch CLK1 OUT DS031_46_112900 Figure 45: Clock Multiplexer Waveform Diagram DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 38 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Digital Clock Manager (DCM) The Virtex-II DCM offers a wide range of powerful clock management features: * * * Table 26: DCM Status Pins Clock De-skew: The DCM generates new system clocks (either internally or externally to the FPGA), which are phase-aligned to the input clock, thus eliminating clock distribution delays. Frequency Synthesis: The DCM generates a wide range of output clock frequencies, performing very flexible clock multiplication and division. Phase Shifting: The DCM provides both coarse phase shifting and fine-grained phase shifting with dynamic phase shift control. The DCM utilizes fully digital delay lines allowing robust high-precision control of clock phase and frequency. It also utilizes fully digital feedback systems, operating dynamically to compensate for temperature and voltage variations during operation. Up to four of the nine DCM clock outputs can drive inputs to global clock buffers or global clock multiplexer buffers simultaneously (see Figure 46). All DCM clock outputs can simultaneously drive general routing resources, including routes to output buffers . RST DSSEN Function 0 Phase Shift Overflow 1 CLKIN Stopped 2 CLKFX Stopped 3 N/A 4 N/A 5 N/A 6 N/A 7 N/A Clock De-Skew The DCM de-skews the output clocks relative to the input clock by automatically adjusting a digital delay line. Additional delay is introduced so that clock edges arrive at internal registers and block RAMs simultaneously with the clock edges arriving at the input clock pad. Alternatively, external clocks, which are also de-skewed relative to the input clock, can be generated for board-level routing. All DCM output clocks are phase-aligned to CLK0 and, therefore, are also phase-aligned to the input clock. To achieve clock de-skew, the CLKFB input must be connected, and its source must be either CLK0 or CLK2X. CLKFB must always be connected, unless only the CLKFX or CLKFX180 outputs are used and de-skew is not required. DCM CLKIN CLKFB Status Pin CLK0 CLK90 CLK180 CLK270 CLK2X CLK2X180 CLKDV Frequency Synthesis The DCM provides flexible methods for generating new clock frequencies. Each method has a different operating frequency range and different AC characteristics. The CLK2X and CLK2X180 outputs double the clock frequency. The CLKDV output creates divided output clocks with division options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16. PSINCDEC CLKFX PSEN CLKFX180 PSCLK LOCKED STATUS[7:0] clock signal The CLKFX and CLKFX180 outputs can be used to produce clocks at the following frequency: PSDONE control signal DS031_67_110403 FREQCLKFX = (M/D) * FREQCLKIN Figure 46: Digital Clock Manager The DCM can be configured to delay the completion of the Virtex-II configuration process until after the DCM has achieved lock. This guarantees that the chip does not begin operating until after the system clocks generated by the DCM have stabilized. The DCM has the following general control signals: * RST input pin: resets the entire DCM. * LOCKED output pin: asserted High when all enabled DCM circuits have locked. * STATUS output pins (active High): shown in Table 26. DS124 (v1.2) December 4, 2006 Product Specification where M and D are two integers. Specifications for M and D are provided under "DCM Timing Parameters," page 73. By default, M=4 and D=1, which results in a clock output frequency four times faster than the clock input frequency (CLKIN). CLK2X180 is phase shifted 180 degrees relative to CLK2X. CLKFX180 is phase shifted 180 degrees relative to CLKFX. All frequency synthesis outputs automatically have 50/50 duty cycles (with the exception of the CLKDV output when performing a non-integer divide in high-frequency mode). Note: CLK2X and CLK2X180 are not available in high-frequency mode. www.xilinx.com 39 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Phase Shifting The DCM provides additional control over clock skew through either coarse- or fine-grained phase shifting. The CLK0, CLK90, CLK180, and CLK270 outputs are each phase shifted by 1/4 of the input clock period relative to each other, providing coarse phase control. Note that CLK90 and CLK270 are not available in high-frequency mode. Fine-phase adjustment affects all nine DCM output clocks. When activated, the phase shift between the rising edges of CLKIN and CLKFB is a specified fraction of the input clock period. In variable mode, the PHASE_SHIFT value can also be dynamically incremented or decremented as determined by PSINCDEC synchronously to PSCLK, when the PSEN input is active. Figure 47 illustrates the effects of fine-phase shifting. For more information on DCM features, see the Virtex-II Platform FPGA User Guide. Table 27 lists fine-phase shifting control pins, when used in variable mode. Table 27: Fine-Phase Shifting Control Pins Control Pin Direction Function PSINCDEC In Increment or decrement PSEN In Enable phase shift PSCLK In Clock for phase shift Out Active when completed PSDONE CLKIN CLKOUT_PHASE_SHIFT CLKFB = NONE CLKIN CLKOUT_PHASE_SHIFT CLKFB = FIXED (PS/256) x PERIODCLKIN (PS/256) x PERIODCLKIN (PS negative) (PS positive) CLKIN CLKOUT_PHASE_SHIFT = VARIABLE CLKFB (PS/256) x PERIODCLKIN (PS negative) (PS/256) x PERIODCLKIN (PS positive) DS031_48_101201 Figure 47: Fine-Phase Shifting Effects Two separate components of the phase shift range must be understood: * PHASE_SHIFT attribute range * FINE_SHIFT_RANGE DCM timing parameter range The PHASE_SHIFT attribute is the numerator in the following equation: Phase Shift (ns) = (PHASE_SHIFT/256) * PERIODCLKIN The full range of this attribute is always -255 to +255, but its practical range varies with CLKIN frequency, as constrained by the FINE_SHIFT_RANGE component, which represents the total delay achievable by the phase shift delay line. Total delay is a function of the number of delay taps used in the circuit. Across process, voltage, and temperature, this absolute range is guaranteed to be as specified under "DCM Timing Parameters," page 73. Absolute range (fixed mode) = FINE_SHIFT_RANGE Absolute range (variable mode) = FINE_SHIFT_RANGE/2 DS124 (v1.2) December 4, 2006 Product Specification The reason for the difference between fixed and variable modes is as follows. For variable mode to allow symmetric, dynamic sweeps from -255/256 to +255/256, the DCM sets the "zero phase skew" point as the middle of the delay line, thus dividing the total delay line range in half. In fixed mode, since the PHASE_SHIFT value never changes after configuration, the entire delay line is available for insertion into either the CLKIN or CLKFB path (to create either positive or negative skew). Taking both of these components into consideration, the following are some usage examples: * If PERIODCLKIN = 2 * FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to 128, and in variable mode it is limited to 64. * If PERIODCLKIN = FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to 255, and in variable mode it is limited to 128. * If PERIODCLKIN 0.5 * FINE_SHIFT_RANGE, then PHASE_SHIFT is limited to 255 in either mode. www.xilinx.com 40 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Operating Modes The frequency ranges of DCM input and output clocks depend on the operating mode specified, either low-frequency mode or high-frequency mode, according to Table 28. (For actual values, see "QPro Virtex-II Switching Characteristics," page 53). The CLK2X, CLK2X180, CLK90, and CLK270 outputs are not available in high-frequency mode. High or low-frequency mode is selected by an attribute. Table 28: DCM Frequency Ranges Low-Frequency Mode Output Clock High-Frequency Mode CLKIN Input CLK Output CLKIN Input CLK Output CLK0, CLK180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_1X_HF CLK90, CLK270 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF NA NA CLK2X, CLK2X180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_2X_LF NA NA CLKDV CLKIN_FREQ_DLL_LF CLKOUT_FREQ_DV_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_DV_HF CLKFX, CLKFX180 CLKIN_FREQ_FX_LF CLKOUT_FREQ_FX_LF CLKIN_FREQ_FX_HF CLKOUT_FREQ_FX_HF Locations/Organization Virtex-II DCMs are placed on the top and the bottom of each block RAM and multiplier column. The number of DCMs depends on the device size, as shown in Table 29. Table 29: DCM Organization Device Columns DCMs XQR2V1000 4 8 XQR2V3000 6 12 XQR2V6000 6 12 Each Virtex-II device can be represented as an array of switch matrices with logic blocks attached, as illustrated in Figure 49. Active Interconnect Technology Local and global Virtex-II routing resources are optimized for speed and timing predictability, as well as to facilitate IP cores implementation. Virtex-II Active Interconnect Switch Matrix CLB Technology is a fully buffered programmable routing matrix. All routing resources are segmented to offer the advantages of a hierarchical solution. Virtex-II logic features like CLBs, IOBs, block RAM, multipliers, and DCMs are all connected to an identical switch matrix for access to global routing resources, as shown in Figure 48. Place-and-route software takes advantage of this regular array to deliver optimum system performance and fast compile times. The segmented routing resources are essential to guarantee IP cores portability and to efficiently handle an incremental design flow that is based on modular implementations. Total design time is reduced due to fewer and shorter design iterations. Switch Matrix Switch Matrix Switch Matrix 18Kb BRAM IOB MULT 18 x 18 Switch Matrix Switch Matrix DCM Switch Matrix DS031_55_101000 Figure 48: Active Interconnect Technology DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 41 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Switch Matrix IOB Switch Matrix IOB Switch Matrix IOB Switch Matrix Switch Matrix IOB Switch Matrix CLB Switch Matrix CLB Switch Matrix Switch Matrix Switch Matrix IOB Switch Matrix CLB Switch Matrix CLB Switch Matrix Switch Matrix Switch Matrix IOB Switch Matrix CLB Switch Matrix CLB Switch Matrix Switch Matrix IOB Switch Matrix CLB Switch Matrix CLB Switch Matrix Multiplier SelectRAM DCM Switch Matrix Switch Matrix Switch Matrix DS031_34_110300 Figure 49: Routing Resources Hierarchical Routing Resources Most Virtex-II signals are routed using the global routing resources, which are located in horizontal and vertical routing channels between each switch matrix.As shown in Figure 50, Virtex-II devices have fully buffered programmable interconnections, with a number of resources counted between any two adjacent switch matrix rows or columns. Fanout has minimal impact on the performance of each net. pattern, hex lines can only be driven from one end. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). * Double lines route signals to every first or second block away in all four directions. Organized in a staggered pattern, double lines can be driven only at their endpoints. Double-line signals can be accessed either at the endpoints or at the midpoint (one block from the source). * Direct connect lines route signals to neighboring blocks: vertically, horizontally, and diagonally. * Fast connect lines are the internal CLB local interconnections from LUT outputs to LUT inputs. In Figure 50: * Long lines are bidirectional wires that distribute signals across the device. Vertical and horizontal long lines span the full height and width of the device. * Hex lines route signals to every third or sixth block away in all four directions. Organized in a staggered DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 42 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs 24 Horizontal Long Lines 24 Vertical Long Lines 120 Horizontal Hex Lines 120 Vertical Hex Lines 40 Horizontal Double Lines 40 Vertical Double Lines 16 Direct Connections (total in all four directions) 8 Fast Connects DS031_60_110403 Figure 50: Hierarchical Routing Resources Dedicated Routing In addition to the global and local routing resources, dedicated signals are available: * There are eight global clock nets per quadrant (see "Global Clock Multiplexer Buffers," page 36). * Horizontal routing resources are provided for on-chip 3-state buses. Four partitionable bus lines are provided per CLB row, permitting multiple buses within a row. (See "CLB/Slice Configurations," page 28). * Two dedicated carry-chain resources per slice column (two per CLB column) propagate carry-chain MUXCY output signals vertically to the adjacent slice. (See "CLB/Slice Configurations," page 28). * One dedicated SOP chain per slice row (two per CLB row) propagates ORCY output logic signals horizontally to the adjacent slice. (See "Sum of Products," page 27), * One dedicated shift chain per CLB connects the output of LUTs in shift-register mode to the input of the next LUT in shift-register mode (vertically) inside the CLB. (See "Shift Registers," page 23) DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 43 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Creating a Design Creating Virtex-II designs is easy with Xilinx Integrated Synthesis Environment (ISE) development systems, which support advanced design capabilities, including ProActive Timing Closure, integrated logic analysis, and the fastest place and route runtimes in the industry. ISE solutions enable designers to get the performance they need, quickly and easily. design to advanced HDL design methodologies. Given the high densities of the Virtex-II family, designs are created most efficiently using HDLs. To further improve their time to market, many Xilinx customers employ incremental, modular, and Intellectual Property (IP) design techniques. When properly used, these techniques further accelerate the logic design process. As a result of the ongoing cooperative development efforts between Xilinx and EDA Alliance partners, designers can take advantage of the benefits provided by EDA technologies in the programmable logic design process. Xilinx development systems are available in a number of easy to use configurations, collectively known as the ISE Series. To enable designers to leverage existing investments in EDA tools and to ensure high-performance design flows, Xilinx jointly develops tools with leading EDA vendors, including: * Aldec * Cadence * Exemplar ISE Alliance * Mentor Graphics The ISE Alliance solution is designed to plug and play within an existing design environment. Built using industry standard data formats and netlists, these stable, flexible products enable Alliance EDA partners to deliver their best design automation capabilities to Xilinx customers, along with the time to market benefits of ProActive Timing Closure. * Model Technology * Synopsys * Synplicity ISE Foundation The ISE Foundation solution delivers the benefits of true HDL-based design in a seamlessly integrated design environment. An intuitive project navigator, as well as powerful HDL design and two HDL synthesis tools, ensure that high-quality results are achieved quickly and easily. The ISE Foundation product includes: The ISE Foundation product offers schematic entry and HDL design capabilities as part of an integrated design solution, enabling one-stop shopping. These capabilities are powerful, easy to use, and they support the full portfolio of Xilinx programmable logic devices. HDL design capabilities include a color-coded HDL editor with integrated language templates, state diagram entry, and Core generation capabilities. * State Diagram entry using Xilinx StateCAD Synthesis * Automatic HDL Testbench generation using Xilinx HDLBencher * HDL Simulation using ModelSim XE The ISE Alliance product is engineered to support advanced design flows with the industry's best synthesis tools. Advanced design methodologies include: Design Flow Complete information on Alliance Series partners and their associated design flows is available at http://www.xilinx.com on the Xilinx Alliance Series web page. * Physical Synthesis * Incremental synthesis Virtex-II design flow proceeds as follows: * RTL floorplanning * Design Entry * Direct physical mapping * Synthesis * Implementation * Verification The ISE Foundation product seamlessly integrates synthesis capabilities purchased directly from Exemplar, Synopsys, and Synplicity. In addition, it includes the capabilities of Xilinx Synthesis Technology. Most programmable logic designers iterate through these steps several times in the process of completing a design. Design Entry All Xilinx ISE development systems support the mainstream EDA design entry capabilities, ranging from schematic DS124 (v1.2) December 4, 2006 Product Specification A benefit of having two seamlessly integrated synthesis engines within an ISE design flow is the ability to apply alternative sets of optimization techniques on designs, helping to ensure that designers can meet even the toughest timing requirements. www.xilinx.com 44 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Design Implementation Other Unique Features of Virtex-II Design Flow The ISE Series development systems include Xilinx timing-driven implementation tools, frequently called "place and route" or "fitting" software. This robust suite of tools enables the creation of an intuitive, flexible, tightly integrated design flow that efficiently bridges "logical" and "physical" design domains. This simplifies the task of defining a design, including its behavior, timing requirements, and optional layout (or floorplanning), as well as simplifying the task of analyzing reports generated during the implementation process. Xilinx design flows feature a number of unique capabilities. Among these are efficient incremental HDL design flows, which are robust capabilities enabled by Xilinx exclusive hierarchical floorplanning capabilities. Another powerful design capability only available in the Xilinx design flow is "Modular Design", part of the Xilinx suite of team design tools, which enables autonomous design, implementation, and verification of design modules. The Virtex-II implementation process is comprised of Synthesis, translation, mapping, place and route, and configuration file generation. While the tools can be run individually, many designers choose to run the entire implementation process with the click of a button. To assist those who prefer to script their design flows, Xilinx provides Xflow, an automated single command line process. Xilinx unique hierarchical floorplanning capabilities enable designers to create a programmable logic design by isolating design changes within one hierarchical "logic block", and perform synthesis, verification, and implementation processes on that specific logic block. By preserving the logic in unchanged portions of a design, Xilinx incremental design makes the high-density design process more efficient. Design Verification In addition to conventional design verification using static timing analysis or simulation techniques, Xilinx offers powerful in-circuit debugging techniques using ChipScope ILA (Integrated Logic Analysis). The reconfigurable nature of Xilinx FPGAs means that designs can be verified in real time without the need for extensive sets of software simulation vectors. For simulation, the system extracts post-layout timing information from the design database, and back-annotates this information into the netlist for use by the simulator. The back annotation features a variety of patented Xilinx techniques, resulting in the industry's most powerful simulation flows. Alternatively, timing-critical portions of a design can be verified using the Xilinx static timing analyzer or a third party static timing analysis tool such as Synopsys Prime Time, by exporting timing data in the STAMP data format. For in-circuit debugging, ChipScope ILA enables designers to analyze the real-time behavior of a device while operating at full system speeds. Logic analysis commands and captured data are transferred between the ChipScope software and ILA cores within the Virtex-II FPGA, using industry standard JTAG protocols. These JTAG transactions are driven over an optional download cable (MultiLINX or JTAG), connecting the Virtex device in the target system to a PC or workstation. Incremental Synthesis Xilinx hierarchical floorplanning capabilities can be specified using the high-level floorplanner or a preferred RTL floorplanner (see the Xilinx website for a list of supported EDA partners). When used in conjunction with one of the EDA partners' floorplanners, higher performance results can be achieved, as many synthesis tools use this more predictable detailed physical implementation information to establish more aggressive and accurate timing estimates when performing their logic optimizations. Modular Design Xilinx innovative modular design capabilities take the incremental design process one step further by enabling the designer to delegate responsibility for completing the design, synthesis, verification, and implementation of a hierarchical "logic block" to an arbitrary number of designers - assigning a specific region within the target FPGA for exclusive use by each of the team members. This team design capability enables an autonomous approach to design modules, changing the hand-off point to the lead designer or integrator from "my module works in simulation" to "my module works in the FPGA". This unique design methodology also leverages the Xilinx hierarchical floorplanning capabilities and enables the Xilinx (or EDA partner) floorplanner to manage the efficient implementation of very high-density FPGAs. ChipScope ILA was designed to look and feel like a logic analyzer, making it easy to begin debugging a design immediately. Modifications to the desired logic analysis can be downloaded directly into the system in a matter of minutes. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 45 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Configuration Virtex-II devices are configured by loading application-specific configuration data into the internal configuration memory. Configuration is carried out using a subset of the device pins, some of which are dedicated, while others can be re-used as general purpose inputs and outputs once configuration is complete. Depending on the system design, several configuration modes are supported, selectable via mode pins. The mode pins M2, M1, and M0 are dedicated pins. An additional pin, HSWAP_EN, is used in conjunction with the mode pins to select whether user I/O pins have pull-ups during configuration. By default, HSWAP_EN is tied High (internal pull-up), which shuts off the pull-ups on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os have pull-ups during configuration. Other dedicated pins are CCLK (the configuration clock pin), DONE, PROG_B, and the boundary-scan pins: TDI, TDO, TMS, and TCK. Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or an input accepting an externally generated clock. The configuration pins and boundary-scan pins are independent of the VCCO. The auxiliary power supply (VCCAUX) of 3.3V is used for these pins. All configuration pins are LVTTL 12 mA. (See "QPro Virtex-II DC Characteristics," page 49) A persist option is available which can be used to force the configuration pins to retain their configuration function even after device configuration is complete. If the persist option is not selected, then the configuration pins with the exception of CCLK, PROG_B, and DONE can be used as user I/O in normal operation. The persist option does not apply to the boundary-scan related pins. The persist feature is valuable in applications which employ partial reconfiguration or reconfiguration on the fly. Configuration Modes Virtex-II supports the following five configuration modes: * Slave-serial mode * Master-serial mode * Slave SelectMAP mode * Master SelectMAP mode * Boundary-Scan mode (IEEE 1532/IEEE 1149) Multiple FPGAs can be daisy chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed internally to the DOUT pin. The data on the DOUT pin changes on the rising edge of CCLK. Slave-serial mode is selected by applying <111> to the mode pins (M2, M1, M0). A weak pull-up on the mode pins makes slave serial the default mode if the pins are left unconnected. Master-Serial Mode In master-serial mode, the CCLK pin is an output pin. It is the Virtex-II FPGA device that drives the configuration clock on the CCLK pin to a Xilinx Serial PROM, which in turn feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy chain is presented on the DOUT pin after the rising CCLK edge. The interface is identical to slave serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK, which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Slave SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the Virtex-II FPGA device with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, an active-Low Chip Select (CS_B) signal, and a Write signal (RDWR_B). If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If RDWR_B is asserted, configuration data is read out of the FPGA as part of a readback operation. After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback using the persist option. A detailed description of configuration modes is provided in the Virtex-II Platform FPGA User Guide. Slave-Serial Mode In slave-serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other serial source of configuration data. The CCLK pin on the FPGA is an input in this mode. The serial bitstream must be setup at the DS124 (v1.2) December 4, 2006 Product Specification DIN input pin a short time before each rising edge of the externally generated CCLK. Multiple Virtex-II FPGAs can be configured using the SelectMAP mode, and can be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, RDWR_B, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by deasserting the CS_B pin of each device in turn and writing the appropriate data. www.xilinx.com 46 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Master SelectMAP Mode This mode is a master version of the SelectMAP mode. The device is configured byte-wide on a CCLK supplied by the Virtex-II FPGA. Timing is similar to the Slave SerialMAP mode except that CCLK is supplied by the Virtex-II FPGA. Boundary-Scan (JTAG, IEEE 1532) Mode In boundary-scan mode, dedicated pins are used for configuring the Virtex-II device. The configuration is done entirely through the IEEE 1149.1 Test Access Port (TAP). Virtex-II device configuration using boundary scan is compliant with IEEE 1149.1-1993 standard and the new IEEE 1532 standard for In-System Configurable (ISC) devices. The IEEE 1532 standard is backward compliant with the IEEE 1149.1-1993 TAP and state machine. The IEEE Standard 1532 for In-System Configurable (ISC) devices is intended to be programmed, reprogrammed, or tested on the board via a physical and logical protocol. Configuration through the boundary-scan port is always available, independent of the mode selection. Selecting the boundary-scan mode simply turns off the other modes. Table 30: Virtex-II Configuration Mode Pin Settings Configuration Mode (1) M2 M1 M0 CCLK Direction Data Width Serial DOUT (2) Master Serial 0 0 0 Out 1 Yes Slave Serial 1 1 1 In 1 Yes Master SelectMAP 0 1 1 Out 8 No Slave SelectMAP 1 1 0 In 8 No Boundary Scan 1 0 1 N/A 1 No Notes: 1. 2. The HSWAP_EN pin controls the pullups. Setting M2, M1, and M0 selects the configuration mode, while the HSWAP_EN pin controls whether or not the pullups are used. Daisy chaining is possible only in modes where Serial DOUT is used. For example, in SelectMAP modes, the first device does NOT support daisy chaining of downstream devices. Table 31 lists the total number of bits required to configure each device. Table 31: Virtex-II Bitstream Lengths Device # of Configuration Bits XQR2V1000 3,753,432 XQR2V3000 9,595,304 XQR2V6000 19,760,560 Notes: 1. 2. These values are only valid for STEPPING LEVEL 1. Only STEPPING LEVEL 1 should be used with QPro devices. Configuration Sequence The configuration of Virtex-II devices is a three-phase process after Power On Reset or POR. POR occurs when VCCINT is greater than 1.2V, VCCAUX is greater than 2.5V, and VCCO (bank 4) is greater than 1.5V. Once the POR voltages have been reached, the three-phase process begins. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. Configuration is automatically initiated on power-up unless it is delayed by the user. The INIT_B pin can be held Low using an open-drain driver. An open-drain is required since INIT_B is a bidirectional open-drain pin that is held Low by a DS124 (v1.2) December 4, 2006 Product Specification Virtex-II FPGA device while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded. The configuration process can also be initiated by asserting the PROG_B pin. The end of the memory-clearing phase is signaled by the INIT_B pin going High, and the completion of the entire process is signaled by the DONE pin going High. The Global Set/Reset (GSR) signal is pulsed after the last frame of configuration data is written but before the start-up sequence. The GSR signal resets all flip-flops on the device. The default start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary. One CCLK cycle later, the Global Write Enable (GWE) signal is released. This permits the internal storage elements to begin changing state in response to the logic and the user clock. The relative timing of these events can be changed via configuration options in software. In addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start synchronously. The sequence can also be paused at any stage, until lock has been achieved on any or all DCMs, as well as the DCI. www.xilinx.com 47 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Readback In this mode, configuration data from the Virtex-II FPGA device can be read back. Readback is supported only in the SelectMAP (master and slave) and Boundary Scan modes. Along with the configuration data, it is possible to read back the contents of all registers, distributed SelectRAM, and block RAM resources. This capability is used for real-time debugging. For more detailed configuration information, see the Virtex-II Platform FPGA User Guide. Bitstream Encryption Virtex-II devices have an on-chip decryptor using one or two sets of three keys for triple-key Data Encryption Standard (DES) operation. Xilinx software tools offer an optional encryption of the configuration data (bitstream) with a triple-key DES determined by the designer. The keys are stored in the FPGA by JTAG instruction and retained by a battery connected to the VBATT pin, when the device is not powered. Virtex-II devices can be configured DS124 (v1.2) December 4, 2006 Product Specification with the corresponding encrypted bitstream, using any of the configuration modes described previously. A detailed description of how to use bitstream encryption is provided in the Virtex-II Platform FPGA User Guide. Your local FAE can also provide specific information on this feature. Partial Reconfiguration Partial reconfiguration of Virtex-II devices can be accomplished in either Slave SelectMAP mode or Boundary-Scan mode. Instead of resetting the chip and doing a full configuration, new data is loaded into a specified area of the chip, while the rest of the chip remains in operation. Data is loaded on a column basis, with the smallest load unit being a configuration "frame" of the bitstream (device size dependent). Partial reconfiguration is useful for applications that require different designs to be loaded into the same area of a chip, or that require the ability to change portions of a design without having to reset or reconfigure the entire chip. www.xilinx.com 48 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs QPro Virtex-II Electrical Characteristics QPro Virtex-II devices are only available with the -4 speed grade. QPro Virtex-II DC and AC characteristics are specified for military grade. Except for the operating temperature range, or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -4 speed grade military device are the same as for a -4 speed grade commercial device). All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications. Contact Xilinx for design considerations requiring more detailed information. All specifications are subject to change without notice. QPro Virtex-II DC Characteristics Table 32: Absolute Maximum Ratings Description(1) Symbol Units VCCINT Internal supply voltage relative to GND -0.5 to 1.65 V VCCAUX Auxiliary supply voltage relative to GND -0.5 to 4.0 V VCCO Output drivers supply voltage relative to GND -0.5 to 4.0 V VBATT Key memory battery backup supply -0.5 to 4.0 V VREF Input reference voltage -0.5 to VCCO + 0.5 V VIN (3) Input voltage relative to GND (user and dedicated I/Os) -0.5 to VCCO + 0.5 V -0.5 to 4.0 V -65 to +150 C VTS Voltage applied to 3-state output (user and dedicated I/Os) TSTG Storage temperature (ambient) TSOL Maximum soldering temperature +220 C Operating junction temperature (2) +125 C TJ Notes: 1. 2. 3. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. For soldering guidelines and thermal considerations, see the Device Packaging information on the Xilinx website. Inputs configured as PCI are fully PCI compliant. This statement takes precedence over any specification that would imply that the device is not PCI compliant. Table 33: Recommended Operating Conditions Symbol VCCINT VCCAUX VCCO VBATT Description Package Min Max Units Internal supply voltage relative to GND, TC = -55C to +125C Ceramic 1.425 1.575 V Internal supply voltage relative to GND, TJ = -55C to +125C Plastic 1.425 1.575 V Auxiliary supply voltage relative to GND, TC = -55C to +125C Ceramic 3.135 3.465 V Auxiliary supply voltage relative to GND, TJ = -55C to +125C Plastic 3.135 3.465 V Supply voltage relative to GND, TC = -55C to +125C Ceramic 1.2 3.6 V Supply voltage relative to GND, TJ = -55C to +125C Plastic 1.2 3.6 V Battery voltage relative to GND, TC = -55C to +125C Ceramic 1.0 3.6 V Battery voltage relative to GND, TJ = -55C to +125C Plastic 1.0 3.6 V Notes: 1. 2. 3. 4. 5. If battery is not used, connect VBATT to GND or VCCAUX. Recommended maximum voltage droop for VCCAUX is 10 mV/ms. The thresholds for Power On Reset are VCCINT > 1.2V, VCCAUX > 2.5V, and VCCO (Bank 4) > 1.5 V. Limit the noise at the power supply to be within 200 mV peak-to-peak. For power bypassing guidelines, see XAPP623, Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 49 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 34: DC Characteristics Over Recommended Operating Conditions Symbol Description Device Min Max Units VDRINT Data retention VCCINT voltage All 1.2 V VDRI Data retention VCCAUX voltage All 2.5 V IREF VREF current per bank All -10 +10 A IL Input leakage current All -10 +10 A CIN Input capacitance All 10 pF IRPU Pad pull-up (when selected) @ VIN = 0 V, VCCO = 3.3 V (sample tested) All Note 1 250 A IRPD Pad pull-down (when selected) @ VIN = 3.6 V (sample tested) All Note 1 250 A IBATT Battery supply current All 100 nA Notes: 1. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits. Table 35: Quiescent Supply Current Symbol Description Device Min Typical Max Units Quiescent VCCINT supply current XQR2V1000 XQR2V3000 XQR2V6000 - 100 200 250 0.50 1.30 1.50 A ICCINTQ Quiescent VCCO supply current(1,2) XQR2V1000 XQR2V3000 XQR2V6000 - 1.0 2.0 2.0 6.25 6.25 6.25 mA ICCOQ Quiescent VCCAUX supply current(1,2) XQR2V1000 XQR2V3000 XQR2V6000 - 10 20 25 30 95 95 mA ICCAUXQ Notes: 1. 2. 3. 4. With no output current loads and no active input pull-up resistors. All I/O pins are 3-stated and floating. If DCI or differential signaling is used, more accurate values can be obtained by using the Power Estimator or XPOWER. Data are retained even if VCCO drops to 0 V. Values specified for quiescent supply current parameters are Military Grade. Note: The 300 mA is transient current (peak). It eventually Power-On Power Supply Requirements disappears even if VCCAUX does not power up. Xilinx FPGAs require a certain amount of supply current during power-on to ensure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. The VCCINT, VCCAUX, and VCCO power supplies shall each ramp on no faster than 200 s and no slower than 50 ms. Ramp on is defined as: 0 VDC to minimum supply voltages. Once initialized and configured, use the power calculator to estimate current drain on these supplies. Table 36: Maximum Power On Current Required for QPro Virtex-II Devices Device (mA) Current XQR2V1000 XQR2V3000 XQR2V6000 Table 36 shows the minimum current required by QPro Virtex-II devices for proper power on and configuration. ICCINTMAX 500 1300 1500 Power supplies can be turned on in any sequence. ICCAUXMAX 30 95 95 If any VCCO bank powers up before VCCAUX, then each bank draws up to 300 mA, worst case, until the VCCAUX powers on. This does not harm the device. If the current is limited to the minimum value above, or larger, the device powers on properly after all three supplies have passed through their power on reset threshold voltages. ICCOMAX 6.25 6.25 6.25 DS124 (v1.2) December 4, 2006 Product Specification Notes: 1. 2. Values specified for power on current parameters are Military Grade. ICCOMAX values listed here apply to the entire device (all banks). www.xilinx.com 50 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs General Power Supply Requirements Proper decoupling of all FPGA power supplies is essential. Consult Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors, for detailed information on power distribution system design. VCCAUX powers critical resources in the FPGA. Thus, VCCAUX is especially susceptible to power supply noise. Changes in VCCAUX voltage outside of 200 mV peak to peak should take place at a rate no faster than 10 mV per millisecond. Techniques to help reduce jitter and period distortion are provided in Xilinx Answer Record 13756, available at www.support.xilinx.com. VCCAUX can share a power plane with 3.3V VCCO, but only if VCCO does not have excessive noise. Using simultaneously switching output (SSO) limits are essential for keeping power supply noise to a minimum. Refer to XAPP689, Managing Ground Bounce in Large FPGAs, to determine the number of simultaneously switching outputs allowed per bank at the package level. DC Input and Output Levels Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended operating conditions at the VOL and VOH test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum VCCO with the respective VOL and VOH voltage levels shown. Other standards are sample tested. LDT Differential Signal DC Specifications (LDT_25) Table 37: LDT DC Specifications DC Parameter Symbol Differential Output Voltage VOD Change in VOD Magnitude VOD Output Common Mode Voltage VOCM Conditions RT = 100 across Q and Q signals Min Typ Max Units 500 600 700 mV 15 mV 640 mV 15 mV 1000 mV 15 mV 700 mV 15 mV -15 RT = 100 across Q and Q signals 560 VOCM -15 Input Differential Voltage VID 200 Change in VID Magnitude VID -15 Input Common Mode Voltage VICM 500 VICM -15 Change in VOS Magnitude Change in VICM Magnitude 600 600 600 LVDS DC Specifications (LVDS_33 and LVDS_25) Table 38: LVDS DC Specifications DC Parameter Symbol Conditions Min Typ Max Supply Voltage VCCO Output High Voltage for Q and Q VOH RT = 100 across Q and Q signals Output Low Voltage for Q and Q VOL RT = 100 across Q and Q signals 0.925 Differential Output Voltage (Q - Q), Q = High (Q - Q), Q = High VODIFF RT = 100 across Q and Q signals 250 350 400 mV Output Common-Mode Voltage VOCM RT = 100 across Q and Q signals 1.125 1.2 1.375 V Differential Input Voltage (Q - Q), Q = High (Q - Q), Q = High VIDIFF Common-mode input voltage = 1.25 V 100 350 N/A mV Input Common-Mode Voltage VICM Differential input voltage = 350 mV 0.2 1.25 VCCO - 0.5 V DS124 (v1.2) December 4, 2006 Product Specification 3.3 or 2.5 Units V 1.575 V V www.xilinx.com 51 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Extended LVDS DC Specifications (LVDSEXT_33 and LVDSEXT_25) Table 39: Extended LVDS DC Specifications DC Parameter Symbol Conditions Min Supply Voltage VCCO Output High voltage for Q and Q VOH RT = 100 across Q and Q signals Output Low voltage for Q and Q VOL RT = 100 across Q and Q signals 0.705 Differential output voltage (Q - Q), Q = High (Q - Q), Q = High VODIFF RT = 100 across Q and Q signals 440 Output common-mode voltage VOCM RT = 100 across Q and Q signals 1.125 Differential input voltage (Q - Q), Q = High (Q - Q), Q = High VIDIFF Common-mode input voltage = 1.25 V Input common-mode voltage VICM Differential input voltage = 350 mV Typ Max Units 3.3 or 2.5 V 1.785 V V 820 mV 1.200 1.375 V 100 350 N/A mV 0.2 1.25 VCCO - 0.5 V LVPECL DC Specifications These values are valid when driving a 100 differential load only, i.e., a 100 resistor between the two receiver pins. The VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. Table 40 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the Virtex-II Platform FPGA User Guide. Table 40: LVPECL DC Specifications DC Parameter Min VCCO Max Min 3.0 Max Min 3.3 Max 3.6 Units V VOH 1.8 2.11 1.92 2.28 2.13 2.41 V VOL 0.96 1.27 1.06 1.43 1.30 1.57 V VIH 1.49 2.72 1.49 2.72 1.49 2.72 V VIL 0.86 2.125 0.86 2.125 0.86 2.125 V Differential Input Voltage 0.3 - 0.3 - 0.3 - V DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 52 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs QPro Virtex-II Switching Characteristics Switching characteristics in this document are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: completely on the status of the fabrication process for each device. Table 41 correlates the current status of each QPro Virtex-II device with a corresponding speed grade designation. Advance: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. Table 41: QPro Virtex-II Device Speed Grade Designations Preliminary: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. Production: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. Device Speed Grade Designations Advance Preliminary Production XQR2V1000 -4 XQR2V3000 -4 XQR2V6000 -4 All specifications are always representative of worst-case supply voltage and junction temperature conditions. Testing of Switching Characteristics All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the Xilinx static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all QPro Virtex-II devices. Since individual family members are produced at different times, the migration from one category to another depends DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 53 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs IOB Input Switching Characteristics Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in "IOB Input Switching Characteristics Standard Adjustments.". Table 42: IOB Input Switching Characteristics Description Symbol Device Min Max Units Pad to I output, no delay TIOPI All - 0.88 ns Pad to I output, with delay TIOPID XQR2V1000 - 2.43 ns XQR2V3000 - 2.49 ns XQR2V6000 - 2.66 ns TIOPLI All - 1.05 ns TIOPLID XQR2V1000 - 4.09 ns XQR2V3000 - 4.20 ns XQR2V6000 - 4.55 ns All - 0.77 ns Propagation Delays Propagation Delays Pad to output IQ via transparent latch, no delay Pad to output IQ via transparent latch, with delay Clock CLK to output IQ TIOCKIQ Setup and Hold Times with Respect to Clock at IOB Input Register Pad, no delay TIOPICK/TIOICKP All 1.06/-0.45 - ns Pad, with delay TIOPICKD/TIOICKP XQR2V1000 4.10/-2.58 - ns D XQR2V3000 4.22/-2.66 - ns XQR2V6000 4.56/-2.90 - ns All 0.24/ 0.04 - ns TIOSRCKI All 0.34 - ns SR input to IQ (asynchronous) TIOSRIQ All 1.40 ns GSR to output IQ TGSRQ All 6.88 ns ICE input TIOICECK/TIOCKIC E SR input (IFF, synchronous) Set/Reset Delays Notes: 1. Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 46. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 54 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs IOB Input Switching Characteristics Standard Adjustments Table 43: IOB Input Switching Characteristics Standard Adjustments Description Symbol Standard Value Units TILVTTL LVTTL 0.00 ns TILVCMOS33 LVCMOS33 0.00 ns TILVCMOS25 LVCMOS25 0.12 ns TILVCMOS18 LVCMOS18 0.49 ns TILVCMOS15 LVCMOS15 1.15 ns TILVDS_25 LVDS_25 0.69 ns TILVDS_33 LVDS_33 0.69 ns TILVPECL_33 LVPECL 0.69 ns TIPCI33_3 PCI, 33 MHz, 3.3 V 0.00 ns TIPCI66_3 PCI, 66 MHz, 3.3 V 0.00 ns TIPCIX PCI-X, 133 MHz, 3.3 V 0.00 ns TIGTL GTL 0.48 ns TIGTLP GTLP 0.48 ns TIHSTL_I HSTL I 0.48 ns TIHSTL_II HSTL II 0.48 ns TIHSTL_III HSTL III 0.48 ns TIHSTL_IV HSTL IV 0.48 ns TIHSTL_I_18 HSTL I_18 0.48 ns TIHSTL_II_18 HSTL II_18 0.48 ns TIHSTL_III_18 HSTL III_18 0.48 ns TIHSTL_IV_18 HSTL IV_18 0.48 ns TISSTL2_I SSTL2 I 0.48 ns TISSTL2_II SSTL2 II 0.48 ns TISSTL3_I SSTL3 I 0.40 ns TISSTL3_II SSTL3 II 0.40 ns TIAGP AGP 0.40 ns TILVDCI_33 LVDCI_33 0.00 ns TILVDCI_25 LVDCI_25 0.12 ns TILVDCI_18 LVDCI_18 0.49 ns TILVDCI_15 LVDCI_15 1.14 ns TILVDCI_DV2_33 LVDCI_DV2_33 0.00 ns TILVDCI_DV2_25 LVDCI_DV2_25 0.12 ns TILVDCI_DV2_18 LVDCI_DV2_18 0.49 ns TILVDCI_DV2_15 LVDCI_DV2_15 1.14 ns TIGTL_DCI GTL_DCI 0.48 ns TIGTLP_DCI GTLP_DCI 0.48 ns TIHSTL_I_DCI HSTL_I_DCI 0.48 ns TIHSTL_II_DCI HSTL_II_DCI 0.48 ns Data Input Delay Adjustments Standard-specific data input delay adjustments DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 55 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 43: IOB Input Switching Characteristics Standard Adjustments (Continued) Description Standard-specific data input delay adjustments Symbol Standard Value Units TIHSTL_III_DCI HSTL_III_DCI 0.48 ns TIHSTL_IV_DCI HSTL_IV_DCI 0.48 ns TIHSTL_I_DCI_18 HSTL_I_DCI_18 0.48 ns TIHSTL_II_DCI_18 HSTL_II_DCI_18 0.48 ns TIHSTL_III_DCI_18 HSTL_III_DCI_18 0.48 ns TIHSTL_IV_DCI_18 HSTL_IV_DCI_18 0.48 ns TISSTL2_I_DCI SSTL2_I_DCI 0.48 ns TISSTL2_II_DCI SSTL2_II_DCI 0.48 ns TISSTL3_I_DCI SSTL3_I_DCI 0.40 ns TISSTL3_II_DCI SSTL3_II_DCI 0.40 ns TILDT_25 LDT_25 0.56 ns TIULVDS_25 ULVDS_25 0.56 ns Notes: 1. Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 46. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 56 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs IOB Output Switching Characteristics Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays with the values shown in "IOB Output Switching Characteristics Standard Adjustments." Table 44: IOB Output Switching Characteristics Symbol Description Min Max Units Propagation Delays O input to pad TIOOP 1.74 ns O input to Pad via transparent latch TIOOLP 2.11 ns T input to pad high-impedance(1) TIOTHZ 0.64 ns T input to valid data on Pad TIOTON 1.67 ns T input to pad high-impedance via transparent latch(1) TIOTLPHZ 1.01 ns T input to valid data on Pad via transparent latch TIOTLPON 2.04 ns TGTS 5.98 ns Clock CLK to pad TIOCKP 2.15 ns Clock CLK to Pad high-impedance (synchronous)(1) TIOCKHZ 1.20 ns Clock CLK to valid data on pad (synchronous) TIOCKON 2.22 ns 3-State Delays GTS to pad high-impedance(1) Sequential Delays Setup and Hold Times Before/After Clock CLK O input TIOOCK/TIOCKO 0.39/-0.11 ns OCE input TIOOCECK/TIOCKOCE 0.24/-0.08 ns SR input (OFF) TIOSRCKO/TIOCKOSR 0.34/-0.07 ns TIOTCK/TIOCKT 0.35/-0.08 ns 3-state setup times, TCE input TIOTCECK/TIOCKTCE 0.24/-0.08 ns 3-state setup times, SR input (TFF) TIOSRCKT/TIOCKTSR 0.34/-0.07 ns 3-state setup times, T input Set/Reset Delays SR input to pad (asynchronous) TIOSRP 2.98 ns SR input to pad high-impedance (asynchronous)(1) TIOSRHZ 1.92 ns SR input to valid data on pad (asynchronous) TIOSRON 2.95 ns GSR to pad TIOGSRQ 6.88 ns Notes: 1. The 3-state turn-off delays should not be adjusted. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 57 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs IOB Output Switching Characteristics Standard Adjustments Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown. Table 45: IOB Output Switching Characteristics Standard Adjustments Description Symbol Standard Value Units TOLVTTL_S2 LVTTL, Slow, 2 mA 10.68 ns TOLVTTL_S4 4 mA 6.55 ns TOLVTTL_S6 6 mA 4.66 ns TOLVTTL_S8 8 mA 3.26 ns TOLVTTL_S12 12 mA 2.63 ns TOLVTTL_S16 16 mA 1.93 ns TOLVTTL_S24 24 mA 1.43 ns TOLVTTL_F2 LVTTL, Fast, 2 mA 7.39 ns TOLVTTL_F4 4 mA 3.17 ns TOLVTTL_F6 6 mA 1.78 ns TOLVTTL_F8 8 mA 0.52 ns TOLVTTL_F12 12 mA 0.00 ns TOLVTTL_F16 16 mA -0.15 ns TOLVTTL_F24 24 mA -0.26 ns TOLVDS_25 LVDS -0.36 ns TOLVDS_33 LVDS -0.29 ns TOLVDSEXT_25 LVDS -0.21 ns TOLVDSEXT_33 LVDS -0.19 ns TOLDT_25 LDT -0.23 ns TOBLVDS_25 BLVDS 0.76 ns TOULVDS_25 ULVDS -0.23 ns TOLVPECL_33 LVPECL 0.33 ns TOPCI33_3 PCI, 33 MHz, 3.3 V 1.31 ns TOPCI66_3 PCI, 66 MHz, 3.3 V -0.01 ns TOPCIX PCI-X, 133 MHz, 3.3 V -0.01 ns TOGTL GTL -0.36 ns TOGTLP GTLP -0.20 ns TOHSTL_I HSTL I 0.29 ns TOHSTL_II HSTL II -0.17 ns TOHSTL_III HSTL III -0.19 ns TOHSTL_IV HSTL IV -0.45 ns TOHSTL_I_18 HSTL I_18 -0.04 ns TOHSTL_II_18 HSTL II_18 -0.20 ns TOHSTL_III_18 HSTL III_18 -0.18 ns TOHSTL_IV_18 HSTL IV_18 -0.44 ns TOSSTL2_I SSTL2 I 0.24 ns Output Delay Adjustments Standard-specific adjustments for output delays terminating at pads (based on standard capacitive load, Csl) DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 58 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 45: IOB Output Switching Characteristics Standard Adjustments (Continued) Description Standard-specific adjustments for output delays terminating at pads (based on standard capacitive load, Csl) DS124 (v1.2) December 4, 2006 Product Specification Symbol Standard Value Units TOSSTL2_II SSTL2 II -0.18 ns TOSSTL3_I SSTL3 I 0.33 ns TOSSTL3_II SSTL3 II -0.05 ns TOAGP AGP -0.31 ns TOLVCMOS33_S2 LVCMOS33, Slow, 2 mA 8.70 ns TOLVCMOS33_S4 4 mA 4.95 ns TOLVCMOS33_S6 6 mA 3.78 ns TOLVCMOS33_S8 8 mA 2.60 ns TOLVCMOS33_S12 12 mA 2.16 ns TOLVCMOS33_S16 16 mA 1.40 ns TOLVCMOS33_S24 24 mA 1.34 ns TOLVCMOS33_F2 LVCMOS33, Fast, 2 mA 6.60 ns TOLVCMOS33_F4 4 mA 2.81 ns TOLVCMOS33_F6 6 mA 1.45 ns TOLVCMOS33_F8 8 mA 0.54 ns TOLVCMOS33_F12 12 mA 0.31 ns TOLVCMOS33_F16 16 mA -0.15 ns TOLVCMOS33_F24 24 mA -0.23 ns TOLVCMOS25_S2 LVCMOS25, Slow, 2 mA 10.33 ns TOLVCMOS25_S4 4 mA 5.67 ns TOLVCMOS25_S6 6 mA 5.13 ns TOLVCMOS25_S8 8 mA 4.38 ns TOLVCMOS25_S12 12 mA 3.22 ns TOLVCMOS25_S16 16 mA 2.67 ns TOLVCMOS25_S24 24 mA 2.27 ns TOLVCMOS25_F2 LVCMOS25, Fast, 2 mA 4.60 ns TOLVCMOS25_F4 4 mA 1.30 ns TOLVCMOS25_F6 6 mA 0.81 ns TOLVCMOS25_F8 8 mA 0.37 ns TOLVCMOS25_F12 12 mA 0.03 ns TOLVCMOS25_F16 16 mA -0.21 ns TOLVCMOS25_F24 24 mA -0.40 ns TOLVCMOS18_S2 LVCMOS18, Slow, 2 mA 17.71 ns TOLVCMOS18_S4 4 mA 11.57 ns TOLVCMOS18_S6 6 mA 8.53 ns TOLVCMOS18_S8 8 mA 7.78 ns TOLVCMOS18_S12 12 mA 6.28 ns TOLVCMOS18_S16 16 mA 6.02 ns TOLVCMOS18_F2 LVCMOS18, Fast, 2 mA 6.30 ns TOLVCMOS18_F4 4 mA 2.15 ns www.xilinx.com 59 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 45: IOB Output Switching Characteristics Standard Adjustments (Continued) Description Standard-specific adjustments for output delays terminating at pads (based on standard capacitive load, Csl) DS124 (v1.2) December 4, 2006 Product Specification Symbol Standard Value Units TOLVCMOS18_F6 6 mA 0.94 ns TOLVCMOS18_F8 8 mA 0.80 ns TOLVCMOS18_F12 12 mA 0.30 ns TOLVCMOS18_F16 16 mA 0.26 ns TOLVCMOS15_S2 LVCMOS15, Slow, 2 mA 21.50 ns TOLVCMOS15_S4 4 mA 14.48 ns TOLVCMOS15_S6 6 mA 13.66 ns TOLVCMOS15_S8 8 mA 11.06 ns TOLVCMOS15_S12 12 mA 10.25 ns TOLVCMOS15_S16 16 mA 9.31 ns TOLVCMOS15_F2 LVCMOS15, Fast, 2 mA 5.78 ns TOLVCMOS15_F4 4 mA 2.27 ns TOLVCMOS15_F6 6 mA 1.66 ns TOLVCMOS15_F8 8 mA 1.05 ns TOLVCMOS15_F12 12 mA 0.84 ns TOLVCMOS15_F16 16 mA 0.75 ns TOLVDCI_33 LVDCI_33 0.84 ns TOLVDCI_25 LVDCI_25 0.88 ns TOLVDCI_18 LVDCI_18 0.95 ns TOLVDCI_15 LVDCI_15 2.06 ns TOLVDCI_DV2_33 LVDCI_DV2_33 0.13 ns TOLVDCI_DV2_25 LVDCI_DV2_25 0.03 ns TOLVDCI_DV2_18 LVDCI_DV2_18 0.48 ns TOLVDCI_DV2_15 LVDCI_DV2_15 1.36 ns TOGTL_DCI GTL_DCI -0.35 ns TOGTLP_DCI GTLP_DCI -0.17 ns TOHSTL_I_DCI HSTL_I_DCI 0.26 ns TOHSTL_II_DCI HSTL_II_DCI 0.07 ns TOHSTL_III_DCI HSTL_III_DCI -0.20 ns TOHSTL_IV_DCI HSTL_IV_DCI -0.52 ns TOHSTL_I_DCI_18 HSTL_I_DCI_18 0.06 ns TOHSTL_II_DCI_18 HSTL_II_DCI_18 -0.03 ns TOHSTL_III_DCI_18 HSTL_III_DCI_18 -0.16 ns TOHSTL_IV_DCI_18 HSTL_IV_DCI_18 -0.47 ns TOSSTL2_I_DCI SSTL2_I_DCI 0.14 ns TOSSTL2_II_DCI SSTL2_II_DCI -0.11 ns TOSSTL3_I_DCI SSTL3_I_DCI 0.17 ns TOSSTL3_II_DCI SSTL3_II_DCI 0.09 ns www.xilinx.com 60 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs I/O Standard Adjustment Measurement Methodology Input Delay Measurements Output Delay Measurements Table 46 shows the test setup parameters used for measuring Input standard adjustments (see Figure 52, page 65). Output delays are measured using a Tektronix P6245 TDS500/600 probe (< 1 pf) across approximately 4" of FR4 microstrip trace. Standard termination was used for all testing (refer to Virtex-II Platform FPGA User Guide for details). The propagation delay of the 4" trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setup shown in Figure 51. Table 46: Input Delay Measurement Methodology Standard VL (1) VH (1) (3,4) VREF (2,4) VMEAS LVTTL 0 3.0 1.4 - LVCMOS33 0 3.3 1.65 - LVCMOS25 0 2.5 1.25 - LVCMOS18 0 1.8 0.9 - LVCMOS15 0 1.5 0.75 - PCI33_3 Per PCI Specification - PCI66_3 Per PCI Specification - Per PCI-X Specification - PCI-X Measurements and test conditions are reflected in the IBIS models except where the IBIS format precludes it (IBIS models can be found on the web at: http://support.xilinx.com/support/sw_ibis.htm Parameters VREF, RREF, CREF, and VMEAS fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using the following method: GTL VREF - 0.2 VREF + 0.2 VREF 0.80 GTLP VREF - 0.2 VREF + 0.2 VREF 1.0 HSTL Class I VREF - 0.5 VREF + 0.5 VREF 0.75 HSTL Class II VREF - 0.5 VREF + 0.5 VREF 0.75 2. Record the time to VMEAS . HSTL Class III VREF - 0.5 VREF + 0.5 VREF 0.90 HSTL Class IV VREF - 0.5 VREF + 0.5 VREF 0.90 SSTL3 Class I & II VREF - 1.00 VREF + 1.00 VREF 1.5 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load. SSTL2 Class I & II VREF - 0.75 VREF + 0.75 VREF 1.25 AGP-2X VREF - (0.2 x VCCO) VREF + (0.2 x VCCO) VREF Per AGP Spec LVDS25 1.2 - 0.125 1.2 + 0.125 1.2 LVDS33 1.2 - 0.125 1.2 + 0.125 1.2 LVDSEXT25 1.2 - 0.125 1.2 + 0.125 1.2 LVDSEXT33 1.2 - 0.125 1.2 + 0.125 1.2 ULVDS25 0.6 - 0.125 0.6 + 0.125 0.6 LDT25 0.6 - 0.125 0.6 + 0.125 0.6 1.6 - 0.3 1.6 + 0.3 1.6 LVPECL 1. Simulate the output driver of choice into the generalized test setup, using values from Table 47. 4. Record the time to VMEAS . 5. Compare the results of steps 2 and 4. The increase or decrease in delay should be added to or subtracted from the I/O Output Standard Adjustment value (Table 45, page 58) to yield the actual worst-case propagation delay (clock-to-input) of the PCB trace. VREF FPGA Output VMEAS (voltage level at which delay measurement is taken) Notes: 1. 2. 3. 4. Input waveform switches between VLand VH. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF values listed are typical. See Virtex-II Platform FPGA User Guide for min/max specifications. Input voltage level from which measurement starts. Note that this is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 51. DS124 (v1.2) December 4, 2006 Product Specification RREF CREF (probe capacitance) ds083-3_06a_092503 Figure 51: Generalized Test Setup www.xilinx.com 61 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 47: Output Delay Measurement Methodology Standard RREF CREF(1)( (ohms) pF) VMEAS (V) VREF (V) Table 47: Output Delay Measurement Methodology Standard RREF CREF(1)( (ohms) pF) VMEAS (V) VREF (V) LVTTL (all) 1M 0 1.4 0 LVDS25 50 0 VREF 1.2 LVCMOS33 1M 0 1.65 0 LVDSEXT25 50 0 VREF 1.2 LVCMOS25 1M 0 1.25 0 LVDS33 50 0 VREF 1.2 LVCMOS18 1M 0 0.9 0 LVDSEXT33 50 0 VREF 1.2 LVCMOS15 1M 0 0.75 0 BLVDS 1M 0 1.2 0 PCI33_3 - rising edge 25 0 0.94 0 LDT_25 50 0 VREF 0.6 PCI33_3 - falling edge 25 0 2.03 3.3 LVPECL25 1M 0 1.23 0 PCI66_3 - rising edge 25 0 0.94 0 LVDCI33 1M 0 1.65 0 PCI66_3 - falling edge 25 0 2.03 3.3 LVDCI25 1M 0 1.25 0 PCI-X - rising edge 25 0 0.94 LVDCI18 1M 0 0.9 0 PCI-X - falling edge 25 0 2.03 3.3 LVDCI15 1M 0 0.75 0 GTL 25 0 0.8 1.2 HSTL DCI Class I 50 0 VREF 0.75 GTLP 25 0 1.0 1.5 HSTL DCI C0lass II 50 0 VREF 0.75 HSTL Class I 50 0 VREF 0.75 HSTL DCI Class III 50 0 0.9 1.5 HSTL Class II 25 0 VREF 0.75 HSTL DCI Class IV 50 0 0.9 1.5 HSTL Class III 50 0 0.9 1.5 HSTL18 DCI Class I 50 0 VREF 0.9 HSTL Class IV 25 0 0.9 1.5 HSTL18 DCI Class II 50 0 VREF 0.9 HSTL18 Class I 50 0 VREF 0.9 HSTL18 DCI Class III 50 0 1.1 1.8 HSTL18 Class II 25 0 VREF 0.9 HSTL18 DCI Class IV 50 0 1.1 1.8 HSTL18 Class III 50 0 1.1 1.8 SSTL3 DCI Class I 50 0 VREF 1.5 HSTL18 Class IV 25 0 1.1 1.8 SSTL3 DCI Class II 50 0 VREF 1.5 SSTL3 Class I 50 0 VREF 1.5 SSTL2 DCI Class I 50 0 VREF 1.25 SSTL3 Class II 25 0 VREF 1.5 SSTL2 DCI Class II 50 0 VREF 1.25 SSTL2 Class I 50 0 VREF 1.25 SSTL18 DCI Class I 50 0 VREF 0.9 SSTL2 Class II 25 0 VREF 1.25 SSTL18 DCI Class II 50 0 VREF 0.9 SSTL18 Class I 50 0 VREF 0.9 GTL DCI 50 0 0.8 1.2 SSTL18 Class II 25 0 VREF 0.9 GTLP DCI 50 0 1.0 1.5 AGP-2X - rising edge 50 0 0.94 0 AGP-2X - falling edge 50 0 2.03 3.3 Notes: 1. CREF is the capacitance of the probe, nominally 0 pF. Clock Distribution Switching Characteristics Table 48: Clock Distribution Switching Characteristics Description Global Clock Buffer I input to O output DS124 (v1.2) December 4, 2006 Product Specification Symbol Value Units TGIO 0.59 ns www.xilinx.com 62 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs CLB Switching Characteristics Delays originating at F/G inputs vary slightly according to the input used (see Figure 50). The values listed below are worst-case. Precise values are provided by the timing analyzer. Table 49: CLB Switching Characteristics Description Symbol Min Max Units Combinatorial Delays 4-input function: F/G inputs to X/Y outputs TILO - 0.44 ns 5-input function: F/G inputs to F5 output TIF5 - 0.72 ns 5-input function: F/G inputs to X output TIF5X - 0.95 ns FXINA or FXINB inputs to Y output via MUXFX TIFXY - 0.45 ns FXINA input to FX output via MUXFX TINAFX - 0.32 ns FXINB input to FX output via MUXFX TINBFX - 0.32 ns SOPIN input to SOPOUT output via ORCY TSOPSOP - 0.44 ns Incremental delay routing through transparent latch to XQ/YQ outputs TIFNCTL - 0.51 ns FF Clock CLK to XQ/YQ outputs TCKO - 0.57 ns Latch Clock CLK to XQ/YQ outputs TCKLO - 0.68 ns BX/BY inputs TDICK/TCKDI 0.37/-0.09 - ns DY inputs TDYCK/TCKDY 0.37/-0.09 - ns DX inputs TDXQK/TCKDX 0.37/-0.09 - ns CE input TCECK/TCKCE 0.24/-0.08 - ns SR/BY inputs (synchronous) TSRCK/TSCKR 0.26/-0.03 - ns Minimum Pulse Width, High TCH 0.77 - ns Minimum Pulse Width, Low TCL 0.77 - ns TRPW 0.77 - ns Delay from SR/BY inputs to XQ/YQ outputs (asynchronous) TRQ - 1.34 ns Toggle Frequency (MHz) (for export control) FTOG - 650 MHz Symbol Min Max Units Clock CLK to X/Y outputs (WE active) in 16 x 1 mode TSHCKO16 - 2.05 ns Clock CLK to X/Y outputs (WE active) in 32 x 1 mode TSHCKO32 - 2.49 ns Clock CLK to F5 output TSHCKOF5 - 2.23 ns TDS/TDH 0.67/-0.11 - ns Sequential Delays Setup and Hold Times Before/After Clock CLK Clock CLK Set/Reset Minimum Pulse Width, SR/BY inputs CLB Distributed RAM Switching Characteristics Table 50: CLB Distributed RAM Switching Characteristics Description Sequential Delays Setup and Hold Times Before/After Clock CLK BX/BY data inputs (DIN) F/G address inputs TAS/TAH 0.50/ 0.00 - ns TWES/TWEH 0.53/-0.01 - ns Minimum Pulse Width, High TWPH 0.72 - ns Minimum Pulse Width, Low TWPL 0.72 - ns Minimum clock period to meet address write cycle time TWC 1.44 - ns SR input (WS) Clock CLK DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 63 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs CLB Shift Register Switching Characteristics Table 51: CLB Shift Register Switching Characteristics Description Symbol Min Max Units Clock CLK to X/Y outputs TREG - 2.92 ns Clock CLK to X/Y outputs TREG32 - 3.35 ns Clock CLK to XB output via MC15 LUT output TREGXB - 2.82 ns Clock CLK to YB output via MC15 LUT output TREGYB - 2.75 ns Clock CLK to Shiftout TCKSH - 2.43 ns Clock CLK to F5 output TREGF5 - 3.09 ns TSRLDS/TSRLDH 0.67/-0.09 - ns TWSS/TWSH 0.24/-0.08 - ns Minimum Pulse Width, High TSRPH 0.72 - ns Minimum Pulse Width, Low TSRPL 0.72 - ns Sequential Delays Setup and Hold Times Before/After Clock CLK BX/BY data inputs (DIN) SR input (WS) Clock CLK DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 64 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Multiplier Switching Characteristics Table 52 and Table 53 provide timing information for QPro Virtex-II multiplier blocks, available in stepping revisions of QPro Virtex-II devices. For more information on stepping revisions, availability, and ordering instructions, see your local sales representative. Table 52: Enhanced Multiplier Switching Characteristics Description Symbol Min Max Units Input to Pin 35 TMULT_P35 - 5.91 ns Input to Pin 34 TMULT_P34 - 5.79 ns Input to Pin 33 TMULT_P33 - 5.66 ns Input to Pin 32 TMULT_P32 - 5.54 ns Input to Pin 31 TMULT_P31 - 5.42 ns Input to Pin 30 TMULT_P30 - 5.29 ns Input to Pin 29 TMULT_P29 - 5.17 ns Input to Pin 28 TMULT_P28 - 5.05 ns Input to Pin 27 TMULT_P27 - 4.92 ns Input to Pin 26 TMULT_P26 - 4.80 ns Input to Pin 25 TMULT_P25 - 4.68 ns Input to Pin 24 TMULT_P24 - 4.56 ns Input to Pin 23 TMULT_P23 - 4.43 ns Input to Pin 22 TMULT_P22 - 4.31 ns Input to Pin 21 TMULT_P21 - 4.19 ns Input to Pin 20 TMULT_P20 - 4.06 ns Input to Pin 19 TMULT_P19 - 3.94 ns Input to Pin 18 TMULT_P18 - 3.82 ns Input to Pin 17 TMULT_P17 - 3.69 ns Input to Pin 16 TMULT_P16 - 3.57 ns Input to Pin 15 TMULT_P15 - 3.45 ns Input to Pin 14 TMULT_P14 - 3.33 ns Input to Pin 13 TMULT_P13 - 3.20 ns Input to Pin 12 TMULT_P12 - 3.08 ns Input to Pin 11 TMULT_P11 - 2.96 ns Input to Pin 10 TMULT_P10 - 2.83 ns Input to Pin 9 TMULT_P9 - 2.71 ns Input to Pin 8 TMULT_P8 - 2.59 ns Input to Pin 7 TMULT_P7 - 2.46 ns Input to Pin 6 TMULT_P6 - 2.34 ns Input to Pin 5 TMULT_P5 - 2.22 ns Input to Pin 4 TMULT_P4 - 2.10 ns Input to Pin 3 TMULT_P3 - 1.97 ns Input to Pin 2 TMULT_P2 - 1.85 ns Input to Pin 1 TMULT_P1 - 1.73 ns Input to Pin 0 TMULT_P0 - 1.60 ns Propagation Delay to Output Pin DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 65 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 53: Pipelined Multiplier Switching Characteristics Description Symbol Min Max Units TMULIDCK/TMULCKID - 3.89/0.00 ns TMULIDCK_CE/TMULCKID_CE - 0.86/0.00 ns TMULIDCK_RST/TMULCKID_RST - 0.86/0.00 ns Clock to Pin 35 TMULTCK_P35 - 3.74 ns Clock to Pin 34 TMULTCK_P34 - 3.61 ns Clock to Pin 33 TMULTCK_P33 - 3.49 ns Clock to Pin 32 TMULTCK_P32 - 3.37 ns Clock to Pin 31 TMULTCK_P31 - 3.25 ns Clock to Pin 30 TMULTCK_P30 - 3.12 ns Clock to Pin 29 TMULTCK_P29 - 3.00 ns Clock to Pin 28 TMULTCK_P28 - 2.88 ns Clock to Pin 27 TMULTCK_P27 - 2.75 ns Clock to Pin 26 TMULTCK_P26 - 2.63 ns Clock to Pin 25 TMULTCK_P25 - 2.51 ns Clock to Pin 24 TMULTCK_P24 - 2.38 ns Clock to Pin 23 TMULTCK_P23 - 2.26 ns Clock to Pin 22 TMULTCK_P22 - 2.14 ns Clock to Pin 21 TMULTCK_P21 - 2.02 ns Clock to Pin 20 TMULTCK_P20 - 1.89 ns Clock to Pin 19 TMULTCK_P19 - 1.77 ns Clock to Pin 18 TMULTCK_P18 - 1.65 ns Clock to Pin 17 TMULTCK_P17 - 1.52 ns Clock to Pin 16 TMULTCK_P16 - 1.40 ns Clock to Pin 15 TMULTCK_P15 - 1.28 ns Clock to Pin 14 TMULTCK_P14 - 1.15 ns Clock to Pin 13 TMULTCK_P13 - 1.15 ns Clock to Pin 12 TMULTCK_P12 - 1.15 ns Clock to Pin 11 TMULTCK_P11 - 1.15 ns Clock to Pin 10 TMULTCK_P10 - 1.15 ns Clock to Pin 9 TMULTCK_P9 - 1.15 ns Clock to Pin 8 TMULTCK_P8 - 1.15 ns Clock to Pin 7 TMULTCK_P7 - 1.15 ns Clock to Pin 6 TMULTCK_P6 - 1.15 ns Clock to Pin 5 TMULTCK_P5 - 1.15 ns Clock to Pin 4 TMULTCK_P4 - 1.15 ns Clock to Pin 3 TMULTCK_P3 - 1.15 ns Clock to Pin 2 TMULTCK_P2 - 1.15 ns Clock to Pin 1 TMULTCK_P1 - 1.15 ns Clock to Pin 0 TMULTCK_P0 - 1.15 ns Setup and Hold Times Before/After Clock Data Inputs Clock Enable Reset Clock to Output Pin DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 66 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Block SelectRAM Switching Characteristics Table 54: Block SelectRAM Switching Characteristics Description Symbol Min Min Units TBCKO - 2.65 ns ADDR inputs TBACK/TBCKA 0.36/ 0.00 - ns DIN inputs TBDCK/TBCKD 0.36/ 0.00 - ns EN input TBECK/TBCKE 1.20/-0.58 - ns RST input TBRCK/TBCKR 1.65/-0.90 - ns WEN input TBWCK/TBCKW 0.72/-0.25 - ns Minimum Pulse Width, High TBPWH 1.48 - ns Minimum Pulse Width, Low TBPWL 1.48 - ns Symbol Min Max Units TIO - 0.58 ns TRI input to OUT output high-impedance TOFF - 0.55 ns TRI input to valid data on OUT output TON - 0.55 ns Sequential Delays Clock CLK to DOUT output Setup and Hold Times Before Clock CLK Clock CLK TBUF Switching Characteristics Table 55: TBUF Switching Characteristics Description Combinatorial Delays IN input to OUT output Configuration Timing Configuration Memory Clearing Parameters Power-up timing of configuration signals is shown in Figure 52; corresponding timing characteristics are listed in Table 56. VCC 1 TPOR PROG_B 2 TPL INIT_B 3 TICCK CCLK (Output or Input) M0, M1, M2* (Required) *Can be either 0 or 1, but must not toggle during and after configuration. ds083-3_07_012004 Figure 52: Configuration Power-Up Timing DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 67 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 56: Power-Up Timing Characteristics Figure References Symbol Value Units Power-on reset 1 TPOR TPL + 2 ms, max Program latency 2 TPL 4 s per frame, max CCLK (output) delay 3 TICCK 0.5 s, min 4.0 s, max 300 ns, min Description Program pulse width TPROGRAM Notes: 1. The M2, M1, and M0 mode pins should be set at a constant DC voltage level, either through pull-up or pull-down resistors, or tied directly to ground or VCCAUX. The mode pins should not be toggled during and after configuration. Master/Slave Serial Mode Parameters Clock timing for Slave Serial configuration programming is shown in Figure 53, with Master Serial clock timing shown in Figure 54. Programming parameters for both Slave and Master modes are given in Table 57. Serial DIN 1 TDCC 2 TCCD 5 TCCL CCLK 4 TCCH 3 TCCO Serial DOUT ds083-3_08_111104 Figure 53: Slave Serial Mode Timing Sequence CCLK (Output) 2 TCKDS 1 TDSCK Serial DIN Serial DOUT ds083-3_09_111104 Figure 54: Master Serial Mode Timing Sequence DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 68 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs . Table 57: Master/Slave Serial Mode Timing Characteristics Figure References Symbol Value Units DIN setup/hold, slave mode (Figure 53) 1/2 TDCC/TCCD 6.0/0.0 ns, min DIN setup/hold, master mode (Figure 54) 1/2 TDSCK/TCKDS 6.0/0.0 ns, min 3 TCCO 12.0 ns, max High time 4 TCCH 5.0 ns, min Low time 5 TCCL 5.0 ns, min FCC_STARTUP 40 MHz, max 40 (1) MHz, max Description DOUT CCLK Maximum start-up frequency Maximum frequency FCC_SERIAL Frequency tolerance, master mode with respect to nominal +45% -30% Notes: 1. If no provision is made in the design to adjust the frequency of CCLK, FCC_SERIAL should not exceed FCC_STARTUP. Master/Slave SelectMAP Parameters Figure 55 is a generic timing diagram for data loading using SelectMAP. For other data loading diagrams, refer to the Virtex-II Pro Platform FPGA User Guide. CCLK 3 TSMCSCC CS_B 4 5 TSMCCW RDWR_B TSMCCCS 6 2 1 TSMDCC TSMWCC TSMCCD DATA[0:7] 7 TSMCKBY BUSY No Write Write No Write Write ds083-3_10_012004 Figure 55: SelectMAP Mode Data Loading Sequence (Generic) Table 58: SelectMAP Mode Write Timing Characteristics Figure References Symbol Value Units DATA[0:7] setup/hold 1/2 TSMDCC/TSMCCD 6.0/0.0 ns, min CS_B setup/hold 3/4 TSMCSCC/TSMCCCS 7.0/0.0 ns, min RDWR_B setup/hold 5/6 TSMCCW/TSMWCC 7.0/0.0 ns, min 7 TSMCKBY 12.0 ns, max FCC_STARTUP 40 MHz, max FCC_SELECTMAP 40 MHz, max FCCNH 40 MHz, max Description CCLK BUSY propagation delay Maximum start-up frequency Maximum frequency Maximum frequency with no handshake DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 69 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Figure 56 is a generic timing diagram for data reading using SelectMAP. For other readback diagrams, refer to the Virtex-II Pro Platform FPGA User Guide. CCLK 3 TSMCSCC CS_B RDWR_B 2 TSMCCR TSMCKD 5 3 TSMCSD HIGH-Z HIGH-Z DATA[0:7] 4 BUSY TSMCKBY 6 TSMCSBY HIGH-Z DATA NOT VALID HIGH-Z DATA VALID ds124_56_0907906 Figure 56: SelectMAP Mode Data Read Sequence (Generic) Table 59: SelectMAP Mode Read Timing Characteristics Figure References Symbol Value Units CS_B setup/hold 1 TSMCSCCR/TSMCCRCS 8.0/11.0 ns, min RDWR_B setup/hold 2 TSMCCR/TSMRCC 18/10 ns, min 3 TSMCKD 5 ns, min 18 ns, max 4 TSMCKBY 3.0 ns, min 12.0 ns, max 5 TSMCSD 10 ns, min 27 ns, max 6 TSMCSBY 3 ns, min 12 ns, max TSMCCL 2.5 ns, min FCC_SMAP_READ 10 MHz, max Description CCLK to DATA[0:7] output CCLK to BUSY output CCLK CS_B to DATA[0:7] High-Z CS_B to BUSY High-Z Low Pulse Width Maximum Frequency JTAG Test Access Port Switching Characteristics Table 60: JTAG Test Access Port Switching Characteristics Description Symbol Min Max Units TMS and TDI Setup times before TCK TTAPTK 5.5 - ns TMS and TDI Hold times after TCK TTCKTAP 0.0 - ns Output delay from clock TCK to output TDO TTCKTDO - 10.0 ns FTCK - 33 MHz Maximum TCK clock frequency DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 70 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs QPro Virtex-II Pin-to-Pin Output Parameter Guidelines All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DCM Table 61: Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DCM Description Symbol Device Value Units XQR2V1000 2.76 ns XQR2V3000 2.88 ns XQR2V6000 3.45 ns LVTTL Global Clock Input to Output delay using Output flip-flop, 12 mA, Fast Slew Rate, with DCM. For data output with different standards, adjust the delays with the values shown in "IOB Output Switching Characteristics Standard Adjustments," page 58. Global Clock and OFF with DCM TICKOFDCM Notes: 1. 2. 3. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. Output timing is measured with a 35 pF external capacitive load. The only time it is not 50% of VCC threshold is with LVCMOS. For other I/O standards and different loads, see Table 47. DCM output jitter is included in the measurement. Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DCM Table 62: Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DCM Description Symbol Device Value Units XQR2V1000 5.90 ns XQR2V3000 6.62 ns XQR2V6000 7.22 ns LVTTL Global Clock Input to Output Delay using Output flip-flop, 12 mA, Fast Slew Rate, without DCM. For data output with different standards, adjust the delays with the values shown in "IOB Output Switching Characteristics Standard Adjustments," page 58. Global Clock and OFF without DCM TICKOF Notes: 1. 2. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. Output timing is measured at 50% VCC threshold with 35 pF external capacitive load. For other I/O standards and different loads, see Table 47. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 71 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs QPro Virtex-II Pin-to-Pin Input Parameter Guidelines All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. Global Clock Setup and Hold for LVTTL Standard, with DCM Table 63: Global Clock Setup and Hold for LVTTL Standard, with DCM Description Symbol Device Value Units XQR2V1000 1.84/-0.76 ns XQR2V3000 1.96/-0.76 ns XQR2V6000 1.96/-0.76 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in "IOB Input Switching Characteristics Standard Adjustments," page 55. No Delay Global Clock and IFF with DCM TPSDCM/TPHDCM Notes: 1. 2. IFF = Input Flip-Flop or Latch Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. Global Clock Setup and Hold for LVTTL Standard, without DCM Table 64: Global Clock Setup and Hold for LVTTL Standard, without DCM Description Symbol Device Value Units TPSFD/TPHFD XQR2V100 0 2.21/ 0.00 ns XQR2V300 0 2.21/ 0.00 ns XQR2V600 0 2.21/ 0.50 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard.(1) For data input with different standards, adjust the setup time delay by the values shown in "IOB Input Switching Characteristics Standard Adjustments," page 55. Full Delay Global Clock and IFF(2) without DCM Notes: 1. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. 2. IFF = Input Flip-Flop or Latch 3. These values are parametrically measured. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 72 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs DCM Timing Parameters All devices are 100% functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions. All output jitter and phase specifications are determined through statistical measurement at the package pins. Operating Frequency Ranges Table 65: Operating Frequency Ranges Description Symbol Constraints Value Units CLKOUT_FREQ_1X_LF_Min 24.00 MHz CLKOUT_FREQ_1X_LF_Max 180.00 MHz CLKOUT_FREQ_2X_LF_Min 48.00 MHz CLKOUT_FREQ_2X_LF_Max 360.00 MHz CLKOUT_FREQ_DV_LF_Min 1.50 MHz CLKOUT_FREQ_DV_LF_Max 120.00 MHz CLKOUT_FREQ_FX_LF_Min 24.00 MHz CLKOUT_FREQ_FX_LF_Max 210.00 MHz CLKIN_FREQ_DLL_LF_Min 24.00 MHz CLKIN_FREQ_DLL_LF_Max 180.00 MHz CLKIN_FREQ_FX_LF_Min 1.00 MHz CLKIN_FREQ_FX_LF_Max 210.00 MHz PSCLK_FREQ_LF_Min 0.01 MHz PSCLK_FREQ_LF_Max 360.00 MHz CLKOUT_FREQ_1X_HF_Min 48.00 MHz CLKOUT_FREQ_1X_HF_Max 360.00 MHz CLKOUT_FREQ_DV_HF_Min 3.00 MHz CLKOUT_FREQ_DV_HF_Max 240.00 MHz CLKOUT_FREQ_FX_HF_Min 210.00 MHz CLKOUT_FREQ_FX_HF_Max 270.00 MHz CLKIN_FREQ_DLL_HF_Min 48.00 MHz CLKIN_FREQ_DLL_HF_Max 360.00 MHz CLKIN_FRQ_FX_HF_Min 50.00 MHz CLKIN_FRQ_FX_HF_Max 270.00 MHz PSCLK_FREQ_HF_Min 0.01 MHz PSCLK_FREQ_HF_Max 360.00 MHz Output Clocks (Low Frequency Mode) CLK0, CLK90, CLK180, CLK270 CLK2X, CLK2X180 CLKDV CLKFX, CLKFX180 Input Clocks (Low Frequency Mode) CLKIN (using DLL outputs) (1), (3) CLKIN (using CLKFX outputs) (2), (3) PSCLK Output Clocks (High Frequency Mode) CLK0, CLK180 CLKDV CLKFX, CLKFX180 Input Clocks (High Frequency Mode) CLKIN (using DLL outputs) (1), (3) CLKIN (using CLKFX outputs) (2), (3) PSCLK Notes: 1. 2. 3. "DLL outputs" is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. If both DLL and CLKFX outputs are used, follow the more restrictive specification. If the CLKIN_DIVIDE_BY_2 attribute of the DCM is used, then double these values. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 73 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Input Clock Tolerances Table 66: Input Clock Tolerances Description Input Clock Low/High Pulse Width PSCLK PSCLK and CLKIN(2) Symbol PSCLK_PULSE PSCLK_PULSE and CLKIN_PULSE Constraints FCLKIN < 1MHz 1 - 10 MHz 10 - 25 MHz 25 - 50 MHz 50 - 100 MHz 100 - 150 MHz 150 - 200 MHz 200 - 250 MHz 250 - 300 MHz 300 - 350 MHz 350 - 400 MHz > 400 MHz Input Clock Cycle-Cycle Jitter (Low Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN_CYC_JITT_DLL_LF (2) CLKIN (using CLKFX outputs) CLKIN_CYC_JITT_FX_LF Input Clock Cycle-Cycle Jitter (High Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN_CYC_JITT_DLL_HF CLKIN (using CLKFX outputs)(2) CLKIN_CYC_JITT_FX_HF Input Clock Period Jitter (Low Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN_PER_JITT_DLL_LF CLKIN (using CLKFX outputs)(2) CLKIN_PER_JITT_FX_LF Input Clock Period Jitter (High Frequency Mode) CLKIN (using DLL outputs)(1) CLKIN_PER_JITT_DLL_HF CLKIN (using CLKFX outputs)(2) CLKIN_PER_JITT_FX_HF Feedback Clock Path Delay Variation CLKFB off-chip feedback CLKFB_DELAY_VAR_EXT Min Max 25.00 25.00 10.00 5.00 3.00 2.40 2.00 1.80 1.50 1.30 1.15 1.05 Units ns ns ns ns ns ns ns ns ns ns ns ns 300 300 ps ps 150 150 ps ps 1 1 ns ns 1 1 ns ns 1 ns Notes: 1. 2. 3. ""DLL outputs" is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. If both DLL and CLKFX outputs are used, follow the more restrictive specification. If the DCM phase shift feature is used and the CLKIN frequency > 200 MHz, the CLKIN duty cycle must be within 5% (45/55 to 55/45). Output Clock Jitter Table 67: Output Clock Jitter Description Clock Synthesis Period Jitter CLK0 CLK90 CLK180 CLK270 CLK2X, CLK2X180 CLKDV (integer division) CLKDV (non-integer division) CLKFX, CLKFX180 Symbol Constraints Value Units CLKOUT_PER_JITT_0 CLKOUT_PER_JITT_90 CLKOUT_PER_JITT_180 CLKOUT_PER_JITT_270 100 150 150 150 ps ps ps ps CLKOUT_PER_JITT_2X CLKOUT_PER_JITT_DV1 CLKOUT_PER_JITT_DV2 CLKOUT_PER_JITT_FX 200 150 300 Note 1 ps ps ps ps Notes: 1. Values for this parameter are available at http://www.xilinx.com. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 74 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Output Clock Phase Alignment Table 68: Output Clock Phase Alignment Description Symbol Constraints Value Units CLKIN_CLKFB_PHASE 50 ps CLKOUT_PHASE 140 ps DLL outputs(1) CLKOUT_DUTY_CYCLE_DLL(2) 150 ps CLKFX outputs CLKOUT_DUTY_CYCLE_FX 100 ps Phase Offset Between CLKIN and CLKFB CLKIN/CLKFB Phase Offset Between Any DCM Outputs All CLK* outputs Duty Cycle Precision Notes: 1. 2. 3. ""DLL outputs" is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. CLKOUT_DUTY_CYCLE_DLL applies to the 1X clock outputs (CLK0, CLK90, CLK180, and CLK270) only if DUTY_CYCLE_CORRECTION = TRUE. Specification also applies to PSCLK. Miscellaneous Timing Parameters Table 69: Miscellaneous Timing Parameters Constraints FCLKIN Value Units > 60MHz 20.0 s LOCK_DLL_50_60 50 - 60 MHz 25.0 s LOCK_DLL_40_50 40 - 50 MHz 50.0 s LOCK_DLL_30_40 30 - 40 MHz 90.0 s LOCK_DLL_24_30 24 - 30 MHz 120.0 s LOCK_FX_MIN 10.0 ms LOCK_FX_MAX 10.0 ms LOCK_DLL_FINE_SHIFT 50.0 s FINE_SHIFT_RANGE 10.0 ns DCM_TAP_MIN 30.0 ps DCM_TAP_MAX 60.0 ps Description Symbol Time Required to Achieve LOCK Using DLL outputs(1) LOCK_DLL LOCK_DLL_60 Using CLKFX outputs Additional lock time with fine-phase shifting Fine-Phase Shifting Absolute shifting range Delay Lines Tap delay resolution Notes: 1. 2. ""DLL outputs" is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV. Specification also applies to PSCLK. Frequency Synthesis Table 70: Frequency Synthesis Attribute Min Max CLKFX_MULTIPLY 2 32 CLKFX_DIVIDE 1 32 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 75 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Parameter Cross Reference Table 71: Parameter Cross Reference Libraries Guide Data Sheet DLL_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_{1X|2X|DV}_LF DFS_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_FX_LF DLL_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_DLL_LF DFS_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_FX_LF DLL_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_{1X|DV}_HF DFS_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_FX_HF DLL_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_DLL_HF DFS_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_FX_HF DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 76 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Source-Synchronous Switching Characteristics The parameters in this section provide the necessary values for calculating timing budgets for QPro Virtex-II source-synchronous transmitter and receiver data-valid windows. Table 72: Duty Cycle Distortion and Clock-Tree Skew Description Duty Cycle Distortion(1) Clock Tree Skew(2) Symbol Device Value Units TDCD_CLK0 All 140 ps TDCD_CLK180 All 50 ps XQR2V1000 90 ps XQR2V3000 110 ps XQR2V6000 550 ps TCKSKEW Notes: 1. 2. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times. TDCD_CLK0 applies to cases where local (IOB) inversion is used to provide the negative-edge clock to the DDR element in the I/O. TDCD_CLK180 applies to cases where the CLK180 output of the DCM is used to provide the negative-edge clock to the DDR element in the I/O. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. Table 73: Package Skew Description Package Skew(1) Symbol Device/Package Value Units TPKGSKEW XQR2V6000/CF1144 90 ps Notes: 1. 2. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball (7.1ps per mm). Package trace length information is available for these device/package combinations. This information can be used to deskew the package. Table 74: Sample Window Description Sampling Error at Receiver Symbol Pins(1) TSAMP Device Value Units XQR2V1000 TBD ps XQR2V3000 TBD ps XQR2V6000 TBD ps Notes: 1. This parameter indicates the total sampling error of QPro Virtex-II DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers' edges of operation. These measurements include: - CLK0 and CLK180 DCM jitter - Worst-case Duty-Cycle Distortion - TDCD_CLK180 - DCM accuracy (phase offset) - DCM phase shift resolution. These measurements do not include package or clock tree skew. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 77 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 75: Pin-to-Pin Setup/Hold: Source-Synchronous Configuration Description Symbol Device Value Units XQR2V1000 TBD ns XQR2V3000 TBD ns XQR2V6000 TBD ns Data Input Set-Up and Hold Times Relative to a Forwarded Clock Input Pin, Using DCM and Global Clock Buffer. For situations where clock and data inputs conform to different standards, adjust the setup and hold values accordingly using the values shown in "IOB Input Switching Characteristics Standard Adjustments," page 55. No Delay Global Clock and IFF with DCM TPSDCM/TPHDCM Notes: 1. 2. 3. IFF = Input Flip-Flop The timing values were measured using the fine-phase adjustment feature of the DCM. The worst-case duty-cycle distortion and DCM jitter on CLK0 and CLK180 is included in these measurements. Source Synchronous Timing Budgets This section describes how to use the parameters provided in the "Source-Synchronous Switching Characteristics," page 77 section to develop system-specific timing budgets. The following analysis provides information necessary for determining QPro Virtex-II contributions to an overall system timing analysis. No assumptions are made about the effects of Inter-Symbol Interference or PCB skew. QPro Virtex-II Transmitter Data-Valid Window (TX) QPro Virtex-II Receiver Data-Valid Window (RX) TX is the minimum aggregate valid data period for a source-synchronous data bus at the pins of the device and is calculated as follows: RX is the required minimum aggregate valid data period for a source-synchronous data bus at the pins of the device and is calculated as follows: TX = Data Period - [Jitter(1) + Duty Cycle Distortion(2) + TCKSKEW(3) + TPKGSKEW(4)] Notes: 1. 2. 3. 4. RX = [TSAMP(1) + TCKSKEW(2) + TPKGSKEW(3)] Notes: 1. Jitter values and accumulation methodology to be provided in a future release of this document. The absolute period jitter values found in the "DCM Timing Parameters," page 73 section of the particular DCM output clock used to clock the IOB FF can be used for a best-case analysis. This value depends on the clocking methodology used. See Note 1 for Table 72, page 77. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball. 2. 3. DS124 (v1.2) December 4, 2006 Product Specification This parameter indicates the total sampling error of QPro Virtex-II DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers' edges of operation. These measurements include: CLK0 and CLK180 DCM jitter in a quiet system Worst-case duty-cycle distortion DCM accuracy (phase offset) DCM phase shift resolution These measurements do not include package or clock tree skew. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball. www.xilinx.com 78 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs QPro Virtex-II Device/Package Combinations and Maximum I/Os Available This section provides QPro Virtex-II device/package combinations and maximum I/Os available and "QPro Virtex-II Pin Definitions," followed by pinout tables for the following packages: available package. There are four package type definitions: * FG denotes plastic wire-bond fine-pitch BGA (1.00 mm pitch). * BG denotes plastic wire-bond ball grid array (1.27 mm pitch). * FG456 Fine-Pitch BGA Package * BG575 Standard BGA Package * BG728 Standard BGA and CG717 Ceramic CGA Packages * CG denotes hermetic ceramic wire-bond column grid array (1.27 mm pitch). * CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package * * QPro Virtex-II devices are available in both wire-bond and flip-chip packages. The basic package dimensions are listed in Table 76. See Figure 57, page 88 through Figure 61, page 122 for a more complete mechanical description of each available package. Table 77 shows the maximum number of user I/Os possible for each CF denotes non-hermetic ceramic flip-chip column grid array (1.00 mm pitch). The number of I/Os per package include all user I/Os except the 15 control pins (CCLK, DONE, M0, M1, M2, PROG_B, PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN, DXP, AND RSVD). Table 76: Package Information Package FG456 BG575 BG728 & CG717 CF1144 Pitch (mm) 1.00 1.27 1.27 1.00 Size (mm) 23 x 23 31 x 31 35 x 35 35 x 35 Table 77: QPro Virtex-II Device/Package Combinations and Maximum Number of Available I/Os (Advance Information) Package Available I/Os XQR2V1000 XQR2V3000 XQR2V6000 FG456 324 - - BG575 328 - - BG728 - 516 - CG717 - 516 - CF1144 - - 824 Notes: 1. The BG728 and CG717 packages are pinout (footprint) compatible. DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 79 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs QPro Virtex-II Pin Definitions * FG456: wire-bond fine-pitch BGA of 1.00 mm pitch * BG575 and BG728: wire-bond BGA of 1.27 mm pitch Each device is split into eight I/O banks to allow for flexibility in the choice of I/O standards (see the QPro Virtex-II Data Sheet). Global pins, including JTAG, configuration, and power/ground pins, are listed at the end of each table. Table 78 provides definitions for all pin types. * CG717: wire-bond ceramic column grid of 1.27 mm pitch * All QPro Virtex-II pinout tables are available on the distribution CD-ROM, or on the web (at http://www.xilinx.com). CF1144: Ceramic flip-chip fine-pitch column grid of 1.00 mm pitch This section describes the pinouts for QPro Virtex-II devices in the following packages: Pin Definitions Table 78 provides a description of each pin type listed in QPro Virtex-II pinout tables. Table 78: QPro Virtex-II Pin Definitions Pin Name Direction Description Input/Output All user I/O pins are capable of differential signalling and can implement LVDS, ULVDS, BLVDS, LVPECL, or LDT pairs. Each user I/O is labeled "IO_LXXY_#", where: * IO indicates a user I/O pin. * LXXY indicates a differential pair, with XX a unique pair in the bank and Y = P/N for the positive and negative sides of the differential pair. * # indicates the bank number (0 through 7). User I/O Pins IO_LXXY_# Dual-Function Pins * The dual-function pins are labelled "IO_LXXY_#/ZZZ", where ZZZ can be one of the following pins: * Per Bank - VRP, VRN, or VREF * Globally - GCLKX(S/P), BUSY/DOUT, INIT_B, DIN/D0 - D7, RDWR_B, or CS_B IO_LXXY_#/ZZZ With /ZZZ Input/Output * In SelectMAP mode, D0 through D7 are configuration data pins. These pins become user I/Os after configuration, unless the SelectMAP port is retained. * In bit-serial modes, DIN (D0) is the single-data input. This pin becomes a user I/O after configuration. CS_B Input In SelectMAP mode, this is the active-Low Chip Select signal. This pin becomes a user I/O after configuration, unless the SelectMAP port is retained. RDWR_B Input In SelectMAP mode, this is the active-Low Write Enable signal. This pin becomes a user I/O after configuration, unless the SelectMAP port is retained. Output * In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. This pin becomes a user I/O after configuration, unless the SelectMAP port is retained. * In bit-serial modes, DOUT provides preamble and configuration data to downstream devices in a daisy chain. This pin becomes a user I/O after configuration. INIT_B Bidirectional (open-drain) When Low, this pin indicates that the configuration memory is being cleared. When held Low, the start of configuration is delayed. During configuration, a Low on this output indicates that a configuration data error has occurred. This pin becomes a user I/O after configuration. GCLKx (S/P) Input/Output These are clock input pins that connect to Global Clock Buffers. These pins become regular user I/Os when not needed for clocks. DIN/D0, D1, D2, D3, D4, D5, D6, D7 BUSY/DOUT VRP Input This pin is for the DCI voltage reference resistor of the P transistor (per bank). VRN Input This pin is for the DCI voltage reference resistor of the N transistor (per bank). ALT_VRP Input This is the alternative pin for the DCI voltage reference resistor of the P transistor. ALT_VRN Input This is the alternative pin for the DCI voltage reference resistor of the N transistor. VREF Input These are input threshold voltage pins. They become user I/Os when an external threshold voltage is not needed (per bank). DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 80 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 78: QPro Virtex-II Pin Definitions (Continued) Pin Name Direction Description Dedicated Pins(1) CCLK PROG_B DONE Input/Output Configuration clock. Output in Master mode or Input in Slave mode. Input Active Low asynchronous reset to configuration logic. This pin has a permanent weak pull-up resistor. Input/Output DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, this pin indicates completion of the configuration process. As an input, a Low level on DONE can be configured to delay the start-up sequence. M2, M1, M0 Input Configuration mode selection. HSWAP_EN Input Enable I/O pullups during configuration. TCK Input Boundary Scan Clock. TDI Input Boundary Scan Data Input. TDO Output Boundary Scan Data Output. TMS Input Boundary Scan Mode Select. PWRDWN_B Input Active Low power-down pin (unsupported). Driving this pin Low can adversely affect device (unsupported) operation and configuration. PWRDWN_B is internally pulled High, which is its default state. It does not require an external pull-up. Other Pins DXN, DXP N/A Temperature-sensing diode pins (Anode: DXP, Cathode: DXN). VBATT Input Decryptor key memory backup supply. (Do not connect if battery is not used.) RSVD N/A Reserved pin - do not connect. VCCO Input Power-supply pins for the output drivers (per bank). VCCAUX Input Power-supply pins for auxiliary circuits. VCCINT Input Power-supply pins for the internal core logic. GND Input Ground. Notes: 1. All dedicated pins (JTAG and configuration) are powered by VCCAUX (independent of the bank VCCO voltage). DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 81 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs FG456 Fine-Pitch BGA Package As shown in Table 79, the XQR2V1000 QPro Virtex-II device is available in the FG456 fine-pitch BGA package. Pins definitions are identical to the commercial grade XC2V1000-FG456. Following this table are the "FG456 Fine-Pitch BGA Package Specifications (1.00mm pitch)". Table 79: FG456 BGA -- XQR2V1000 (Continued) Table 79: FG456 BGA -- XQR2V1000 Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 B4 0 IO_L96N_0/GCLK5P B11 0 IO_L01P_0 A4 0 IO_L96P_0/GCLK4S A11 0 IO_L02N_0 C4 0 IO_L02P_0 C5 1 IO_L96N_1/GCLK3P F12 0 IO_L03N_0/VRP_0 B5 1 IO_L96P_1/GCLK2S F13 0 IO_L03P_0/VRN_0 A5 1 IO_L95N_1/GCLK1P E12 0 IO_L04N_0/VREF_0 D6 1 IO_L95P_1/GCLK0S D12 0 IO_L04P_0 C6 1 IO_L94N_1 C12 0 IO_L05N_0 B6 1 IO_L94P_1/VREF_1 B12 0 IO_L05P_0 A6 1 IO_L93N_1 A13 0 IO_L06N_0 E7 1 IO_L93P_1 B13 0 IO_L06P_0 E8 1 IO_L92N_1 C13 0 IO_L21N_0 D7 1 IO_L92P_1 D13 0 IO_L21P_0/VREF_0 C7 1 IO_L91N_1 E13 0 IO_L22N_0 B7 1 IO_L91P_1/VREF_1 E14 0 IO_L22P_0 A7 1 IO_L54N_1 A14 0 IO_L24N_0 D8 1 IO_L54P_1 B14 0 IO_L24P_0 C8 1 IO_L52N_1 C14 0 IO_L49N_0 B8 1 IO_L52P_1 D14 0 IO_L49P_0 A8 1 IO_L51N_1/VREF_1 A15 0 IO_L51N_0 E9 1 IO_L51P_1 B15 0 IO_L51P_0/VREF_0 F9 1 IO_L49N_1 C15 0 IO_L52N_0 D9 1 IO_L49P_1 D15 0 IO_L52P_0 C9 1 IO_L24N_1 F14 0 IO_L54N_0 B9 1 IO_L24P_1 E15 0 IO_L54P_0 A9 1 IO_L22N_1 A16 0 IO_L91N_0/VREF_0 E10 1 IO_L22P_1 B16 0 IO_L91P_0 F10 1 IO_L21N_1/VREF_1 C16 0 IO_L92N_0 D10 1 IO_L21P_1 D16 0 IO_L92P_0 C10 1 IO_L06N_1 E16 0 IO_L93N_0 B10 1 IO_L06P_1 E17 0 IO_L93P_0 A10 1 IO_L05N_1 A17 0 IO_L94N_0/VREF_0 E11 1 IO_L05P_1 B17 0 IO_L94P_0 F11 1 IO_L04N_1 C17 0 IO_L95N_0/GCLK7P D11 1 IO_L04P_1/VREF_1 D17 0 IO_L95P_0/GCLK6S C11 1 IO_L03N_1/VRP_1 A18 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 82 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 79: FG456 BGA -- XQR2V1000 (Continued) Table 79: FG456 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 IO_L03P_1/VRN_1 B18 2 IO_L91N_2 K21 1 IO_L02N_1 C18 2 IO_L91P_2 K22 1 IO_L02P_1 D18 2 IO_L93N_2 L17 1 IO_L01N_1 A19 2 IO_L93P_2/VREF_2 L18 1 IO_L01P_1 B19 2 IO_L94N_2 L19 2 IO_L94P_2 L20 2 IO_L01N_2 C21 2 IO_L96N_2 L21 2 IO_L01P_2 C22 2 IO_L96P_2 L22 2 IO_L02N_2/VRP_2 E18 2 IO_L02P_2/VRN_2 F18 3 IO_L96N_3 M21 2 IO_L03N_2 D21 3 IO_L96P_3 M20 2 IO_L03P_2/VREF_2 D22 3 IO_L94N_3 M19 2 IO_L04N_2 E19 3 IO_L94P_3 M18 2 IO_L04P_2 E20 3 IO_L93N_3/VREF_3 M17 2 IO_L06N_2 E21 3 IO_L93P_3 N17 2 IO_L06P_2 E22 3 IO_L91N_3 N22 2 IO_L19N_2 F19 3 IO_L91P_3 N21 2 IO_L19P_2 F20 3 IO_L54N_3 N20 2 IO_L21N_2 F21 3 IO_L54P_3 N19 2 IO_L21P_2/VREF_2 F22 3 IO_L52N_3 N18 2 IO_L22N_2 G18 3 IO_L52P_3 P18 2 IO_L22P_2 H18 3 IO_L51N_3/VREF_3 P22 2 IO_L24N_2 G19 3 IO_L51P_3 P21 2 IO_L24P_2 G20 3 IO_L49N_3 P20 2 IO_L43N_2 G21 3 IO_L49P_3 P19 2 IO_L43P_2 G22 3 IO_L48N_3 R22 2 IO_L45N_2 H19 3 IO_L48P_3 R21 2 IO_L45P_2/VREF_2 H20 3 IO_L46N_3 R20 2 IO_L46N_2 H21 3 IO_L46P_3 R19 2 IO_L46P_2 H22 3 IO_L45N_3/VREF_3 R18 2 IO_L48N_2 J17 3 IO_L45P_3 P17 2 IO_L48P_2 J18 3 IO_L43N_3 T22 2 IO_L49N_2 J19 3 IO_L43P_3 T21 2 IO_L49P_2 J20 3 IO_L24N_3 T20 2 IO_L51N_2 J21 3 IO_L24P_3 T19 2 IO_L51P_2/VREF_2 J22 3 IO_L22N_3 U22 2 IO_L52N_2 K17 3 IO_L22P_3 U21 2 IO_L52P_2 K18 3 IO_L21N_3/VREF_3 U20 2 IO_L54N_2 K19 3 IO_L21P_3 U19 2 IO_L54P_2 K20 3 IO_L19N_3 T18 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 83 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 79: FG456 BGA -- XQR2V1000 (Continued) Table 79: FG456 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 IO_L19P_3 U18 4 IO_L91N_4/VREF_4 U13 3 IO_L06N_3 V22 4 IO_L91P_4 V13 3 IO_L06P_3 V21 4 IO_L92N_4 W13 3 IO_L04N_3 V20 4 IO_L92P_4 Y13 3 IO_L04P_3 V19 4 IO_L93N_4 AA13 3 IO_L03N_3/VREF_3 W22 4 IO_L93P_4 AB13 3 IO_L03P_3 W21 4 IO_L94N_4/VREF_4 U12 3 IO_L02N_3/VRP_3 Y22 4 IO_L94P_4 V12 3 IO_L02P_3/VRN_3 Y21 4 IO_L95N_4/GCLK3S W12 3 IO_L01N_3 W20 4 IO_L95P_4/GCLK2P Y12 3 IO_L01P_3 AA20 4 IO_L96N_4/GCLK1S AA12 4 IO_L96P_4/GCLK0P AB12 4 IO_L01N_4/DOUT AB19 4 IO_L01P_4/INIT_B AA19 5 IO_L96N_5/GCLK7S AA11 4 IO_L02N_4/D0 V18 5 IO_L96P_5/GCLK6P Y11 4 IO_L02P_4/D1 V17 5 IO_L95N_5/GCLK5S W11 4 IO_L03N_4/D2/ALT_VRP_4 W18 5 IO_L95P_5/GCLK4P V11 4 IO_L03P_4/D3/ALT_VRN_4 Y18 5 IO_L94N_5 U11 4 IO_L04N_4/VREF_4 AA18 5 IO_L94P_5/VREF_5 U10 4 IO_L04P_4 AB18 5 IO_L93N_5 AB10 4 IO_L05N_4/VRP_4 W17 5 IO_L93P_5 AA10 4 IO_L05P_4/VRN_4 Y17 5 IO_L92N_5 Y10 4 IO_L06N_4 AA17 5 IO_L92P_5 W10 4 IO_L06P_4 AB17 5 IO_L91N_5 V10 4 IO_L19N_4 V16 5 IO_L91P_5/VREF_5 V9 4 IO_L19P_4 V15 5 IO_L54N_5 AB9 4 IO_L21N_4 W16 5 IO_L54P_5 AA9 4 IO_L21P_4/VREF_4 Y16 5 IO_L52N_5 Y9 4 IO_L22N_4 AA16 5 IO_L52P_5 W9 4 IO_L22P_4 AB16 5 IO_L51N_5/VREF_5 AB8 4 IO_L24N_4 W15 5 IO_L51P_5 AA8 4 IO_L24P_4 Y15 5 IO_L49N_5 Y8 4 IO_L49N_4 AA15 5 IO_L49P_5 W8 4 IO_L49P_4 AB15 5 IO_L24N_5 U9 4 IO_L51N_4 U14 5 IO_L24P_5 V8 4 IO_L51P_4/VREF_4 V14 5 IO_L22N_5 AB7 4 IO_L52N_4 W14 5 IO_L22P_5 AA7 4 IO_L52P_4 Y14 5 IO_L21N_5/VREF_5 Y7 4 IO_L54N_4 AA14 5 IO_L21P_5 W7 4 IO_L54P_4 AB14 5 IO_L19N_5 AB6 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 84 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 79: FG456 BGA -- XQR2V1000 (Continued) Table 79: FG456 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 5 IO_L19P_5 AA6 6 IO_L49P_6 P4 5 IO_L06N_5 Y6 6 IO_L49N_6 P3 5 IO_L06P_5 W6 6 IO_L51P_6 P2 5 IO_L05N_5/VRP_5 V7 6 IO_L51N_6/VREF_6 P1 5 IO_L05P_5/VRN_5 V6 6 IO_L52P_6 N6 5 IO_L04N_5 AB5 6 IO_L52N_6 N5 5 IO_L04P_5/VREF_5 AA5 6 IO_L54P_6 N4 5 IO_L03N_5/D4/ALT_VRP_5 Y5 6 IO_L54N_6 N3 5 IO_L03P_5/D5/ALT_VRN_5 W5 6 IO_L91P_6 N2 5 IO_L02N_5/D6 AB4 6 IO_L91N_6 N1 5 IO_L02P_5/D7 AA4 6 IO_L93P_6 M6 5 IO_L01N_5/RDWR_B Y4 6 IO_L93N_6/VREF_6 M5 5 IO_L01P_5/CS_B AA3 6 IO_L94P_6 M4 6 IO_L94N_6 M3 6 IO_L01P_6 V5 6 IO_L96P_6 M2 6 IO_L01N_6 U5 6 IO_L96N_6 M1 6 IO_L02P_6/VRN_6 Y2 6 IO_L02N_6/VRP_6 Y1 7 IO_L96P_7 L2 6 IO_L03P_6 V4 7 IO_L96N_7 L3 6 IO_L03N_6/VREF_6 V3 7 IO_L94P_7 L4 6 IO_L04P_6 W2 7 IO_L94N_7 L5 6 IO_L04N_6 W1 7 IO_L93P_7/VREF_7 K1 6 IO_L06P_6 U4 7 IO_L93N_7 K2 6 IO_L06N_6 U3 7 IO_L91P_7 K3 6 IO_L19P_6 V2 7 IO_L91N_7 K4 6 IO_L19N_6 V1 7 IO_L54P_7 L6 6 IO_L21P_6 U2 7 IO_L54N_7 K6 6 IO_L21N_6/VREF_6 U1 7 IO_L52P_7 K5 6 IO_L22P_6 T5 7 IO_L52N_7 J5 6 IO_L22N_6 R5 7 IO_L51P_7/VREF_7 J1 6 IO_L24P_6 T4 7 IO_L51N_7 J2 6 IO_L24N_6 T3 7 IO_L49P_7 J3 6 IO_L43P_6 T2 7 IO_L49N_7 J4 6 IO_L43N_6 T1 7 IO_L48P_7 H1 6 IO_L45P_6 R4 7 IO_L48N_7 H2 6 IO_L45N_6/VREF_6 R3 7 IO_L46P_7 H3 6 IO_L46P_6 R2 7 IO_L46N_7 H4 6 IO_L46N_6 R1 7 IO_L45P_7/VREF_7 J6 6 IO_L48P_6 P6 7 IO_L45N_7 H5 6 IO_L48N_6 P5 7 IO_L43P_7 G1 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 85 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 79: FG456 BGA -- XQR2V1000 (Continued) Table 79: FG456 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 7 IO_L43N_7 G2 4 VCCO_4 U16 7 IO_L24P_7 G3 4 VCCO_4 U15 7 IO_L24N_7 G4 4 VCCO_4 T14 7 IO_L22P_7 F1 4 VCCO_4 T13 7 IO_L22N_7 F2 4 VCCO_4 T12 7 IO_L21P_7/VREF_7 F3 5 VCCO_5 U8 7 IO_L21N_7 F4 5 VCCO_5 U7 7 IO_L19P_7 G5 5 VCCO_5 T11 7 IO_L19N_7 F5 5 VCCO_5 T10 7 IO_L06P_7 E1 5 VCCO_5 T9 7 IO_L06N_7 E2 6 VCCO_6 T6 7 IO_L04P_7 E3 6 VCCO_6 R6 7 IO_L04N_7 E4 6 VCCO_6 P7 7 IO_L03P_7/VREF_7 D1 6 VCCO_6 N7 7 IO_L03N_7 D2 6 VCCO_6 M7 7 IO_L02P_7/VRN_7 C1 7 VCCO_7 L7 7 IO_L02N_7/VRP_7 C2 7 VCCO_7 K7 7 IO_L01P_7 E5 7 VCCO_7 J7 7 IO_L01N_7 E6 7 VCCO_7 H6 7 VCCO_7 G6 0 VCCO_0 G11 0 VCCO_0 G10 NA CCLK Y19 0 VCCO_0 G9 NA PROG_B A2 0 VCCO_0 F8 NA DONE AB20 0 VCCO_0 F7 NA M0 AB2 1 VCCO_1 G14 NA M1 W3 1 VCCO_1 G13 NA M2 AB3 1 VCCO_1 G12 NA HSWAP_EN B3 1 VCCO_1 F16 NA TCK C19 1 VCCO_1 F15 NA TDI D3 2 VCCO_2 L16 NA TDO D20 2 VCCO_2 K16 NA TMS B20 2 VCCO_2 J16 NA PWRDWN_B AB21 2 VCCO_2 H17 NA DXN D5 2 VCCO_2 G17 NA DXP A3 3 VCCO_3 T17 NA VBATT A21 3 VCCO_3 R17 NA RSVD A20 3 VCCO_3 P16 3 VCCO_3 N16 NA VCCAUX AB11 3 VCCO_3 M16 NA VCCAUX AA22 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 86 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 79: FG456 BGA -- XQR2V1000 (Continued) Table 79: FG456 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number NA VCCAUX AA1 NA GND N13 NA VCCAUX M22 NA GND N12 NA VCCAUX L1 NA GND N11 NA VCCAUX B22 NA GND N10 NA VCCAUX B1 NA GND N9 NA VCCAUX A12 NA GND M14 NA VCCINT U17 NA GND M13 NA VCCINT U6 NA GND M12 NA VCCINT T16 NA GND M11 NA VCCINT T15 NA GND M10 NA VCCINT T8 NA GND M9 NA VCCINT T7 NA GND L14 NA VCCINT R16 NA GND L13 NA VCCINT R7 NA GND L12 NA VCCINT H16 NA GND L11 NA VCCINT H7 NA GND L10 NA VCCINT G16 NA GND L9 NA VCCINT G15 NA GND K14 NA VCCINT G8 NA GND K13 NA VCCINT G7 NA GND K12 NA VCCINT F17 NA GND K11 NA VCCINT F6 NA GND K10 NA GND AB22 NA GND K9 NA GND AB1 NA GND J14 NA GND AA21 NA GND J13 NA GND AA2 NA GND J12 NA GND Y20 NA GND J11 NA GND Y3 NA GND J10 NA GND W19 NA GND J9 NA GND W4 NA GND D19 NA GND P14 NA GND D4 NA GND P13 NA GND C20 NA GND P12 NA GND C3 NA GND P11 NA GND B21 NA GND P10 NA GND B2 NA GND P9 NA GND A22 NA GND N14 NA GND A1 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 87 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs FG456 Fine-Pitch BGA Package Specifications (1.00mm pitch) Figure 57: FG456 Fine-Pitch BGA Package Specifications DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 88 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs BG575 Standard BGA Package As shown in Table 80, the XQR2V1000 QPro Virtex-II device is available in the BG575 BGA package. Following this table are the "BG575 Standard BGA Package Specifications (1.27mm pitch)." Table 80: BG575 BGA -- XQR2V1000 (Continued) Table 80: BG575 BGA -- XQR2V1000 Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 A3 0 IO_L91P_0 C11 0 IO_L01P_0 A4 0 IO_L92N_0 G11 0 IO_L02N_0 D5 0 IO_L92P_0 E11 IO_L93N_0 C12 0 IO_L02P_0 C5 0 0 IO_L03N_0/VRP_0 E6 0 IO_L93P_0 B12 0 IO_L03P_0/VRN_0 D6 0 IO_L94N_0/VREF_0 E12 0 IO_L04N_0/VREF_0 F7 0 IO_L94P_0 D12 0 IO_L04P_0 E7 0 IO_L95N_0/GCLK7P G12 IO_L95P_0/GCLK6S F12 0 IO_L05N_0 G8 0 0 IO_L05P_0 H9 0 IO_L96N_0/GCLK5P H11 0 IO_L06N_0 A5 0 IO_L96P_0/GCLK4S H12 0 IO_L06P_0 A6 0 IO_L19N_0 B5 1 IO_L96N_1/GCLK3P A13 IO_L96P_1/GCLK2S A14 0 IO_L19P_0 B6 1 0 IO_L21N_0 D7 1 IO_L95N_1/GCLK1P B13 0 IO_L21P_0/VREF_0 C7 1 IO_L95P_1/GCLK0S C13 0 IO_L22N_0 F8 1 IO_L94N_1 D13 0 IO_L22P_0 E8 1 IO_L94P_1/VREF_1 E13 IO_L93N_1 F13 0 IO_L24N_0 G9 1 0 IO_L24P_0 F9 1 IO_L93P_1 G13 0 IO_L49N_0 G10 1 IO_L92N_1 H13 0 IO_L49P_0 H10 1 IO_L92P_1 H14 0 IO_L51N_0 B7 1 IO_L91N_1 C14 IO_L91P_1/VREF_1 D14 0 IO_L51P_0/VREF_0 B8 1 0 IO_L52N_0 D8 1 RSVD E14 0 IO_L52P_0 C8 1 RSVD G14 0 IO_L54N_0 E9 1 RSVD A15 0 IO_L54P_0 D9 1 RSVD A16 RSVD B15 0 RSVD A8 1 0 RSVD A9 1 RSVD C15 0 RSVD C9 1 RSVD E15 0 RSVD B9 1 RSVD F15 0 RSVD F10 1 RSVD G15 RSVD H15 0 RSVD E10 1 0 RSVD A10 1 IO_L54N_1 B16 0 RSVD A11 1 IO_L54P_1 C16 0 RSVD C10 1 IO_L52N_1 D16 0 RSVD B10 1 IO_L52P_1 E16 D11 1 IO_L51N_1/VREF_1 F16 0 IO_L91N_0/VREF_0 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 89 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 80: BG575 BGA -- XQR2V1000 (Continued) Table 80: BG575 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 IO_L51P_1 G16 2 IO_L43P_2 H20 1 IO_L49N_1 A17 2 IO_L45N_2 J18 1 IO_L49P_1 A19 2 IO_L45P_2/VREF_2 J19 1 IO_L24N_1 B17 2 IO_L46N_2 K17 1 IO_L24P_1 B18 2 IO_L46P_2 K18 1 IO_L22N_1 C17 2 IO_L48N_2 H23 1 IO_L22P_1 D17 2 IO_L48P_2 H24 1 IO_L21N_1/VREF_1 F17 2 IO_L49N_2 H21 1 IO_L21P_1 E17 2 IO_L49P_2 H22 1 IO_L19N_1 A20 2 IO_L51N_2 J24 1 IO_L19P_1 A21 2 IO_L51P_2/VREF_2 K24 1 IO_L06N_1 B19 2 IO_L52N_2 J22 1 IO_L06P_1 B20 2 IO_L52P_2 J23 1 IO_L05N_1 C18 2 IO_L54N_2 J20 1 IO_L05P_1 D18 2 IO_L54P_2 J21 1 IO_L04N_1 C20 2 RSVD K19 1 IO_L04P_1/VREF_1 D20 2 RSVD K20 1 IO_L03N_1/VRP_1 D19 2 RSVD L17 1 IO_L03P_1/VRN_1 E19 2 RSVD L18 1 IO_L02N_1 E18 2 RSVD K23 1 IO_L02P_1 F18 2 RSVD L24 1 IO_L01N_1 H16 2 RSVD K22 1 IO_L01P_1 G17 2 RSVD L22 2 RSVD L21 2 IO_L01N_2 D22 2 RSVD L20 2 IO_L01P_2 D23 2 IO_L91N_2 M23 2 IO_L02N_2/VRP_2 E21 2 IO_L91P_2 N24 2 IO_L02P_2/VRN_2 E22 2 IO_L93N_2 M21 2 IO_L03N_2 F21 2 IO_L93P_2/VREF_2 M22 2 IO_L03P_2/VREF_2 F20 2 IO_L94N_2 M19 2 IO_L04N_2 G20 2 IO_L94P_2 M20 2 IO_L04P_2 G19 2 IO_L96N_2 M17 2 IO_L06N_2 H18 2 IO_L96P_2 M18 2 IO_L06P_2 J17 2 IO_L19N_2 D24 3 IO_L96N_3 N23 2 IO_L19P_2 E23 3 IO_L96P_3 N22 2 IO_L21N_2 E24 3 IO_L94N_3 N20 2 IO_L21P_2/VREF_2 F24 3 IO_L94P_3 N21 2 IO_L22N_2 F23 3 IO_L93N_3/VREF_3 N19 2 IO_L22P_2 G23 3 IO_L93P_3 N18 2 IO_L24N_2 G21 3 IO_L91N_3 N17 2 IO_L24P_2 G22 3 IO_L91P_3 P17 2 IO_L43N_2 H19 3 RSVD P24 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 90 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 80: BG575 BGA -- XQR2V1000 (Continued) Table 80: BG575 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 RSVD R24 3 RSVD R23 4 IO_L01N_4/DOUT AD22 3 3 RSVD R22 4 IO_L01P_4/INIT_B AD21 RSVD P22 4 IO_L02N_4/D0 AA20 3 RSVD P21 4 IO_L02P_4/D1 AB20 3 RSVD P20 4 IO_L03N_4/D2/ALT_VRP_4 Y19 3 RSVD P18 4 IO_L03P_4/D3/ALT_VRN_4 AA19 3 RSVD T24 4 IO_L04N_4/VREF_4 W18 3 RSVD U24 4 IO_L04P_4 Y18 3 IO_L54N_3 T23 4 IO_L05N_4/VRP_4 U16 3 IO_L54P_3 T22 4 IO_L05P_4/VRN_4 V17 3 IO_L52N_3 T21 4 IO_L06N_4 AD20 3 IO_L52P_3 T20 4 IO_L06P_4 AD19 3 IO_L51N_3/VREF_3 R20 4 IO_L19N_4 AC20 3 IO_L51P_3 R19 4 IO_L19P_4 AC19 3 IO_L49N_3 W24 4 IO_L21N_4 AA18 3 IO_L49P_3 W23 4 IO_L21P_4/VREF_4 AB18 3 IO_L48N_3 U23 4 IO_L22N_4 AC18 3 IO_L48P_3 V23 4 IO_L22P_4 AC17 3 IO_L46N_3 U22 4 IO_L24N_4 AA17 3 IO_L46P_3 U21 4 IO_L24P_4 AB17 3 IO_L45N_3/VREF_3 V22 4 IO_L49N_4 Y17 3 IO_L45P_3 V21 4 IO_L49P_4 W17 3 IO_L43N_3 U19 4 IO_L51N_4 V16 3 IO_L43P_3 U20 4 IO_L51P_4/VREF_4 W16 3 IO_L24N_3 T19 4 IO_L52N_4 AD17 3 IO_L24P_3 T18 4 IO_L52P_4 AD16 3 IO_L22N_3 R18 4 IO_L54N_4 AB16 3 IO_L22P_3 R17 4 IO_L54P_4 AC16 3 IO_L21N_3/VREF_3 Y24 4 RSVD Y16 3 IO_L21P_3 Y23 4 RSVD AA16 3 IO_L19N_3 AA24 4 RSVD W15 3 IO_L19P_3 AB24 4 RSVD Y15 3 IO_L06N_3 AA23 4 RSVD U15 3 IO_L06P_3 AA22 4 RSVD V15 3 IO_L04N_3 Y22 4 RSVD AD15 3 IO_L04P_3 Y21 4 RSVD AD14 3 IO_L03N_3/VREF_3 W21 4 RSVD AB15 3 IO_L03P_3 W20 4 RSVD AC15 3 IO_L02N_3/VRP_3 V20 4 IO_L91N_4/VREF_4 AA14 3 IO_L02P_3/VRN_3 V19 4 IO_L91P_4 AB14 3 IO_L01N_3 U18 4 IO_L92N_4 V14 3 IO_L01P_3 T17 4 IO_L92P_4 Y14 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 91 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 80: BG575 BGA -- XQR2V1000 (Continued) Table 80: BG575 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 4 IO_L93N_4 AB13 5 IO_L21N_5/VREF_5 W8 4 IO_L93P_4 AC13 5 IO_L21P_5 Y8 4 IO_L94N_4/VREF_4 Y13 5 IO_L19N_5 AD5 4 IO_L94P_4 AA13 5 IO_L19P_5 AD4 4 IO_L95N_4/GCLK3S V13 5 IO_L06N_5 AC6 4 IO_L95P_4/GCLK2P W13 5 IO_L06P_5 AC5 4 IO_L96N_4/GCLK1S U14 5 IO_L05N_5/VRP_5 AB7 4 IO_L96P_4/GCLK0P U13 5 IO_L05P_5/VRN_5 AA7 5 IO_L04N_5 AB5 5 IO_L96N_5/GCLK7S AD12 5 IO_L04P_5/VREF_5 AA5 5 IO_L96P_5/GCLK6P AD11 5 IO_L03N_5/D4/ALT_VRP_5 AA6 5 IO_L95N_5/GCLK5S AC12 5 IO_L03P_5/D5/ALT_VRN_5 Y6 5 IO_L95P_5/GCLK4P AB12 5 IO_L02N_5/D6 Y7 5 IO_L94N_5 AA12 5 IO_L02P_5/D7 W7 5 IO_L94P_5/VREF_5 Y12 5 IO_L01N_5/RDWR_B V8 5 IO_L93N_5 W12 5 IO_L01P_5/CS_B U9 5 IO_L93P_5 V12 5 IO_L92N_5 U12 6 IO_L01P_6 AB2 5 IO_L92P_5 U11 6 IO_L01N_6 AB1 5 IO_L91N_5 AB11 6 IO_L02P_6/VRN_6 AA3 5 IO_L91P_5/VREF_5 AA11 6 IO_L02N_6/VRP_6 AA2 5 RSVD Y11 6 IO_L03P_6 Y4 5 RSVD V11 6 IO_L03N_6/VREF_6 Y3 5 RSVD AD10 6 IO_L04P_6 W4 5 RSVD AD9 6 IO_L04N_6 W5 5 RSVD AC10 6 IO_L06P_6 V5 5 RSVD AB10 6 IO_L06N_6 V6 5 RSVD Y10 6 IO_L19P_6 U7 5 RSVD W10 6 IO_L19N_6 T8 5 RSVD V10 6 IO_L21P_6 AA1 5 RSVD U10 6 IO_L21N_6/VREF_6 Y2 5 IO_L54N_5 AC9 6 IO_L22P_6 Y1 5 IO_L54P_5 AB9 6 IO_L22N_6 W1 5 IO_L52N_5 AA9 6 IO_L24P_6 W2 5 IO_L52P_5 Y9 6 IO_L24N_6 V2 5 IO_L51N_5/VREF_5 W9 6 IO_L43P_6 V4 5 IO_L51P_5 V9 6 IO_L43N_6 V3 5 IO_L49N_5 AD8 6 IO_L45P_6 U6 5 IO_L49P_5 AD6 6 IO_L45N_6/VREF_6 U5 5 IO_L24N_5 AC8 6 IO_L46P_6 T7 5 IO_L24P_5 AC7 6 IO_L46N_6 T6 5 IO_L22N_5 AB8 6 IO_L48P_6 R8 5 IO_L22P_5 AA8 6 IO_L48N_6 R7 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 92 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 80: BG575 BGA -- XQR2V1000 (Continued) Table 80: BG575 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 6 IO_L49P_6 U2 7 RSVD L5 6 IO_L49N_6 U1 7 RSVD L7 6 IO_L51P_6 U4 7 IO_L54P_7 J1 6 IO_L51N_6/VREF_6 U3 7 IO_L54N_7 H1 6 IO_L52P_6 T1 7 IO_L52P_7 J2 6 IO_L52N_6 R1 7 IO_L52N_7 J3 6 IO_L54P_6 T3 7 IO_L51P_7/VREF_7 J4 6 IO_L54N_6 T2 7 IO_L51N_7 J5 6 RSVD T5 7 IO_L49P_7 K5 6 RSVD T4 7 IO_L49N_7 K6 6 RSVD R6 7 IO_L48P_7 F1 6 RSVD R5 7 IO_L48N_7 F2 6 RSVD P8 7 IO_L46P_7 H2 6 RSVD P7 7 IO_L46N_7 G2 6 RSVD R2 7 IO_L45P_7/VREF_7 H3 6 RSVD P1 7 IO_L45N_7 H4 6 RSVD R3 7 IO_L43P_7 G3 6 RSVD P3 7 IO_L43N_7 G4 6 IO_L91P_6 P5 7 IO_L24P_7 H5 6 IO_L91N_6 P4 7 IO_L24N_7 H6 6 IO_L93P_6 N4 7 IO_L22P_7 J6 6 IO_L93N_6/VREF_6 N3 7 IO_L22N_7 J7 6 IO_L94P_6 N6 7 IO_L21P_7/VREF_7 K7 6 IO_L94N_6 N5 7 IO_L21N_7 K8 6 IO_L96P_6 N8 7 IO_L19P_7 E1 6 IO_L96N_6 N7 7 IO_L19N_7 E2 7 IO_L06P_7 D2 7 IO_L96P_7 N2 7 IO_L06N_7 D3 7 IO_L96N_7 M1 7 IO_L04P_7 E3 7 IO_L94P_7 M2 7 IO_L04N_7 E4 7 IO_L94N_7 M3 7 IO_L03P_7/VREF_7 F4 7 IO_L93P_7/VREF_7 M4 7 IO_L03N_7 F5 7 IO_L93N_7 M5 7 IO_L02P_7/VRN_7 G5 7 IO_L91P_7 M6 7 IO_L02N_7/VRP_7 G6 7 IO_L91N_7 M7 7 IO_L01P_7 H7 7 RSVD M8 7 IO_L01N_7 J8 7 RSVD L8 7 RSVD L1 0 VCCO_0 J12 7 RSVD K1 0 VCCO_0 J11 7 RSVD K2 0 VCCO_0 J10 7 RSVD K3 0 VCCO_0 F11 7 RSVD L3 0 VCCO_0 C6 7 RSVD L4 0 VCCO_0 B11 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 93 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 80: BG575 BGA -- XQR2V1000 (Continued) Table 80: BG575 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 VCCO_1 J15 NA CCLK AB23 1 VCCO_1 J14 NA PROG_B C1 1 VCCO_1 J13 NA DONE AB21 1 VCCO_1 F14 NA M0 AC4 1 VCCO_1 C19 NA M1 AB4 1 VCCO_1 B14 NA M2 AD3 2 VCCO_2 M16 NA HSWAP_EN C2 2 VCCO_2 L23 NA TCK C23 2 VCCO_2 L19 NA TDI D1 2 VCCO_2 L16 NA TDO C24 2 VCCO_2 K16 NA TMS C21 2 VCCO_2 F22 NA PWRDWN_B AC21 3 VCCO_3 W22 NA DXN B4 3 VCCO_3 R16 NA DXP C4 3 VCCO_3 P23 NA VBATT B21 3 VCCO_3 P19 NA RSVD A22 3 VCCO_3 P16 3 VCCO_3 N16 NA VCCAUX AD13 4 VCCO_4 AC14 NA VCCAUX AC22 4 VCCO_4 AB19 NA VCCAUX AC3 4 VCCO_4 W14 NA VCCAUX N1 4 VCCO_4 T15 NA VCCAUX M24 4 VCCO_4 T14 NA VCCAUX B22 4 VCCO_4 T13 NA VCCAUX B3 5 VCCO_5 AC11 NA VCCAUX A12 5 VCCO_5 AB6 NA VCCINT U17 5 VCCO_5 W11 NA VCCINT U8 5 VCCO_5 T12 NA VCCINT T16 5 VCCO_5 T11 NA VCCINT T9 5 VCCO_5 T10 NA VCCINT R15 6 VCCO_6 W3 NA VCCINT R14 6 VCCO_6 R9 NA VCCINT R13 6 VCCO_6 P9 NA VCCINT R12 6 VCCO_6 P6 NA VCCINT R11 6 VCCO_6 P2 NA VCCINT R10 6 VCCO_6 N9 NA VCCINT P15 7 VCCO_7 M9 NA VCCINT P10 7 VCCO_7 L9 NA VCCINT N15 7 VCCO_7 L6 NA VCCINT N10 7 VCCO_7 L2 NA VCCINT M15 7 VCCO_7 K9 NA VCCINT M10 7 VCCO_7 F3 NA VCCINT L15 NA VCCINT L10 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 94 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 80: BG575 BGA -- XQR2V1000 (Continued) Table 80: BG575 BGA -- XQR2V1000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number NA VCCINT K15 NA GND P11 NA VCCINT K14 NA GND N14 NA VCCINT K13 NA GND N13 NA VCCINT K12 NA GND N12 NA VCCINT K11 NA GND N11 NA VCCINT K10 NA GND M14 NA VCCINT J16 NA GND M13 NA VCCINT J9 NA GND M12 NA VCCINT H17 NA GND M11 NA VCCINT H8 NA GND L14 NA GND AD24 NA GND L13 NA GND AD23 NA GND L12 NA GND AD18 NA GND L11 NA GND AD7 NA GND K21 NA GND AD2 NA GND K4 NA GND AD1 NA GND G24 NA GND AC24 NA GND G18 NA GND AC23 NA GND G7 NA GND AC2 NA GND G1 NA GND AC1 NA GND F19 NA GND AB22 NA GND F6 NA GND AB3 NA GND E20 NA GND AA21 NA GND E5 NA GND AA15 NA GND D21 NA GND AA10 NA GND D15 NA GND AA4 NA GND D10 NA GND Y20 NA GND D4 NA GND Y5 NA GND C22 NA GND W19 NA GND C3 NA GND W6 NA GND B24 NA GND V24 NA GND B23 NA GND V18 NA GND B2 NA GND V7 NA GND B1 NA GND V1 NA GND A24 NA GND R21 NA GND A23 NA GND R4 NA GND A18 NA GND P14 NA GND A7 NA GND P13 NA GND A2 NA GND P12 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 95 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs BG575 Standard BGA Package Specifications (1.27mm pitch) Figure 58: BG575 Standard BGA Package Specifications DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 96 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs BG728 Standard BGA and CG717 Ceramic CGA Packages As shown in Table 82, the XQR2V3000 QPro Virtex-II device is available in the BG728 BGA and CG717 CGA packages. The CG717 has identical pinout as the BG728 (except for those pins listed as Removed1) and footprint compatibility. A summary of the removed pins is shown in Table 81. Following this table are the "BG728 Standard BGA Package Specifications (1.27mm pitch)" and the "CG717 Ceramic Column Grid Array (CGA) Package Specifications (1.27mm pitch)" The CG717 has 11 fewer GND pins than the BG728. The BG728 GND pin numbers missing on the CG717 are shown in Table 81. . Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Table 81: BG728 GND Pins not available on the CG7171 BG728 GND Pin Numbers A2 A27 AG1 AG26 B1 B27 AG2 AG27 A26 AF1 AF27 Notes: 1. Physical pin does not exist for CG717 package. Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 B3 0 IO_L52N_0 F10 0 IO_L01P_0 A3 0 IO_L52P_0 E10 0 IO_L02N_0 B4 0 IO_L54N_0 D10 IO_L54P_0 C10 0 IO_L02P_0 A4 0 0 IO_L03N_0/VRP_0 C5 0 IO_L67N_0 B10 0 IO_L03P_0/VRN_0 C6 0 IO_L67P_0 A10 0 IO_L04N_0/VREF_0 B5 0 IO_L69N_0 G11 0 IO_L04P_0 A5 0 IO_L69P_0/VREF_0 H11 IO_L70N_0 F11 0 IO_L05N_0 E6 0 0 IO_L05P_0 D6 0 IO_L70P_0 F12 0 IO_L06N_0 B6 0 IO_L72N_0 D11 0 IO_L06P_0 A6 0 IO_L72P_0 C11 0 IO_L19N_0 E7 0 IO_L73N_0 B11 IO_L73P_0 A11 0 IO_L19P_0 D8 0 0 IO_L21N_0 F8 0 IO_L75N_0 H12 0 IO_L21P_0/VREF_0 E8 0 IO_L75P_0/VREF_0 J12 0 IO_L22N_0 C7 0 IO_L76N_0 E12 0 IO_L22P_0 C8 0 IO_L76P_0 D12 IO_L78N_0 B12 0 IO_L24N_0 B7 0 0 IO_L24P_0 A7 0 IO_L78P_0 A12 0 IO_L25N_0 H9 0 IO_L91N_0/VREF_0 J13 0 IO_L25P_0 J9 0 IO_L91P_0 H13 0 IO_L27N_0 F9 0 IO_L92N_0 G13 IO_L92P_0 F13 0 IO_L27P_0/VREF_0 G9 0 0 IO_L28N_0 E9 0 IO_L93N_0 E13 0 IO_L28P_0 D9 0 IO_L93P_0 D13 0 IO_L30N_0 C9 0 IO_L94N_0/VREF_0 B13 0 IO_L30P_0 B9 0 IO_L94P_0 A13 IO_L95N_0/GCLK7P C13 0 IO_L49N_0 A8 0 0 IO_L49P_0 A9 0 IO_L95P_0/GCLK6S C14 0 IO_L51N_0 G10 0 IO_L96N_0/GCLK5P F14 0 IO_L51P_0/VREF_0 H10 0 IO_L96P_0/GCLK4S E14 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 97 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank 1 Pin Description Pin Number Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number 1 IO_L25N_1 J19 J20 IO_L96N_1/GCLK3P G14 1 IO_L25P_1 1 IO_L96P_1/GCLK2S H14 1 IO_L24N_1 C20 1 IO_L95N_1/GCLK1P A15 1 IO_L24P_1 C21 1 IO_L95P_1/GCLK0S B15 1 IO_L22N_1 D20 1 IO_L94N_1 C15 1 IO_L22P_1 E21 1 IO_L94P_1/VREF_1 D15 1 IO_L21N_1/VREF_1 E20 1 IO_L93N_1 E15 1 IO_L21P_1 F20 1 IO_L93P_1 F15 1 IO_L19N_1 A21 1 IO_L92N_1 G15 1 IO_L19P_1 B21 1 IO_L92P_1 H15 1 IO_L06N_1 A22 1 IO_L91N_1 J15 1 IO_L06P_1 B22 1 IO_L91P_1/VREF_1 J16 1 IO_L05N_1 C22 1 IO_L78N_1 A16 1 IO_L05P_1 C23 1 IO_L78P_1 B16 1 IO_L04N_1 D22 1 IO_L76N_1 D16 1 IO_L04P_1/VREF_1 E22 1 IO_L76P_1 E16 1 IO_L03N_1/VRP_1 A23 1 IO_L75N_1/VREF_1 F16 1 IO_L03P_1/VRN_1 B23 1 IO_L75P_1 F17 1 IO_L02N_1 A24 1 IO_L73N_1 H16 1 IO_L02P_1 B24 1 IO_L73P_1 H17 1 IO_L01N_1 A25 1 IO_L72N_1 A17 1 IO_L01P_1 B25 1 IO_L72P_1 B17 1 IO_L70N_1 C17 2 IO_L01N_2 C27 1 IO_L70P_1 D17 2 IO_L01P_2 D27 1 IO_L69N_1/VREF_1 G18 2 IO_L02N_2/VRP_2 D25 1 IO_L69P_1 G17 2 IO_L02P_2/VRN_2 D26 1 IO_L67N_1 A18 2 IO_L03N_2 E24 1 IO_L67P_1 B18 2 IO_L03P_2/VREF_2 E25 1 IO_L54N_1 C18 2 IO_L04N_2 E26 1 IO_L54P_1 D18 2 IO_L04P_2 E27 1 IO_L52N_1 E18 2 IO_L06N_2 F23 1 IO_L52P_1 F18 2 IO_L06P_2 F24 1 IO_L51N_1/VREF_1 H19 2 IO_L19N_2 F25 1 IO_L51P_1 H18 2 IO_L19P_2 F26 1 IO_L49N_1 A19 2 IO_L21N_2 F27 1 IO_L49P_1 A20 2 IO_L21P_2/VREF_2 G27 1 IO_L30N_1 B19 2 IO_L22N_2 G23 1 IO_L30P_1 C19 2 IO_L22P_2 H23 1 IO_L28N_1 D19 2 IO_L24N_2 G25 1 IO_L28P_1 E19 2 IO_L24P_2 G26 1 IO_L27N_1/VREF_1 F19 2 IO_L25N_2 H21 1 IO_L27P_1 G19 2 IO_L25P_2 J21 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 98 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number Bank Pin Description Pin Number 2 IO_L27N_2 H22 2 IO_L94P_2 P21 2 IO_L27P_2/VREF_2 J22 2 IO_L96N_2 P22 2 IO_L28N_2 H24 2 IO_L96P_2 P23 2 IO_L28P_2 H25 2 IO_L30N_2 H27 3 IO_L96N_3 R27 2 IO_L30P_2 J27 3 IO_L96P_3 R26 2 IO_L43N_2 J23 3 IO_L94N_3 R25 2 IO_L43P_2 J24 3 IO_L94P_3 R24 2 IO_L45N_2 J25 3 IO_L93N_3/VREF_3 R23 2 IO_L45P_2/VREF_2 J26 3 IO_L93P_3 T23 2 IO_L46N_2 K20 3 IO_L91N_3 R22 2 IO_L46P_2 K21 3 IO_L91P_3 R21 2 IO_L48N_2 K22 3 IO_L78N_3 R20 2 IO_L48P_2 K23 3 IO_L78P_3 R19 2 IO_L49N_2 K24 3 IO_L76N_3 T27 2 IO_L49P_2 K25 3 IO_L76P_3 T26 2 IO_L51N_2 K26 3 IO_L75N_3/VREF_3 T24 2 IO_L51P_2/VREF_2 K27 3 IO_L75P_3 U24 2 IO_L52N_2 L20 3 IO_L73N_3 T22 2 IO_L52P_2 M20 3 IO_L73P_3 U22 2 IO_L54N_2 L21 3 IO_L72N_3 T20 2 IO_L54P_2 L22 3 IO_L72P_3 T19 2 IO_L67N_2 L24 3 IO_L70N_3 U27 2 IO_L67P_2 L25 3 IO_L70P_3 U26 2 IO_L69N_2 L26 3 IO_L69N_3/VREF_3 U25 2 IO_L69P_2/VREF_2 L27 3 IO_L69P_3 V25 2 IO_L70N_2 M19 3 IO_L67N_3 U21 2 IO_L70P_2 N19 3 IO_L67P_3 U20 2 IO_L72N_2 M22 3 IO_L54N_3 V27 2 IO_L72P_2 M23 3 IO_L54P_3 V26 2 IO_L73N_2 M24 3 IO_L52N_3 V24 2 IO_L73P_2 N24 3 IO_L52P_3 V23 2 IO_L75N_2 M26 3 IO_L51N_3/VREF_3 V22 2 IO_L75P_2/VREF_2 M27 3 IO_L51P_3 W22 2 IO_L76N_2 N20 3 IO_L49N_3 V21 2 IO_L76P_2 N21 3 IO_L49P_3 V20 2 IO_L78N_2 N22 3 IO_L48N_3 W27 2 IO_L78P_2 N23 3 IO_L48P_3 Y27 2 IO_L91N_2 N25 3 IO_L46N_3 W26 2 IO_L91P_2 P25 3 IO_L46P_3 W25 2 IO_L93N_2 N26 3 IO_L45N_3/VREF_3 W24 2 IO_L93P_2/VREF_2 N27 3 IO_L45P_3 W23 2 IO_L94N_2 P20 3 IO_L43N_3 W21 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 99 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number Bank Pin Description Pin Number 3 IO_L43P_3 W20 4 IO_L22P_4 AG21 3 IO_L28N_3 W19 4 IO_L24N_4 AB20 3 IO_L28P_3 Y19 4 IO_L24P_4 AA20 3 IO_L27N_3/VREF_3 Y25 4 IO_L25N_4 AC20 3 IO_L27P_3 Y24 4 IO_L25P_4 AD20 3 IO_L25N_3 Y23 4 IO_L27N_4 AG20 3 IO_L25P_3 AA23 4 IO_L27P_4/VREF_4 AG19 3 IO_L24N_3 Y22 4 IO_L28N_4 AB19 3 IO_L24P_3 Y21 4 IO_L28P_4 AA19 3 IO_L22N_3 AA27 4 IO_L30N_4 AC19 3 IO_L22P_3 AB27 4 IO_L30P_4 AD19 3 IO_L21N_3/VREF_3 AA26 4 IO_L49N_4 AE19 3 IO_L21P_3 AA25 4 IO_L49P_4 AF19 3 IO_L19N_3 AB26 4 IO_L51N_4 AA18 3 IO_L19P_3 AB25 4 IO_L51P_4/VREF_4 Y18 3 IO_L06N_3 AB24 4 IO_L52N_4 AB18 3 IO_L06P_3 AB23 4 IO_L52P_4 AC18 3 IO_L04N_3 AC27 4 IO_L54N_4 AD18 3 IO_L04P_3 AC26 4 IO_L54P_4 AE18 3 IO_L03N_3/VREF_3 AC25 4 IO_L67N_4 AF18 3 IO_L03P_3 AC24 4 IO_L67P_4 AG18 3 IO_L02N_3/VRP_3 AD27 4 IO_L69N_4 AA17 3 IO_L02P_3/VRN_3 AE27 4 IO_L69P_4/VREF_4 Y17 3 IO_L01N_3 AD26 4 IO_L70N_4 AB17 3 IO_L01P_3 AD25 4 IO_L70P_4 AB16 4 IO_L72N_4 AD17 AE17 4 IO_L01N_4/DOUT AF25 4 IO_L72P_4 4 IO_L01P_4/INIT_B AG25 4 IO_L73N_4 AF17 4 IO_L02N_4/D0 AF24 4 IO_L73P_4 AG17 4 IO_L02P_4/D1 AG24 4 IO_L75N_4 Y16 4 IO_L03N_4/D2/ALT_VRP_4 AD23 4 IO_L75P_4/VREF_4 W16 4 IO_L03P_4/D3/ALT_VRN_4 AE23 4 IO_L76N_4 AC16 4 IO_L04N_4/VREF_4 AF23 4 IO_L76P_4 AD16 4 IO_L04P_4 AG23 4 IO_L78N_4 AF16 4 IO_L05N_4/VRP_4 AD22 4 IO_L78P_4 AG16 4 IO_L05P_4/VRN_4 AE22 4 IO_L91N_4/VREF_4 W15 4 IO_L06N_4 AF22 4 IO_L91P_4 Y15 4 IO_L06P_4 AG22 4 IO_L92N_4 AB15 4 IO_L19N_4 AC21 4 IO_L92P_4 AA15 4 IO_L19P_4 AB21 4 IO_L93N_4 AC15 4 IO_L21N_4 AE21 4 IO_L93P_4 AD15 4 IO_L21P_4/VREF_4 AE20 4 IO_L94N_4/VREF_4 AE15 4 IO_L22N_4 AF21 4 IO_L94P_4 AE14 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 100 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number Bank Pin Description Pin Number 4 IO_L95N_4/GCLK3S AF15 5 IO_L28N_5 AD9 4 IO_L95P_4/GCLK2P AG15 5 IO_L28P_5 AC9 4 IO_L96N_4/GCLK1S Y14 5 IO_L27N_5/VREF_5 AB9 4 IO_L96P_4/GCLK0P AA14 5 IO_L27P_5 AA9 5 IO_L25N_5 AE8 5 IO_L96N_5/GCLK7S AC14 5 IO_L25P_5 AE7 5 IO_L96P_5/GCLK6P AB14 5 IO_L24N_5 AD8 5 IO_L95N_5/GCLK5S AG13 5 IO_L24P_5 AC8 5 IO_L95P_5/GCLK4P AF13 5 IO_L22N_5 AB8 5 IO_L94N_5 AE13 5 IO_L22P_5 AA8 5 IO_L94P_5/VREF_5 AD13 5 IO_L21N_5/VREF_5 AG7 5 IO_L93N_5 AC13 5 IO_L21P_5 AF7 5 IO_L93P_5 AB13 5 IO_L19N_5 AC7 5 IO_L92N_5 AA13 5 IO_L19P_5 AB7 5 IO_L92P_5 Y13 5 IO_L06N_5 AG6 5 IO_L91N_5 W13 5 IO_L06P_5 AF6 5 IO_L91P_5/VREF_5 W12 5 IO_L05N_5/VRP_5 AE6 5 IO_L78N_5 AG12 5 IO_L05P_5/VRN_5 AD6 5 IO_L78P_5 AF12 5 IO_L04N_5 AG5 5 IO_L76N_5 AD12 5 IO_L04P_5/VREF_5 AF5 5 IO_L76P_5 AC12 5 IO_L03N_5/D4/ALT_VRP_5 AE5 5 IO_L75N_5/VREF_5 AB12 5 IO_L03P_5/D5/ALT_VRN_5 AD5 5 IO_L75P_5 AB11 5 IO_L02N_5/D6 AG4 5 IO_L73N_5 Y12 5 IO_L02P_5/D7 AF4 5 IO_L73P_5 Y11 5 IO_L01N_5/RDWR_B AG3 5 IO_L72N_5 AG11 5 IO_L01P_5/CS_B AF3 5 IO_L72P_5 AF11 5 IO_L70N_5 AE11 6 IO_L01P_6 AE1 5 IO_L70P_5 AD11 6 IO_L01N_6 AD1 5 IO_L69N_5/VREF_5 AA10 6 IO_L02P_6/VRN_6 AD3 5 IO_L69P_5 AA11 6 IO_L02N_6/VRP_6 AD2 5 IO_L67N_5 AG10 6 IO_L03P_6 AC4 5 IO_L67P_5 AF10 6 IO_L03N_6/VREF_6 AC3 5 IO_L54N_5 AE10 6 IO_L04P_6 AC2 5 IO_L54P_5 AD10 6 IO_L04N_6 AC1 5 IO_L52N_5 AC10 6 IO_L06P_6 AB5 5 IO_L52P_5 AB10 6 IO_L06N_6 AB4 5 IO_L51N_5/VREF_5 Y9 6 IO_L19P_6 AB3 5 IO_L51P_5 Y10 6 IO_L19N_6 AB2 5 IO_L49N_5 AG9 6 IO_L21P_6 AB1 5 IO_L49P_5 AG8 6 IO_L21N_6/VREF_6 AA1 5 IO_L30N_5 AF9 6 IO_L22P_6 AA5 5 IO_L30P_5 AE9 6 IO_L22N_6 AA6 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 101 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number Bank Pin Description Pin Number 6 IO_L24P_6 AA3 6 IO_L93N_6/VREF_6 R6 6 IO_L24N_6 AA2 6 IO_L94P_6 R3 6 IO_L25P_6 Y5 6 IO_L94N_6 P3 6 IO_L25N_6 Y6 6 IO_L96P_6 R2 6 IO_L27P_6 Y4 6 IO_L96N_6 R1 6 IO_L27N_6/VREF_6 Y3 6 IO_L28P_6 Y1 7 IO_L96P_7 P5 6 IO_L28N_6 W1 7 IO_L96N_7 P6 6 IO_L43P_6 W8 7 IO_L94P_7 P7 6 IO_L43N_6 W9 7 IO_L94N_7 P8 6 IO_L45P_6 W6 7 IO_L93P_7/VREF_7 N1 6 IO_L45N_6/VREF_6 W7 7 IO_L93N_7 N2 6 IO_L46P_6 W5 7 IO_L91P_7 N3 6 IO_L46N_6 W4 7 IO_L91N_7 N4 6 IO_L48P_6 W3 7 IO_L78P_7 N6 6 IO_L48N_6 W2 7 IO_L78N_7 N7 6 IO_L49P_6 V7 7 IO_L76P_7 N9 6 IO_L49N_6 V8 7 IO_L76N_7 N8 6 IO_L51P_6 V5 7 IO_L75P_7/VREF_7 N5 6 IO_L51N_6/VREF_6 V6 7 IO_L75N_7 M6 6 IO_L52P_6 V4 7 IO_L73P_7 M1 6 IO_L52N_6 V3 7 IO_L73N_7 M2 6 IO_L54P_6 V2 7 IO_L72P_7 M4 6 IO_L54N_6 V1 7 IO_L72N_7 M5 6 IO_L67P_6 U8 7 IO_L70P_7 M8 6 IO_L67N_6 T8 7 IO_L70N_7 M9 6 IO_L69P_6 U6 7 IO_L69P_7/VREF_7 L1 6 IO_L69N_6/VREF_6 U7 7 IO_L69N_7 L2 6 IO_L70P_6 U4 7 IO_L67P_7 L3 6 IO_L70N_6 U3 7 IO_L67N_7 L4 6 IO_L72P_6 U2 7 IO_L54P_7 K1 6 IO_L72N_6 U1 7 IO_L54N_7 K2 6 IO_L73P_6 T9 7 IO_L52P_7 K4 6 IO_L73N_6 R9 7 IO_L52N_7 K5 6 IO_L75P_6 T5 7 IO_L51P_7/VREF_7 L6 6 IO_L75N_6/VREF_6 T6 7 IO_L51N_7 L7 6 IO_L76P_6 T4 7 IO_L49P_7 K6 6 IO_L76N_6 R4 7 IO_L49N_7 K7 6 IO_L78P_6 T2 7 IO_L48P_7 L8 6 IO_L78N_6 T1 7 IO_L48N_7 K8 6 IO_L91P_6 R7 7 IO_L46P_7 J1 6 IO_L91N_6 R8 7 IO_L46N_7 H1 6 IO_L93P_6 R5 7 IO_L45P_7/VREF_7 J2 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 102 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number Bank Pin Description Pin Number 7 IO_L45N_7 J3 1 VCCO_1 G16 7 IO_L43P_7 K3 1 VCCO_1 D21 7 IO_L43N_7 J4 1 VCCO_1 C16 7 IO_L30P_7 H3 2 VCCO_2 N18 7 IO_L30N_7 H4 2 VCCO_2 M25 7 IO_L28P_7 J5 2 VCCO_2 M21 7 IO_L28N_7 J6 2 VCCO_2 M18 7 IO_L27P_7/VREF_7 H5 2 VCCO_2 L19 7 IO_L27N_7 H6 2 VCCO_2 L18 7 IO_L25P_7 J7 2 VCCO_2 K19 7 IO_L25N_7 J8 2 VCCO_2 G24 7 IO_L24P_7 G1 3 VCCO_3 AA24 7 IO_L24N_7 F1 3 VCCO_3 V19 7 IO_L22P_7 G2 3 VCCO_3 U19 7 IO_L22N_7 G3 3 VCCO_3 U18 7 IO_L21P_7/VREF_7 F2 3 VCCO_3 T25 7 IO_L21N_7 F3 3 VCCO_3 T21 7 IO_L19P_7 G5 3 VCCO_3 T18 7 IO_L19N_7 G6 3 VCCO_3 R18 7 IO_L06P_7 F4 4 VCCO_4 AE16 7 IO_L06N_7 F5 4 VCCO_4 AD21 7 IO_L04P_7 E1 4 VCCO_4 AA16 7 IO_L04N_7 E2 4 VCCO_4 W18 7 IO_L03P_7/VREF_7 D1 4 VCCO_4 W17 7 IO_L03N_7 C1 4 VCCO_4 V17 7 IO_L02P_7/VRN_7 E3 4 VCCO_4 V16 7 IO_L02N_7/VRP_7 E4 4 VCCO_4 V15 7 IO_L01P_7 D2 5 VCCO_5 AE12 7 IO_L01N_7 D3 5 VCCO_5 AD7 5 VCCO_5 AA12 0 VCCO_0 K13 5 VCCO_5 W11 0 VCCO_0 K12 5 VCCO_5 W10 0 VCCO_0 K11 5 VCCO_5 V13 0 VCCO_0 J11 5 VCCO_5 V12 0 VCCO_0 J10 5 VCCO_5 V11 0 VCCO_0 G12 6 VCCO_6 AA4 0 VCCO_0 D7 6 VCCO_6 V9 0 VCCO_0 C12 6 VCCO_6 U10 1 VCCO_1 K17 6 VCCO_6 U9 1 VCCO_1 K16 6 VCCO_6 T10 1 VCCO_1 K15 6 VCCO_6 T7 1 VCCO_1 J18 6 VCCO_6 T3 1 VCCO_1 J17 6 VCCO_6 R10 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 103 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number Bank Pin Description Pin Number 7 VCCO_7 M10 NA VCCINT U11 7 VCCO_7 M7 NA VCCINT T17 7 VCCO_7 M3 NA VCCINT T11 7 VCCO_7 L10 NA VCCINT R17 7 VCCO_7 L9 NA VCCINT R11 7 VCCO_7 K9 NA VCCINT P18 7 VCCO_7 G4 NA VCCINT P17 7 VCCO_7 N10 NA VCCINT P11 NA VCCINT P10 NA CCLK AA22 NA VCCINT N17 NA PROG_B C4 NA VCCINT N11 NA DONE AC22 NA VCCINT M17 NA M0 AC6 NA VCCINT M11 NA M1 Y7 NA VCCINT L17 NA M2 AE4 NA VCCINT L16 NA HSWAP_EN D5 NA VCCINT L15 NA TCK G20 NA VCCINT L14 NA TDI H7 NA VCCINT L13 NA TDO G22 NA VCCINT L12 NA TMS F21 NA VCCINT L11 NA PWRDWN_B AE24 NA VCCINT K18 NA DXN G8 NA VCCINT K14 NA DXP F7 NA VCCINT K10 NA VBATT D23 NA GND AG271 NA RSVD C24 NA GND AG261 NA GND AG14 NA VCCAUX AF14 NA GND AG21 NA VCCAUX AE26 NA GND AG11 NA VCCAUX AE2 NA GND AF271 NA VCCAUX P26 NA GND AF26 NA VCCAUX P2 NA GND AF20 NA VCCAUX C26 NA GND AF8 NA VCCAUX C2 NA GND AF2 NA VCCAUX B14 NA GND AF11 NA VCCINT V18 NA GND AE25 NA VCCINT V14 NA GND AE3 NA VCCINT V10 NA GND AD24 NA VCCINT U17 NA GND AD14 NA VCCINT U16 NA GND AD4 NA VCCINT U15 NA GND AC23 NA VCCINT U14 NA GND AC17 NA VCCINT U13 NA GND AC11 NA VCCINT U12 NA GND AC5 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 104 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Table 82: BG728 BGA and CG717 CGA-- XQR2V3000 Bank Pin Description Pin Number Bank Pin Description Pin Number NA GND AB22 NA GND N12 NA GND AB6 NA GND M16 NA GND AA21 NA GND M15 NA GND AA7 NA GND M14 NA GND Y26 NA GND M13 NA GND Y20 NA GND M12 NA GND Y8 NA GND L23 NA GND Y2 NA GND L5 NA GND W14 NA GND J14 NA GND U23 NA GND H26 NA GND U5 NA GND H20 NA GND T16 NA GND H8 NA GND T15 NA GND H2 NA GND T14 NA GND G21 NA GND T13 NA GND G7 NA GND T12 NA GND F22 NA GND R16 NA GND F6 NA GND R15 NA GND E23 NA GND R14 NA GND E17 NA GND R13 NA GND E11 NA GND R12 NA GND E5 NA GND P27 NA GND D24 NA GND P24 NA GND D14 NA GND P19 NA GND D4 NA GND P16 NA GND C25 NA GND P15 NA GND C3 NA GND P14 NA GND B271 NA GND P13 NA GND B26 NA GND P12 NA GND B20 NA GND P9 NA GND B8 NA GND P4 NA GND B2 NA GND P1 NA GND B11 NA GND N16 NA GND A271 NA GND N15 NA GND A261 NA GND N14 NA GND A14 NA GND N13 NA GND A2 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 105 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs BG728 Standard BGA Package Specifications (1.27mm pitch) Figure 59: BG728 Standard BGA Package Specifications DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 106 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs CG717 Ceramic Column Grid Array (CGA) Package Specifications (1.27mm pitch) Figure 60: CG717 Ceramic CGA Package Specifications DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 107 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package As shown in Table 84, The XQR2V6000 QPro Virtex-II device is available in the CF1144 flip-chip fine-pitch CGA package. Pins for this package are the same as the FF1152, except for those pins shown in Table 83 have been removed. Following this table are the "CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications (1.00mm pitch)". The CF1144 has eight fewer GND pins than the FF1152. The FF1152 GND Pin numbers missing on the CF1144 are shown in Table 83. Table 83: FF1152 GND Pins not available on the CF1144 Table 84: CF1144 CGA -- XQR2V6000 Table 84: CF1144 CGA -- XQR2V6000 (Continued) FF1152 GND Pin Numbers A2 A33 AN1 AN34 B1 B34 AP2 AP33 Notes: 1. Physical pin does not exist for CF1144 package Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L01N_0 D29 0 IO_L29N_0 H23 0 IO_L01P_0 C29 0 IO_L29P_0 H22 0 IO_L02N_0 H26 0 IO_L30N_0 F23 0 IO_L02P_0 G26 0 IO_L30P_0 F24 0 IO_L03N_0/VRP_0 E28 0 IO_L49N_0 B28 IO_L49P_0 B29 0 IO_L03P_0/VRN_0 E27 0 0 IO_L04N_0/VREF_0 F25 0 IO_L50N_0 J22 0 IO_L04P_0 F26 0 IO_L50P_0 J21 0 IO_L05N_0 H25 0 IO_L51N_0 A28 0 IO_L05P_0 H24 0 IO_L51P_0/VREF_0 A29 0 IO_L06N_0 E26 0 IO_L52N_0 A26 IO_L52P_0 B27 0 IO_L06P_0 F27 0 0 IO_L19N_0 B32 0 IO_L53N_0 C24 0 IO_L19P_0 C33 0 IO_L53P_0 D24 0 IO_L20N_0 J24 0 IO_L54N_0 D22 0 IO_L20P_0 J23 0 IO_L54P_0 D23 0 IO_L21N_0 C27 0 IO_L60N_0 B25 IO_L60P_0 B26 0 IO_L21P_0/VREF_0 C28 0 0 IO_L22N_0 B30 0 IO_L67N_0 B23 0 IO_L22P_0 B31 0 IO_L67P_0 B24 0 IO_L23N_0 K23 0 IO_L68N_0 G22 0 IO_L23P_0 K22 0 IO_L68P_0 G23 0 IO_L24N_0 C26 0 IO_L69N_0 F22 IO_L69P_0/VREF_0 F21 0 IO_L24P_0 D27 0 0 IO_L25N_0 A30 0 IO_L70N_0 A23 0 IO_L25P_0 A31 0 IO_L70P_0 A24 0 IO_L26N_0 G24 0 IO_L71N_0 K21 0 IO_L26P_0 G25 0 IO_L71P_0 K20 IO_L72N_0 C22 0 IO_L27N_0 E25 0 0 IO_L27P_0/VREF_0 E24 0 IO_L72P_0 C23 0 IO_L28N_0 D25 0 IO_L73N_0 E21 0 IO_L28P_0 D26 0 IO_L73P_0 E22 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 108 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 0 IO_L74N_0 H21 1 IO_L93P_1 F17 0 IO_L74P_0 H20 1 IO_L92N_1 G16 0 IO_L75N_0 G20 1 IO_L92P_1 G17 0 IO_L75P_0/VREF_0 F20 1 IO_L91N_1 C16 0 IO_L76N_0 B21 1 IO_L91P_1/VREF_1 C15 0 IO_L76P_0 B22 1 IO_L84N_1 D14 0 IO_L77N_0 J20 1 IO_L84P_1 D15 0 IO_L77P_0 K19 1 IO_L83N_1 J17 0 IO_L78N_0 D20 1 IO_L83P_1 K17 0 IO_L78P_0 D21 1 IO_L82N_1 B17 0 IO_L79N_0 A21 1 IO_L82P_1 A17 0 IO_L79P_0 A22 1 IO_L81N_1/VREF_1 A15 0 IO_L80N_0 L19 1 IO_L81P_1 B16 0 IO_L80P_0 L18 1 IO_L80N_1 L17 0 IO_L81N_0 B19 1 IO_L80P_1 L16 0 IO_L81P_0/VREF_0 A20 1 IO_L79N_1 A13 0 IO_L82N_0 A18 1 IO_L79P_1 A14 0 IO_L82P_0 B18 1 IO_L78N_1 C13 0 IO_L83N_0 H19 1 IO_L78P_1 C14 0 IO_L83P_0 H18 1 IO_L77N_1 K16 0 IO_L84N_0 C20 1 IO_L77P_1 K15 0 IO_L84P_0 C21 1 IO_L76N_1 B13 0 IO_L91N_0/VREF_0 D19 1 IO_L76P_1 B14 0 IO_L91P_0 D18 1 IO_L75N_1/VREF_1 F15 0 IO_L92N_0 G18 1 IO_L75P_1 G15 0 IO_L92P_0 G19 1 IO_L74N_1 H15 0 IO_L93N_0 F18 1 IO_L74P_1 H14 0 IO_L93P_0 F19 1 IO_L73N_1 A11 0 IO_L94N_0/VREF_0 C19 1 IO_L73P_1 A12 0 IO_L94P_0 C18 1 IO_L72N_1 E13 0 IO_L95N_0/GCLK7P K18 1 IO_L72P_1 E14 0 IO_L95P_0/GCLK6S J18 1 IO_L71N_1 J15 0 IO_L96N_0/GCLK5P E19 1 IO_L71P_1 J14 0 IO_L96P_0/GCLK4S E18 1 IO_L70N_1 D12 1 IO_L70P_1 D13 1 IO_L96N_1/GCLK3P E17 1 IO_L69N_1/VREF_1 F14 1 IO_L96P_1/GCLK2S E16 1 IO_L69P_1 F13 1 IO_L95N_1/GCLK1P H17 1 IO_L68N_1 C11 1 IO_L95P_1/GCLK0S H16 1 IO_L68P_1 C12 1 IO_L94N_1 D17 1 IO_L67N_1 B11 1 IO_L94P_1/VREF_1 D16 1 IO_L67P_1 B12 1 IO_L93N_1 F16 1 IO_L60N_1 F11 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 109 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 1 IO_L60P_1 F12 1 IO_L04P_1/VREF_1 E7 1 IO_L54N_1 D10 1 IO_L03N_1/VRP_1 F9 1 IO_L54P_1 D11 1 IO_L03P_1/VRN_1 F8 1 IO_L53N_1 G12 1 IO_L02N_1 H10 1 IO_L53P_1 G13 1 IO_L02P_1 H9 1 IO_L52N_1 B9 1 IO_L01N_1 C2 1 IO_L52P_1 B10 1 IO_L01P_1 B3 1 IO_L51N_1/VREF_1 B8 1 IO_L51P_1 A9 2 IO_L01N_2 E2 1 IO_L50N_1 K14 2 IO_L01P_2 D2 1 IO_L50P_1 K13 2 IO_L02N_2/VRP_2 K11 1 IO_L49N_1 A6 2 IO_L02P_2/VRN_2 K10 1 IO_L49P_1 A7 2 IO_L03N_2 F5 1 IO_L30N_1 D9 2 IO_L03P_2/VREF_2 G5 1 IO_L30P_1 C9 2 IO_L04N_2 E3 1 IO_L29N_1 H13 2 IO_L04P_2 D3 1 IO_L29P_1 H12 2 IO_L05N_2 J9 1 IO_L28N_1 C7 2 IO_L05P_2 K9 1 IO_L28P_1 C8 2 IO_L06N_2 F4 1 IO_L27N_1/VREF_1 E11 2 IO_L06P_2 E4 1 IO_L27P_1 E10 2 IO_L19N_2 E1 1 IO_L26N_1 J13 2 IO_L19P_2 D1 1 IO_L26P_1 K12 2 IO_L20N_2 J8 1 IO_L25N_1 B6 2 IO_L20P_2 K8 1 IO_L25P_1 B7 2 IO_L21N_2 H7 1 IO_L24N_1 E8 2 IO_L21P_2/VREF_2 J7 1 IO_L24P_1 E9 2 IO_L22N_2 H6 1 IO_L23N_1 G10 2 IO_L22P_2 G6 1 IO_L23P_1 G11 2 IO_L23N_2 L10 1 IO_L22N_1 A4 2 IO_L23P_2 L9 1 IO_L22P_1 A5 2 IO_L24N_2 G3 1 IO_L21N_1/VREF_1 F10 2 IO_L24P_2 F3 1 IO_L21P_1 G9 2 IO_L25N_2 G2 1 IO_L20N_1 J12 2 IO_L25P_2 F2 1 IO_L20P_1 J11 2 IO_L26N_2 M10 1 IO_L19N_1 B4 2 IO_L26P_2 N10 1 IO_L19P_1 B5 2 IO_L27N_2 J6 1 IO_L06N_1 D6 2 IO_L27P_2/VREF_2 K6 1 IO_L06P_1 C6 2 IO_L28N_2 J5 1 IO_L05N_1 H11 2 IO_L28P_2 H5 1 IO_L05P_1 J10 2 IO_L29N_2 L7 1 IO_L04N_1 D8 2 IO_L29P_2 K7 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 110 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 2 IO_L30N_2 J4 2 IO_L75N_2 P2 2 IO_L30P_2 H4 2 IO_L75P_2/VREF_2 N2 2 IO_L43N_2 G1 2 IO_L76N_2 R4 2 IO_L43P_2 F1 2 IO_L76P_2 P4 2 IO_L44N_2 L8 2 IO_L77N_2 R8 2 IO_L44P_2 M8 2 IO_L77P_2 T8 2 IO_L45N_2 J1 2 IO_L78N_2 T3 2 IO_L45P_2/VREF_2 H2 2 IO_L78P_2 R3 2 IO_L46N_2 J3 2 IO_L79N_2 P1 2 IO_L46P_2 H3 2 IO_L79P_2 N1 2 IO_L47N_2 M9 2 IO_L80N_2 T11 2 IO_L47P_2 N9 2 IO_L80P_2 U11 2 IO_L48N_2 L5 2 IO_L81N_2 R7 2 IO_L48P_2 K5 2 IO_L81P_2/VREF_2 R6 2 IO_L49N_2 K2 2 IO_L82N_2 U5 2 IO_L49P_2 J2 2 IO_L82P_2 T5 2 IO_L50N_2 N7 2 IO_L83N_2 T10 2 IO_L50P_2 M7 2 IO_L83P_2 U10 2 IO_L51N_2 L6 2 IO_L84N_2 U4 2 IO_L51P_2/VREF_2 M6 2 IO_L84P_2 T4 2 IO_L52N_2 M3 2 IO_L91N_2 T2 2 IO_L52P_2 L3 2 IO_L91P_2 R1 2 IO_L53N_2 L4 2 IO_L92N_2 U7 2 IO_L53P_2 K4 2 IO_L92P_2 T7 2 IO_L54N_2 N4 2 IO_L93N_2 T6 2 IO_L54P_2 M4 2 IO_L93P_2/VREF_2 U6 2 IO_L67N_2 M2 2 IO_L94N_2 U1 2 IO_L67P_2 L2 2 IO_L94P_2 U2 2 IO_L68N_2 N8 2 IO_L95N_2 U9 2 IO_L68P_2 P8 2 IO_L95P_2 U8 2 IO_L69N_2 N6 2 IO_L96N_2 U3 2 IO_L69P_2/VREF_2 P6 2 IO_L96P_2 V4 2 IO_L70N_2 P5 2 IO_L70P_2 N5 3 IO_L96N_3 V6 2 IO_L71N_2 P10 3 IO_L96P_3 W6 2 IO_L71P_2 R10 3 IO_L95N_3 V5 2 IO_L72N_2 P3 3 IO_L95P_3 W5 2 IO_L72P_2 N3 3 IO_L94N_3 V7 2 IO_L73N_2 M1 3 IO_L94P_3 W7 2 IO_L73P_2 L1 3 IO_L93N_3/VREF_3 V10 2 IO_L74N_2 P9 3 IO_L93P_3 W10 2 IO_L74P_2 R9 3 IO_L92N_3 V1 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 111 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 IO_L92P_3 V2 3 IO_L53P_3 AD2 3 IO_L91N_3 W3 3 IO_L52N_3 AC8 3 IO_L91P_3 Y3 3 IO_L52P_3 AB8 3 IO_L84N_3 V9 3 IO_L51N_3/VREF_3 AB10 3 IO_L84P_3 V8 3 IO_L51P_3 AC10 3 IO_L83N_3 W4 3 IO_L50N_3 AD5 3 IO_L83P_3 Y4 3 IO_L50P_3 AE5 3 IO_L82N_3 W11 3 IO_L49N_3 AE4 3 IO_L82P_3 V11 3 IO_L49P_3 AF4 3 IO_L81N_3/VREF_3 W8 3 IO_L48N_3 AB9 3 IO_L81P_3 Y8 3 IO_L48P_3 AC9 3 IO_L80N_3 W2 3 IO_L47N_3 AE2 3 IO_L80P_3 Y1 3 IO_L47P_3 AF1 3 IO_L79N_3 AA3 3 IO_L46N_3 AD6 3 IO_L79P_3 AB3 3 IO_L46P_3 AE6 3 IO_L78N_3 Y6 3 IO_L45N_3/VREF_3 AD9 3 IO_L78P_3 AA6 3 IO_L45P_3 AE9 3 IO_L77N_3 AA4 3 IO_L44N_3 AF2 3 IO_L77P_3 AB4 3 IO_L44P_3 AG2 3 IO_L76N_3 Y7 3 IO_L43N_3 AF3 3 IO_L76P_3 AA8 3 IO_L43P_3 AG3 3 IO_L75N_3/VREF_3 Y10 3 IO_L30N_3 AD7 3 IO_L75P_3 AA10 3 IO_L30P_3 AE7 3 IO_L74N_3 AA1 3 IO_L29N_3 AF5 3 IO_L74P_3 AB1 3 IO_L29P_3 AG5 3 IO_L73N_3 AA5 3 IO_L28N_3 AE8 3 IO_L73P_3 AB5 3 IO_L28P_3 AD8 3 IO_L72N_3 AA9 3 IO_L27N_3/VREF_3 AF8 3 IO_L72P_3 Y9 3 IO_L27P_3 AF9 3 IO_L71N_3 AA2 3 IO_L26N_3 AH1 3 IO_L71P_3 AB2 3 IO_L26P_3 AJ1 3 IO_L70N_3 AB6 3 IO_L25N_3 AG4 3 IO_L70P_3 AC6 3 IO_L25P_3 AH5 3 IO_L69N_3/VREF_3 AD1 3 IO_L24N_3 AF6 3 IO_L69P_3 AC1 3 IO_L24P_3 AG6 3 IO_L68N_3 AC3 3 IO_L23N_3 AH3 3 IO_L68P_3 AD3 3 IO_L23P_3 AJ3 3 IO_L67N_3 AC4 3 IO_L22N_3 AF7 3 IO_L67P_3 AD4 3 IO_L22P_3 AG7 3 IO_L54N_3 AB7 3 IO_L21N_3/VREF_3 AL1 3 IO_L54P_3 AC7 3 IO_L21P_3 AK1 3 IO_L53N_3 AC2 3 IO_L20N_3 AH2 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 112 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 3 IO_L20P_3 AJ2 4 IO_L26N_4 AG11 3 IO_L19N_3 AJ4 4 IO_L26P_4 AG12 3 IO_L19P_3 AK4 4 IO_L27N_4 AN7 3 IO_L06N_3 AE10 4 IO_L27P_4/VREF_4 AN6 3 IO_L06P_3 AD10 4 IO_L28N_4 AL10 3 IO_L05N_3 AK2 4 IO_L28P_4 AL9 3 IO_L05P_3 AL2 4 IO_L29N_4 AF12 3 IO_L04N_3 AH6 4 IO_L29P_4 AF13 3 IO_L04P_3 AJ5 4 IO_L30N_4 AK10 3 IO_L03N_3/VREF_3 AE11 4 IO_L30P_4 AK11 3 IO_L03P_3 AF11 4 IO_L49N_4 AP7 3 IO_L02N_3/VRP_3 AK3 4 IO_L49P_4 AP6 3 IO_L02P_3/VRN_3 AL3 4 IO_L50N_4 AH13 3 IO_L01N_3 AF10 4 IO_L50P_4 AH12 3 IO_L01P_3 AG9 4 IO_L51N_4 AJ11 4 IO_L51P_4/VREF_4 AJ12 4 IO_L01N_4/DOUT AM4 4 IO_L52N_4 AP9 4 IO_L01P_4/INIT_B AL5 4 IO_L52P_4 AN8 4 IO_L02N_4/D0 AG10 4 IO_L53N_4 AG13 4 IO_L02P_4/D1 AH11 4 IO_L53P_4 AG14 4 IO_L03N_4/D2/ALT_VRP_4 AK7 4 IO_L54N_4 AM11 4 IO_L03P_4/D3/ALT_VRN_4 AK8 4 IO_L54P_4 AL11 4 IO_L04N_4/VREF_4 AL6 4 IO_L60N_4 AN10 4 IO_L04P_4 AM6 4 IO_L60P_4 AN9 4 IO_L05N_4/VRP_4 AK9 4 IO_L67N_4 AN12 4 IO_L05P_4/VRN_4 AJ8 4 IO_L67P_4 AN11 4 IO_L06N_4 AM8 4 IO_L68N_4 AE14 4 IO_L06P_4 AM7 4 IO_L68P_4 AE15 4 IO_L19N_4 AN3 4 IO_L69N_4 AJ13 4 IO_L19P_4 AM2 4 IO_L69P_4/VREF_4 AJ14 4 IO_L20N_4 AJ10 4 IO_L70N_4 AL13 4 IO_L20P_4 AJ9 4 IO_L70P_4 AL12 4 IO_L21N_4 AH9 4 IO_L71N_4 AF14 4 IO_L21P_4/VREF_4 AH10 4 IO_L71P_4 AF15 4 IO_L22N_4 AN5 4 IO_L72N_4 AM13 4 IO_L22P_4 AN4 4 IO_L72P_4 AM12 4 IO_L23N_4 AE12 4 IO_L73N_4 AP12 4 IO_L23P_4 AE13 4 IO_L73P_4 AP11 4 IO_L24N_4 AM9 4 IO_L74N_4 AG15 4 IO_L24P_4 AL8 4 IO_L74P_4 AG16 4 IO_L25N_4 AP5 4 IO_L75N_4 AN14 4 IO_L25P_4 AP4 4 IO_L75P_4/VREF_4 AN13 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 113 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 4 IO_L76N_4 AP14 5 IO_L91P_5/VREF_5 AM20 4 IO_L76P_4 AP13 5 IO_L84N_5 AL21 4 IO_L77N_4 AD16 5 IO_L84P_5 AL20 4 IO_L77P_4 AD17 5 IO_L83N_5 AM22 4 IO_L78N_4 AK14 5 IO_L83P_5 AM21 4 IO_L78P_4 AK13 5 IO_L82N_5 AN18 4 IO_L79N_4 AN16 5 IO_L82P_5 AP18 4 IO_L79P_4 AP15 5 IO_L81N_5/VREF_5 AP20 4 IO_L80N_4 AE16 5 IO_L81P_5 AN19 4 IO_L80P_4 AE17 5 IO_L80N_5 AE18 4 IO_L81N_4 AH15 5 IO_L80P_5 AE19 4 IO_L81P_4/VREF_4 AJ15 5 IO_L79N_5 AP22 4 IO_L82N_4 AP17 5 IO_L79P_5 AP21 4 IO_L82P_4 AN17 5 IO_L78N_5 AK22 4 IO_L83N_4 AH17 5 IO_L78P_5 AK21 4 IO_L83P_4 AH16 5 IO_L77N_5 AD18 4 IO_L84N_4 AL15 5 IO_L77P_5 AD19 4 IO_L84P_4 AL14 5 IO_L76N_5 AN22 4 IO_L91N_4/VREF_4 AL16 5 IO_L76P_5 AN21 4 IO_L91P_4 AL17 5 IO_L75N_5/VREF_5 AJ20 4 IO_L92N_4 AJ17 5 IO_L75P_5 AH20 4 IO_L92P_4 AJ16 5 IO_L74N_5 AG19 4 IO_L93N_4 AM15 5 IO_L74P_5 AG20 4 IO_L93P_4 AM14 5 IO_L73N_5 AP24 4 IO_L94N_4/VREF_4 AM16 5 IO_L73P_5 AP23 4 IO_L94P_4 AM17 5 IO_L72N_5 AL23 4 IO_L95N_4/GCLK3S AF17 5 IO_L72P_5 AL22 4 IO_L95P_4/GCLK2P AG17 5 IO_L71N_5 AF20 4 IO_L96N_4/GCLK1S AK16 5 IO_L71P_5 AF21 4 IO_L96P_4/GCLK0P AK17 5 IO_L70N_5 AM24 5 IO_L70P_5 AM23 5 IO_L96N_5/GCLK7S AK18 5 IO_L69N_5/VREF_5 AJ21 5 IO_L96P_5/GCLK6P AK19 5 IO_L69P_5 AJ22 5 IO_L95N_5/GCLK5S AG18 5 IO_L68N_5 AJ24 5 IO_L95P_5/GCLK4P AF18 5 IO_L68P_5 AJ23 5 IO_L94N_5 AL18 5 IO_L67N_5 AN24 5 IO_L94P_5/VREF_5 AL19 5 IO_L67P_5 AN23 5 IO_L93N_5 AJ19 5 IO_L60N_5 AN26 5 IO_L93P_5 AJ18 5 IO_L60P_5 AN25 5 IO_L92N_5 AH19 5 IO_L54N_5 AL25 5 IO_L92P_5 AH18 5 IO_L54P_5 AL24 5 IO_L91N_5 AM19 5 IO_L53N_5 AE20 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 114 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 5 IO_L53P_5 AE21 5 IO_L02P_5/D7 AG25 5 IO_L52N_5 AN27 5 IO_L01N_5/RDWR_B AL30 5 IO_L52P_5 AP26 5 IO_L01P_5/CS_B AM31 5 IO_L51N_5/VREF_5 AP29 5 IO_L51P_5 AP28 6 IO_L01P_6 AE24 5 IO_L50N_5 AG21 6 IO_L01N_6 AD25 5 IO_L50P_5 AG22 6 IO_L02P_6/VRN_6 AJ30 5 IO_L49N_5 AN29 6 IO_L02N_6/VRP_6 AH30 5 IO_L49P_5 AN28 6 IO_L03P_6 AL32 5 IO_L30N_5 AK24 6 IO_L03N_6/VREF_6 AK32 5 IO_L30P_5 AK25 6 IO_L04P_6 AF25 5 IO_L29N_5 AH23 6 IO_L04N_6 AE25 5 IO_L29P_5 AH22 6 IO_L05P_6 AJ31 5 IO_L28N_5 AP31 6 IO_L05N_6 AK31 5 IO_L28P_5 AP30 6 IO_L06P_6 AH29 5 IO_L27N_5/VREF_5 AH24 6 IO_L06N_6 AG29 5 IO_L27P_5 AH25 6 IO_L19P_6 AG26 5 IO_L26N_5 AF22 6 IO_L19N_6 AF26 5 IO_L26P_5 AF23 6 IO_L20P_6 AL33 5 IO_L25N_5 AM27 6 IO_L20N_6 AK33 5 IO_L25P_5 AM26 6 IO_L21P_6 AJ32 5 IO_L24N_5 AL27 6 IO_L21N_6/VREF_6 AH32 5 IO_L24P_5 AL26 6 IO_L22P_6 AG28 5 IO_L23N_5 AH26 6 IO_L22N_6 AF28 5 IO_L23P_5 AJ25 6 IO_L23P_6 AG30 5 IO_L22N_5 AN31 6 IO_L23N_6 AF30 5 IO_L22P_5 AN30 6 IO_L24P_6 AF29 5 IO_L21N_5/VREF_5 AK26 6 IO_L24N_6 AE29 5 IO_L21P_5 AK27 6 IO_L25P_6 AF27 5 IO_L20N_5 AG23 6 IO_L25N_6 AE27 5 IO_L20P_5 AF24 6 IO_L26P_6 AL34 5 IO_L19N_5 AM33 6 IO_L26N_6 AK34 5 IO_L19P_5 AN32 6 IO_L27P_6 AE28 5 IO_L06N_5 AJ27 6 IO_L27N_6/VREF_6 AD28 5 IO_L06P_5 AJ26 6 IO_L28P_6 AE26 5 IO_L05N_5/VRP_5 AE22 6 IO_L28N_6 AD26 5 IO_L05P_5/VRN_5 AE23 6 IO_L29P_6 AF31 5 IO_L04N_5 AM28 6 IO_L29N_6 AG31 5 IO_L04P_5/VREF_5 AM29 6 IO_L30P_6 AF32 5 IO_L03N_5/D4/ALT_VRP_5 AK28 6 IO_L30N_6 AG32 5 IO_L03P_5/D5/ALT_VRN_5 AL29 6 IO_L43P_6 AC25 5 IO_L02N_5/D6 AG24 6 IO_L43N_6 AB25 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 115 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 6 IO_L44P_6 AJ33 6 IO_L77P_6 AB33 6 IO_L44N_6 AH33 6 IO_L77N_6 AA33 6 IO_L45P_6 AE31 6 IO_L78P_6 AA30 6 IO_L45N_6/VREF_6 AD32 6 IO_L78N_6 AB30 6 IO_L46P_6 AD27 6 IO_L79P_6 W24 6 IO_L46N_6 AC27 6 IO_L79N_6 V24 6 IO_L47P_6 AJ34 6 IO_L80P_6 AB34 6 IO_L47N_6 AH34 6 IO_L80N_6 AA34 6 IO_L48P_6 AE30 6 IO_L81P_6 W33 6 IO_L48N_6 AD30 6 IO_L81N_6/VREF_6 Y34 6 IO_L49P_6 AC26 6 IO_L82P_6 W25 6 IO_L49N_6 AB26 6 IO_L82N_6 V25 6 IO_L50P_6 AD29 6 IO_L83P_6 Y32 6 IO_L50N_6 AC29 6 IO_L83N_6 AA32 6 IO_L51P_6 AF33 6 IO_L84P_6 W29 6 IO_L51N_6/VREF_6 AG33 6 IO_L84N_6 V29 6 IO_L52P_6 AC28 6 IO_L91P_6 W28 6 IO_L52N_6 AB28 6 IO_L91N_6 V28 6 IO_L53P_6 AF34 6 IO_L92P_6 V33 6 IO_L53N_6 AE33 6 IO_L92N_6 V34 6 IO_L54P_6 AB27 6 IO_L93P_6 Y31 6 IO_L54N_6 AA27 6 IO_L93N_6/VREF_6 W31 6 IO_L67P_6 AA25 6 IO_L94P_6 V26 6 IO_L67N_6 Y25 6 IO_L94N_6 V27 6 IO_L68P_6 AD33 6 IO_L95P_6 W30 6 IO_L68N_6 AC33 6 IO_L95N_6 V30 6 IO_L69P_6 AC32 6 IO_L96P_6 V32 6 IO_L69N_6/VREF_6 AB32 6 IO_L96N_6 W32 6 IO_L70P_6 AA26 6 IO_L70N_6 Y26 7 IO_L96P_7 U31 6 IO_L71P_6 AD34 7 IO_L96N_7 V31 6 IO_L71N_6 AC34 7 IO_L95P_7 T28 6 IO_L72P_6 AC31 7 IO_L95N_7 U28 6 IO_L72N_6 AD31 7 IO_L94P_7 U33 6 IO_L73P_6 Y27 7 IO_L94N_7 U34 6 IO_L73N_6 W27 7 IO_L93P_7/VREF_7 U29 6 IO_L74P_6 AB29 7 IO_L93N_7 T29 6 IO_L74N_6 AA29 7 IO_L92P_7 U27 6 IO_L75P_6 AB31 7 IO_L92N_7 U26 6 IO_L75N_6/VREF_6 AA31 7 IO_L91P_7 T30 6 IO_L76P_6 Y28 7 IO_L91N_7 U30 6 IO_L76N_6 Y29 7 IO_L84P_7 R32 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 116 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 7 IO_L84N_7 T32 7 IO_L51N_7 L29 7 IO_L83P_7 U25 7 IO_L50P_7 M28 7 IO_L83N_7 T25 7 IO_L50N_7 N28 7 IO_L82P_7 R34 7 IO_L49P_7 K30 7 IO_L82N_7 T33 7 IO_L49N_7 K31 7 IO_L81P_7/VREF_7 N34 7 IO_L48P_7 H32 7 IO_L81N_7 P34 7 IO_L48N_7 J32 7 IO_L80P_7 U24 7 IO_L47P_7 N26 7 IO_L80N_7 T24 7 IO_L47N_7 M26 7 IO_L79P_7 R31 7 IO_L46P_7 J33 7 IO_L79N_7 T31 7 IO_L46N_7 K33 7 IO_L78P_7 N32 7 IO_L45P_7/VREF_7 H33 7 IO_L78N_7 P32 7 IO_L45N_7 J34 7 IO_L77P_7 T27 7 IO_L44P_7 M27 7 IO_L77N_7 R27 7 IO_L44N_7 L27 7 IO_L76P_7 N33 7 IO_L43P_7 H31 7 IO_L76N_7 P33 7 IO_L43N_7 J31 7 IO_L75P_7/VREF_7 R29 7 IO_L30P_7 F32 7 IO_L75N_7 R28 7 IO_L30N_7 G32 7 IO_L74P_7 R26 7 IO_L29P_7 N25 7 IO_L74N_7 P26 7 IO_L29N_7 M25 7 IO_L73P_7 N31 7 IO_L28P_7 F34 7 IO_L73N_7 P31 7 IO_L28N_7 G34 7 IO_L72P_7 N30 7 IO_L27P_7/VREF_7 J30 7 IO_L72N_7 P30 7 IO_L27N_7 H30 7 IO_L71P_7 R25 7 IO_L26P_7 K28 7 IO_L71N_7 P25 7 IO_L26N_7 L28 7 IO_L70P_7 L34 7 IO_L25P_7 H28 7 IO_L70N_7 M34 7 IO_L25N_7 J29 7 IO_L69P_7/VREF_7 P29 7 IO_L24P_7 G29 7 IO_L69N_7 N29 7 IO_L24N_7 H29 7 IO_L68P_7 P27 7 IO_L23P_7 L26 7 IO_L68N_7 N27 7 IO_L23N_7 K26 7 IO_L67P_7 L32 7 IO_L22P_7 F33 7 IO_L67N_7 M32 7 IO_L22N_7 G33 7 IO_L54P_7 L31 7 IO_L21P_7/VREF_7 J28 7 IO_L54N_7 M31 7 IO_L21N_7 J27 7 IO_L53P_7 K29 7 IO_L20P_7 K27 7 IO_L53N_7 L30 7 IO_L20N_7 J26 7 IO_L52P_7 L33 7 IO_L19P_7 E31 7 IO_L52N_7 M33 7 IO_L19N_7 F31 7 IO_L51P_7/VREF_7 M29 7 IO_L06P_7 D32 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 117 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 7 IO_L06N_7 E32 2 VCCO_2 R11 7 IO_L05P_7 L25 2 VCCO_2 R5 7 IO_L05N_7 K24 2 VCCO_2 P12 7 IO_L04P_7 D34 2 VCCO_2 P11 7 IO_L04N_7 E34 2 VCCO_2 N12 7 IO_L03P_7/VREF_7 G30 2 VCCO_2 N11 7 IO_L03N_7 F30 2 VCCO_2 M11 7 IO_L02P_7/VRN_7 K25 2 VCCO_2 K1 7 IO_L02N_7/VRP_7 J25 2 VCCO_2 G4 7 IO_L01P_7 D33 3 VCCO_3 AH4 7 IO_L01N_7 E33 3 VCCO_3 AE1 3 VCCO_3 AC11 0 VCCO_0 M22 3 VCCO_3 AB12 0 VCCO_0 M21 3 VCCO_3 AB11 0 VCCO_0 M20 3 VCCO_3 AA12 0 VCCO_0 M19 3 VCCO_3 AA11 0 VCCO_0 M18 3 VCCO_3 Y12 0 VCCO_0 L23 3 VCCO_3 Y11 0 VCCO_0 L22 3 VCCO_3 Y5 0 VCCO_0 L21 3 VCCO_3 W12 0 VCCO_0 L20 3 VCCO_3 W1 0 VCCO_0 E20 3 VCCO_3 V12 0 VCCO_0 D28 4 VCCO_4 AP16 0 VCCO_0 A25 4 VCCO_4 AP10 0 VCCO_0 A19 4 VCCO_4 AL7 1 VCCO_1 M17 4 VCCO_4 AK15 1 VCCO_1 M16 4 VCCO_4 AD15 1 VCCO_1 M15 4 VCCO_4 AD14 1 VCCO_1 M14 4 VCCO_4 AD13 1 VCCO_1 M13 4 VCCO_4 AD12 1 VCCO_1 L15 4 VCCO_4 AC17 1 VCCO_1 L14 4 VCCO_4 AC16 1 VCCO_1 L13 4 VCCO_4 AC15 1 VCCO_1 L12 4 VCCO_4 AC14 1 VCCO_1 E15 4 VCCO_4 AC13 1 VCCO_1 D7 5 VCCO_5 AP25 1 VCCO_1 A16 5 VCCO_5 AP19 1 VCCO_1 A10 5 VCCO_5 AL28 2 VCCO_2 U12 5 VCCO_5 AK20 2 VCCO_2 T12 5 VCCO_5 AD23 2 VCCO_2 T1 5 VCCO_5 AD22 2 VCCO_2 R12 5 VCCO_5 AD21 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 118 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number 5 VCCO_5 AD20 NA TDO D5 5 VCCO_5 AC22 NA TMS E6 5 VCCO_5 AC21 NA PWRDWN_B AK6 5 VCCO_5 AC20 NA DXN F28 5 VCCO_5 AC19 NA DXP G27 5 VCCO_5 AC18 NA VBATT C4 6 VCCO_6 AH31 NA RSVD G8 6 VCCO_6 AE34 NA VCCAUX AM30 6 VCCO_6 AC24 NA VCCAUX AM18 6 VCCO_6 AB24 NA VCCAUX AM5 6 VCCO_6 AB23 NA VCCAUX V3 6 VCCO_6 AA24 NA VCCAUX U32 6 VCCO_6 AA23 NA VCCAUX C30 6 VCCO_6 Y30 NA VCCAUX C17 6 VCCO_6 Y24 NA VCCAUX C5 6 VCCO_6 Y23 NA VCCINT AD24 6 VCCO_6 W34 NA VCCINT AD11 6 VCCO_6 W23 NA VCCINT AC23 6 VCCO_6 V23 NA VCCINT AC12 7 VCCO_7 U23 NA VCCINT AB22 7 VCCO_7 T34 NA VCCINT AB21 7 VCCO_7 T23 NA VCCINT AB20 7 VCCO_7 R30 NA VCCINT AB19 7 VCCO_7 R24 NA VCCINT AB18 7 VCCO_7 R23 NA VCCINT AB17 7 VCCO_7 P24 NA VCCINT AB16 7 VCCO_7 P23 NA VCCINT AB15 7 VCCO_7 N24 NA VCCINT AB14 7 VCCO_7 N23 NA VCCINT AB13 7 VCCO_7 M24 NA VCCINT AA22 7 VCCO_7 K34 NA VCCINT AA13 7 VCCO_7 G31 NA VCCINT Y22 NA VCCINT Y13 NA CCLK AH8 NA VCCINT W22 NA PROG_B D30 NA VCCINT W13 NA DONE AJ7 NA VCCINT V22 NA M0 AH27 NA VCCINT V13 NA M1 AJ28 NA VCCINT U22 NA M2 AK29 NA VCCINT U13 NA HSWAP_EN E29 NA VCCINT T22 NA TCK F7 NA VCCINT T13 NA TDI C31 NA VCCINT R22 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 119 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number NA VCCINT R13 NA GND AH14 NA VCCINT P22 NA GND AH7 NA VCCINT P13 NA GND AG34 NA VCCINT N22 NA GND AG27 NA VCCINT N21 NA GND AG8 NA VCCINT N20 NA GND AG1 NA VCCINT N19 NA GND AF19 NA VCCINT N18 NA GND AF16 NA VCCINT N17 NA GND AE32 NA VCCINT N16 NA GND AE3 NA VCCINT N15 NA GND AC30 NA VCCINT N14 NA GND AC5 NA VCCINT N13 NA GND AA28 NA VCCINT M23 NA GND AA21 NA VCCINT M12 NA GND AA20 NA VCCINT L24 NA GND AA19 NA VCCINT L11 NA GND AA18 NA GND AA17 NA GND AP32 NA GND AA16 NA GND AP27 NA GND AA15 NA GND AP8 NA GND AA14 NA GND AP3 NA GND AA7 NA GND AN33 NA GND Y33 NA GND AN20 NA GND Y21 NA GND AN15 NA GND Y20 NA GND AN2 NA GND Y19 NA GND AM34 NA GND Y18 NA GND AM32 NA GND Y17 NA GND AM25 NA GND Y16 NA GND AM10 NA GND Y15 NA GND AM3 NA GND Y14 NA GND AM1 NA GND Y2 NA GND AL31 NA GND W26 NA GND AL4 NA GND W21 NA GND AK30 NA GND W20 NA GND AK23 NA GND W19 NA GND AK12 NA GND W18 NA GND AK5 NA GND W17 NA GND AJ29 NA GND W16 NA GND AJ6 NA GND W15 NA GND AH28 NA GND W14 NA GND AH21 NA GND W9 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 120 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Table 84: CF1144 CGA -- XQR2V6000 (Continued) Table 84: CF1144 CGA -- XQR2V6000 (Continued) Bank Pin Description Pin Number Bank Pin Description Pin Number NA GND V21 NA GND P17 NA GND V20 NA GND P16 NA GND V19 NA GND P15 NA GND V18 NA GND P14 NA GND V17 NA GND P7 NA GND V16 NA GND M30 NA GND V15 NA GND M5 NA GND V14 NA GND K32 NA GND U21 NA GND K3 NA GND U20 NA GND J19 NA GND U19 NA GND J16 NA GND U18 NA GND H34 NA GND U17 NA GND H27 NA GND U16 NA GND H8 NA GND U15 NA GND H1 NA GND U14 NA GND G28 NA GND T26 NA GND G21 NA GND T21 NA GND G14 NA GND T20 NA GND G7 NA GND T19 NA GND F29 NA GND T18 NA GND F6 NA GND T17 NA GND E30 NA GND T16 NA GND E23 NA GND T15 NA GND E12 NA GND T14 NA GND E5 NA GND T9 NA GND D31 NA GND R33 NA GND D4 NA GND R21 NA GND C34 NA GND R20 NA GND C32 NA GND R19 NA GND C25 NA GND R18 NA GND C10 NA GND R17 NA GND C3 NA GND R16 NA GND C1 NA GND R15 NA GND B33 NA GND R14 NA GND B20 NA GND R2 NA GND B15 NA GND P28 NA GND B2 NA GND P21 NA GND A32 NA GND P20 NA GND A27 NA GND P19 NA GND A8 NA GND P18 NA GND A3 DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 121 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications (1.00mm pitch) Figure 61: CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications DS124 (v1.2) December 4, 2006 Product Specification www.xilinx.com 122 R QPro Virtex-II 1.5V Radiation-Hardened QML Platform FPGAs Revision History This section records the change history for this module of the data sheet. Date Version 9/24/03 1.0 Advance release. 01/08/04 1.1 Initial Xilinx release. 12/04/06 1.2 * Updated template * Added "Configuration Timing," page 67. * Updated Table 33, page 49 to add instruction to connect VBATT to VCCAUX or GND when bitstream encryption is not used. * Updated pinout in Table 80, page 89 to reflect reserved pins. DS124 (v1.2) December 4, 2006 Product Specification Revision www.xilinx.com 123