TLE8458Gx
LIN Transceiver with integrated Low Drop Voltage
Regulator
LIN-LDO
Data Sheet, Rev. 1.01, April 2009
Automotive Power
http://store.iiic.cc/
Data Sheet 2 Rev. 1.01, 2009-04-28
TLE8458Gx
Table of Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1 Operation Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Description of Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2.1 Stand-By Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.2 Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.2.1 Normal Slope Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.2.2 Software Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.3 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.4 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.5 Wake - Up Events in Sleep and Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.5.1 Bus Wake - Up event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.5.2 Local Wake - Up Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.5.3 Mode Transition via EN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.6 Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.7 Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Electrical Characteristics EN and WK Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Power Up, Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 Description of Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Electrical Characteristics of the Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.1.1 Under-Voltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1.2 TxD Time - Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1.3 LIN Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Electrical Characteristics of the LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1 ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.1 EMC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.2 Pin Compatibility to Stand-Alone LIN transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table of Contents
http://store.iiic.cc/
PG-DSO-8-16
Data Sheet 3 Rev. 1.01, 2009-04-28
LIN Transceiver with integrated Low Drop Voltage
Regulator
LIN-LDO
TLE8458Gx
Type Package Marking Note
TLE8458G PG-DSO-8-16 8458G VCC = 5 V; 20 kbit/s
TLE8458GV33 PG-DSO-8-16 8458GV3 VCC = 3.3 V; 20 kbit/s
TLE8458GU PG-DSO-8-16 8458GU VCC = 5 V; 10.4 kbit/s
TLE8458GUV33 PG-DSO-8-16 8458GUV3 VCC = 3.3 V; 10.4 kbit/s
1Overview
Features
LIN Transceiver compliant to LIN 2.1 (20 kBit / s)
or SAE J2602 (10.4 kbit / s)
5 V or 3.3 V Low Drop Voltage Regulator
50 mA output current capability
Normal, Stop, and Sleep modes
Wake - Up via bus from Sleep Mode
Wake - Up from Local WK pin
Very low quiescent current in Stop Mode
Very low quiescent current in Sleep Mode
Very high ESD Robustness ±10 kV according IEC61000-4-2
Bus short to ground and VBat protection
Software Flash mode
Over-Temperature protection
Pin- and function compatible to single LIN Transceivers, like TLE7259-2GE/GU
Fully compatible to TLE8458E
Green (RoHS compliant) product
AEC Qualified
Description
The TLE8458G and its derivatives TLE8458GV33, TLE8458GU and TLE8458GUV33, integrate a low drop voltage
regulator and a LIN transceiver on one monolithic circuit. The device is suitable to supply microcontrollers and
driving a LIN bus at the same time. The TLE8458Gx is pin compatible to stand-alone LIN transceivers like the
TLE7259-2GE. The combination of a voltage regulator and a LIN transceiver on one circuit decreases the
quiescent current for a typical application to a value of 8 µA, while the TLE8458G is still able to wake-up off a LIN
bus signal or a signal change on the local wake-up input WK. Compliant to all LIN standards and with a wide
operational supply range, the TLE8458G can be used in all automotive applications.
Based on the Infineon Smart Power Technology SPT®, the TLE8458Gx provides excellent ESD robustness
together with a very high electro-magnetic immunity (EMI). The TLE8458Gx reaches a very low level of electro-
magnetic emission (EME) within a broad frequency range. The TLE8458Gx family and the Infineon SPT®
technology are AEC qualified and tailored to withstand the harsh conditions in the automotive environment.
http://store.iiic.cc/
TLE8458Gx
Block Diagram
Data Sheet 4 Rev. 1.01, 2009-04-28
2 Block Diagram
Figure 1 Block Diagram
Wake and Bus
Comparator
Driver
Temp.-
Protection
Current
Limit
Output
Stage
Supply
TxD Input
Mode
Control
Receiver
RxD
Filter
LIN
TxD
EN
V
CC
V
S
R
BUS
Filter
Timeout
GND
R
EN
R
TxD
Bandgap
Reference
Overtemperature
Shutdown
+
-
1
Charge
Pump
WK
Vcc
1
2
3
4
5
6
7
8
http://store.iiic.cc/
Data Sheet 5 Rev. 1.01, 2009-04-28
TLE8458Gx
Pin Configuration
3 Pin Configuration
3.1 Pin Assignments
Figure 2 Pin Configuration
3.2 Pin Definitions and Functions
Table 1 Pin Definition
Pin Symbol Function
1RxD Receive Data Output;
Low in dominant state, active low after a wake-up event on BUS or WK pin.
2EN Enable Input;
Integrated pull-down resistor, device set to normal operation mode when HIGH.
3WK Wake-up Input;
Active LOW, negative edge triggered, internal pull-up.
4TxD Transmit Data Input;
Integrated pull-down resistor, LOW in dominant state. Active LOW after wake-up via
WK pin.
5GND Ground
6LIN Bus Output / Input;
LIN bus input / Output,
LOW in dominant state,
Internal termination and pull - up current source.
7VSBattery Supply Input
8VCC Output Voltage;
Decouple to GND with a capacitor CVcc 470 nF, ESR < 6 at 10 kHz,
Active during Normal Mode, disabled in Sleep Mode.
RxD
1
2
3
45
6
7
8
EN
WK
TxD
V
S
LIN
GND
V
CC
http://store.iiic.cc/
TLE8458Gx
General Product Characteristics
Data Sheet 6 Rev. 1.01, 2009-04-28
4 General Product Characteristics
4.1 Absolute Maximum Ratings
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
Table 2 Absolute Maximum Ratings 1)
All voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
1) Not subject to production test; specified by design.
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Voltages
Supply Voltage on VS pin VS-0.3 40 V LIN2.1 Param 11 P_4.1.1
Input Voltage on LIN, WK pin versus
GND
VLIN,G -40 40 V P_4.1.2
Logic Voltages at EN, TxD, RxD pin VL,max -0.3 5.5 V P_4.1.3
Output Voltage at VCC pin VCC -0.3 5.5 V Static P_4.1.4
Temperatures
Junction Temperature Tj-40 150 °C– P_4.1.5
Storage Temperature Tstg -55 150 °C– P_4.1.6
ESD Resistivity
ESD all pins VESD,HBM -2–2kVHBM
2)
2)ESD susceptibility “HBM” according to AEC-Q100-002D.
P_4.1.7
ESD VS, WK, LIN versus GND VESD,HBM -8–8kVHBM
2) P_4.1.8
ESD Resistivity all pins versus GND VESD,CDM -750 750 V CDM3)
3)ESD susceptibility “CDM” according to ESDA STM 5.3.1
P_4.1.9
http://store.iiic.cc/
Data Sheet 7 Rev. 1.01, 2009-04-28
TLE8458Gx
General Product Characteristics
4.2 Functional Range
Note: Within the functional range, the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3 Thermal Characteristics
Table 3 Functional Range
Parameter
Symbol
Values Unit Note / Test Condition Number
Min. Typ. Max.
Extended Supply Range VS(EXT) 5.5 40 V Parameter deviations
possible
P_4.2.1
Supply Voltage for Normal
Operation
VS(Nor) 7 27 V LIN 2.1 Param. 11 P_4.2.3
Junction Temperature Tj-40 150 °C– P_4.2.2
Table 4 Thermal Resistance
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Thermal Resistance
Junction to Case1)
PG-DSO-8-16
1) Device versions TLE8458G, TLE8458GV33, TLE8458GU, TLE8458GUV33
RthJC,G –55–K/W
2)
2) Not subject to production test. Simulated thermal resistance
P_4.3.1
Junction to Ambient
PG-DSO-8-16
RthJA,G –120–K/W
2)3)
3) The RthJA values are according to Jedec JESD51-2,-7 at natural convection on 2s2p board for 1 W.
Package was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 2 inner copper layers (70 µm thick).
P_4.3.2
Thermal Shutdown Junction Temperature
VCC Shutdown Temperature TSD,Vcc 150 200 °C4)
4) Not subject to production test, specified by design.
P_4.3.5
VCC Thermal Shutdown Hysteresis TSD,Vcc –35–K
4) P_4.3.6
LIN Shutdown Temperature TSD,LIN 150 200 °C4) P_4.3.7
LIN Thermal Shutdown Hysteresis TSD,LIN –10–K
4) P_4.3.8
http://store.iiic.cc/
TLE8458Gx
Mode Control
Data Sheet 8 Rev. 1.01, 2009-04-28
5Mode Control
5.1 Operation Mode State Diagram
Figure 3 Operation Mode State Diagram
6WDQGE\0RGH
1RUPDO6ORSH0RGH
6OHHS0RGH
6WDUW8S
3RZHU8S
(1
:.SLQRU
:DNH8S%86
9FFRQ
%86RII
(1
7['
(1
6RIWZDUH
)ODVK0RGH
9FFRQ
%86RQ
9FFRII
%86RII
6WRS0RGH
:.SLQRU
(1
9FFRQ
%86RII
(1
7['
*RWR
1RUPDO
WUPRGH
*RWR
6OHHS
WPRGH
*RWR
6OHHS
WPRGH
(1
*RWR
6WRS
WPRGH
(1
7['
7['
:DNH8S%86
(1
7['
(1
7['
(1
(1
5[' 7[' :DNH6RXUFH
:.SLQ
 /,1%XV
3RZHUXS
:DNH8S6RXUFHLQGLFDWLRQRQWKH
3LQV5['7['LQ6WDQG%\0RGH
ZHDNSXOOGRZQWRVHHKLJKVLJQDOD
H[WHUQDOSXOOXSUHVLVWRULVUHTXLUHG


1RUPDO2SHUDWLRQ0RGH
9FFRQ
%86RQ
http://store.iiic.cc/
Data Sheet 9 Rev. 1.01, 2009-04-28
TLE8458Gx
Mode Control
5.2 Description of Mode Control
The TLE8458Gx has 4 major operation modes:
Normal Operation Mode
Stand-By Mode
Sleep Mode
Stop Mode
The Normal Operation mode contains 2 sub-operation modes, which differentiate by the slew rate control of the
LIN Bus signal (see Figure 3).
Sub-operation modes with different slew rates on the BUS pin:
Normal Slope Mode, for data transmission rates up to 20 kBaud
Software Flash mode, for programming of the external microcontroller
The operation mode of the TLE8458Gx is selected by the EN pin and the TxD pin. (see Table 5, see Figure 4).
Table 5 Operation Modes
Mode EN TxD RxD VCC LIN Bus
Termination
Comments
Normal Operation
Mode
HIGH LOW
HIGH1)
1) The TxD pin acts as an input
LOW
HIGH
ON 30 k
(typical)
TxD drives the data to the bus,
RxD indicates the data on the
bus.
Stand-By Mode LOW LOW
HIGH2)
2) The TxD pin acts as an output and indicates the wake-up source.The TxD input needs an external termination to indicate
a HIGH or a LOW signal. The external termination could be a pull-up resistor or an active microcontroller output.
LOW
HIGH
ON 30 k
(typical)
In Stand-By Mode the RxD and
TxD pins indicate the wake-up
source
Sleep Mode LOW HIGH Float OFF High
Impedance
For Sleep Mode TxD needs to
be HIGH for the time tmode1
Stop Mode LOW LOW Float ON High
Impedance
For Stop Mode TxD needs to be
LOW for the time tmode1
http://store.iiic.cc/
TLE8458Gx
Mode Control
Data Sheet 10 Rev. 1.01, 2009-04-28
Figure 4 Mode Transition
(1 W
0RGHB12
7['
W
WRUHF
6WDQG%\0RGHWR1RUPDO2SHUDWLRQ0RGH
(1
7['
(1
7['
(1
'RQ¶W&DUH
W
PRGH
7['
6WRS0RGH 6OHHS0RGH

1RUPDO2SHUDWLRQ0RGHFDQEHHLWKHU1RUPDO6ORSH0RGHRU6RIWZDUH)ODVK0RGH
http://store.iiic.cc/
Data Sheet 11 Rev. 1.01, 2009-04-28
TLE8458Gx
Mode Control
5.2.1 Stand-By Mode
The Stand-By Mode is an idle operation mode, which disables the communication to the LIN bus. The TLE8458Gx
enters automatically the Stand-By Mode after a power-up. By setting the EN pin to HIGH, the operation mode
changes to Normal Operation Mode, regardless of the signal applied to the TxD pin.
The TLE8458Gx can be transferred to Stand-By mode by the following options:
After power - up on the supply VS, the TLE8458Gx starts in Stand-By Mode.
From Sleep Mode or from Stop Mode the TLE8458Gx changes to Stand-By Mode if a Wake - Up event occurs
on the LIN bus.
From Sleep Mode or from Stop Mode the TLE8458Gx changes to Stand-By Mode if a Wake - Up event occurs
on the local Wake input WK.
In case of an under - voltage event on VS, the TLE8458Gx changes to Stand-By Mode regardless of selected
operation mode.
In Stand-By mode the external power supply VCC is active and LIN bus output stage is disabled. The TLE8458Gx
provides the following functionality in Stand-By Mode:
The power supply VCC is active and functional.
The LIN transceiver output stage is disabled, no communication to the LIN bus is possible.
The LIN transceiver bus input receiver is disabled.
The LIN bus is terminated by the 30 k.
Both digital pins, the TxD pin and the RxD pin act as output pins and indicate a Wake - Up or a Power - Up
event2).
The EN input pin is active. By setting the EN pin to HIGH the TLE8458Gx changes the operation mode to
Normal Operation Mode (see Figure 3).
The Wake - Up logic is disabled. Wake-Up events don’t trigger an operation mode change.
5.2.2 Normal Operation Mode
The
TLE8458Gx
enters the Normal Operation Mode after the microcontroller sets EN to “High” (see
Figure 4
). In
Normal Operation mode the LIN bus receiver and the LIN bus transmitter are active. The
TLE8458Gx
converts the
logical HIGH and LOW signals on the TxD input pin to DOMINANT and RECESSIVE signals to the LIN bus.
Simultaneously the input receiver of the
TLE8458Gx
converts the DOMINANT and RECESSIVE signals on the LIN
bus to HIGH and LOW signals to the RxD output. In Normal Operation mode the output voltage
V
CC
is active and the
bus termination is set to 30 k
.
Normal Slope Mode and the Software Flash Mode are Normal Operation Modes. In these two sub-modes the
behavior of the power-supply VCC and the bus termination are the same. Per default the TLE8458G always enters
into Normal Slope Mode, either from Sleep Mode, Stop Mode or from Stand-By Mode. The Software Flash Mode
can only be entered from Normal Slope mode.
In order to avoid any bus disturbance during a mode change, the output stage of the TLE8458Gx is disabled and
set to recessive state during the mode change procedure. To release the TLE8458Gx for data communication on
the LIN bus, the TxD pin needs to be set to HIGH for the time ttorec after the operation mode change.
Table 6 Logic table for Wake - Up monitoring1)
1) The Wake - Up monitor is only active in Stand-By Mode
Power - Up Wake - Up event RxD TxD2)
2) The TxD input needs an external termination to indicate a “High” or a “Low” signal. The external termination could be a pull-
up resistor or an active microcontroller output.
Comments
Yes No HIGH LOW Power Up event
No Via LIN Bus LOW HIGH Wake - Up via LIN Bus
No Via WK Pin LOW LOW Wake - Up via local Wake pin WK
http://store.iiic.cc/
TLE8458Gx
Mode Control
Data Sheet 12 Rev. 1.01, 2009-04-28
5.2.2.1 Normal Slope Mode
In Normal Slope Mode the maximum data transmission rate of the LIN transceiver devices TLE8458G,
TLE8458GV33, TLE8458GU and TLE8458GUV33 is limited by the slope control mechanism of LIN output signal.
The limitation of the slew rate of the LIN output signal results in an optimized radiated emission fulfilling automotive
EMC requirements.
The data transmission rate of the TLE8458G and the TLE8458GV33 is limited to 20 kBaud in Normal Operation
Mode and the devices are compliant to the specification LIN2.1
The data transmission rate of the TLE8458GU and the TLE8458GUV33 is limited to 10,4 kBaud in Normal
Operation Mode. These two devices are compliant to the SAE-J2602-2 specification.
5.2.2.2 Software Flash Mode
Software Flash Mode is a Normal Operation Mode and it is possible to transmit data to the LIN bus and receive
data from the LIN bus. The slope control mechanism of the LIN transmitter output stage is disabled and therefore
it is possible to reach higher data transmission rates, disregarding the EMC limitation of the LIN network. The
Software Flash Mode can be used for programming the external microcontroller via the LIN bus, got example
during the production flow of the ECU.
The Software Flash Mode can only be entered from Normal Slope Mode (see Figure 3). By setting the EN pin to
low for the time tfl1 and by generating a falling and a rising edge at the TxD pin with the time tfl2 and tfl3 during the
low phase of the EN pin, the TLE8458Gx changes to the Software Flash Mode (see Figure 5). Vice versa, the
TLE8458Gx changes from Software Flash Mode to Normal Slope Mode by applying the same sequence to the EN
pin and the TxD pin.
In any case, regardless if the device is in Normal Slope Mode or in Software Flash Mode, a LOW signal on the EN
pin changes the operation mode to Sleep Mode or Stop Mode. The slope control mechanism will be activated,
when the device changes to the Normal Operation Mode again.
Figure 5 Software Flash Mode
TO20070515.vsd
Normal
Mode
TxD
EN
tfl3
tfl1
Software
Flash Mode
tfl2 tfl3 tfl3
tfl1
tfl2 tfl3
Normal
Mode
http://store.iiic.cc/
Data Sheet 13 Rev. 1.01, 2009-04-28
TLE8458Gx
Mode Control
5.2.3 Stop Mode
The Stop Mode is a Low Power Mode, meaning the quiescent current of the TLE8458Gx is reduced to a minimum,
while the device is still able to recognized wake - up events. The following functions are available in Stop Mode:
The power supply VCC is active and functional.
The LIN transceiver output stage is disabled, no communication to the LIN bus is possible.
The LIN transceiver input receiver is disabled.
The internal LIN bus termination is switched off.
The TxD input and the RxD output is inactive.
The EN input is active. A HIGH signal on the EN pin changes the operation mode to Normal Operation Mode.
The LIN bus Wake - Up receiver is active, a Wake - Up event on the LIN bus changes the operation mode to
Stand-By Mode.
The wake input WK is active, a Wake - Up event on the WK pin changes the operation mode to Stand-By
Mode.
Entering Stop Mode is only possible from the Normal Operation Mode, regardless if the device is in Normal Slope
Mode or Software Flash Mode. Setting the signal on the EN pin to LOW, followed by a LOW signal on the TxD pin
for the time tMode1 changes the operation mode to Stop Mode (see Figure 4).
5.2.4 Sleep Mode
The Sleep Mode is a Low Power Mode as well, in comparison to the Stop Mode, the quiescent current of the
TLE8458Gx is even further reduced. In Sleep Mode the TLE8458Gx is able as well to recognized Wake - Up
events.
The Wake - Up behavior in Sleep Mode is the same as in Stop Mode. The only difference between Sleep Mode
and Stop Mode is, that in Stop Mode the output voltage VCC is active, in Sleep Mode the output voltage VCC is
disabled.
Sleep Mode can be entered from Normal Operation Mode by setting the EN pin to LOW and simultaneously setting
the TxD pin to HIGH for the time tMode1 (see Figure 4). The Sleep Mode can be also entered from Stop Mode, by
setting the signal on the TxD pin to HIGH for the time tMode1.
http://store.iiic.cc/
TLE8458Gx
Mode Control
Data Sheet 14 Rev. 1.01, 2009-04-28
5.2.5 Wake - Up Events in Sleep and Stop Mode
A Wake - Up event in Sleep Mode or Stop Mode changes the operation mode of the TLE8458Gx to Stand-By
Mode. There are 3 different options to wake-up the TLE8458Gx from Sleep Mode or Stop Mode:
A bus Wake - Up event, caused by a message on the LIN bus.
A local Wake - Up event, caused by a logical LOW signal on the WK pin.
A signal change to logical HIGH on the EN pin.
5.2.5.1 Bus Wake - Up event
A falling edge on the LIN bus, followed by a dominant bus signal for the time t > twk,Bus causes a bus Wake - Up or
also called remote Wake - Up. The mode change becomes active with the following rising edge on the LIN bus
(see Figure 6). In Stand-By Mode the Wake - Up source is indicated by the TxD and RxD pins (see Table 6).
Figure 6 Bus Wake - Up
9%86
9%86GRP
9%86ZN
/,1%866LJQDO
9&&
W:.%XV
6OHHS0RGH 6WDQG%\0RGH
6WRS0RGH 6WDQG%\0RGH
9&&
1RWH,Q6OHHS0RGHWKH2XWSXW9ROWDJH9
&&
LVGLVDEOHGDQGZLOOEHDFWLYHGE\
DPRGHFKDQJHWR6WDQG%\0RGH,Q6WRS0RGHWKH2XWSXW9ROWDJH9
&&
LV
DFWLYHDQGUHPDLQVDFWLYHDIWHUWKHPRGHFKDQJHWR6WDQG%\0RGH
http://store.iiic.cc/
Data Sheet 15 Rev. 1.01, 2009-04-28
TLE8458Gx
Mode Control
5.2.5.2 Local Wake - Up Event
A wake - up via LOW signal on the pin WK is called local Wake - Up. A falling edge of the signal on the pin WK
followed by a LOW signal for the time t > tWK change the operation mode from Sleep Mode or Stop Mode to Stand-
By Mode. In the case the LOW signal is shorter then the time t < tWk, the wake - up is ignored and the TLE8458G
remains in Sleep Mode or Stop Mode. In Stand-By Mode the wake - up source is indicated by the TxD and RxD
pins (see Table 6).
Figure 7 Local Bus Wake . Up
5.2.5.3 Mode Transition via EN pin
The EN pin is used for the mode selection. In case the power supply VCC is present, like in Stop Mode or Sleep
Mode, the TLE8458Gx can be directly transferred into Normal Operation Mode by setting the EN pin to HIGH. An
integrated pull - down resistor at the EN pin avoids mode changes due to floating signals on the EN input. The
TLE8458Gx changes the operation mode to Normal Operation Mode, from Stop Mode or from Sleep Mode if the
EN pin is HIGH for the time t > tMode1 (see Figure 8). An integrated hysteresis on the EN pin avoids bit toggling.
The mode transition via the EN pin will not be indicated in Stand-By Mode.
Figure 8 Mode Transition via EN pin
9
:.
9
:./
:.6LJQDO
6OHHS0RGH 6WDQG%\0RGH
W
:.
9
&&
6WRS0RGH 6WDQG%\0RGH
9
&& 1RWH,Q6OHHS0RGHWKH2XWSXW9ROWDJH9
&&
LVGLVDEOHGDQGZLOOEHDFWLYHGE\
DPRGHFKDQJHWR6WDQG%\0RGH,Q6WRS0RGHWKH2XWSXW9ROWDJH9
&&
LV
DFWLYHDQGUHPDLQVDFWLYHDIWHUWKHPRGHFKDQJHWR6WDQG%\0RGH
9(1
(16LJQDO
9(12))
6WRS0RGH
6WDQG%\0RGH
W0RGHB12
9(121
(1+\VWHUHVLV
6OHHS0RGH1RUPDO2SHUDWLRQ0RGH
W0RGH
http://store.iiic.cc/
TLE8458Gx
Mode Control
Data Sheet 16 Rev. 1.01, 2009-04-28
5.2.6 Power Up
After a power - up the device enters per default into Stand - By Mode. Above VS,PU the VCC output voltage follows
the supply VS closely. In Stand - By Mode, the power up is indicated by a HIGH signal on the RxD pin and a LOW
signal on the TxD pin.
Figure 9 Power Up Level
5.2.7 Over-Temperature Protection
The TLE8458Gx is protected against thermal over-heating. Over-heating could be caused by a short circuit on the
VCC power supply or by a permanent short on the LIN bus combined with a high ambient temperature. In case of
an over-temperature event, the TLE8458Gx eliminates the root cause of the over-temperature event. Two different
temperature sensors are implemented inside the TLE8458Gx. One temperature sensor protects the voltage
regulator and controls the output voltage VCC, the second temperature sensor protects the LIN transmitter output
stage.
In case the junction temperature on the LIN output stage raises above the threshold T > TSD,LIN, the temperature
sensor disables the LIN output stage. The TLE8458Gx is still able to receive data from the LIN bus. If the
temperature falls below the threshold, T < TSD,LIN, the output stage will be enabled and the communication can
start again. An integrated hysteresis on the temperature sensor avoids toggling during over-temperature events.
An over-temperature event on the LIN bus will not cause any operation mode change.
In case the junction temperature on the VCC power output stage raises above the threshold T > TSD,VCC, the
temperature sensor shuts down the output voltage VCC. If the junction temperature falls below the threshold,
T>TSD,VCC, the power supply VCC will be enabled again. An integrated hysteresis on the temperature sensor
avoids toggling during over-temperature events.
6WDQGE\0RGH3RZHU'RZQ
(1
7['
5['
3RZHU'RZQ
9
6
9
&&
9
638
95['+
9&&
96
9
638
http://store.iiic.cc/
Data Sheet 17 Rev. 1.01, 2009-04-28
TLE8458Gx
Mode Control
5.3 Current Consumption
Table 7 Electrical Characteristics: Current Consumption
VS= 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Current Consumption
Current Consumption
in Normal Mode
at VS in LIN Recessive State
IS_rec 1.3 2.2 mA Recessive state,
without RL;
VTxD = VCC;
ICC = 100 µA
P_5.3.1
Current Consumption
in Normal Mode
at VS in LIN Dominant State
IS_dom 1.8 3.2 mA Dominant state,
without RL;
VTxD = 0 V;
ICC = 100 µA
P_5.3.2
Current Consumption at VS
in Sleep Mode
IS_sleep –812µA Sleep Mode,
-40 °C < Tj < 85 °C;
VLIN = VS;
VCC = 0 V
P_5.3.3
Current Consumption at VS
in Stop Mode
IS_stop ––40µAStop Mode;
-40 °C < Tj < 85 °C;
VLIN = VS;
VCC = 5 V
P_5.3.4
Current Consumption
in Sleep Mode, Bus Shorted to
Ground
IS_sleep_short 64072µA Sleep Mode,
VLIN = 0 V
VCC = 0 V
P_5.3.5
http://store.iiic.cc/
TLE8458Gx
Mode Control
Data Sheet 18 Rev. 1.01, 2009-04-28
5.4 Electrical Characteristics EN and WK Pins
Table 8 Electrical Characteristics: Mode Pins
7V<VS<27V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
EN Pin
HIGH Level Input Voltage VEN,H 2––V P_5.4.6
LOW Level Input Voltage VEN,L ––0.8V P_5.4.7
EN Input Hysteresis VEN,hys –0.3–V P_5.4.8
EN pull-down Resistance REN 20 40 80 kP_5.4.9
Filter Time for Mode Change tmode1 50 150 µs– P_5.4.10
TxD low delay time tmode2 0–50µs Stop Mode transfer P_5.4.11
TxD high time tmode3 10 µs Stop Mode transfer P_5.4.12
Time for Mode Change from
Stop or Sleep Mode to Normal
Operation Mode
tMode_NO –10µs1)Transfer to Normal
Operation Mode
1) Not subject to production test, specified by design
P_5.4.1
Time for Flash Mode
activation
tfl1 25 50 µs1) EN pin low P_5.4.13
TxD Time for Flash Mode
activation
tfl2 5––µs1) P_5.4.14
TxD Time for Flash Mode
activation
tfl3 10 µs1) P_5.4.15
WK Pin
High Level Input Voltage VWK,H VS - 1 VS + 3 V VS = 13.5 V P_5.4.16
Low Level Input Voltage VWK,L -0.3 VS - 4 V VS = 13.5 V P_5.4.17
Pull-up Current IWK,PU -60 -30 -3 µAVWK = 0V
VS = 13.5 V
P_5.4.18
High Level Leakage Current IWK,L -5 5 µAVS = 0 V;
VWK = 40 V
P_5.4.19
Dominant Time for Wake-up tWK 30 150 µs– P_5.4.20
http://store.iiic.cc/
Data Sheet 19 Rev. 1.01, 2009-04-28
TLE8458Gx
Mode Control
5.5 Power Up, Power Down
Table 9 Electrical Characteristics: Power Up
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Vs Pin
VS Power Up Voltage
Threshold
VS,PU ––3.5VICC =40mA,
VCC >3.0V
P_5.5.21
http://store.iiic.cc/
TLE8458Gx
Voltage Regulator
Data Sheet 20 Rev. 1.01, 2009-04-28
6 Voltage Regulator
6.1 Description of Voltage Regulator
The TLE8458G has a monolithic integrated voltage regulator dedicated for microcontroller supplies under harsh
automotive environment conditions. Due to its ultra low current consumption, the TLE8458Gx is perfectly suited
for applications permanently connected to a battery. Additionally, the regulator is switched off in Sleep Mode to
achieve a very low quiescent current. The TLE8458Gx is equipped with protection functions against overloading,
short circuits, and over temperature.
6.2 Electrical Characteristics of the Voltage Regulator
Table 10 Electrical Characteristics: Voltage Regulator
VS = 5.5 V to 13.5 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Output Voltage for
TLE8458G, TLE8458GU
VCC,5 4.95 5.1V1mA < ICC < 50 mA;
5.5 V < VS<18V
P_6.2.1
Output Voltage for
TLE8458G, TLE8458GU
VCC,5 4.95 5.1VICC = 10 mA;
5.5 V < VS<40V
P_6.2.8
Output Voltage for
TLE8458GV33,TLE8458GUV33
VCC,3.3 3.234 3.3 3.366 V 1 mA < ICC < 50 mA;
5.5 V < VS<18V
P_6.2.2
Output Voltage for
TLE8458GV33
,
TLE8458GUV33
VCC,3.3 3.234 3.3 3.366 V ICC = 10 mA;
5.5 V < VS<40V
P_6.2.9
Output Current Limitation
TLE8458G, TLE8458GU
ICC,lim 50 mA VCC,5 > 4.5V
VS=13.5V
P_6.2.3
Output Current Limitation
TLE8458GV33
,
TLE8458GUV33
ICC,lim 50 mA VCC3,3 > 2.8V
VS=13.5V
P_6.2.10
Output Voltage Drop VDR 250 500 mV ICC = 40 mA1)
1) Measured when the output voltage has dropped 100 mV from the nominal value obtained at VS=13.5V;
P_6.2.4
Load Regulation VCC,LO 2550mV1mA < ICC < 50 mA
VS =13.5 V
P_6.2.5
Line Regulation VCC,LI 2550mVICC = 1 mA;
6V < VS < 28 V
P_6.2.6
Power Supply Ripple Rejection PSRR –60–dBf = 100 Hz;
Vr = 0.5 Vpp2)3)
2) Voltage of ripple Vr is 0.5 V peak-to-peak
3) Not subject to production test; specified by design.
P_6.2.7
http://store.iiic.cc/
Data Sheet 21 Rev. 1.01, 2009-04-28
TLE8458Gx
LIN Transceiver
7 LIN Transceiver
7.1 Functional Description
The LIN Bus is a single wire, bi-directional bus, used for in-vehicle networks. The LIN Transceiver implemented
inside the TLE8458Gx is the interface between the microcontroller and the physical LIN Bus. (see Figure 1 and
Figure 15). The digital output data from the microcontroller are driven to the LIN bus via the TxD input pin on the
TLE8458Gx. The transmit data stream on the TxD input is converted to a LIN bus signal with optimized slew rate
to minimize the EME level of the LIN network. The RxD output sends back the information from the LIN bus to the
microcontroller. The receiver has an integrated filter network to suppress noise on the LIN Bus and to increase the
EMI (Electro Magnetic Immunity) level of the transceiver.
Two logical states are possible on the LIN bus according to the LIN Specification 2.1 (see Figure 10):
In dominant state, the voltage on the LIN bus is set close to the GND level. In recessive state, the voltage on the
LIN bus is set close to the supply voltage VS. By setting the TxD input of the TLE8458Gx to LOW the transceiver
generates a dominant level on the LIN interface pin. The RxD output reads back the signal on the LIN bus and
indicates a dominant LIN bus signal with a logical LOW to the microcontroller. Setting the TxD pin to HIGH the
transceiver TLE8458Gx sets the LIN interface pin LIN to the recessive level, at the same time the recessive level
on the LIN bus is indicated by a logical “High” on the RxD output.
Every LIN network consists of a master node and one or more slave nodes. To configure the TLE8458Gx for
master node applications, a resistor in the range of 1 k and a reverse diode must be connected between the LIN
bus and the power supply VS. (see Figure 15).
Figure 10 LIN Bus Signals
W
7['
9&&
5HFHVVLYH
/,1
96
W
W
5['
'RPLQDQW
9&&
5HFHVVLYH
5HFHVVLYH 'RPLQDQW 5HFHVVLYH
5HFHVVLYH'RPLQDQW5HFHVVLYH
http://store.iiic.cc/
TLE8458Gx
LIN Transceiver
Data Sheet 22 Rev. 1.01, 2009-04-28
7.1.1 Under-Voltage Detection
A dropping power supply VS on a local ECU can effect the communication of the whole LIN network. To avoid any
blocking of the LIN network by a local ECU the TLE8458Gx has an integrated Power - On reset at the supply VS
and an Under-Voltage detection at the supply VS. In case the supply voltage VS is dropping below the Power-On
reset level VS < VS,UV,PON, the TLE8458Gx changes the operation mode to Stand-By mode. In Stand-By mode the
output stage of the TLE8458Gx is disabled and no communication to the LIN bus is possible. The internal bus
termination remains active as well as the VCC output voltage. (see Figure 1 and Figure 11).
In Stand-By mode the RxD pin indicates the low power supply condition with a logical HIGH signal. Setting the EN
pin to logical HIGH changes the operation mode back to Normal Operation mode.
In case the supply voltage VS is dropping below the under - voltage reset level VS < VSUV (see Figure 11), the
TLE8458Gx disables the output and receiver stages. This feature secures the communication on the LIN bus. If
the power supply VS reaches a higher level as the under - voltage reset level VS > VSUV the TLE8458Gx continues
with normal operation. A mode change only applies if the power supply VS drops below the power on reset level
(VS<VS,UV,PON).
Figure 11 Under-Voltage Detection
6XSSO\YROWDJH9V
3RZHURQUHVHWOHYHO9
689321
3RZHU2QUHVHW
1RUPDO2SHUDWLRQ
0RGH
5HVHWDQG
&RPPXQLFDWLRQ
EORFNHG
6WDQG%\
0RGH
%ODQNLQJWLPHW
89
6XSSO\YROWDJH9V
3RZHURQUHVHWOHYHO9
689321
1RUPDO2SHUDWLRQ
0RGH
&RPPXQLFDWLRQ
EORFNHG
%ODQNLQJWLPHW
89
8QGHU9ROWDJHOHYHO9
689
1RUPDO2SHUDWLRQ
0RGH
8QGHU9ROWDJH
'HWHFWLRQ9
6
http://store.iiic.cc/
Data Sheet 23 Rev. 1.01, 2009-04-28
TLE8458Gx
LIN Transceiver
7.1.2 TxD Time - Out
If the TxD signal is dominant for the time t > ttimeout, the TxD time - out function deactivates the LIN transmitter
output stage. The device remains in recessive state. The TxD time - out functions prevents the LIN bus from being
blocked by a permanent LOW signal on the TxD pin, caused by a failure. The transmitter output stage is released
again, after a rising edge on the TxD pin has been detected (see Figure 12).
Figure 12 TxD Time-Out function
7.1.3 LIN Specifications
The LIN network is standardized by international regulations. The devices TLE8458G and the TLE8458GV33 are
compliant to the specification LIN 2.1. The physical layer specification LIN 2.1 is a super set of the previous LIN
specifications, like LIN 2.0 or LIN 1.3. The TLE8458G and the TLE8458GV33 have been qualified according to
the LIN 2.1 standard, conformance test results are available on request.
The devices TLE8458GU and TLE8458GUV33 are compliant to the physical layer standard SAE-J2602-2. The
SAE-J2602-2 standard differs from the LIN 2.1 standard mainly by the lower data rate (10.4 kbit / s) and the higher
hysteresis on the LIN output signals. The TLE8458GU and the TLE8458GUV33 have been qualified according to
the SAE-J2602-2 standard, conformance test results are available on request.
7['
/,1
W
WRUHF
W
WLPHRXW
1RUPDO&RPPXQLFDWLRQ
1RUPDO&RPPXQLFDWLRQ
7['7LPH2XWGXHWR
PLFURFRQWUROOHUHUURU 5HOHDVHDIWHU7['
7LPHRXW
5HFRYHU\RIWKH
PLFURFRQWUROOHUHUURU
W
W
http://store.iiic.cc/
TLE8458Gx
LIN Transceiver
Data Sheet 24 Rev. 1.01, 2009-04-28
7.2 Electrical Characteristics of the LIN Transceiver
Table 11 Electrical Characteristics: LIN Transceiver Supply
VS = 7 V to 27 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Voltage Supply
Undervoltage switch-off Vsuv 4–5V P_7.2.1
Power-On Reset Level VS,UV,PON –3.5–V
1) P_7.2.52
Blanking Time for Under-
Voltage switch-off
tuv –10µs1)
1) Not subject to production test; specified by design.
P_7.2.2
Table 12 Electrical Characteristics: LIN Transceiver
VS = 7 V to 27 V, Tj = -40 °C to +150 °C, RL=500, all voltages with respect to ground, positive current flowing
into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
Receiver Output (RxD pin)
HIGH Level Output Voltage VRxD,H 0.8 ×
VCC
––VIRxD = -1.6 mA;
Vbus = VS
P_7.2.3
LOW Level Output Voltage VRxD,L 0.2 ×
VCC
VIRxD = 1.6 mA
Vbus = 0 V
P_7.2.4
Transmission Input (TxD pin)
HIGH Level Input Voltage VTxD,H 0.7 ×
VCC
V Recessive State P_7.2.5
TxD Input Hysteresis VTxD,hys 0.12 ×
VCC
–mV P_7.2.6
LOW Level Input Voltage VTxD,L 0.3 ×
VCC
V Dominant State P_7.2.7
TxD Pull-down Resistance RTxD 300 kVTxD = 0 V P_7.2.8
TxD Low Level Current
(Standby Mode, after
Wake-up via WK)
ITxD,L 1.5 3 10 mA VTxD = 0.9 V P_7.2.9
http://store.iiic.cc/
Data Sheet 25 Rev. 1.01, 2009-04-28
TLE8458Gx
LIN Transceiver
LIN Bus Receiver (LIN Pin)
Receiver Threshold Voltage,
Recessive to Dominant Edge
VBus,rd 0.4 ×
VS
0.45 ×
VS
–VVBus,rec < VBus < 27 V P_7.2.10
Receiver Dominant State VBus,dom 0.4 ×
VS
V LIN2.1 Param. 17 P_7.2.11
Receiver Threshold Voltage,
Dominant to Recessive Edge
VBus,dr 0.55 ×
VS
0.60 ×
VS
VVBus,rec < VBus < 27 V P_7.2.12
Receiver Recessive State VBus,rec 0.6 ×
VS
V LIN2.1 Param 18 P_7.2.13
Receiver Center Voltage VBus,c 0.475
× VS
0.5 ×
VS
0.525
× VS
V LIN2.1 Param 19 P_7.2.14
Receiver Hysteresis VBus,hys 0.07 ×
VS
0.1 ×
VS
0.175
× VS
VVbus,hys = Vbus,rec - Vbus,dom
LIN2.1 Param 20
P_7.2.15
Wake-up Threshold Voltage VBus,wk 0.40 ×
VS
0.5 ×
VS
0.6 ×
VS
V– P_7.2.16
Dominant Time for Bus
Wake-up
tWK,Bus 30 150 µs– P_7.2.17
LIN Bus Transmitter (LIN Pin)
Bus Recessive Output
Voltage
VBUS,ro 0.8 ×
VS
VSVVTxD = high Level P_7.2.18
Bus Dominant Output Voltage VBUS,do ––1.2VVTxD = 0 V;
6.0 V
VS7.3 V;
P_7.2.53
Bus Dominant Output Voltage VBUS,do 0.2 x
VS
VVTxD = 0 V;
7.3 V
VS10.0 V;
P_7.2.19
Bus Dominant Output Voltage VBUS,do ––2.0VVTxD = 0 V;
10.0 V
VS18.0 V;
P_7.2.20
Bus Short Circuit Current IBUS,sc 40 100 150 mA VBUS = 13.5 V;
LIN2.1 Param 12
P_7.2.23
Leakage Current
Loss of Ground
IBUS,lk -1000 -450 0 µAVS = 0 V;
VBUS = -12 V;
LIN2.1 Param 15
P_7.2.24
Leakage Current
Loss of Battery
IBUS,lk ––5µAVS = 0 V;
VBUS = 18 V;
LIN2.1 Param 16
P_7.2.25
Leakage Current IBUS,lk -1––mAVS = 18 V;
VBUS = 0 V;
LIN2.1 Param 13
P_7.2.26
Leakage Current
Driver Off
IBUS,lk ––5µAVS = 8 V;
VBUS = 18 V;
LIN2.1 Param 14
P_7.2.27
Table 12 Electrical Characteristics: LIN Transceiver (cont’d)
VS = 7 V to 27 V, Tj = -40 °C to +150 °C, RL=500, all voltages with respect to ground, positive current flowing
into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
http://store.iiic.cc/
TLE8458Gx
LIN Transceiver
Data Sheet 26 Rev. 1.01, 2009-04-28
Bus Pull-up Resistance RBUS 20 30 47 kNormal Mode
LIN2.1 Param 26
P_7.2.28
LIN Output Current IBUS -60 -30 -5 µA Sleep Mode
VS = 12 V;
EN = 0 V;VLIN = 0 V
P_7.2.29
LIN Input Capacitance CBUS 15 pF 1) P_7.2.55
Receiver propagation delay
bus dominant to RxD LOW
td(L),R –16µsVCC = 5 V;
CRxD = 20 pF;
LIN2.1 Param 31
P_7.2.38
Receiver propagation delay
bus recessive to RxD HIGH
td(H),R –16µsVCC = 5 V;
CRxD = 20 pF;
LIN2.1 Param 31
P_7.2.39
Receiver delay symmetry tsym,R -2 2 µstsym,R = td(L),R - td(H),R;
LIN2.1 Param 32
P_7.2.40
TxD Dominant Time Out ttimeout 6 1220msVTxD = 0 V P_7.2.44
TxD Dominant Time Out
Recovery Time
ttorec –10µs1) P_7.2.45
Duty Cycle D1
(For worst case at 20 kbit/s)
Lin2.1 Normal Slope2)
D1 0.396 3) THRec(max) = 0.744 × VS;
THDom(max) = 0.581 × VS;
VS = 7.0 … 18 V;
tbit = 50 µs;
D1 = tbus_rec(min)/2 tbit;
LIN2.1 Param 27
P_7.2.46
Duty Cycle D2
(for worst case at 20 kbit/s)
LIN2.1 Normal Slope
D2 0.581 3)THRec(min.) = 0.422 × VS;
THDom(min.) = 0.284 × VS;
VS = 7.6 … 18 V;
tbit = 50 µs;
D2 = tbus_rec(max)/2 tbit;
LIN2.1 Param 28
P_7.2.47
Duty Cycle D3
(for worst case at 10.4 kbit/s)
SAE J2602 Low Slope4)
D3 0.417 3)THRec(max) = 0.778 × VS;
THDom(max) = 0.616 × VS;
VS = 7.0 … 18 V;
tbit = 96 µs;
D3 = tbus_rec(min)/2 tbit;
LIN2.1 Param 29
P_7.2.48
Duty Cycle D4
(for worst case at 10.4 kbit/s)
SAE J2602 Low Slope
D4 0.590 3)THRec(min.) = 0.389 × VS;
THDom(min.) = 0.251 × VS;
VS = 7.6 … 18 V;
tbit = 96 µs;
D4 = tbus_rec(max)/2 tbit;
LIN2.1 Param 30
P_7.2.49
1) Not subject to production test, specified by design.
Table 12 Electrical Characteristics: LIN Transceiver (cont’d)
VS = 7 V to 27 V, Tj = -40 °C to +150 °C, RL=500, all voltages with respect to ground, positive current flowing
into pin
(unless otherwise specified)
Parameter Symbol Values Unit Note / Test Condition Number
Min. Typ. Max.
http://store.iiic.cc/
Data Sheet 27 Rev. 1.01, 2009-04-28
TLE8458Gx
LIN Transceiver
Figure 13 Simplified Test Circuit for Dynamic Characteristics
2) Valid for TLE8458G and TLE8458GV33,
3) Bus load conditions concerning LIN spec 2.1 CLIN, RLIN = 1 nF, 1 k / 6.8 nF, 660 / 10 nF, 500
4) Valid for TLE8458GU and TLE8458GUV33
*1'
/,1
Q)
9
6
&
/,1
7['
:.
5
/,1
5['
&
5['
http://store.iiic.cc/
TLE8458Gx
LIN Transceiver
Data Sheet 28 Rev. 1.01, 2009-04-28
Figure 14 Timing Diagram for Dynamic Characteristics
W
%LW
W
%LW
W
%LW
W
%XVBGRPPD[
W
%XVBUHFPLQ
7KUHVKROGVRI
UHFHLYLQJQRGH
7KUHVKROGVRI
UHFHLYLQJQRGH
7+
5HFPD[
7+
'RPPD[
7+
5HFPLQ
7+
'RPPLQ
W
%XVBGRPPLQ
W
%XVBUHFPD[
W
G/5
W
G+5
W
G+U
W
/5
9
683
7UDQVFHLYHUVXSSO\
RIWUDQVPLWWLQJ
QRGH
7['
LQSXWWR
WUDQVPLWWLQJQRGH
5['
RXWSXWRIUHFHLYLQJ
QRGH
5['
RXWSXWRIUHFHLYLQJ
QRGH
'XW\&\FOH W
%86BUHFPLQ
[W
%,7
'XW\&\FOH W
%86BUHFPD[
[W
%,7
http://store.iiic.cc/
Data Sheet 29 Rev. 1.01, 2009-04-28
TLE8458Gx
Application Information
8 Application Information
Note: The following information is given as a hint for the implementation of the device only and should not be
regarded as a description or warranty of a certain functionality, condition or quality o f the device.
Figure 15 Application Example
Note: This is a simplified example of an application circuit. The function must be verified in the actual application.
ECU 1
TxD
GND
TLE7259-2GE
Bus
100
nF
XC22XX
GND
Master Node
WKINH
VS
e. g. TLE 4263
VQ
5 V
GND
INH
100
nF
22
µF
22 µF
VI
1 k
1 nF
100
nF RxD
EN
TxD
GND
TLE8458G
LIN XC22XX
GND
Slave Node
WK
100
nF
VS
RxD
EN
VBat LIN Bus
22
µF
220
pF
Vcc
10
µF
100
nF
ECU X
http://store.iiic.cc/
TLE8458Gx
Application Information
Data Sheet 30 Rev. 1.01, 2009-04-28
8.1 ESD Tests
Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The results
and test conditions are available in a separate test report (see Table 13).
8.1.1 EMC Measurement
The EMC performance has been qualified by an external test house according to the LIN EMC Test specification
Version 1.0 (August 1, 2004). For the DPI measurements according to the LIN EMC Test Specification, Section
4.2 (ISO62132 part 1: 2006, ISO62132 part 4: 2006) the verification limit for the output voltage VCC, was set to a
limit of +/- 100 mV. External test reports are available on request.
8.2 Pin Compatibility to Stand-Alone LIN transceivers
The TLE8458G is pin - and function compatible to the single LIN transceivers like the TLE7259-2GE and its
derivative the TLE7259-2GU (see Figure 16). Instead of the INH output pin on the single LIN transceiver
TLE7259-2GE the VCC power supply output can be connected to the external microcontroller. The TLE8458G
provides the same operation modes and feature s as single LIN transceiver TLE7259-2GE.
Figure 16 Pinning of TLE8458G versus the TLE7259-2GE
Table 13 ESD “Gun test”
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Performed Test
ESD at VS, LIN versus GND VESD,GUN -10 10 kV GUN1)
1) ESD susceptibility “ESD GUN” according LIN EMC Test Specification, Section 4.3 (IEC 61000-4-2:2001-12), tested by
external test house (IBEE Zwickau, EMC Test report Nr. 07-11-08)
P_8.1.1
ESD at WK PIN VESD,GUN -7–7kVGUN
1) P_8.1.1
RxD 1
2
3
45
6
7
8
EN
WK
TxD
V
S
LIN
GND
V
CC
RxD 1
2
3
45
6
7
8
EN
WK
TxD
V
S
LIN
GND
INH
TLE 8458G TLE 7259-2GE
http://store.iiic.cc/
Data Sheet 31 Rev. 1.01, 2009-04-28
TLE8458Gx
Package Outlines
9 Package Outlines
Figure 17 PG-DSO-8-16 (SO-8 Standard, Green (RoHS compliant))
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
+0.06
0.19
0.35 x 45˚
1)
-0.2
4
C
8 MAX.
0.64
±0.2
6
±0.25
0.2 8x
M
C
1.27
+0.1
0.41 0.2
M
A
-0.06
1.75 MAX.
(1.45)
±0.07
0.175
B
8x
B
2)
Index Marking
5
-0.21)
41
85
A
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
GPS01181
0.1
For further information on alternative packages, please visit our website:
htt
p
://www.infineon.com/
p
acka
g
es.Dimensions in mm
http://store.iiic.cc/
TLE8458Gx
Revision History
Data Sheet 32 Rev. 1.01, 2009-04-28
10 Revision History
Revision Date Changes
1.0 2009-03-23 Initial data sheet
1.01 2009-04-28 Editorial Change to the data sheet
Update table 13 on page 30.
P_8.1.1 performed test changed from:
“ESD at LIN Pin”
to:
“ESD at VS, LIN versus GND”
http://store.iiic.cc/
Edition 2009-04-28
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
http://store.iiic.cc/