PD - 94381D IRGB6B60KD IRGS6B60KD IRGSL6B60KD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features * Low VCE (on) Non Punch Through IGBT Technology. * Low Diode VF. * 10s Short Circuit Capability. * Square RBSOA. * Ultrasoft Diode Reverse Recovery Characteristics. * Positive VCE (on) Temperature Coefficient. VCES = 600V IC = 7.0A, TC=100C G tsc > 10s, TJ=150C E n-channel Benefits VCE(on) typ. = 1.8V * Benchmark Efficiency for Motor Control. * Rugged Transient Performance. * Low EMI. * Excellent Current Sharing in Parallel Operation. TO-220AB IRGB6B60KD D2Pak IRGS6B60KD TO-262 IRGSL6B60KD Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 25C IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Max. Units 600 13 7.0 26 26 13 7.0 26 20 90 36 -55 to +150 V A V W C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RJC RJC RCS RJA RJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight Min. Typ. Max. --- --- --- --- --- --- --- --- 0.50 --- --- 1.44 1.4 4.4 --- 62 40 --- Units C/W g 1 6/25/02 IRG/B/S/SL6B60KD Electrical Characteristics @ TJ = 25C (unless otherwise specified) V(BR)CES V(BR)CES/TJ VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 --- Temperature Coeff. of Breakdown Voltage --- 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 --- 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage --- -10 Forward Transconductance --- 3.0 Zero Gate Voltage Collector Current --- 1.0 --- 200 Diode Forward Voltage Drop --- 1.25 --- 1.20 Gate-to-Emitter Leakage Current --- --- Max. Units Conditions --- V VGE = 0V, IC = 500A --- V/C VGE = 0V, IC = 1.0mA, (25C-150C) 2.20 V IC = 5.0A, VGE = 15V 2.50 IC = 5.0A,VGE = 15V, TJ = 150C 5.5 V VCE = VGE, IC = 250A --- mV/C VCE = VGE, IC = 1.0mA, (25C-150C) --- S VCE = 50V, IC = 5.0A, PW=80s 150 A VGE = 0V, VCE = 600V 500 VGE = 0V, VCE = 600V, TJ = 150C 1.45 IC = 5.0A 1.40 V IC = 5.0A TJ = 150C 100 nA VGE = 20V Ref.Fig. 5, 6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operting Area SCSOA Short Circuit Safe Operting Area Erec trr Irr Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Ref.Fig. Max. Units Conditions --- IC = 5.0A --- nC VCC = 400V CT1 --- VGE = 15V CT4 210 J IC = 5.0A, VCC = 400V 245 VGE = 15V,R G = 100, L =1.4mH 455 Ls = 150nH TJ = 25C CT4 34 IC = 5.0A, VCC = 400V 26 VGE = 15V, RG = 100 L =1.4mH 230 ns Ls = 150nH, TJ = 25C 22 CT4 260 IC = 5.0A, VCC = 400V 13,15 300 J VGE = 15V,R G = 100, L =1.4mH WF1WF2 560 Ls = 150nH TJ = 150C 14, 16 37 IC = 5.0A, VCC = 400V CT4 26 VGE = 15V, RG = 100 L =1.4mH 255 ns Ls = 150nH, TJ = 150C WF1 27 WF2 --- VGE = 0V --- pF VCC = 30V --- f = 1.0MHz 4 TJ = 150C, IC = 26A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 100 CT2 CT3 s TJ = 150C, Vp =600V, RG = 100 10 --- --- WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 --- 90 175 J TJ = 150C 20, 21 --- 70 80 ns VCC = 400V, IF = 5.0A, L = 1.4mH CT4,WF3 --- 10 14 A VGE = 15V,RG = 100, Ls = 150nH Min. --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. 18.2 1.9 9.2 110 135 245 25 17 215 13.2 150 190 340 28 17 240 18 290 34 10 Note to are on page 15 2 www.irf.com IRG/B/S/SL6B60KD 15 100 90 80 70 IC (A) Ptot (W) 10 5 60 50 40 30 20 10 0 0 0 20 40 60 80 100 120 140 160 0 T C (C) 20 40 60 80 100 120 140 160 T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 IC A) IC (A) 10 s 1 1 100 s DC 1ms 0.1 0 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25C; TJ 150C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150C; VGE =15V 3 IRG/B/S/SL6B60KD 20 20 18 VGE VGE VGE VGE VGE 16 12 18 VGE VGE VGE VGE VGE 16 14 ICE (A) ICE (A) 14 = 18V = 15V = 12V = 10V = 8.0V 10 8 12 10 8 6 6 4 4 2 2 0 = 18V = 15V = 12V = 10V = 8.0V 0 0 1 2 3 4 5 6 0 1 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s 4 5 6 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s 20 30 18 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 14 12 -40C 25C 150C 25 20 IF (A) ICE (A) 3 VCE (V) 10 8 15 10 6 4 5 2 0 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150C; tp = 80s 4 0.0 0.5 1.0 1.5 2.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80s www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A VCE (V) VCE (V) IRG/B/S/SL6B60KD 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25C Fig. 9 - Typical VCE vs. VGE TJ = -40C 20 40 18 35 16 T J = 25C T J = 150C 30 12 10 ICE = 3.0A ICE = 5.0A 8 ICE = 10A 25 ICE (A) VCE (V) 14 20 15 6 10 4 T J = 150C 5 2 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150C www.irf.com 20 T J = 25C 0 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s 5 IRG/B/S/SL6B60KD 700 1000 600 tdOFF EON Swiching Time (ns) Energy (J) 500 400 EOFF 300 200 100 tF tdON tR 10 100 0 0 5 10 15 1 20 0 5 IC (A) 15 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150C; L=1.4mH; VCE= 400V RG= 100; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150C; L=1.4mH; VCE= 400V RG= 100; VGE= 15V 250 1000 tdOFF Swiching Time (ns) EOFF 200 Energy (J) 10 150 EON 100 100 tdON tR tF 10 50 1 0 0 50 100 150 R G () Fig. 15 - Typ. Energy Loss vs. RG TJ = 150C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V 6 200 0 50 100 150 200 RG () Fig. 16 - Typ. Switching Time vs. RG TJ = 150C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V www.irf.com IRG/B/S/SL6B60KD 20 25 RG = 22 16 20 IRR (A) IRR (A) RG = 47 15 RG = 100 12 8 10 RG = 150 4 5 0 0 0 5 10 15 0 20 50 100 200 RG () IF (A) Fig. 18 - Typical Diode IRR vs. RG TJ = 150C; IF = 5.0A Fig. 17 - Typical Diode IRR vs. IF TJ = 150C 1200 20 22 1000 16 Q RR (C) 12 8 10A 47 800 IRR (A) 150 100 600 5.0A 150 3.0A 400 200 4 0 0 0 200 400 600 800 diF /dt (A/s) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 5.0A; TJ = 150C www.irf.com 1000 0 200 400 600 800 1000 diF /dt (A/s) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150C 7 IRG/B/S/SL6B60KD 300 22 Energy (J) 250 200 47 150 100 100 150 50 0 5 10 15 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150C 16 1000 14 Cies 300V Capacitance (pF) 12 100 400V VGE (V) 10 Coes Cres 8 6 10 4 2 0 1 0 1 10 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 5 10 15 20 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600H www.irf.com IRG/B/S/SL6B60KD Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 J R1 R1 J 1 0.01 0.02 R2 R2 2 1 R3 R3 3 2 C 0.447 0.219 3 Ci= i/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ri (C/W) i (sec) 0.708 0.00022 0.00089 0.01037 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 J 0.01 0.02 0.1 R1 R1 J 1 1 R2 R2 2 3 2 C 3 Ri (C/W) i (sec) 1.194 0.000172 2.424 0.001517 0.753 Ci= i/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R3 R3 0.080325 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRG/B/S/SL6B60KD L L VCC DUT 80 V + - 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRG/B/S/SL6B60KD 9 400 8 350 7 90% ICE 300 6 25 400 20 300 15 TEST CURRENT 200 4 150 3 5% V CE 100 200 90% test current 100 2 5% ICE VCE (V) tf I CE (A) 5 VCE (V) 250 500 10% test current tr 50 1 0 0 Eof f Loss 0.30 5 5% V CE 0 -50 -0.20 10 ICE (A) 450 0 Eon Loss -1 -100 16.00 0.80 16.10 time(s) 16.20 16.30 -5 16.40 time (s) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150C using Fig. CT.4 50 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150C using Fig. CT.4 8 0 500 50 400 40 6 QR R 4 2 -150 0 -200 -2 -250 Peak IRR 10% Peak IRR -300 -400 -10 -450 -0.06 -12 0.24 time (S) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150C using Fig. CT.4 www.irf.com 30 200 20 100 10 -6 -8 0.14 IC E 300 -4 -350 0.04 VC E ICE (A) -100 VCE (V) t RR IF (A) V F (V) -50 0 -5.00 0.00 5.00 10.00 0 15.00 time (S) Fig. WF4- Typ. S.C Waveform @ TJ = 150C using Fig. CT.3 11 IRG/B/S/SL6B60KD TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 LEAD ASSIGNMENTS 15.24 (.600) 14.84 (.584) IGBTs, CoPACK HEXFET 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1- GATE 1- GATE 2- COLLECTOR 2- DRAIN1 - GATE 3- EMITTER 2 - DRAIN 3- SOURCE 4- COLLECTOR 4- DRAIN3 - SOURCE 3 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" INTERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE 12 PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com IRG/B/S/SL6B60KD D2Pak Package Outline D2Pak Part Marking Information THIS IS AN IRF530S WITH LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS SEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE www.irf.com PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L 13 IRG/B/S/SL6B60KD TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE 14 PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C www.irf.com IRG/B/S/SL6B60KD D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Energy losses include "tail" and diode reverse recovery. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 6/02 www.irf.com 15