General Description
The single MAX9015/MAX9016 and dual MAX9017–
MAX9020 nanopower comparators in space-saving
SOT23 packages feature Beyond-the-Rails™ inputs
and are guaranteed to operate down to 1.8V. The A-
grade packages feature an on-board 1.236V ±1% ref-
erence, while the B-grade packages feature a 1.24V
±1.75% reference. An ultra-low supply current of 0.85µA
(MAX9019/MAX9020), 1µA (MAX9015/MAX9016), or
1.2µA (MAX9017/MAX9018) makes the MAX9015–
MAX9020 family of comparators ideal for all 2-cell bat-
tery monitoring/management applications.
The unique design of the MAX9015–MAX9020 output
stage limits supply-current surges while switching,
which virtually eliminates the supply glitches typical of
many other comparators. This design also minimizes
overall power consumption under dynamic conditions.
The MAX9015/MAX9017/MAX9019 have a push-pull
output stage that sinks and sources current. Large
internal output drivers allow rail-to-rail output swing with
loads up to 6mA. The MAX9016/MAX9018/MAX9020
have an open-drain output stage that makes them suit-
able for mixed-voltage system design. All devices are
available in the ultra-small 8-pin SOT23 package.
Refer to the MAX9117–MAX9120 data sheet for similar
single comparators with or without reference in a tiny
SC70 package.
Applications
Features
Ultra-Low Total Supply Current
0.85µA (MAX9019/MAX9020)
1.0µA (MAX9015A/MAX9016A)
1.2µA (MAX9017/MAX9018)
Guaranteed Operation Down to 1.8V
Precision VOS < 5mV (max)
Internal 1.236V ±1% Reference (A Grade)
Input Voltage Range Extends 200mV
Beyond-the-Rails
CMOS Push-Pull Output with ±6mA Drive
Capability (MAX9015/MAX9017/MAX9019)
Open-Drain Output Versions Available
(MAX9016/MAX9018/MAX9020)
Crowbar-Current-Free Switching
Internal 4mV Hysteresis for Clean Switching
No Phase Reversal for Overdriven Inputs
Dual Versions in Space-Saving 8-Pin SOT23
Package
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-2874; Rev 2; 12/09
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
Ordering Information continued at end of data sheet.
Pin Configurations appear at end of data sheet.
Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc.
PART TEMP RANGE PIN-
PACKAGE
TOP
MARK
MAX9015AEKA-T -40°C to +85°C 8 SOT23 AEIW
MAX9016AEKA-T -40°C to +85°C 8 SOT23 AEIX
MAX9017AEKA-T -40°C to +85°C 8 SOT23 AEIQ
MAX9017BEKA-T -40°C to +8C 8 SOT23 AEIS
Selector Guide
PART COMPARATOR(S) INTERNAL REFERENCE (V) OUTPUT TYPE SUPPLY CURRENT (µA)
MAX9015A 1 1.236 ±1% Push-pull 1
MAX9016A 1 1.236 ±1% Open drain 1
MAX9017A 2 1.236 ±1% Push-pull 1.2
MAX9017B 2 1.240 ±1.75% Push-pull 1.2
MAX9018A 2 1.236 ±1% Open drain 1.2
MAX9018B 2 1.240 ±1.75% Open drain 1.2
MAX9019 2 Push-pull 0.85
MAX9020 2 Open drain 0.85
2-Cell Battery
Monitoring/Management
Ultra-Low Power Systems
Mobile Communications
Notebooks and PDAs
Threshold Detectors/
Discriminators
Window Detectors
Sensing at Ground or
Supply Line
Telemetry and Remote
Systems
Medical Instruments
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF)
(VCC= 5V, VEE = 0V, VIN-= VREF, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Supply Voltage (VCC to VEE)....................................................6V
IN+, IN-, INA+, INB+, INA-, INB-,
REF/INA-, REF..................................(VEE - 0.3V) to (VCC + 0.3V)
Output Voltage (OUT_)
MAX9015A, MAX9017_, MAX9019....(VEE - 0.3V) to (VCC + 0.3V)
MAX9016A, MAX9018_, MAX9020...................(VEE - 0.3V) to +6V
Output Current (REF, OUT_, REF/INA-)............................±50mA
Output Short-Circuit Duration (REF, OUT_, REF/INA-) ...........10s
Continuous Power Dissipation (TA= +70°C)
8-Pin SOT23 (derate 9.1mW/°C above +70°C)............727mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage Range VCC Inferred from the PSRR test 1.8 5.5 V
VCC = 1.8V, TA = +25°C 1.0 1.5
VCC = 5.0V, TA = +25°C 1.1 1.7
MAX9015A/
MAX9016A VCC = 5.0V,
TA = TMIN to TMAX 2.0
VCC = 1.8V, TA = +25°C 1.2 1.9
VCC = 5.0V, TA = +25°C 1.4 2.3
Supply Current ICC
MAX9017_/
MAX9018_ VCC = 5.0V,
TA = TMIN to TMAX 2.8
μA
Input Common-Mode
Voltage Range
(MAX9015A/MAX9016A)
VCM Inferred from VOS test VEE - 0.2 VCC + 0.2 V
IN+ Voltage Range
(MAX9017_/MAX9018_) VIN+ Inferred from the output swing test VEE - 0.2 VCC + 0.2 V
TA = +2C 0.15 5
Input Offset Voltage VOS VEE - 0.2V < VCM <
VCC + 0.2V (Note 2) TA = TMIN to TMAX 10
mV
Input-Referred Hysteresis VHB VEE - 0.2V < VCM < VCC + 0.2V (Note 3) 4 mV
TA = +25°C ±0.15 ±1
Input Bias Current (IN+,
IN-, INA+, INB+, INB-) IBTA = TMIN to TMAX ±2
nA
Power-Supply Rejection
Ratio PSRR VCC = 1.8V to 5.5V 0.1 1 mV/V
TA = +2C 100 200
VCC = 1.8V,
ISOURCE = 1mA TA = TMIN to TMAX 300
TA = +2C 250 350
Output Voltage Swing High
(MAX9015A/MAX9017_) VCC - VOH VCC = 5.0V,
ISOURCE = 6mA TA = TMIN to TMAX 450
mV
TA = +2C 105 200
VCC = 1.8V,
ISINK = 1mA TA = TMIN to TMAX 300
TA = +2C 285 350
Output Voltage Swing Low
(MAX9015A/MAX9016A/
MAX9017_/MAX9018_)
VOL VCC = 5.0V,
ISINK = 6mA TA = TMIN to TMAX 450
mV
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF)
(continued)
(VCC= 5V, VEE = 0V, VIN-= VREF, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Output Leakage Current
(MAX9016A/MAX9018_) ILEAK VCC = 5.5V, VOUT = 5.5V 0.001 1 μA
VCC = 1.8V 3
Sourcing, VOUT =
VEE (MAX9015A/
MAX9017_ only) VCC = 5.0V 35
VCC = 1.8V 3
Output Short-Circuit Current ISC
Sinking,
VOUT = VCC VCC = 5.0V 33
mA
VCC = 1.8V 7
High-to-Low Propagation
Delay (Note 4) tPD- VCC = 5.0V 6 μs
MAX9015A/MAX9017_ 11
VCC = 1.8V MAX9016A/MAX9018_,
RPULLUP = 100k to VCC 12
MAX9015A/MAX9017_ 28
Low-to-High Propagation
Delay (Note 4) tPD+
VCC = 5.0V MAX9016A/MAX9018_,
RPULLUP = 100k to VCC 31
μs
Rise Time tRISE CL = 15pF (MAX9015A/MAX9017_) 1.6 μs
Fall Time tFALL CL = 15pF 0.2 μs
Power-Up Time tON 1.2 ms
TA = +2C, 1.0% 1.224 1.236 1.248
MAX901_A TA = TMIN to TMAX, 2.5% 1.205 1.267
TA = +2C, 1.75% 1.218 1.240 1.262
Reference Voltage VREF
MAX901_B TA = TMIN to TMAX, 4.5% 1.184 1.296
V
Reference Voltage
Temperature Coefficient TCREF 40 ppm/°C
BW = 10Hz to 1kHz, CREF = 1nF 29
Reference Output Voltage
Noise ENBW = 10Hz to 6kHz, CREF = 1nF 60 μVRMS
Reference Line Regulation VREF/
VCC 1.8V VCC 5.5V 0.5 mV/V
Reference Load
Regulation
VREF/
IOUT IOUT = 0 to 100nA 0.03 mV/nA
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
4 _______________________________________________________________________________________
ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF)
(VCC = 5V, VEE = 0V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage Range VCC Inferred from the PSRR test 1.8 5.5 V
VCC = 1.8V, TA = +25°C 0.85 1.50
VCC = 5.0V, TA = +25°C 1.1 1.70
Supply Current ICC MAX9019/
MAX9020 VCC = 5.0V,
TA = TMIN to TMAX 2.0
μA
Input Common-Mode
Voltage Range VCM Inferred from VOS test VEE - 0.2 VCC + 0.2 V
TA = +2C 1 5
Input Offset Voltage VOS VEE - 0.2V < VCM <
VCC + 0.2V (Note 2) TA = TMIN to TMAX 10
mV
Input-Referred Hysteresis VHB VEE - 0.2V < VCM < VCC + 0.2V (Note 3) 4 mV
TA = +2C 0.15 1
Input Bias Current
(INA-, INA+, INB+, INB-) IBTA = TMIN to TMAX 2
nA
Power-Supply Rejection Ratio PSRR VCC = 1.8V to 5.5V 0.1 1 mV/V
TA = +2C 55 200
VCC = 1.8V,
ISOURCE = 1mA TA = TMIN to TMAX 300
TA = +2C 190 350
Output Voltage Swing High
(MAX9019 Only) VCC - VOH VCC = 5.0V,
ISOURCE = 6mA TA = TMIN to TMAX 450
mV
TA = +2C 55 200
VCC = 1.8V,
ISINK = 1mA TA = TMIN to TMAX 300
TA = +2C 190 350
Output Voltage Swing Low VOL VCC = 5.0V,
ISINK = 6mA TA = TMIN to TMAX 450
mV
Output Leakage Current
(MAX9020 Only) ILEAK VCC = 5.5V, VOUT = 5.5V 0.001 1 μA
VCC = 1.8V 3
Sourcing, VOUT =
VEE (MAX9019 only) VCC = 5.0V 35
VCC = 1.8V 3
Output Short-Circuit Current ISC
Sinking, VOUT = VCC VCC = 5.0V 33
mA
VCC = 1.8V 7
High-to-Low Propagation
Delay (Note 4) tPD- VCC = 5.0V 6 μs
MAX9019 11
VCC = 1.8V MAX9020, RPULLUP =
100k to VCC 12
MAX9019 28
Low-to-High Propagation
Delay (Note 4) tPD+
VCC = 5.0V MAX9020, RPULLUP =
100k to VCC 31
μs
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
_______________________________________________________________________________________ 5
Note 1: All devices are 100% tested at TA= +25°C. Specifications over temperature (TA= TMIN to TMAX) are guaranteed by design,
not production tested.
Note 2: VOS is defined as the center of the hysteresis band at the input.
Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of
the band (i.e., VOS) (Figure 1).
Note 4: Specified with an input overdrive (VOVERDRIVE) of 100mV, and a load capacitance of CL= 15pF. VOVERDRIVE is defined
above and beyond the offset voltage and hysteresis of the comparator input.
ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF) (continued)
(VCC = 5V, VEE = 0V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Rise Time tRISE CL = 15pF (MAX9019 only) 1.6 μs
Fall Time tFALL CL = 15pF 0.2 μs
Power-Up Time tON 1.2 ms
Typical Operating Characteristics
(VCC = 5V, VEE = 0V, CL= 15pF, VOVERDRIVE = 100mV, TA= +25°C, unless otherwise noted.)
0.4
0.6
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
MAX9015/MAX9016
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX9015 toc01
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (μA)
1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5
TA = +85°C
TA = +25°C
TA = -40°C
0.8
1.0
0.9
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
MAX9017/MAX9018
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX9015 toc02
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (μA)
1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5
TA = +85°C
TA = +25°C
TA = -40°C
0.4
0.6
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
MAX9019/MAX9020
SUPPLY CURRENT
vs. SUPPLY VOLTAGE AND TEMPERATURE
MAX9015 toc03
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (μA)
1.5 2.52.0 3.0 4.03.5 4.5 5.0 5.5
TA = +85°C
TA = +25°C
TA = -40°C
0.4
0.6
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
MAX9015/MAX9016
SUPPLY CURRENT vs. TEMPERATURE
MAX9015 toc04
TEMPERATURE (°C)
SUPPLY CURRENT (μA)
-40 -15 10 35 60 85
VCC = 3V
VCC = 1.8V
VCC = 5V
0.8
1.0
0.9
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
MAX9017/MAX9018
SUPPLY CURRENT vs. TEMPERATURE
MAX9015 toc05
TEMPERATURE (°C)
SUPPLY CURRENT (μA)
-40 -15 10 35 60 85
VCC = 3V
VCC = 1.8V
VCC = 5V
0.4
0.6
0.5
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
MAX9019/MAX9020
SUPPLY CURRENT vs. TEMPERATURE
MAX9015 toc06
TEMPERATURE (°C)
SUPPLY CURRENT (μA)
-40 -15 10 35 60 85
VCC = 3V
VCC = 1.8V
VCC = 5V
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
6 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL= 15pF, VOVERDRIVE = 100mV, TA= +25°C, unless otherwise noted.)
50
1 10 100 1k 10k 100k
40
45
30
35
20
25
10
15
0
5
MAX9015/MAX9016
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9015 toc07
OUTPUT TRANSITION FREQUENCY (Hz)
SUPPLY CURRENT (μA)
VCC = 3V
VCC = 1.8V
VCC = 5V
35
1 10 100 1k 10k 100k
30
20
25
15
10
0
5
MAX9017/MAX9018
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9015 toc08
OUTPUT TRANSITION FREQUENCY (Hz)
SUPPLY CURRENT (μA)
VCC = 3V
VCC = 1.8V
VCC = 5V
50
1 10 100 1k 10k 100k
45
30
35
40
25
20
0
15
5
10
MAX9019/MAX9020
SUPPLY CURRENT
vs. OUTPUT TRANSITION FREQUENCY
MAX9015 toc09
OUTPUT TRANSITION FREQUENCY (Hz)
SUPPLY CURRENT (μA)
VCC = 3V
VCC = 1.8V
VCC = 5V
0
150
200
100
50
300
350
250
500
400
450
550
600
700
650
750
023415679810
OUTPUT VOLTAGE LOW
vs. SINK CURRENT
MAX9015 toc10
SINK CURRENT (mA)
VOL (mV)
VCC = 3V
VCC = 1.8V
VCC = 5V
0
100
200
400
300
500
600
0 2341 567 9810
OUTPUT VOLTAGE LOW
vs. SINK CURRENT AND TEMPERATURE
MAX9015 toc11
SINK CURRENT (mA)
VOL (mV)
TA = +85°C
TA = -40°C
TA = +25°C
0
0.1
0.2
0.5
0.3
0.4
0.6
0.7
0 2341 567 9810
OUTPUT VOLTAGE HIGH
vs. SOURCE CURRENT
MAX9015 toc12
SOURCE CURRENT (mA)
VCC - VOH (V)
VCC = 3V
VCC = 1.8V
VCC = 5V
0
0.1
0.2
0.5
0.3
0.4
0.6
023415679810
OUTPUT VOLTAGE HIGH
vs. SOURCE CURRENT AND TEMPERATURE
MAX9015 toc13
SOURCE CURRENT (mA)
VCC - VOH (V)
TA = +85°C
TA = -40°C
TA = +25°C
0
5
10
30
35
25
15
20
40
-40 -15 10 35 60 85
SHORT-CIRCUIT TO VCC (SINK CURRENT)
vs. TEMPERATURE
MAX9015 toc14
TEMPERATURE (°C)
SINK CURRENT (mA)
VCC = 3V
VCC = 1.8V
VCC = 5V
0
5
10
35
30
45
40
25
15
20
50
-40 -15 10 35 60 85
SHORT-CIRCUIT TO GND
(SOURCE CURRENT) vs.TEMPERATURE
MAX9015toc15
TEMPERATURE (°C)
SINK CURRENT (mA)
VCC = 3V
VCC = 1.8V
VCC = 5V
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
_______________________________________________________________________________________
7
INPUT OFFSET VOLTAGE DISTRIBUTION
MAX9015 toc16
VOS (mV)
PERCENTAGE OF UNITS (%)
1.20.9-1.2 -0.9 -0.6 0 0.3-0.3 0.6
1
2
3
4
5
6
7
8
0
-1.5 1.5
OFFSET VOLTAGE vs. TEMPERATURE
MAX9015 toc17
TEMPERATURE (°C)
VOS (mV)
603510-15
-1.6
-1.2
-0.8
-0.4
0
0.4
0.8
1.2
1.6
2.0
-2.0
-40 85
VCC = 1.8V
VCC = 5V
REFERENCE VOLTAGE DISTRIBUTION
MAX9015 toc18
VREF (V)
PERCENTAGE OF UNITS (%)
1.2381.2361.234
5
10
15
20
25
30
0
1.232 1.240
A GRADE
HYSTERESIS VOLTAGE
vs. TEMPERATURE
MAX9015 toc19
TEMPERATURE (°C)
VHB (mV)
603510-15
2.5
3.0
3.5
4.0
4.5
5.0
2.0
-40 85
1.234
1.236
1.230
1.232
1.238
1.240
-40 -15 10 35 60 85
REFERENCE VOLTAGE
vs. TEMPERATURE
MAX9015 toc20
TEMPERATURE (°C)
REFERENCE VOLTAGE (V)
VCC = 3V
VCC = 1.8V
VCC = 5V
A GRADE
1.234
1.235
1.239
1.238
1.236
1.237
1.240
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
REFERENCE VOLTAGE
vs. SUPPLY VOLTAGE
MAX9015 toc21
SUPPLY VOLTAGE (V)
REFERENCE VOLTAGE (V)
1.226
1.232
1.229
1.235
1.238
08040 120 160 200
REFERENCE VOLTAGE
vs. REFERENCE SOURCE CURRENT
MAX9015 toc22
REFERENCE SOURCE CURRENT (nA)
REFERENCE VOLTAGE (V)
VCC = 1.8V
VCC = 5V
VCC = 3V
1.232
1.238
1.236
1.234
1.244
1.242
1.240
1.246
1.248
08040 120 160 200
REFERENCE VOLTAGE
vs. REFERENCE SINK CURRENT
MAX9015 toc23
REFERENCE SINK CURRENT (nA)
REFERENCE VOLTAGE (V)
VCC = 1.8V
VCC = 5V
VCC = 3V
1.225
1.235
1.230
1.245
1.240
1.250
1.255
08040 120 160 200
REFERENCE
VOLTAGE
vs.
REFERENCE
SINK CURRENT AND TEMPERATURE
MAX9015 toc24
REFERENCE SINK CURRENT (nA)
REFERENCE VOLTAGE (V)
VCC = 3V TA = +85°C
TA = +25°C
TA = -40°C
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL= 15pF, VOVERDRIVE = 100mV, TA= +25°C, unless otherwise noted.)
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
8 _______________________________________________________________________________________
-1.000
-0.600
0.200
-0.200
0.600
1.000
-0.5 1.50.5 2.5 3.5 4.5 5.5
INPUT BIAS CURRENT
vs. INPUT BIAS VOLTAGE
MAX9015 toc25
INPUT BIAS VOLTAGE (IN-) (V)
INPUT BIAS CURRENT (IN-) (nA)
IN+ = 2.5V
0
6
4
2
12
10
8
14
16
-40 10-15 35 60 85
PROPAGATION DELAY (tPD-)
vs. TEMPERATURE
MAX9015 toc26
TEMPERATURE (°C)
tPD- (μs)
VCC = 1.8V
VCC = 5V
VCC = 3V
0
10
30
20
40
50
-40 10-15 35 60 85
PROPAGATION DELAY (tPD+)
vs. TEMPERATURE
MAX9015 toc27
TEMPERATURE (°C)
tPD+ (μs)
VCC = 5V
VCC = 3V
VCC = 1.8V
180
0
0.01 0.1 1 10 100 1000
PROPAGATION DELAY (tPD-)
vs. CAPACITIVE LOAD
20
40
MAX9015 toc28
CAPACITIVE LOAD (nF)
tPD- (μs)
80
60
140
160
120
100
VCC = 1.8V
VCC = 3V
VCC = 5V
200
0
0.01 0.1 1 10 100 1000
PROPAGATION DELAY (tPD+)
vs. CAPACITIVE LOAD
20
40
60
MAX9015 toc29
CAPACITIVE LOAD (nF)
tPD+
(
μs
)
100
80
160
180
140
120
VCC = 1.8V
VCC = 3V
VCC = 5V
0
10
30
20
40
50
0
20
10 20 30 40 50
PROPAGATION DELAY (tPD-)
vs. INPUT OVERDRIVE
MAX9015 toc30
INPUT OVERDRIVE (mV)
tPD- (μs)
VCC = 1.8V
VCC = 5V
VCC = 3V
0
15
10
5
30
25
20
35
40
02010 30 40 50
PROPAGATION DELAY (tPD+)
vs. INPUT OVERDRIVE
MAX9015 toc31
INPUT OVERDRIVE (mV)
tPD+ (μs)
VCC = 5V
VCC = 3V
VCC = 1.8V
4
10k 10M1M100k
PROPAGATION DELAY (tPD-)
vs. PULLUP RESISTANCE
10
7
6
5
9
8
MAX9015 toc32
RPULLUP (Ω)
tPD- (μs)
VCC = 1.8V
VCC = 3V
VCC = 5V
0
10k 10M1M100k
PROPAGATION DELAY (tPD+)
vs. PULLUP RESISTANCE
200
80
40
160
120
MAX9015 toc33
RPULLUP (Ω)
tPD+ (μs)
VCC = 5V
VCC = 3V
VCC = 1.8V
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL= 15pF, VOVERDRIVE = 100mV, TA= +25°C, unless otherwise noted.)
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
_______________________________________________________________________________________
9
PROPAGATION DELAY (tPD-) (VCC = 5V)
MAX9015 toc34
2μs/div
VOUT
2V/div
VIN+
50mV/div
PROPAGATION DELAY (tPD+) (VCC = 5V)
MAX9015 toc35
10μs/div
VOUT
2V/div
VIN+
50mV/div
PROPAGATION DELAY (tPD-) (VCC = 3V)
MAX9015 toc36
2μs/div
VOUT
2V/div
VIN+
50mV/div
PROPAGATION DELAY (tPD+) (VCC = 3V)
MAX9015 toc37
10μs/div
VOUT
2V/div
VIN+
50mV/div
PROPAGATION DELAY (tPD-) (VCC = 1.8V)
MAX9015 toc38
2μs/div
VOUT
1V/div
VIN+
50mV/div
PROPAGATION DELAY (tPD+) (VCC = 1.8V)
MAX9015 toc39
10μs/div
VOUT
1V/div
VIN+
50mV/div
1kHz RESPONSE (VCC = 5V)
MAX9015 toc40
200μs/div
OUT
2V/div
IN+
50mV/div
AC-COUPLED
SLOW POWER-UP/DOWN RESPONSE
MAX9015 toc41
40μs/div
VOUT
1V/div
VCC
1V/div
POWER-UP RESPONSE
MAX9015 toc42
20μs/div
VREF
1V/div
VCC
2V/div
VOUT
2V/div
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, CL= 15pF, VOVERDRIVE = 100mV, TA= +25°C, unless otherwise noted.)
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
10 ______________________________________________________________________________________
Pin Description
PIN
MAX9015/
MAX9016
MAX9017/
MAX9018
MAX9019/
MAX9020
NAME FUNCTION
1 REF 1.24V Reference Output
2 IN- Comparator Inverting Input
3 IN+ Comparator Noninverting Input
444V
EE Negative Supply Voltage
5, 8 N.C. No Connection. Not internally connected.
6 OUT Comparator Output
788V
CC Positive Supply Voltage
1 1 OUTA Comparator A Output
3 3 INA+ Comparator A Noninverting Input
5 5 INB+ Comparator B Noninverting Input
6 6 INB- Comparator B Inverting Input
7 7 OUTB Comparator B Output
2 INA- Comparator A Inverting Input
—2
REF/
INA-
1.24V Reference Output. Internally connected to the inverting input of
comparator A (MAX9017/MAX9018 only).
MAX9015
MAX9016
IN+
OUT
VCC
VEE
IN-
REF
1.24V
6
7
REF
4
MAX9017
MAX9018
VCC
8
INA+
OUTA
VCC
VEE
REF/INA-
REF
1.24V
1
8
INB+
4
INB-
OUTB 7
3
2
5
6
3
2
5
6
INA+
VCC
8
MAX9019
MAX9020
1
7
OUTA
OUTB
INA-
INB+
INB-
VEE
4
3
2
1
Functional Diagrams
Detailed Description
The MAX9015–MAX9018 feature an on-board 1.24V
±0.5% (±1.45% for the B grade) reference, yet draw an
ultra-low supply current. The MAX9019/MAX9020
(duals without reference) consume just 850nA of supply
current. All devices are guaranteed to operate down to
1.8V supply. Their common-mode input voltage range
extends 200mV beyond-the-rails. An internal 4mV hys-
teresis ensures clean output switching, even with slow-
moving input signals. Large internal output drivers
swing rail-to-rail with up to ±6mA loads (MAX9015/
MAX9017/MAX9019).
The output stage employs a unique design that mini-
mizes supply-current surges while switching, which vir-
tually eliminates the supply glitches typical of many
other comparators. The MAX9015/MAX9017/MAX9019
have a push-pull output stage that sinks as well as
sources current. The MAX9016/MAX9018/MAX9020
have an open-drain output stage that can be pulled
beyond VCC up to 5.5V above VEE. These open-drain
versions are ideal for implementing wire-ORed output
logic functions.
Input Stage Circuitry
The input common-mode voltage ranges extend from
VEE - 0.2V to VCC + 0.2V. These comparators operate
at any differential input voltage within these limits. Input
bias current is typically ±150pA at the trip point, if the
input voltage is between the supply rails. Comparator
inputs are protected from overvoltage by internal ESD
protection diodes connected to the supply rails. As the
input voltage exceeds the supply rails, these ESD pro-
tection diodes become forward biased and begin to
conduct increasing input bias current (see the Input
Bias Current vs. Input Bias Voltage graph in the
Typical
Operating Characteristics
).
Output Stage Circuitry
The MAX9015–MAX9020 feature a unique break-
before-make output stage capable of driving ±8mA
loads rail-to-rail. Many comparators consume orders of
magnitude more current during switching than during
steady-state operation. However, with the MAX9015–
MAX9020 family of comparators, the supply-current
change during an output transition is extremely small.
In the
Typical Operating Characteristics
, the Supply
Current vs. Output Transition Frequency graphs show
the minimal supply-current increase as the output
switching frequency approaches 1kHz. This character-
istic reduces the need for power-supply filter capaci-
tors to reduce glitches created by comparator
switching currents. In battery-powered applications,
this characteristic results in a substantial increase in
battery life.
Reference (MAX9015–MAX9018)
The MAX9015–MAX9018s’ internal +1.24V reference
has a typical temperature coefficient of 40ppm/°C over
the full -40°C to +85°C temperature range. The refer-
ence is a very-low-power bandgap cell, with a typical
35kΩoutput impedance. REF can source and sink up
to 100nA to external circuitry. For applications needing
increased drive, buffer REF with a low input-bias cur-
rent op amp such as the MAX4162. Most applications
require no REF bypass capacitor. For noisy environ-
ments or fast transients, connect a 1nF to 10nF ceramic
capacitor from REF to GND.
Applications Information
Low-Voltage, Low-Power Operation
The MAX9015–MAX9020 are ideally suited for use with
most battery-powered systems. Table 1 lists a variety of
battery types, capacities, and approximate operating
times for the MAX9015–MAX9020, assuming nominal
conditions.
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
______________________________________________________________________________________ 11
Table 1. Battery Applications Using the MAX9015–MAX9020
BATTERY
TYPE
RECHARGEABLE
VFRESH
(V)
VEND-OF-
LIFE (V)
CAPACITY,
AA SIZE
(mA-hr)
MAX9016A
OPERATING
TIME (hr)
MAX9017/
MAX9018
OPERATING
TIME (hr)
MAX9019/
MAX9020
OPERATING
TIME (hr)
Alkaline (2 cells) No 3.0 1.8 2000 2000k 1540k 1333k
Nickel-cadmium
(2 cells) Yes 2.4 1.8 750 750k 570k 500k
Nickel-metal-hydride
(2 cells) Yes 2.4 1.8 1000 1000k 770k 660k
Lithium-ion (1 cell) Yes 3.6 2.9 1000 1000k 770k 660k
MAX9015–MAX9020
Internal Hysteresis
Many comparators oscillate in the linear region of oper-
ation because of noise or undesired parasitic feed-
back. Oscillations can occur when the voltage on one
input is equal or very close to the voltage on the other
input. The MAX9015–MAX9020 have internal 4mV hys-
teresis to counter parasitic effects and noise.
The hysteresis in a comparator creates two trip points:
one for the rising input voltage (VTHR) and one for the
falling input voltage (VTHF) (Figure 1). The difference
between the trip points is the hysteresis (VHB). When
the comparator’s input voltages are equal, the hystere-
sis effectively causes one comparator input to move
quickly past the other, thus taking the input out of the
region where oscillation occurs. Figure 1 illustrates the
case in which the comparator’s inverting input has a
fixed voltage applied, and the noninverting input is var-
ied. If the inputs were reversed, the figure would be the
same, except with an inverted output.
Additional Hysteresis
(MAX9015/MAX9017/MAX9019)
(Push-Pull Outputs)
The MAX9015/MAX9017/MAX9019 feature a built-in
4mV hysteresis band (VHB). Additional hysteresis can
be generated with three resistors using positive feed-
back (Figure 2). Use the following procedure to calcu-
late resistor values:
1) Select R3. Input bias current at IN_+ is less than
2nA, so the current through R3 should be at least
0.2µA to minimize errors caused by input bias cur-
rent. The current through R3 at the trip point is
(VREF - VOUT)/R3. Considering the two possible out-
put states in solving for R3 yields two formulas: R3
= VREF/IR3 or R3 = (VCC - VREF)/IR3. Use the small-
er of the two resulting resistor values. For example,
when using the MAX9017 (VREF = 1.24V) and VCC
= 5V, and if we choose IR3 = 0.2µA, then the two
resistor values are 6.2MΩand 19MΩ. Choose a
6.2MΩstandard value for R3.
2) Choose the hysteresis band required (VHB). For this
example, choose 50mV.
3) Calculate R1 according to the following equation:
For this example, insert the values:
4) Choose the trip point for VIN rising (VTHR) such that:
where VTHR is the trip point for VIN rising. This is the
threshold voltage at which the comparator switches
its output from low to high as VIN rises above the
trip point. For this example, choose 3V.
5) Calculate R2 as follows:
For this example, choose a 44.2kΩstandard value.
R
VX k k M
k
V
21
124 62
1
62
1
62
43 99
30
=
Ω
Ω
Ω
(. ) .
.
.
R
V
VXRRR
THR
REF
21
1
1
1
1
3
=
VV V
V
THR REF HB
CC
>+
1
RM
mV
Vk162 50
512
.
RRV
V
HB
CC
13=
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
12 ______________________________________________________________________________________
THRESHOLDS
OUT
IN+
IN-
VHB
HYSTERESIS
BAND
VTHF
VTHR
Figure 1. Threshold Hysteresis Band
VCC
MAX9015
MAX9017
MAX9019
OUT
R3
R1
R2
VREF
VEE
VIN
VCC
Figure 2. MAX9015/MAX9017/MAX9019 Additional Hysteresis
6) Verify the trip voltages and hysteresis as follows:
VIN rising: = 2.992V, which is equivalent to REF
times R1 divided by the parallel combination of R1,
R2:
and R3.
VIN falling: = 2.942V:
Hysteresis = VTHR - VTHF = 50mV.
Additional Hysteresis
(MAX9016/MAX9018/MAX9020)
(Open-Drain Outputs)
The MAX9016/MAX9018/MAX9020 feature a built-in 4mV
hysteresis band. These devices have open-drain outputs
and require an external pullup resistor (Figure 3).
Additional hysteresis can be generated using positive
feedback, but the formulas differ slightly from those of
the MAX9015/MAX9017/MAX9019. Use the following
procedure to calculate resistor values:
1) Select R3. Input bias current at IN_+ is less than
2nA, so the current through R3 should be at least
0.2µA to minimize errors caused by input bias cur-
rent. The current through R3 at the trip point is
(VREF - VOUT)/R3. Considering the two possible out-
put states in solving for R3 yields two formulas: R3
= VREF/IR3 or R3 = [(VCC - VREF)/IR3] - R4. Use the
smaller of the two resulting resistor values. For
example, when using the MAX9018 (VREF = 1.24V)
and VCC = 5V, and if we choose IR3 = 0.2µA, and
R4 = 1MΩ, then the two resistor values are 6.2MΩ
and 18MΩ. Choose a 6.2MΩstandard value for R3.
2) Choose the hysteresis band required (VHB).
3) Calculate R1 according to the following equation.
For this example, insert the values:
4) Choose the trip point for VIN rising (VTHR) such that:
(VTHR is the trip point for VIN rising). This is the
threshold voltage at which the comparator switches
its output from low to high as VIN rises above the
trip point. For this example, choose 3V:
5) Calculate R2 as follows:
For this example, choose a 49.9kΩstandard value.
6) Verify the trip voltages and hysteresis as follows:
Hysteresis = VTHR - VTHF = 50mV.
V falling V V x R RR R
R
RR
xV V
IN THF REF
CC
:
.
=
+
+
+=
11
1
1
2
1
3
1
34 2 993
VrigV V xR RR R
V
IN THR REF
sin :
.
=
+
+
=
11
1
1
2
1
3
3 043
R
V
Vx k k M
k2 1
30
124 72
1
72
1
62
51 1=
Ω
Ω
Ω
.
..
.
R
V
VxR R R
THR
REF
21
1
1
1
1
3
=
VV V
V
THR REF HB
CC
>+
1
RMM
mV
Vk162 1 50
572+Ω
(. )
RRRV
V
HB
CC
134=+
()
VV RxV
R
THF THR CC
=−
1
3
VVxR
RR R
THR REF
=
+
+
11
1
1
2
1
3
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
______________________________________________________________________________________ 13
VEE
VCC OUT
R3
R2
R1 R4
VREF
VIN
VCC
MAX9016
MAX9018
MAX9020
Figure 3. MAX9016/MAX9018/MAX9020 Additional Hysteresis
MAX9015–MAX9020
Board Layout and Bypassing
The MAX9015–MAX9020 ultra-low supply current typi-
cally requires no power-supply bypass capacitors.
However, when the supply has high output impedance,
long lead lengths or excessive noise, or fast transients,
bypass VCC to VEE with a 0.1µF capacitor placed as
close to the VCC pin as possible. Minimize signal trace
lengths to reduce stray capacitance. Use a ground
plane and surface-mount components for best perfor-
mance. If REF is decoupled, use a low-leakage ceram-
ic capacitor.
Window Detector
The MAX9018 is ideal for window detectors (undervolt-
age/overvoltage detectors). Figure 4 shows a window
detector circuit for a single-cell Li+ battery with a 2.9V
end-of-life charge, a peak charge of 4.2V, and a nomi-
nal value of 3.6V. Choose different thresholds by
changing the values of R1, R2, and R3. OUTA provides
an active-low undervoltage indication, and OUTB pro-
vides an active-low overvoltage indication. ANDing the
two open-drain outputs provides an active-high, power-
good signal.
The design procedure is as follows:
1) Select R1. The input bias current into INB- is nor-
mally less than 2nA, so the current through R1
should exceed 100nA for the thresholds to be accu-
rate. In this example, choose R1 = 1.24MΩ
(1.24V/1µA).
2) Calculate R2 + R3. The overvoltage threshold
should be 4.2V when VIN is rising. The design
equation is as follows:
=2.95MΩ
3) Calculate R2. The undervoltage threshold should
be 2.9V when VIN is falling. The design equation is
as follows:
= 546kΩ
For this example, choose a 499kΩstandard value 1%
resistor.
4) Calculate R3:
R3 = (R2 + R3) - R2
= 2.95MΩ- 546kΩ
= 240MΩ
5) Verify the resistor values. The equations are as fol-
lows, evaluated for the above example:
Overvoltage threshold:
Undervoltage threshold:
where the internal hysteresis band, VHB, is 4mV.
Zero-Crossing Detector
Figure 5 shows a zero-crossing detector application.
The MAX9015/MAX9016/MAX9019/MAX9020s’ invert-
ing input is connected to ground, and its noninverting
input is connected to a 100mVP-P signal source. As the
signal at the noninverting input crosses zero, the com-
parator’s output changes state.
VVVx
RRR
RR V
UTH REF HB
=− ++
+=()
()
()
.
123
12 297
VVVx
RRR
RV
OTH REF HB
=+ ++ =()
()
.
123
1420
+Ω Ω(. . ) (. )
..124 295 1 236
29 124MMx M
RRRRx
VV
VR
REF HB
UTH
2123 1=++
()
+
124 42
1 24 0 004 1..
..
Mx V
V
RRRx V
VV
OTH
REF HB
231 1+= +
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
14 ______________________________________________________________________________________
MAX9018
VCC
INA+
OUTA
VCC
VEE
REF/INA-
REF
1.24V
INB+
INB-
OUTB
VEE
VIN VOTH = 4.2V
VUTH = 2.9V
R3
R2
R1
5V
POWER-
GOOD
Figure 4. Window Detector Circuit
Logic-Level Translator
The open-drain comparators can be used to convert 5V
logic to 3V logic levels. The MAX9020 can be powered
by the 5V supply voltage, and the pullup resistor for the
MAX9020’s open-drain output is connected to the 3V
supply voltage. This configuration allows the full 5V
logic swing without creating overvoltage on the 3V logic
inputs. For 3V to 5V logic-level translations, connect the
3V supply voltage to VCC and the 5V supply voltage to
the pullup resistor.
Chip Information
TRANSISTOR COUNT: 349
PROCESS: BiCMOS
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
______________________________________________________________________________________ 15
MAX9015
MAX9016
MAX9019
MAX9020
IN+
OUT
VCC
100mVP-P
VCC
VEE
IN-
Figure 5. Zero-Crossing Detector
MAX9017
VCC
INA+
OUTA
VCC
VEE
REF/INA-
REF
1.24V
INB+
INB-
OUTB
VEE
VIN VOTH = 4.2V
VUTH = 2.9V
R3
R2
R1
5V
UNDERVOLTAGE
OVERVOLTAGE
Typical Application Circuit
Ordering Information (continued)
PART TEMP RANGE PIN-
PACKAGE
TOP
MARK
MAX9018AEKA-T -40°C to +8C 8 SOT23 AEIR
MAX9018BEKA-T -40°C to +8C 8 SOT23 AEIT
MAX9019EKA-T -40°C to +8C 8 SOT23 AEIU
MAX9020EKA-T -40°C to +8C 8 SOT23 AEIV
OUT
N.C.VEE
1
2
8
7
N.C.
VCC
IN-
IN+
REF
SOT23
TOP VIEW
3
4
6
5
MAX9015
MAX9016 INB-
INB+VEE
1
2
8
7
VCC
OUTBREF/INA-
INA+
OUTA
SOT23
3
4
6
5
MAX9017
MAX9018 INB-
INB+VEE
1
2
8
7
VCC
OUTBINA-
INA+
OUTA
SOT23
3
4
6
5
MAX9019
MAX9020
Pin Configurations
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
16 ______________________________________________________________________________________
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
8 SOT23 K8-5 21-0078
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the
package regardless of RoHS status.
MAX9015–MAX9020
SOT23, Dual, Precision, 1.8V, Nanopower
Comparators With/Without Reference
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
17
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
2 12/09 Updated EC table parameters after final test changes 2, 4