
DS36C200
SNLS111D –JUNE 1998–REVISED APRIL 2013
www.ti.com
DEVICE PIN DESCRIPTIONS
Pin# Name Mode Description
(In mode only)
3 DE Transmit Driver Enable: When asserted low driver is disabled. And when asserted
high driver is enabled.
1, 7 DI TTL/CMOS driver input pins
10, 13 DO+ Non-inverting driver output pin
11, 12 DO−Inverting driver output pin
4 RE* Receive Receiver Enable: When asserted low receiver is enabled. And when
asserted high receiver is disabled.
1, 7 RO Receiver output pin
10, 13 RI+ Positive receiver input pin
11, 12 RI−Negative receiver input pin
5 GND Transmit and Ground pin
2 VCC Receive Positive power supply pin, +5V ± 10%
6, 8, 9, 14 NC No Connect
IEEE 1394
The DS36C200 drives and receives IEEE 1394 physical layer signal levels. The current mode driver is capable of
driving a 55Ωload with VOD between 172 mV and 285 mV. The DS36C200 is not designed to work with a link
layer controller IC requiring full 1394 physical layer compliancy to the standard. No clock generator, no
arbitration, and no encode/decode logic is provided with this device. For a 1394 link where speed sensing, bus
arbitration, and other functions are not required, a controller and the DS36C200 will provide a cost effective, high
speed dedicated link. This is shown in Figure 11. In applications that require fully compliant 1394 protocol, a link
layer controller and physical layer controller will be required as shown in Figure 11. The physical layer controller
supports up to three DC36C200 devices (not shown).
The DS36C200 drivers are current mode drivers and intended to work with a two 110Ωtermination resistors in
parallel with each other. The termination resistors should match the characteristic impedance of the transmission
media. The drivers are current mode devices therefore the resistors are required. Both resistors are required for
half duplex operation and should be placed as close to the DO/RI+ and DO/RI−pins as possible at opposite
ends of the bus. However, if your application only requires simplex operation, only one termination resistor is
required. In addition, note the voltage levels will vary from those in the datasheet due to different loading. Also,
AC or unterminated configurations are not used with this device. Multiple node configurations are possible as
long as transmission line effects are taken into account. Discontinuities are caused by mid-bus stubs,
connectors, and devices that affect signal integrity.
The differential line driver is a balanced current source design. A current mode driver, generally speaking has a
high output impedance and supplies a constant current for a range of loads (a voltage mode driver on the other
hand supplies a constant voltage for a range of loads). Current is switched through the load in one direction to
produce a logic state and in the other direction to produce the other logic state. The typical output current is mere
3.8 mA, a minimum of 3.1 mA, and a maximum of 5.2 mA. The current mode requires that a resistive
termination be employed to terminate the signal and to complete the loop as shown in Figure 12. The 3.8 mA
loop current will develop a differential voltage of 210 mV across the 55Ωtermination resistor which the receiver
detects with a 110 mV minimum differential noise margin neglecting resistive line losses (driven signal minus
receiver threshold (210 mV – 100 mV = 110 mV)). The signal is centered around +1.2V (Driver Offset, VOS) with
respect to ground as shown in Figure 8.
The current mode driver provides substantial benefits over voltage mode drivers, such as an RS-422 driver. Its
quiescent current remains relatively flat versus switching frequency. Whereas the RS-422 voltage mode driver
increases exponentially in most case between 20 MHz–50 MHz. This is due to the overlap current that flows
between the rails of the device when the internal gates switch. Whereas the current mode driver switches a fixed
current between its output without any substantial overlap current. This is similar to some ECL and PECL
devices, but without the heavy static ICC requirements of the ECL/PECL designs. LVDS requires > 80% less
current than similar PECL devices. AC specifications for the driver are a tenfold improvement over other existing
RS-422 drivers.
8Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated
Product Folder Links: DS36C200