BENEFITS AND FEATURES
Simply Adds Temperature Monitoring and
Control to Any System
o Measures Temperatures From -55°C to
+125°C in 0.5°C Increments; Fahrenheit
Equivalent is -67°F to +257°F in 0.9°F
Increments
o Temperature is Read as a 9-Bit Value
o Converts Temperature to Digital Word in
750ms (max)
o Thermostatic Settings are User-Definable
and Nonvolatile
Can Be Used in a Wide Variety of
Applications
o Supply Voltage Range Covers From 2.7V
to 5.5V
o Data is Read From/Written Via a 3-Wire
Serial Interface (CLK, DQ,
RST
)
Saves Space
o Requires No External Components
o 8-Pin DIP or SOIC (208-mil) Packages
APPLICATIONS
Thermostatic Controls
Industrial Systems
Consumer Products
Thermometers
PIN ASSIGNMENT
PIN DESCRIPTION
DQ - 3-Wire Input/Output
CLK/
CONV
- 3-Wire Clock Input and
Stand-alone Convert Input
RST
- 3-Wire Reset Input
GND - Ground
THIGH - High Temperature Trigger
TLOW - Low Temperature Trigger
TCOM - High/Low Combination Trigger
VDD - Power Supply Voltage (3V - 5V)
DESCRIPTION
The DS1620 Digital Thermometer and Thermostat provides 9–bit temperature readings which indicate
the temperature of the device. With three thermal alarm outputs, the DS1620 can also act as a thermostat.
THIGH is driven high if the DS1620’s temperature is greater than or equal to a user–defined temperature
TH. TLOW is driven high if the DS1620’s temperature is less than or equal to a user–defined temperature
TL. TCOM is driven high when the temperature exceeds TH and stays high until the temperature falls
below that of TL.
DS1620
Digital Thermometer and
Thermostat
6
3
1
2
8
7
5
DQ
CLK/CONV
RST
GND
VDD
THIGH
TLOW
TCOM
DS1620S 8-Pin SOIC (208-mil)
6
3
2
4
8
7
5
DQ
CLK/CONV
RST
GND
VDD
THIGH
TLOW
TCOM
DS1620 8-Pin DIP (300-mil)
1 of 12 19-7539; Rev 3; 3/15
DS1620
Userdefined temperature settings are stored in nonvolatile memory, so parts can be programmed prior to
insertion in a system, as well as used in standalone applications without a CPU. Temperature settings and
temperature readings are all communicated to/from the DS1620 over a simple 3–wire interface.
ORDERING INFORMATION
PART
PACKAGE MARKING
DESCRIPTION
DS1620
DS1620
8-Pin DIP (300 mil)
DS1620+
DS1620 (See Note)
Lead-Free 8-Pin DIP (300 mil)
DS1620S
DS1620
8-Pin SOIC (208 mil)
DS1620S+
DS1620 (See Note)
Lead-Free 8-Pin SOIC (208 mil)
DS1620S/T&R
DS1620
8-Pin SOIC (208 mil), 2000-Piece Tape-and-Reel
DS1620S+T&R
DS1620 (See Note)
Lead-Free 8-Pin SOIC (208 mil), 2000-Piece
Tape-and-Reel
Note: A “+” symbol will also be marked on the package near the Pin 1 indicator
DETAILED PIN DESCRIPTION Table 1
PIN
SYMBOL
DESCRIPTION
1
DQ
Data Input/Output pin for 3-wire communication port.
2
CLK/
CONV
Clock input pin for 3-wire communication port. When the DS1620 is used in a
stand-alone application with no 3–wire port, this pin can be used as a convert
pin. Temperature conversion will begin on the falling edge of
CONV
.
3
RST
Reset input pin for 3-wire communication port.
4
GND
Ground pin.
5
T
COM
High/Low Combination Trigger. Goes high when temperature exceeds TH;
will reset to low when temperature falls below TL.
6
TLOW
Low Temperature Trigger. Goes high when temperature falls below TL.
7
THIGH
High Temperature Trigger. Goes high when temperature exceeds TH.
8
VDD
Supply Voltage. 2.7V – 5.5V input power pin.
Table 2. DS1620 REGISTER SUMMARY
REGISTER NAME
(USER ACCESS)
SIZE
MEMORY
TYPE
REGISTER CONTENTS
AND POWER-UP/POR STATE
Temperature
(Read Only)
9 Bits SRAM
Measured Temperature (Two’s Complement)
Power-Up/POR State: -60ºC (1 1000 1000)
TH
(Read/Write) 9 Bits EEPROM
Upper Alarm Trip Point (Two’s Complement)
Power-Up/POR State: User-Defined.
Initial State from Factory: +15°C (0 0001 1110)
TL
(Read/Write) 9 Bits EEPROM
Lower Alarm Trip Point (Two’s Complement)
Power-Up/POR State: User-Defined.
Initial State from Factory: +10°C (0 0001 0100)
OPERATION-MEASURING TEMPERATURE
A block diagram of the DS1620 is shown in Figure 1.
. .
2 of 12
DS1620
DS1620 FUNCTIONAL BLOCK DIAGRAM Figure 1
The DS1620 measures temperature using a bandgap-based temperature sensor. The temperature reading
is provided in a 9–bit, two’s complement reading by issuing a READ TEMPERATURE command. The
data is transmitted serially through the 3wire serial interface, LSB first. The DS1620 can measure
temperature over the range of -55°C to +125°C in 0.5°C increments. For Fahrenheit usage, a lookup table
or conversion factor must be used.
Since data is transmitted over the 3wire bus LSB first, temperature data can be written to/read from the
DS1620 as either a 9–bit word (taking
RST
low after the 9th (MSB) bit), or as two transfers of 8bit
words, with the most significant 7 bits being ignored or set to 0, as illustrated in Table 3. After the MSB,
the DS1620 will output 0s.
Note that temperature is represented in the DS1620 in terms of a ½°C LSB, yielding the 9–bit format
shown in Figure 2.
TEMPERATURE, TH, and TL REGISTER FORMAT Figure 2
X
X
X
X
X
X
X
1
1
1
0
0
1
1
1
0
LSB
T = -25°C
MSB
3 of 12
DS1620
Table 3 describes the exact relationship of output data to measured temperature.
.
TEMPERATURE/DATA RELATIONSHIPS Table 3
TEMP
DIGITAL OUTPUT
(Binary)
DIGITAL OUTPUT
(Hex)
+125˚C
0 11111010
00FA
+25˚C
0 00110010
0032h
+½˚C
0 00000001
0001h
+0˚C
0 00000000
0000h
-½˚C
1 11111111
01FFh
-25˚C
1 11001110
01CEh
-55˚C
1 10010010
0192h
Higher resolutions may be obtained by reading the temperature, and truncating the 0.5°C bit (the LSB)
from the read value. This value is TEMP_READ. The value left in the counter may then be read by
issuing a READ COUNTER command. This value is the count remaining (COUNT_REMAIN) after the
gate period has ceased. By loading the value of the slope accumulator into the count register (using the
READ SLOPE command), this value may then be read, yielding the number of counts per degree C
(COUNT_PER_C) at that temperature. The actual temperature may be then be calculated by the user
using the following:
TEMPERATURE=TEMP_READ-0.25 +
CCOUNT_PER_
IN)COUNT_REMA-_C(COUNT_PER
OPERATION–THERMOSTAT CONTROLS
Three thermally triggered outputs, THIGH, TLOW, and TCOM, are provided to allow the DS1620 to be used
as a thermostat, as shown in Figure 3. When the DS1620’s temperature meets or exceeds the value stored
in the high temperature trip register, the output THIGH becomes active (high) and remains active until the
DS1620’s measured temperature becomes less than the stored value in the high temperature register, TH.
The THIGH output can be used to indicate that a high temperature tolerance boundary has been met or
exceeded, or it can be used as part of a closed loop system to activate a cooling system and deactivate it
when the system temperature returns to tolerance.
The TLOW output functions similarly to the THIGH output. When the DS1620’s measured temperature
equals or falls below the value stored in the low temperature register, the TLOW output becomes active.
TLOW remains active until the DS1620’s temperature becomes greater than the value stored in the low
temperature register, TL. The TLOW output can be used to indicate that a low temperature tolerance
boundary has been met or exceeded, or as part of a closed loop system it can be used to activate a heating
system and deactivate it when the system temperature returns to tolerance.
The TCOM output goes high when the measured temperature meets or exceeds TH, and will stay high until
the temperature equals or falls below TL. In this way, any amount of hysteresis can be obtained.
4 of 12
DS1620
THERMOSTAT OUTPUT OPERATION Figure 3
OPERATION AND CONTROL
The DS1620 must have temperature settings resident in the TH and TL registers for thermostatic
operation. A configuration/status register also determines the method of operation that the DS1620 will
use in a particular application and indicates the status of the temperature conversion operation. The
configuration register is defined as follows:
CONFIGURATION/STATUS REGISTER
where
DONE = Conversion Done Bit. 1=conversion complete, 0=conversion in progress. The power-up/POR
state is a 1.
THF = Temperature High Flag. This bit will be set to 1 when the temperature is greater than or equal
to the value of TH. It will remain 1 until reset by writing 0 into this location or by removing power from
the device. This feature provides a method of determining if the DS1620 has ever been subjected to
temperatures above TH while power has been applied. The power-up/POR state is a 0.
TLF = Temperature Low Flag. This bit will be set to 1 when the temperature is less than or equal to
the value of TL. It will remain 1 until reset by writing 0 into this location or by removing power from the
device. This feature provides a method of determining if the DS1620 has ever been subjected to
temperatures below TL while power has been applied. The power-up/POR state is a 0.
NVB = Nonvolatile Memory Busy Flag. 1=write to an E2 memory cell in progress. 0=nonvolatile
memory is not busy. A copy to E2 may take up to 10 ms. The power-up/POR state is a 0.
CPU = CPU Use Bit. If CPU=0, the CLK/
CONV
pin acts as a conversion start control, when
RST
is
low. If CPU is 1, the DS1620 will be used with a CPU communicating to it over the 3–wire port, and the
operation of the CLK/
CONV
pin is as a normal clock in concert with DQ and
RST
. This bit is stored in
nonvolatile E2 memory, capable of at least 50,000 writes. The DS1620 is shipped with CPU=0.
T
HIGH
T
LOW
T
COM
TL
TH
T(°C)
DONE
THF
TLF
NVB
1
0
CPU
1SHOT
5 of 12
DS1620
1SHOT = OneShot Mode. If 1SHOT is 1, the DS1620 will perform one temperature conversion upon
reception of the Start Convert T protocol. If 1SHOT is 0, the DS1620 will continuously perform
temperature conversion. This bit is stored in nonvolatile E2 memory, capable of at least 50,000 writes. The
DS1620 is shipped with 1SHOT=0.
For typical thermostat operation, the DS1620 will operate in continuous mode. However, for applications
where only one reading is needed at certain times or to conserve power, the one–shot mode may be used.
Note that the thermostat outputs (THIGH, TLOW, TCOM) will remain in the state they were in after the last
valid temperature conversion cycle when operating in one–shot mode.
OPERATION IN STAND-ALONE MODE
In applications where the DS1620 is used as a simple thermostat, no CPU is required. Since the
temperature limits are nonvolatile, the DS1620 can be programmed prior to insertion in the system. In
order to facilitate operation without a CPU, the CLK/
CONV
pin (pin 2) can be used to initiate
conversions. Note that the CPU bit must be set to 0 in the configuration register to use this mode of
operation. Whether CPU=0 or 1, the 3–wire port is active. Setting CPU=1 disables the standalone mode.
To use the CLK/
CONV
pin to initiate conversions,
RST
must be low and CLK/
CONV
must be high. If
CLK/
CONV
is driven low and then brought high in less than 10 ms, one temperature conversion will be
performed and then the DS1620 will return to an idle state. If CLK/
CONV
is driven low and remains low,
continuous conversions will take place until CLK/
CONV
is brought high again. With the CPU bit set to 0,
the CLK/
CONV
will override the 1SHOT bit if it is equal to 1. This means that even if the part is set for
one–shot mode, driving CLK/
CONV
low will initiate conversions.
3-WIRE COMMUNICATIONS
The 3wire bus is comprised of three signals. These are the
RST
(reset) signal, the CLK (clock) signal,
and the DQ (data) signal. All data transfers are initiated by driving the
RST
input high. Driving the
RST
input low terminates communication. (See Figures 4 and 5.) A clock cycle is a sequence of a falling edge
followed by a rising edge. For data inputs, the data must be valid during the rising edge of a clock cycle.
Data bits are output on the falling edge of the clock and remain valid through the rising edge.
When reading data from the DS1620, the DQ pin goes to a high-impedance state while the clock is high.
Taking
RST
low will terminate any communication and cause the DQ pin to go to a high-impedance
state.
Data over the 3wire interface is communicated LSB first. The command set for the 3wire interface as
shown in Table 4 is as follows.
Read Temperature [AAh]
This command reads the contents of the register which contains the last temperature conversion result.
The next nine clock cycles will output the contents of this register.
Write TH [01h]
This command writes to the TH (HIGH TEMPERATURE) register. After issuing this command the next
nine clock cycles clock in the 9bit temperature limit which will set the threshold for operation of the
THIGH output.
6 of 12
DS1620
Write TL [02h]
This command writes to the TL (LOW TEMPERATURE) register. After issuing this command the next
nine clock cycles clock in the 9bit temperature limit which will set the threshold for operation of the
TLOW output.
Read TH [A1h]
This command reads the value of the TH (HIGH TEMPERATURE) register. After issuing this command
the next nine clock cycles clock out the 9–bit temperature limit which sets the threshold for operation of
the THIGH output.
Read TL [A2h]
This command reads the value of the TL (LOW TEMPERATURE) register. After issuing this command
the next nine clock cycles clock out the 9–bit temperature limit which sets the threshold for operation of
the TLOW output.
Read Counter [A0h]
This command reads the value of the counter byte. The next nine clock cycles will output the contents of
this register.
Read Slope [A9h]
This command reads the value of the slope counter byte from the DS1620. The next nine clock cycles
will output the contents of this register.
Start Convert T [EEh]
This command begins a temperature conversion. No further data is required. In one–shot mode the
temperature conversion will be performed and then the DS1620 will remain idle. In continuous mode this
command will initiate continuous conversions.
Stop Convert T [22h]
This command stops temperature conversion. No further data is required. This command may be used to
halt a DS1620 in continuous conversion mode. After issuing this command the current temperature
measurement will be completed and then the DS1620 will remain idle until a Start Convert T is issued to
resume continuous operation.
Write Config [0Ch]
This command writes to the configuration register. After issuing this command the next eight clock cycles
clock in the value of the configuration register.
Read Config [ACh]
This command reads the value in the configuration register. After issuing this command the next eight
clock cycles output the value of the configuration register.
7 of 12
DS1620
DS1620 COMMAND SET Table 4
INSTRUCTION
DESCRIPTION
PROTOCOL
3-WIRE BUS
DATA AFTER
ISSUING
PROTOCOL
NOTES
TEMPERATURE CONVERSION COMMANDS
Read Temperature
Reads last converted temperature
value from temperature register.
AAh
<read data>
Read Counter
Reads value of count remaining
from counter.
A0h
<read data>
Read Slope
Reads value of the slope
accumulator.
A9h
<read data>
Start Convert T
Initiates temperature conversion.
EEh
Idle
1
Stop Convert T
Halts temperature conversion.
22h
Idle
1
THERMOSTAT COMMANDS
Write TH
Writes high temperature limit value
into TH register.
01h
<write data>
2
Write TL
Writes low temperature limit value
into TL register.
02h
<write data>
2
Read TH
Reads stored value of high
temperature limit from TH register.
A1h
<read data>
2
Read TL
Reads stored value of low
temperature limit from TL register.
A2h
<read data>
2
Write Config
Writes configuration data to
configuration register.
0Ch
<write data>
2
Read Config
Reads configuration data from
configuration register.
ACh
<read data>
2
NOTES:
1. In continuous conversion mode, a Stop Convert T command will halt continuous conversion. To
restart, the Start Convert T command must be issued. In one–shot mode, a Start Convert T command
must be issued for every temperature reading desired.
2. Writing to the E2 requires up to 10 ms at room temperature. After issuing a write command no further
writes should be requested for at least 10 ms.
8 of 12
DS1620
FUNCTION EXAMPLE
Example: CPU sets up DS1620 for continuous conversion and thermostatic function.
CPU MODE
DS1620 MODE
(3-WIRE)
DATA (LSB FIRST)
COMMENTS
TX
RX
0Ch
CPU issues Write Config command
TX
RX
00h
CPU sets DS1620 up for continuous
conversion
TX
RX
Toggle
RST
CPU issues Reset to DS1620
TX
RX
01h
CPU issues Write TH command
TX
RX
0050h
CPU sends data for TH limit of +40˚C
TX
RX
Toggle
RST
CPU issues Reset to DS1620
TX
RX
02h
CPU issues Write TL command
TX
RX
0014h
CPU sends data for TL limit of +10˚C
TX
RX
Toggle
RST
CPU issues Reset to DS1620
TX
RX
A1h
CPU issues Read TH command
RX
TX
0050h
DS1620 sends back stored value of TH for
CPU to verify
TX
RX
Toggle
RST
CPU issues Reset to DS1620
TX
RX
A2h
CPU issues Read TL command
RX
TX
0014h
DS1620 sends back stored value of TL for
CPU to verify
TX
RX
Toggle
RST
CPU issues Reset to DS1620
TX
RX
EEh
CPU issues Start Convert T command
TX
RX
Drop
RST
CPU issues Reset to DS1620
READ DATA TRANSFER Figure 4
9 of 12
DS1620
WRITE DATA TRANSFER Figure 5
ABSOLUTE MAXIMUM RATINGS*
Voltage on Any Pin Relative to Ground –0.5V to +6.0V
Operating Temperature –55°C to +125°C
Storage Temperature –55°C to +125°C
Soldering Temperature 260°C for 10 seconds
* This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operation sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods of time may affect reliability.
RECOMMENDED DC OPERATING CONDITIONS
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
NOTES
Supply
VDD
2.7
5.5
V
1,2
Logic 1
VIH
0.7 x VDD
VCC + 0.3
V
1
Logic 0
VIL
-0.3
0.3 x VDD
V
1
NOTE: tCL, tCH, tR, and tF apply to both read and write data transfer.
10 of 12
DS1620
DC ELECTRICAL CHARACTERISTICS (-55°C to +125°C; VDD=2.7V to 5.5V)
PARAMETER
SYMBOL
CONDITION
MIN
MAX
UNITS
NOTES
Thermometer Error
T
ERR
0°C to +70°C
3.0V ≤ VDD ≤ 5.5V
±0.5
°C
2
0°C to +70°C
2.7V ≤ VDD < 3.0V
±1.25
-55°C to +125°C
±2.0
Thermometer Resolution
12
Bits
Logic 0 Output
VOL
0.4
V
4
Logic 1 Output
VOH
2.4
V
5
Input Resistance
R
I
RST
to GND
DQ, CLK to VDD
1
1
M
M
Active Supply Current
ICC
0°C to +70°C
1
mA
6
Standby Supply Current
ISTBY
0°C to +70°C
1.5
µA
6
Input Current on Each
Pin
0.4 < V
I/O
< 0.9 x V
DD
-10
+10
µA
Thermal Drift
±0.2
°C
7
SINGLE CONVERT TIMING DIAGRAM (STAND-ALONE MODE)
AC ELECTRICAL CHARACTERISTICS (-55°C to +125°C; VDD=2.7V to 5.5V)
PARAMETERS
SYMBOL
MIN
TYP
MAX
UNITS
NOTES
Temperature Conversion Time
TTC
750
ms
Data to CLK Setup
tDC
35
ns
8
CLK to Data Hold
tCDH
40
ns
8
CLK to Data Delay
tCDD
150
ns
8, 9, 10
CLK Low Time
tCL
285
ns
8
CLK High Time
tCH
285
ns
8
CLK Frequency
fCLK
DC
1.75
MHz
8
CLK Rise and Fall
tR, tF
500
ns
RST
to CLK Setup
t
CC
100
ns
8
CLK to
RST
Hold
t
CCH
40
ns
8
RST
Inactive Time
t
CWH
125
ns
8, 11
CLK High to I/O High-Z
tCDZ
50
ns
8
RST
Low to I/O High-Z
t
RDZ
50
ns
8
Convert Pulse Width
tCNV
250 ns
500 ms
12
tCNV
CONV
11 of 12
DS1620
AC ELECTRICAL CHARACTERISTICS (-55°C to +125°C; VDD=2.7V to 5.5V)
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
NOTES
Input Capacitance
CI
5
pF
I/O Capacitance
CI/O
10
pF
EEPROM AC ELECTRICAL CHARACTERISTICS
(-55°C to +125°C; VDD=2.7V to 5.5V)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
EEPROM Write Cycle Time
4
10
Ms
EEPROM Writes
-55°C to +55°C
50k
Writes
EEPROM Data Retention
-55°C to +55°C
10
Years
NOTES:
1. All voltages are referenced to ground.
2. Valid for design revisions D1 and above. The supply range for Rev. C2 and below is 4.5V < 5.5V.
3. Thermometer error reflects temperature accuracy as tested during calibration.
4. Logic 0 voltages are specified at a sink current of 4mA
5. Logic 1 voltages are specified at a source current of 1mA.
6. ISTBY, ICC specified with DQ, CLK/
CONV
= VDD, and
RST
= GND.
7. Drift data is based on a 1000hr stress test at +125°C with VDD = 5.5V
8. Measured at VIH = 0.7 x VDD or VIL = 0.3 x VDD.
9. Measured at VOH = 2.4V or VOL = 0.4V.
10. Load capacitance = 50pF.
11. tCWH must be 10ms minimum following any write command that involves the E2 memory.
12. 250ns is the guaranteed minimum pulse width for a conversion to start; however, a smaller pulse
width may start a conversion.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown
in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000
©2015 Maxim Integrated Products, Inc. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
12 of 12
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
DS1620S+T&R DS1620+ DS1620S+