RazerThin(R) Gen III LEDs CxxxRT200-Sxxxx Cree's RazerThin LEDs are a new generation of solid-state LED emitters that combine highly efficient InGaN materials with Cree's proprietary G*SiC(R) substrate to deliver superior price/performance for high-intensity blue and green LEDs. These vertically structured LED chips are approximately 95 microns in height and require a low forward voltage. Cree's RazerThin series chips have the ability to withstand 1000 V ESD. T200 Gen 3 Schematic FEATURES APPLICATIONS * Thin 95 m Chip * Reduced Forward Voltage - White LEDs - - Blue LEDs * * 3.0 V Typical at 5 mA RazerThin LED Performance - 460 nm - 10 mW min. - 470 nm - 8 mW min. - 527 nm - 2 mW min. * Single Wire Bond Structure * Class 2 ESD Rating Mobile Phone Key Pads PRELIMINARY - Green LEDs * Cellular Phone LCD Backlighting * Automotive Dashboard Lighting * LED Video Displays * Audio Product Display Lighting CxxxRT200-Sxxxx Chip Diagram .CPR3DS Rev Data Sheet: Top View Die Cross Section Bottom View 170 x 170 m G*SiC LED Chip 200 x 200 m Anode (+) t = 95 m Gold Bond Pad 112 m Diameter Cathode (-) Backside Metallization Subject to change without notice. www.cree.com 90 m square Maximum Ratings at TA = 25C Notes 1&3 CxxxRT200-Sxxxx DC Forward Current 30 mA Peak Forward Current (1/10 duty cycle @ 1kHz) 100 mA LED Junction Temperature 125C Reverse Voltage 5V Operating Temperature Range -40C to +100C Storage Temperature Range Electrostatic Discharge Threshold (HBM) -40C to +100C 1000 V Note 2 Electrostatic Discharge Classification (MIL-STD-883E) Class 2 Note 2 Typical Electrical/Optical Characteristics at TA = 25C, IF = 5 mA Part Number Forward Voltage (Vf, V) Note 3 Reverse Current [I(Vr=5V), A] Full Width Half Max. (D, nm) Min. Typ. Max. Max. Typ. C460RT200-Sxxxx 2.7 3.0 3.3 1 24 C470RT200-Sxxxx 2.7 3.0 3.3 1 25 C527RT200-Sxxxx 2.7 3.1 3.4 1 40 Mechanical Specifications Description CxxxRT200-Sxxxx Dimension Tolerance P-N Junction Area (m) 150 x 150 35 Top Area (m) 200 x 200 35 Bottom Area (m) 170 x 170 35 95 15 Chip Thickness (m) Au Bond Pad Diameter (m) 112 20 Au Bond Pad Thickness (m) 1.0 0.5 Back Contact Metal Width (m) 90 10 Notes: 1. 2. 3. 4. Maximum ratings are package dependent. The above ratings were determined using a T-1 3/4 package (with Hysol OS4000 epoxy) for characterization. Seller makes no representations regarding ratings for packages other than the T-1 3/4 package used by Seller. The forward currents (DC and Peak) are not limited by the G*SiC die but by the effect of the LED junction temperature on the package. The junction temperature limit of 125C is a limit of the T-1 3/4 package; junction temperature should be characterized in a specific package to determine limitations. Assembly processing temperature must not exceed 325C (< 5 seconds). Product resistance to electrostatic discharge (ESD) is measured by simulating ESD using a rapid avalanche energy test (RAET). The RAET procedures are designed to approximate the maximum ESD ratings shown. Seller gives no other assurances regarding the ability of Products to withstand ESD. All products conform to the listed minimum and maximum specifications for electrical and optical characteristics when assembled and operated at 5 mA within the maximum ratings shown above. Efficiency decreases at higher currents. Typical values given are the average values expected by Seller in large quantities and are provided for information only. Seller gives no assurances products shipped will exhibit such typical ratings. All measurements were made using lamps in T-1 3/4 packages (with Hysol OS4000 epoxy). Dominant wavelength measurements taken using Illuminance E. Specifications are subject to change without notice. Copyright (c) 2008 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, G*SiC and RazerThin are registered trademarks of Cree, Inc. CPR3DS Rev. - Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.cree.com Standard Bins for CxxxRT200-Sxx000 Radiant Flux LED chips are sorted to the radiant flux and dominant wavelength bins shown. A sorted die sheet contains die from only one bin. Sorted die kit (CxxxRT200-Sxx000) orders may be filled with any or all bins (CxxxRT200-xxxx) contained in the kit. All radiant flux values shown and specified are at IF = 20 mA and dominant wavelength values are at IF = 5 mA. C460RT200-S1200 C460RT200-0309 C460RT200-0310 C460RT200-0311 C460RT200-0312 C460RT200-0305 C460RT200-0306 C460RT200-0307 C460RT200-0308 14.0 mW 12.0 mW 455 nm 457.5 nm 460 nm Dominant Wavelength 462.5 nm 465 nm Radiant Flux C460RT200-S1000 C460RT200-0309 C460RT200-0310 C460RT200-0311 C460RT200-0312 C460RT200-0305 C460RT200-0306 C460RT200-0307 C460RT200-0308 C460RT200-0301 C460RT200-0302 C460RT200-0303 C460RT200-0304 14.0 mW 12.0 mW 10.0 mW 455 nm 457.5 nm 460 nm Dominant Wavelength 462.5 nm Copyright (c) 2008 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, G*SiC and RazerThin are registered trademarks of Cree, Inc. CPR3DS Rev. - 465 nm Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.cree.com Radiant Flux Standard Bins for CxxxRT200-Sxx000 (continued) C470RT200-S1200 C470RT200-0313 C470RT200-0314 C470RT200-0315 C470RT200-0316 C470RT200-0309 C470RT200-0310 C470RT200-0311 C470RT200-0312 14.0 mW 12.0 mW 465 nm 467.5 nm 470 nm Dominant Wavelength 472.5 nm 475 nm Radiant Flux C470RT200-S1000 C470RT200-0313 C470RT200-0314 C470RT200-0315 C470RT200-0316 C470RT200-0309 C470RT200-0310 C470RT200-0311 C470RT200-0312 C470RT200-0305 C470RT200-0306 C470RT200-0307 C470RT200-0308 14.0 mW 12.0 mW 10.0 mW 465 nm 467.5 nm 470 nm Dominant Wavelength 472.5 nm 475 nm Radiant Flux C470RT200-S0800 C470RT200-0313 C470RT200-0314 C470RT200-0315 C470RT200-0316 C470RT200-0309 C470RT200-0310 C470RT200-0311 C470RT200-0312 C470RT200-0305 C470RT200-0306 C470RT200-0307 C470RT200-0308 C470RT200-0301 C470RT200-0302 C470RT200-0303 C470RT200-0304 14.0 mW 12.0 mW 10.0 mW 8.0 mW 465 nm 467.5 nm 470 nm Dominant Wavelength 472.5 nm Copyright (c) 2008 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, G*SiC and RazerThin are registered trademarks of Cree, Inc. CPR3DS Rev. - 475 nm Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.cree.com Radiant Flux Standard Bins for CxxxRT200-Sxx000 (continued) C527RT200-S0400 C527RT200-0310 C527RT200-0311 C527RT200-0312 C527RT200-0307 C527RT200-0308 C527RT200-0309 5.0 mW 4.0 mW 520 nm 525 nm 530 nm Dominant Wavelength 535 nm Radiant Flux C527RT200-S0300 C527RT200-0310 C527RT200-0311 C527RT200-0312 C527RT200-0307 C527RT200-0308 C527RT200-0309 C527RT200-0304 C527RT200-0305 C527RT200-0306 5.0 mW 4.0 mW 3.0 mW 520 nm 525 nm 530 nm 535 nm Dominant Wavelength Radiant Flux C527RT200-S0200 C527RT200-0310 C527RT200-0311 C527RT200-0312 C527RT200-0307 C527RT200-0308 C527RT200-0309 C527RT200-0304 C527RT200-0305 C527RT200-0306 C527RT200-0301 C527RT200-0302 C527RT200-0303 5.0 mW 4.0 mW 3.0 mW 2.0 mW 520 nm 525 nm 530 nm 535 nm Dominant Wavelength Copyright (c) 2008 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, G*SiC and RazerThin are registered trademarks of Cree, Inc. CPR3DS Rev. - Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.cree.com Shift (nm) -5 -10 Characteristic Curves -15 0 5 10 15 20 25 30 These are representative measurements for the RazerThin products. Actual curves will vary slightly for the various If (mA) radiant flux and dominant wavelength bins. Wavelength Shift vs. Forward Current Forward Current vs. Forward Voltage 5 30 25 0 Shift (nm) If (mA) 20 15 10 -5 -10 5 -15 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 4.5 5 10 15 Relative Intensity vs. Forward Current 30 30 500% 25 400% 20 300% If (mA) % Intensity 25 Forward Current vs. Forward Voltage 600% 200% 15 10 100% 5 0% 0 5 10 15 If (mA) 20 25 30 0 0.0 0.5 1.0 1.5 Copyright (c) 2008 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, G*SiC and RazerThin are registered trademarks of Cree, Inc. 20 If (mA) Vf (V) CPR3DS Rev. - 2.0 2.5 3.0 3.5 4.0 4.5 Vf (V) Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.cree.com