SIMATIC
S7-400
S7-400 Automation System Module
Data
Reference Manual
Ausgabe 11/2016
A5E00850736-08
Preface
General specifications 1
Rack 2
Power supply modules 3
Digital modules 4
Analog modules 5
Interface modules 6
S5 interface IM 463-2 7
PROFIBUS DP master
interface IM 467/IM 467 FO 8
Cable duct and fan
subassemblies 9
RS 485 repeater 10
Parameter sets of signal
modules A
Diagnostic data of signal
modules B
Accessories and spare parts C
Directive on handling
electrostatic sensitive
devices (ESD) D
List of abbreviations E
Legal information
Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.
DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.
WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.
CAUTION
indicates that minor personal injury can result if proper precautions are not taken.
NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.
Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.
Proper use of Siemens products
Note the following:
WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.
Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.
Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in
this publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Siemens AG
Division Process Industries and Drives
Postfach 48 48
90026 NÜRNBERG
GERMANY
A5E00850736-08
Ⓟ 11/2016 Subject to change
Copyright © Siemens AG 2016.
All rights reserved
Preface
Purpose of this manual
The information contained in this manual can be used as a reference for operating, for
descriptions of the functions, and for the specifications of the signal modules, power supply
modules and interface modules of the S7-400.
How to configure, assemble and wire these modules in an S7-400 system is described in the
installation manuals for each system.
Basic knowledge required
This manual requires general knowledge of automation engineering.
In addition, you are required to know how to use computers or devices with similar functions
(e. g. programming devices) under Windows 2000 or XP operating systems. Since S7-400 is
configured with the
STEP 7
basic software, you have to have a good working knowledge of
the software. You can acquire this knowledge in the manual
"Programming with STEP 7"
. Read
the notes on the safety of electronic controllers in the appendix of the Installation manual –
especially when using an S7-400 in safety-relevant areas.
Target group
This manual is aimed at people with the required qualifications to commission, operate and
maintain the products described.
Scope of the manual
The manual applies to the S7-400 automation system.
Changes compared to the previous version
The following changes have been made compared to the previous version of this manual
S7-400 Automation System; Module Specifications, Edition 05/2007 (A5E00850735-04):
The revision of the ATEX standard was taken into consideration in chapter Standards,
certificates and approvals (Page 13).
Approvals
You can find details on the certificates and approvals in the chapter General specifications
(Page 13)“General specifications.”
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 3
Position in the information landscape
This manual forms part of the S7-400 documentation.
System Documentation package
S7-400
S7-400 automation system, installation
S7-400 automation system, module specifications
S7-400 automation system, CPU specifications
S7-400 instruction list
Further Information
You can find further and additional information on the topics in this manual in the following
manuals:
Programming with STEP 7 (http://support.automation.siemens.com/WW/view/en/18652056)
Configuring Hardware and Communication Connections with STEP 7 (http://
support.automation.siemens.com/WW/view/en/18652631)
System and Standard Functions (http://support.automation.siemens.com/WW/view/en/
1214574)
PROFINET system description (http://support.automation.siemens.com/WW/view/en/
19292127)
Isochrone mode (http://support.automation.siemens.com/WW/view/en/15218045)
Recycling and disposal
The S7-400 is environmentally friendly and is thus recyclable. For environmentally compliant
recycling and disposal of your discarded device, please contact a company certified for the
disposal of electronic waste.
Additional support
If you have any questions relating to the products described in this manual and cannot find the
answers in this documentation, please contact your Siemens partner at the appropriate office
or sales and service location.
You will find information on who to contact at:
Contact partners (http://www.siemens.com/automation/partner)
A guide to the technical documents for the various SIMATIC products and systems is available
at:
Documentation (http://www.automation.siemens.com/simatic/portal/html_76/techdoku.htm)
You can find the online catalog and order system under:
Catalog (http://mall.automation.siemens.com/)
Preface
S7-400 Automation System Module Data
4Reference Manual, Ausgabe 11/2016, A5E00850736-08
Training center
We offer a range of relevant courses to help you to get started with the SIMATIC S7 automation
system. Please contact your regional training center or our central training center in 90327
Nuremberg, Germany for details:
Training (http://www.sitrain.com/index_en.html)
Technical support
You can contact Technical Support for all Industry Automation products using the Web form
for Support Request
Support Request (http://www.siemens.de/automation/support-request)
Additional information about our technical support is available on the Internet at
Technical Support (http://support.automation.siemens.com)
Service & Support on the Internet
In addition to our documentation, we offer a comprehensive knowledge base online on the
Internet at:
Service & Support (http://www.siemens.com/automation/service&support)
There you will find:
Our newsletter containing up-to-date information on your products.
The latest documents via our search function in Service & Support.
An international forum where users and specialists can exchange their experiences.
Your local contact partner for automation and drive technology in our contacts database.
Information about on-site service, repairs and spare parts. Much more can be found under
"Services".
Applications and tools for optimizing operations with SIMATIC S7. Performance
measurements for DP and PN, for example, are also published here.
Preface
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 5
Preface
S7-400 Automation System Module Data
6Reference Manual, Ausgabe 11/2016, A5E00850736-08
Table of contents
Preface.........................................................................................................................................................3
1General specifications................................................................................................................................13
1.1 Standards, certificates and approvals....................................................................................13
1.2 Electromagnetic compatibility.................................................................................................20
1.3 Shipping and storage conditions for modules and backup batteries......................................23
1.4 Mechanical and ambient conditions for S7-400 operation.....................................................24
1.5 Information on insulation tests, protection class and degree of protection............................26
2 Rack...........................................................................................................................................................27
2.1 Function and design of the racks...........................................................................................27
2.2 The racks UR1 (6ES7400-1TAx1-0AA0) and UR2 (6ES7400-1JAx1-0AA0).........................29
2.3 UR2-H Rack 6ES7400-2JAx0-0AA0).....................................................................................31
2.4 Rack CR2 (6ES7401-2TA01-0AA0).......................................................................................33
2.5 Rack CR3 (6ES7401-1DA01-0AA0)......................................................................................35
2.6 Racks ER1 (6ES7403-1TAx1-0AA0) and ER2 (6ES7403-1JAx1-0AA0)...............................36
3 Power supply modules...............................................................................................................................39
3.1 Common characteristics of the power supply modules..........................................................39
3.2 Redundant power supply modules.........................................................................................41
3.3 Backup battery (option)..........................................................................................................43
3.4 Operator controls and indicators............................................................................................45
3.5 Fault/Error messages via LEDs.............................................................................................48
3.6 Power supply module PS 407 4A (6ES7407-0DA01-0AA0)..................................................54
3.7 Power supply module PS 407 4A (6ES7407-0DA02-0AA0)..................................................57
3.8 Power supply modules PS 407 10A (6ES7407-0KA01-0AA0) and PS 10A R
(6ES7407-0KR00-0AA0)........................................................................................................60
3.9 Power supply modules PS 407 10A (6ES7407-0KA02-0AA0) and PS 10A R
(6ES7407-0KR02-0AA0)........................................................................................................63
3.10 Power supply module PS 407 20A (6ES7407-0RA01-0AA0)................................................66
3.11 Power supply module PS 407 20A (6ES7407-0RA02-0AA0)................................................68
3.12 Power supply module PS 405 4A (6ES7405-0DA01-0AA0)..................................................70
3.13 Power supply module PS 405 4A (6ES7405-0DA02-0AA0)..................................................72
3.14 Power supply modules PS 405 10A (6ES7405-0KA01-0AA0) and PS 405 10A R
(405-0KR00-0AA0).................................................................................................................74
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 7
3.15 Power supply modules PS 405 10A (6ES7405-0KA02-0AA0) and PS 405 10A R
(405-0KR02-0AA0).................................................................................................................76
3.16 Power supply module PS 405 20A (6ES7405-0RA01-0AA0)................................................78
3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0)................................................80
4 Digital modules...........................................................................................................................................83
4.1 Module overview....................................................................................................................83
4.2 Steps in selecting and commissioning the digital module......................................................85
4.3 Assigning parameters to digital modules...............................................................................85
4.3.1 Parameters.............................................................................................................................85
4.3.2 Parameters of digital input modules.......................................................................................87
4.3.3 Parameters of digital output modules.....................................................................................88
4.4 Diagnostics for digital modules..............................................................................................88
4.4.1 General information about diagnostic messages...................................................................88
4.4.2 Diagnostic messages of the digital modules..........................................................................90
4.4.3 Causes of errors and remedies for digital modules................................................................91
4.5 Interrupts of the digital modules.............................................................................................93
4.6 Input characteristic curve for digital inputs.............................................................................95
4.7 Digital input module SM 421; DI 32 x DC 24 V (6ES7421-1BL01-0AA0)..............................97
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)............................100
4.8.1 Features...............................................................................................................................100
4.8.2 Assigning parameters to the SM 421; DI 16 x DC 24 V.......................................................105
4.8.3 Behavior of the SM 421; DI 16 x DC 24 V............................................................................107
4.9 Digital input module SM 421; DI 16 x AC 120 V (6ES7421-5EH00-0AA0)..........................109
4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0).......................112
4.10.1 Features...............................................................................................................................112
4.10.2 Assigning parameters to the SM 421; DI 16 x UC 24/60 V..................................................116
4.11 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7 421-1FH00-0AA0)..................119
4.12 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7421-1FH20-0AA0)...................122
4.13 Digital input module SM 421; DI 32xUC 120 V (6ES7421-1EL00-0AA0)............................126
4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES7422-1BH11-0AA0)................129
4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0).......132
4.15.1 Features...............................................................................................................................132
4.15.2 Assigning parameters to the SM 422; DO 16 x DC 20-125 V/1.5 A.....................................136
4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-1BL00-0AA0)...............137
4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0)...............140
4.17.1 Features...............................................................................................................................140
4.17.2 Assigning parameters to the SM 422; DO 32 x DC 24 V/0.5 A............................................144
4.17.3 Behavior of the SM 422; DO 32 x DC 24 V/0.5 A................................................................145
4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES7422-1FF00-0AA0)...........145
4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES7422-1FF00-0AA0).........149
Table of contents
S7-400 Automation System Module Data
8Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0)..........153
4.20.1 Features...............................................................................................................................153
4.20.2 Assigning parameters to the SM 422; DO 16 x AC 20-120 V/2 A........................................157
4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0)....158
5 Analog modules........................................................................................................................................163
5.1 General information..............................................................................................................163
5.2 Module overview..................................................................................................................164
5.3 Steps for commissioning analog modules............................................................................167
5.4 Representation of analog values..........................................................................................167
5.4.1 General information..............................................................................................................167
5.4.2 Representation of analog values of analog input channels..................................................169
5.4.3 Binary representation of input ranges..................................................................................170
5.4.4 Representation of analog values in voltage measuring ranges ..........................................172
5.4.5 Representation of analog values in the current measuring ranges......................................174
5.4.6 Representation of analog values for resistance-type sensors.............................................176
5.4.7 Representation of analog values for resistance thermometer ............................................177
5.4.8 Representation of analog values for thermocouples............................................................180
5.4.9 Representation of analog values for analog output channels..............................................185
5.5 Setting the measuring method and ranges of analog input channels..................................189
5.6 Behavior of the analog modules...........................................................................................192
5.6.1 Introduction..........................................................................................................................192
5.6.2 Effect of supply voltage and operating mode.......................................................................193
5.6.3 Effect of the value range for analog values..........................................................................194
5.6.4 Effect of operational limit and basic error limit.....................................................................195
5.7 Conversion, cycle, settling and response time of analog modules......................................196
5.8 Assigning parameters to analog modules............................................................................199
5.8.1 General information about parameter assignment...............................................................199
5.8.2 Parameters of analog input modules...................................................................................201
5.8.3 Parameters of analog output modules.................................................................................203
5.9 Connecting sensors to analog inputs...................................................................................204
5.10 Connecting voltage sensors.................................................................................................207
5.11 Connecting current sensors.................................................................................................208
5.12 Connecting resistance thermometers and resistors.............................................................212
5.13 Connecting thermocouples..................................................................................................215
5.14 Connecting loads/actuators to analog outputs.....................................................................219
5.15 Connecting loads/actuators to voltage outputs....................................................................220
5.16 Connecting loads/actuators to current outputs.....................................................................222
5.17 Diagnostics functions of analog modules.............................................................................223
5.18 Interrupts of analog modules................................................................................................227
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)..................................229
5.19.1 Features...............................................................................................................................229
Table of contents
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 9
5.19.2 Commissioning the SM 431; AI 8 x 13 Bit............................................................................235
5.19.3 Measuring methods and measuring ranges of SM 431; AI 8 x 13 Bit..................................236
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)..................................237
5.20.1 Features...............................................................................................................................237
5.20.2 Commissioning the SM 431; AI 8 x 14 Bit............................................................................247
5.20.3 Measuring methods and measuring ranges of SM 431; AI 8 x 14 Bit..................................249
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)..................................253
5.21.1 Features...............................................................................................................................253
5.21.2 Commissioning the SM 431; AI 8 x 14 Bit............................................................................259
5.21.3 Measuring methods and measuring ranges of SM 431; AI 8 x 14 Bit..................................262
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)...............................264
5.22.1 Features...............................................................................................................................264
5.22.2 Commissioning the SM 431; AI 16 x 13 Bit..........................................................................270
5.22.3 Measuring methods and measuring ranges of SM 431; AI 16 x 13 Bit................................271
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)...............................273
5.23.1 Features...............................................................................................................................273
5.23.2 Commissioning the SM 431; AI 16 x 16 Bit..........................................................................284
5.23.3 Measuring methods and measuring ranges of SM 431; AI 16 x 16 Bit................................288
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)......................292
5.24.1 Features...............................................................................................................................292
5.24.2 Commissioning the SM 431; AI 8 x RTD x 16 Bit.................................................................299
5.24.3 Measuring methods and measuring ranges of the SM 431; AI 8 x RTD x 16 Bit.................302
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)..................................303
5.25.1 Features...............................................................................................................................303
5.25.2 Commissioning the SM 431; AI 8 x 16 Bit............................................................................310
5.25.3 Measuring methods and measuring ranges of SM 431; AI 8 x 16 Bit..................................315
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0).............................316
5.26.1 Features...............................................................................................................................316
5.26.2 Commissioning the SM 432; AO 8 x 13 Bit..........................................................................322
5.26.3 Output ranges of the SM 432; AO 8 x 13 Bit .......................................................................323
6 Interface modules.....................................................................................................................................325
6.1 Common features of the interface modules.........................................................................325
6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0 (6ES7
461-0AA01-0AA0)................................................................................................................330
6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1
(6ES7461-1BA01-0AA0)......................................................................................................333
6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3
(6ES7461-3AA01-0AA0)......................................................................................................337
6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4;
(6ES7461-4AA01-0AA0)......................................................................................................340
7 S5 interface IM 463-2...............................................................................................................................345
7.1 Using SIMATIC S5 expansion units in an S7-400................................................................345
7.2 Rules for connecting S5 expansion units.............................................................................347
7.3 Operator controls and indicators..........................................................................................348
Table of contents
S7-400 Automation System Module Data
10 Reference Manual, Ausgabe 11/2016, A5E00850736-08
7.4 Installing and connecting the IM 463-2................................................................................350
7.5 Setting the operating modes of the IM 314..........................................................................352
7.6 Configuring S5 modules for operation in the S7-400...........................................................355
7.7 Pin assignments of the 721 cable........................................................................................357
7.8 Terminating connector for IM 314........................................................................................359
7.9 Specifications IM463-2 (6ES7463-2AA00-0AA0) ................................................................361
8 PROFIBUS DP master interface IM 467/IM 467 FO................................................................................363
8.1 PROFIBUS DP master interface IM 467/IM 467 FO............................................................363
8.1.1 Overview..............................................................................................................................363
8.1.2 Indicators and the mode selector.........................................................................................366
8.2 Configuration........................................................................................................................368
8.3 Connection to PROFIBUS DP..............................................................................................368
8.3.1 Connection options .............................................................................................................368
8.3.2 Bus connector......................................................................................................................369
8.3.3 Optical connection to PROFIBUS DP..................................................................................371
8.3.4 Connecting a fiber-optic cable to the IM 467 FO..................................................................372
8.4 Specifications.......................................................................................................................374
8.4.1 Specifications of the IM 467 (6ES7467-5GJ02-0AB0))........................................................374
8.4.2 Specifications of the IM 467 FO (6ES7467-5FJ00-0AB0) ...................................................376
9 Cable duct and fan subassemblies...........................................................................................................377
9.1 Features...............................................................................................................................377
9.2 Fan monitoring in the fan subassemblies.............................................................................378
9.3 Cable duct (6ES7408-0TA00-0AA0)....................................................................................380
9.4 The 120/230 VAC fan subassembly (6ES7408-1TB00-0XA0).............................................381
9.5 The 24 V DC fan subassembly (6ES7408-1TA01-0XA0)....................................................384
10 RS 485 repeater.......................................................................................................................................387
10.1 Introduction..........................................................................................................................387
10.2 Applications and features (6ES7972-0AA01-0XA0).............................................................388
10.3 Design of the RS 485 repeater (6ES7972-0AA01-0XA0)....................................................389
10.4 RS 485 repeater in ungrounded and grounded operation....................................................390
10.5 Specifications.......................................................................................................................392
A Parameter sets of signal modules............................................................................................................395
A.1 How to assign the parameters for signal modules in the user program...............................395
A.2 Parameters of digital input modules.....................................................................................397
A.3 Parameters of digital output modules...................................................................................400
A.4 Parameters of analog input modules...................................................................................403
Table of contents
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 11
B Diagnostic data of signal modules............................................................................................................405
B.1 Evaluating diagnostic data of signal modules in the user program......................................405
B.2 Structure and contents of diagnostic data bytes 0 and 1.....................................................406
B.3 Diagnostic data of the digital input modules as of byte 2.....................................................407
B.4 Diagnostic data of the digital output modules as of byte 2...................................................412
B.5 Diagnostic data of the analog input modules as of byte 2....................................................420
C Accessories and spare parts....................................................................................................................429
C.1 Accessories and spare parts................................................................................................429
D Directive on handling electrostatic sensitive devices (ESD).....................................................................433
D.1 ESD: What are the directives for handling electrostatic sensitive devices?.........................433
D.2 Electrostatic charging of persons.........................................................................................434
D.3 Basic protective measures against electrostatic discharge..................................................435
E List of abbreviations..................................................................................................................................437
E.1 List of abbreviations.............................................................................................................437
Glossary...................................................................................................................................................441
Index.........................................................................................................................................................455
Table of contents
S7-400 Automation System Module Data
12 Reference Manual, Ausgabe 11/2016, A5E00850736-08
General specifications 1
1.1 Standards, certificates and approvals
Information on the type plate
Note
You will find the current approvals on the type plate of the respective product.
WARNING
Open Equipment
Death, serious injury or substantial material damage can occur.
S7 400 modules are classified as open equipment, This means that the S7 400 should only
be installed in an enclosure or cabinet.
Access to the enclosures or cabinets should only be possible with a key or with a tool, and
access should only be permitted for trained or approved personnel.
IEC 61131-2
The S7-400 automation system meets the requirements and criteria of standard IEC 61131-2
(Programmable Controllers, Part 2: Equipment Requirements and Tests.)
CE marking
Our products meet the requirements and protective objectives of the following EU Directives
and comply with the corresponding European standards (EN):
Directive 2014/35/EU of the European Parliament and of the Council of 26 February 2014
on the harmonization of the laws of the Member States relating to the making available on
the market of electrical equipment designed for use within certain voltage limits (Low
Voltage Directive)
Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014
on the harmonization of the laws of the Member States relating to electromagnetic
compatibility (EMC Directive)
Directive 2014/34/EU of the European Parliament and of the Council of 26 February 2014
on the harmonisation of the laws of the Member States relating to equipment and protective
systems intended for use in potentially explosive atmospheres (ATEX Directive)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 13
The EC Declaration of Conformity can be downloaded from the Customer Support Internet
pages (keyword "declaration of conformity").
EMC directive
SIMATIC products are designed for industrial applications.
Table 1-1 Use in industry
Area of application Noise emission requirements Noise immunity requirements
Industry EN 61000-6-4: 2001 + A1:2011 EN 61000-6-2: 2005
Low voltage directive
The products in the following table meet the requirements of EU Directive 2014/35/EU "Low
Voltage Directive". Compliance with this EU directive has been checked in accordance with
DIN EN 61131-2 (corresponds to IEC 61131-2).
Table 1-2 Products that fulfill the requirements of the low-voltage directive
Name Order number
Digital input module SM 421;DI 32 x UC 120 V 6ES7 421-1EL00-0AA0
Digital input module SM 421;DI 16 x UC 120/230 V 6ES7 421-1FH00-0AA0
Digital output module SM 422;DO 8 x AC 120/230 V/5A 6ES7 422-1FF00-0AA0
Digital output module SM 422;DO 16 x AC 120/230 V/2A 6ES7 422-1FH00-0AB0
Relay output module SM 422;DO 16 x UC30/230 V/Rel5A 6ES7 422-1HH00-0AA0
Digital input module SM 421;DI 16 x UC 120/230 V 6ES7421-1FH20-0AA0
The 120/230 VAC fan subassembly 6ES7 408-1TB00-0XA0
PS 407 4A 6ES7 407-0DA01-0AA0
6ES7 407-0DA02-0AA0
PS 407 10A 6ES7 407-0KA01-0AA0
6ES7 407-0KA02-0AA0
PS 407 20A 6ES7 407-0RA01-0AA0
6ES7 407-0RA02-0AA0
PS 407 10A R 6ES7 407-0KR00-0AA0
6ES7 407-0KR02-0AA0
Note
In the new releases, some of the devices listed above fulfill the requirements of the explosion
protection guidelines instead of those of the low-voltage directive. Please note the information
on the type plate.
General specifications
1.1 Standards, certificates and approvals
S7-400 Automation System Module Data
14 Reference Manual, Ausgabe 11/2016, A5E00850736-08
ATEX Directive
In accordance with EN 60079-15 (Electrical Apparatus for Potentially Explosive Atmospheres;
Type of Protection "n") and EN 60079-0 (Electrical apparatus for explosive gas atmospheres
- Part 0: General requirements)
II 3 G Ex nA IIC T4..T6 Gc
Marking for Australia and New Zealand
Our products meet the requirements of standard EN 61000-6-4.
cULus approval
Note
The marks on the rating plate indicate which cULus approvals have been issued for your
product.
R
Underwriters Laboratories Inc., complying with
UL 508 (Industrial Control Equipment)
CSA C22.2 No. 142 (Process Control Equipment)
or cULus approval, Hazardous Location
HAZ. LOC.
R
CULUS Listed E248953 INT. CONT. EQ. FOR HAZ. LOC.
Underwriters Laboratories Inc., complying with
UL 508 (Industrial Control Equipment)
CSA C22.2 No. 142 (Process Control Equipment)
ISA 12.12.01 (Hazardous Location)
CSA-213 (Hazardous Location)
General specifications
1.1 Standards, certificates and approvals
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 15
APPROVED for Use in
Cl. 1, Div. 2, GP. A, B, C, D T4A
Cl. 1, Zone 2, GP. IIC T4
Note the following information.
or cULus Approvals, Hazardous Location for Relay Modules
HAZ. LOC.
R
CULUS Listed E223122 INT. CONT. EQ. FOR HAZ. LOC.
Underwriters Laboratories Inc., complying with
UL 508 (Industrial Control Equipment)
CSA C22.2 No. 142 (Process Control Equipment)
UL 1604 (Hazardous Location)
CSA-213 (Hazardous Location)
APPROVED for Use in
Cl. 1, Div. 2, GP. A, B, C, D T4A
Cl. 1, Zone 2, GP. IIC T4
Cl. 1, Zone 2, AEx nC IIC T4
Note the following information.
Note
This product must be installed according to the NEC (National Electric Code) stipulations.
When used in environments according to class I, division 2 (see above), S7-400 must be
mounted in an enclosure that corresponds to at least IP54 according to EN 60529.
You can find information about the use of S7-400 in hazardous areas of zone 2 in a separate
document, which is included in this documentation package.
General specifications
1.1 Standards, certificates and approvals
S7-400 Automation System Module Data
16 Reference Manual, Ausgabe 11/2016, A5E00850736-08
WARNING
Installation Instructions according cULus
WARNING – Explosion Hazard - Do not disconnect while circuit is live unless area is known
to be non-hazardous.
WARNING – Explosion Hazard - Substitution of components may impair suitability for Class
I, Division 2 or Class I, Zone 2
This equipment is suitable for use in Class I, Division 2, Groups A, B, C or D; Class I, Zone
2, Group IIC, or non-hazardous locations only.
CuULu requirements for hazardous location on the battery power supply for CPUs
The backup voltage for a CPU must be supplied over a non-incendive plug connection. The
figure below shows such a plug connection.
1 2
(1) Battery or supply voltage
(2) CPU with "Ext. Batt." connector
Figure 1-1 Back-up voltage supply
The following conditions apply to the performance characteristics of this connection:
Voc (no load voltage) = 15 V Vmax = 15 V
Isc (short-circuit current)= 50 mA Imax = 50 mA
Ca = Battery/voltage supply capacity Ci = 25 nF maximum
La = Battery/voltage supply inductance Li = 2 mH maximum
The battery/power supply that powers the non-incendive connection must comply with the
following ratings:
Battery/Power supply CPU input "Ext. Batt." with cable
Voc Vmax (15 V)
Isc Imax (50 mA)
Ca Ci + Cc (25 nF + Cc)
La Li + Lc (2 mH + Lc)
Cc = Cable capacity
Lc = Cable inductance
Note
If you do not know the capacity and inductance of the cable, you can use the following values:
Cc = 197 pF/m (60 pF/ft.), Lc = 0.66 mH/m (0.2 mH/ft)
General specifications
1.1 Standards, certificates and approvals
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 17
Example
The Varta 4022 battery together with a 1.5 m long cable and a Leonhardy 02-02.1500 plug
meet these conditions.
FM Approval
Factory Mutual Approval Standard Class Number 3611, Class I, Division 2,
Group A, B, C, D.
Temperature class: T4 at 60° C ambient temperature
WARNING
Personal injury or property damage can result.
In hazardous areas, personal injury or property damage can result if you create or break an
electrical circuit during operation of an S7-400 (for example, by means of plug-in connections,
fuses, switches).
Do not create or break live electrical circuits unless you are certain there is no danger of
explosion.
When used in FM conditions, the S7-400 must be fitted in an enclosure that corresponds to
at least IP54 in accordance with EN 60529.
NEC (National Electric Code) and CEC (Canadian Electric Code) requirements for Hazardous
Locations for battery power supply for CPUs
The backup voltage for a CPU must be supplied over a non-incendive plug connection. The
figure below shows such a plug connection.
1 2
(1) Battery or supply voltage
(2) CPU with "Ext. Batt." connector
Figure 1-2 Back-up voltage supply
The following conditions apply to the performance characteristics of this connection:
Voc (no load voltage) = 15 V Vmax = 15 V
Isc (short-circuit current)= 50 mA Imax = 50 mA
Ca = Battery/voltage supply capacity Ci = 25 nF maximum
La = Battery/voltage supply inductance Li = 2 mH maximum
General specifications
1.1 Standards, certificates and approvals
S7-400 Automation System Module Data
18 Reference Manual, Ausgabe 11/2016, A5E00850736-08
The battery/power supply that powers the non-incendive connection must comply with the
following ratings:
Battery/power supply CPU input "Ext. Batt." with cable
Voc Vmax (15 V)
Isc Imax (50 mA)
Ca Ci + Cc (25 nF + Cc)
La Li + Lc (2 mH + Lc)
Cc = Cable capacity
Lc = Cable inductance
Note
The concept of non-incendive field wiring allows the interconnection of devices with non-
incendive field wiring using any wiring method approved for unclassified sites.
If you do not know the capacity and inductance of the cable, you can use the following values:
Cc = 197 pF/m (60 pF/ft.), Lc = 0.66 mH/m (0.2 mH/ft)
Marine Approvals
Classification societies:
ABS (American Bureau of Shipping)
BV (Bureau Veritas)
DNV (Det Norske Veritas)
GL (Germanischer Lloyd)
LRS (Lloyds Register of Shipping)
Class NK (Nippon Kaiji Kyokai)
Safety requirements for installation
The S7-400 automation system is "open-type equipment" in accordance with standard
IEC 61131-2 and therefore EU Directive 2014/35/EU (Low Voltage Directive), and "open type"
in accordance with UL/CSA certification.
To fulfill requirements for safe operation with regard to mechanical stability, flame retardation,
stability, and shock-hazard protection, the following alternative types of installation are
specified:
Installation in a suitable cabinet
Installation in a suitable housing
Installation in a suitably equipped, enclosed operating area.
General specifications
1.1 Standards, certificates and approvals
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 19
1.2 Electromagnetic compatibility
Introduction
This section provides details of the immunity of S7-400 modules and information on RFI
suppression.
All components of the S7-400 automation system meet the requirement of the standards
applicable in Europe provided the system is installed in accordance with all applicable
regulations (see
Installation manual, sections 2 and 4
).
"EMC" definition
Electromagnetic compatibility (EMC) is the ability of an electrical device or system to operate
satisfactorily in its electromagnetic environment without affecting that environment.
WARNING
Personal injury or property damage can result.
Installing expansions that are not approved for the S7-400 can breach the requirements and
regulations governing safety and electromagnetic compatibility.
Only use expansions that are approved for the system.
Pulse-shaped interference
The table below shows the electromagnetic compatibility of the modules with pulse shaped
interference. The system S7-400 system must meet the requirements and guidelines for
electrical assembly.
Table 1-3 Pulse-shaped interference
Pulse-shaped interference Test voltage Corresponds to
immunity test lev‐
el
Electrostatic discharge
in accordance with IEC 61000-4-2
Air discharge:
Contact discharge:
±8 kV
±6 kV
3
Burst (electrical fast transient) in accord‐
ance with IEC 61000-4-4
2 kV (power supply line)
2 kV (signal line >30 m)
1 kV (signal line <30 m)
3
General specifications
1.2 Electromagnetic compatibility
S7-400 Automation System Module Data
20 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Pulse-shaped interference Test voltage Corresponds to
immunity test lev‐
el
Surge
in accordance with IEC 61000-4-5
3
Asymmetrical connection 2 kV (supply line) DC with protective
components
2 kV (signal line/data line only > 30 m),
where applicable with protective compo‐
nents
Symmetrical connection 1 kV (supply line) DC with protective
components
1 kV (signal line only > 30 m), where ap‐
plicable with protective components
Sinusoidal interference
The table below shows S7-400 module EMC for sinusoidal interference.
Table 1-4 Sinusoidal interference
Sinusoidal interference Test values Corresponds
to immunity
test level
High frequency radiation (electromagnetic
fields)
in accordance with IEC 61000-4-3
80 MHz to 1 GHz and 1.4 GHz to 2 GHz
10 V/m with 80 % amplitude modulation
at 1 kHz
2 GHz to 2.7 GHz
3 V/m with 80 % amplitude modulation
at 1 kHz
3
HF currents on cables and cable shielding
in accordance with IEC 61000-4-6
Test voltage 10 V with 80 % amplitude
modulation of 1 kHz in a range of 10 kHz
to 80 MHz
3
Emission of radio frequency interference
Emissions from electromagnetic fields in accordance with EN 61000-6-4.
Emissions over main AC supply in accordance with 61000-6-4.
Line harmonics
The AC power modules for S7-400 comply with the following standards for line harmonics:
Harmonic current: EN 61000-3-2
Voltage supply fluctuations and flicker: EN 61000-3-3
General specifications
1.2 Electromagnetic compatibility
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 21
Additional measures
If you want to connect an S7-400 system to the public network, you must ensure compliance
with class B pursuant to EN 55032.
Appropriate additional measures are to be taken if you need to increase the immunity of the
system in the light of high external interference.
General specifications
1.2 Electromagnetic compatibility
S7-400 Automation System Module Data
22 Reference Manual, Ausgabe 11/2016, A5E00850736-08
1.3 Shipping and storage conditions for modules and backup batteries
Shipping and storage of modules
S7-400 modules surpass the requirements of IEC 61131-2 with respect to shipping and storage
requirements. The following details apply to modules shipped and/or stored in their original
packing.
Climatic conditions correspond to IEC 60721-3-3, Class 3K7 for storage and IEC 60721-3-2,
Class 2K4 for transportation.
Mechanical conditions are compliant with IEC 60721-3-2, Class 2M2.
Table 1-5 Shipping and storage conditions for modules
Permissible range
Free fall ≤ 1m (to 10 kg)
Temperature -40 to +70° C
Barometric pressure 1080 to 660 hPa (corresponds to an elevation of -1000 to 3500 m)
Relative humidity (at +25° C) 5 to 95%, without condensation
Sinusoidal vibration in accord‐
ance with IEC 60068-2-6
5 - 9 Hz: 3.5 mm
9 - 500 Hz: 9.8 m/s2
Shock in accordance with IEC
60068-2-29
250 m/s2, 6 ms, 1000 shocks
Shipment of backup batteries
Backup batteries should always be shipped in their original package. No special measures are
required for the transport of the backup batteries used in the S7-400 system. The lithium
component of the backup battery is less than 0.5 g.
Storing backup batteries
Always store backup batteries in a cool and dry place. The batteries have a maximum shelf
life of 10 years.
WARNING
Risk of injury, material damage, release of hazardous substances.
Lithium batteries can explode if handled improperly. Their improper disposal may result in
the release of hazardous substances. Strictly adhere to the following instructions:
Do not throw a new or low battery into an open fire and do not perform any soldering work
on the cell casing (max. temperature 100° C). Do not recharge the battery - risk of explosion!
Do not open a battery. Replace a faulty battery only with the same type. Replacement
batteries can be ordered from SIEMENS (for order numbers, refer to the
"Module
Specifications" reference manual
, in Appendix C (Page 429)).
Always try to return low batteries to the manufacturer or deliver these to a registered recycling
company.
General specifications
1.3 Shipping and storage conditions for modules and backup batteries
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 23
1.4 Mechanical and ambient conditions for S7-400 operation
Operating conditions
S7-400 systems are designed for stationary use in weather-proof locations. The S7-400 fulfills
the requirements for use in accordance with IEC 60721-3-3:
Class 3M3 (mechanical requirements)
Class 3K3 (climatic ambient conditions)
Use with additional measures
The S7-400 may not be used under the conditions outlined below without taking additional
measures:
at locations with a high degree of ionizing radiation
in aggressive environments caused, for example, by
the development of dust
corrosive vapors or gases
strong electric or magnetic fields
in installations requiring special monitoring, for example
elevators
electrical plants in potentially hazardous areas
An additional measure would be to install the S7-400 in a cabinet or housing.
Mechanical ambient conditions
The mechanical ambient conditions for S7-400 modules are listed in the following table in the
form of sinusoidal vibrations.
Table 1-6 Mechanical ambient conditions
Frequency range in Hz Test values
10 ≤ f < 58 0.075 mm amplitude
58 ≤ f < 500 1 g constant acceleration
Reducing vibrations
If your S7-400 modules are exposed to severe shock or vibration, take appropriate measures
to reduce acceleration or the amplitude.
We recommend the installation of the S7-400 on damping materials (for example, rubber-metal
vibration dampers.)
General specifications
1.4 Mechanical and ambient conditions for S7-400 operation
S7-400 Automation System Module Data
24 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Testing mechanical ambient conditions
The table below provides important information with respect to the type and scope of testing
of mechanical ambient conditions.
Table 1-7 Test for mechanical ambient conditions
Condition tested Test standard Remarks
Vibrations Vibration test in accord‐
ance with IEC 60068-2-6
(sinusoidal)
Type of vibration: frequency sweeps with a rate of
change of 1 octave/minute.
10 Hz ≤ f < 58 Hz, constant amplitude 0.075 mm
58 Hz ≤ f < 500 Hz, constant acceleration 1 g
Duration of vibration: 10 frequency sweeps per axis
in each of three axes perpendicular to each other.
Shock Shock test in accordance
with IEC 60068-2-29
Type of shock: half-sine
Severity of shock: 10 g peak value, 6 ms duration
Direction of shock: 100 shocks in each of the 3 axes
arranged vertically to each other.
Climatic ambient conditions
The S7-400 may be operated under the following climatic ambient conditions:
Table 1-8 Climatic ambient conditions
Ambient conditions Permissible range Remark
Temperature 0 to +60° C
Temperature change Max. 10° C / h
Relative humidity Max. 95% at +25° C No condensation
Barometric pressure 1080 to 795 hPa (corresponds to an elevation of
-1000 to 2000 m)
Concentration of pollutants SO2: < 0.5 ppm;
RH < 60%, no condensation
H2S: < 0.1 ppm;
RH < 60%, no condensation
Test: 10 ppm; 10 days
Test: 1 ppm; 10 days
ISA-S71.04 severity level G1; G2; G3 -
General specifications
1.4 Mechanical and ambient conditions for S7-400 operation
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 25
1.5 Information on insulation tests, protection class and degree of
protection
Test voltages
Where required, insulation resistance is proved in routine testing with test voltages in
accordance with IEC 61131-2.
Protection class
Protection class I in accordance with IEC 61140, i.e. protective conductor connection to power
module required!
Protection from foreign objects and water
IP20 in accordance with IEC 60529, i.e. protection against contact with standard probes.
There is no water ingress protection.
General specifications
1.5 Information on insulation tests, protection class and degree of protection
S7-400 Automation System Module Data
26 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Rack 2
2.1 Function and design of the racks
Introduction
The racks for the S7-400 have the following functions:
They physically hold the modules.
They supply the modules with operating voltage.
They connect the individual modules to each other via the signal busses.
Design of the racks
A rack consists of the following elements:
Mounting rail with threaded bolts for fixing the modules and lateral cutouts for mounting the
rack
Plastic parts that function, among other things, as guides when swinging the modules into
place
A backplane bus, an I/O bus and, if necessary, a communication bus with bus connector
Connection for local ground
The following figure shows the mechanical configuration of a rack (UR1).
1
2
3
4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Figure 2-1 Configuration of a rack with 18 slots
(1) Mounting rail
(2) Plastic parts
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 27
(3) Bus connector (covered when shipped)
(4) Connection for local ground
UL/CSA note
Special requirements should be taken into consideration in the area of influence of the UL/
CSA; these may be fulfilled by installing the system in a cabinet.
Rack
2.1 Function and design of the racks
S7-400 Automation System Module Data
28 Reference Manual, Ausgabe 11/2016, A5E00850736-08
2.2 The racks UR1 (6ES7400-1TAx1-0AA0) and UR2
(6ES7400-1JAx1-0AA0)
Order number
The "x" variable has the following meaning for order numbers 6ES7400-1TAx1-0AA0 and
6ES7400-1JAx1:
x=0: Mounting rail made of sheet steel
x=1: Mounting rail made of aluminum
Introduction
The UR1 and UR2 racks are used for assembling central racks and expansion racks. The UR1
and UR2 racks have both an I/O bus and a communication bus.
Suitable modules for UR1 and UR2
You can use the following modules in the UR1 and UR2 racks:
When the UR1 or UR2 is used as a central rack:
All S7-400 modules except for receive IMs
When the UR1 or UR2 is used as an expansion rack:
All S7-400 modules except for CPUs and send IMs
Special case: Power supply modules cannot be used in conjunction with the IM 461-1 receive
IM.
Design of the UR1 and UR2
1 2
34
465 mm 240 mm
482,5 mm 257,5 mm
290 mm 190 mm
40 mm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9
(1)+(2) I/O bus
(3)+(4) Communication bus
Figure 2-2 UR1 rack with 18 slots and UR2 with 9 slots
Rack
2.2 The racks UR1 (6ES7400-1TAx1-0AA0) and UR2 (6ES7400-1JAx1-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 29
Specifications of the UR1 and UR2 racks
Rack UR1
6ES7
400-1TA01-0AA0
UR1
6ES7
400-1TA11-0AA0
UR2
6ES7
400-1JA01-0AA0
UR2
6ES7
400-1JA11-0AA0
Number of single-width slots 18 18 9 9
Dimensions W x H x D (mm) 482.5x 290 x 27.5 482.5x 290 x 27.5 257.5x 290 x 27.5 257.5x 290 x 27.5
Material of the mounting rail Sheet steel Aluminum Sheet steel Aluminum
Weight (in kg) 4,1 3,0 2,15 1,5
Busses I/O bus and communication bus
Rack
2.2 The racks UR1 (6ES7400-1TAx1-0AA0) and UR2 (6ES7400-1JAx1-0AA0)
S7-400 Automation System Module Data
30 Reference Manual, Ausgabe 11/2016, A5E00850736-08
2.3 UR2-H Rack 6ES7400-2JAx0-0AA0)
Order number
The "x" variable has the following meaning for order number 6ES7400-2JAx0-0AA0:
x=0: Mounting rail made of sheet steel
x=1: Mounting rail made of aluminum
Introduction
The UR2-H rack is used for assembling two central racks or expansion racks in one rack. The
UR2-H rack essentially represents two electrically isolated UR2 racks on the same mounting
rail. The main area of application of the UR2-H is in the compact structure of redundant
S7-400H systems (two devices or systems in one rack).
Suitable modules for UR2-H
You can use the following modules in the UR2-H rack:
When the UR2-H is used as a central rack:
All S7-400 modules except for receive IMs
When the UR2-H is used as an expansion rack:
All S7-400 modules except for CPUs, send IMs, the IM 463-2, and the adapter module
Special case: Power supply modules cannot be used in conjunction with the IM 461-1 receive
IM.
Design of the UR2-H
The following figure shows the design of the UR2-H rack with 2x9 slots.
1 2
465 mm
482,5 mm
290 mm 190 mm
40 mm
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Figure 2-3 Rack dimensions
Rack
2.3 UR2-H Rack 6ES7400-2JAx0-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 31
(1) System I
(2) System II
CAUTION
Danger of damage to equipment.
If you insert the power supply module in a slot that is not intended for power supply modules,
the module may be damaged. Slots 1 to 4 are permitted, whereby power supply modules
starting from slot 1 must be inserted without leaving gaps.
Make sure that power supply modules are only inserted in permitted slots. Take particular
notice of the option of swapping modules in slot 1 on rack II and slot 9 on rack I.
Specifications of the UR2-H rack
Rack UR2-H
6ES7 400-2JA00-0AA0
UR2-H
6ES7 400-2JA10-0AA0
Number of single-width slots 2 x 9 2 x 9
Dimensions W x H x D (mm) 482.5 x 290 x 27.5 482.5 x 290 x 27.5
Material of the mounting rail Sheet steel Aluminum
Weight (in kg) 4,1 3,0
Busses Segmented I/O bus,
segmented communication bus
Rack
2.3 UR2-H Rack 6ES7400-2JAx0-0AA0)
S7-400 Automation System Module Data
32 Reference Manual, Ausgabe 11/2016, A5E00850736-08
2.4 Rack CR2 (6ES7401-2TA01-0AA0)
Introduction
The CR2 rack is used for the design of segmented central racks. The CR2 has both an I/O
bus and a communication bus. The I/O bus is split into two local bus segments with 10 or 8
slots.
Suitable modules for the CR2
You can use the following modules in the CR2 rack:
All S7-400 modules except for receive IMs
Design of the CR2
1 2
3
4
5
465 mm
482,5 mm
290 mm 190 mm
40 mm
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Figure 2-4 CR2 rack
(1) Segment 1
(2) Segment 2
(3) I/O bus segment 2
(4) Communication bus
(5) I/O bus segment 1
Specifications of the CR2 rack
Rack CR2
Number of single-width slots 18
Dimensions W x H x D (mm) 482.5 x 290 x 27.5
Material of the mounting rail Sheet steel
Weight (in kg) 4,1
Rack
2.4 Rack CR2 (6ES7401-2TA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 33
Rack CR2
Busses Segmented I/O bus,
full-length communication bus
Only one power supply module required
Rack
2.4 Rack CR2 (6ES7401-2TA01-0AA0)
S7-400 Automation System Module Data
34 Reference Manual, Ausgabe 11/2016, A5E00850736-08
2.5 Rack CR3 (6ES7401-1DA01-0AA0)
Introduction
The CR3 rack is used for the design of central racks in standard systems (not in fault-tolerant
systems). The CR3 has both an I/O bus and a communication bus.
Suitable modules for the CR3
You can use the following modules in the CR3 rack:
All S7-400 modules except for receive IMs
You can only operate only one CPU 41x-4H at a time.
Design of the CR3
Figure 2-5 CR3 rack
Specifications of the CR3 Rack
Rack CR3
Number of single-width slots 4
Dimensions W x H x D (mm) 132 x 290 x 27.5
Material of the mounting rail Sheet steel
Weight (in kg) 0,75
Busses I/O bus and communication bus
Rack
2.5 Rack CR3 (6ES7401-1DA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 35
2.6 Racks ER1 (6ES7403-1TAx1-0AA0) and ER2
(6ES7403-1JAx1-0AA0)
Order number
The "x" variable has the following meaning for order numbers 6ES7403-1TAx0-0AA0 und
6ES7403-1JAx01-0AA0:
x=0: Mounting rail made of sheet steel
x=1: Mounting rail made of aluminum
Introduction
The ER1 and ER2 racks are used for the design of expansion racks.
The ER1 and ER2 racks have only one I/O bus with the following restrictions:
Interrupts from modules in the ER1 or ER2 have no effect since there are no interrupt lines
provided.
Modules in the ER1 or ER2 are not supplied with 24 V. Modules requiring a 24 V supply
are not provided for use in the ER1 or ER2.
Modules in the ER1 or ER2 are not backed up either by the battery in the power supply
module or by the voltage supplied externally to the CPU or the receive IM (EXT.-BATT.
socket).
There is therefore no advantage in using backup batteries in the power supply modules in
ER1 and ER2.
Battery faults and backup voltage faults are not reported to the CPU. The battery monitoring
function of a power supply module installed in the ER1 or ER2 should therefore always be
switched off.
Suitable modules for ER1 and ER2
You can use the following modules in the ER1 and ER2 racks:
All power supply modules
Receive IMs
All signal modules provided the above-mentioned restrictions are observed.
Special case: Power supply modules cannot be used in conjunction with the IM 461-1 receive
IM.
Rack
2.6 Racks ER1 (6ES7403-1TAx1-0AA0) and ER2 (6ES7403-1JAx1-0AA0)
S7-400 Automation System Module Data
36 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Design of the ER1 and ER2
1 1
465 mm 240 mm
482,5 mm 257,5 mm
290 mm 190 mm
40 mm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9
Figure 2-6 ER1 rack with 18 slots and ER2 with 9 slots
(1) I/O bus
Specifications of the ER1 and ER2 racks
Rack ER1
6ES7
403-1TA01-0A
A0
ER1
6ES7
403-1TA11-0AA0
ER2
6ES7
403-1JA01-0AA0
ER2
6ES7
403-1JA11-0AA0
Number of single-width
slots
18 18 9 9
Dimensions
W x H x D (in mm)
482.5 x 290 x
27.5
482.5 x 290 x 27.5 257.5 x 290 x 27.5 257.5 x 290 x 27.5
Material of the mount‐
ing rail
Sheet steel Aluminum Sheet steel Aluminum
Weight (in kg) 3,8 2,5 2,0 1,25
Busses Restricted I/O bus
Rack
2.6 Racks ER1 (6ES7403-1TAx1-0AA0) and ER2 (6ES7403-1JAx1-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 37
Rack
2.6 Racks ER1 (6ES7403-1TAx1-0AA0) and ER2 (6ES7403-1JAx1-0AA0)
S7-400 Automation System Module Data
38 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Power supply modules 3
3.1 Common characteristics of the power supply modules
Functions of the power supply modules
The power supply modules of the S7-400 supply the other modules in the rack with their
operating voltages via the backplane bus. They do not provide load voltages for the signal
modules.
Common characteristics of the power supply modules
The power supply modules share the following characteristics in addition to their individual
specifications:
Encapsulated design for use in racks of the S7-400 system
Cooling via natural convection
Plug-in connection of the supply voltage with AC - DC coding
Protection class I (with protective conductor) in accordance with IEC 61140; VDE 0140,
Part 1
Limitation of the inrush current in accordance with NAMUR Recommendation NE 21
Short-circuit-proof outputs
Monitoring of both output voltages. If one of these voltages fails, the power supply module
signals a fault to the CPU.
Both output voltages (5 VDCand 24 VDC) share a common ground.
Primary clocked
Battery backup as option. The parameters set and the memory contents (RAM) are backed
up via the backplane bus in the CPUs and programmable modules. In addition, the backup
battery enables you to carry out a restart of the CPU. Both the power supply module and
the backed up modules monitor the battery voltage.
Operating and fault/error LEDs on the front plate.
Note
A mains disconnecting device must be provided when installing AC power supply modules.
Switching the line voltage Off/On
The power supply modules have an inrush current limiter in accordance with NAMUR.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 39
Power supply module in invalid slot
If you insert the power supply module of a rack in an invalid slot, it will not power up. In this
case, proceed as follows to start up the power supply module correctly:
1. Disconnect the power supply module from the mains (not just the standby switch).
2. Remove the power supply module.
3. Install the power supply module in slot 1.
4. Wait at least 1 minute and then switch the line voltage on again.
CAUTION
Danger of damage to equipment.
If you insert the power supply module in a slot that is not intended for power supply
modules, the module may be damaged. Slots 1 to 4 are permitted, whereby power supply
modules starting from slot 1 must be inserted without leaving gaps.
Make sure that power supply modules are only inserted in permissible slots.
Power supply modules
3.1 Common characteristics of the power supply modules
S7-400 Automation System Module Data
40 Reference Manual, Ausgabe 11/2016, A5E00850736-08
3.2 Redundant power supply modules
Order numbers and function
Table 3-1 Redundant power supply modules
Type Order number Input voltage Output voltage See section
PS 407 10A R 6ES7407-0KR00-0AA0 85 to 264 VAC or 88 to
300 VDC
5 VDC/10 A and
24 VDC/1 A
3.8 (Page 60)
PS 407 10A R 6ES7 407-0KR02-0AA0 85 to 264 VAC or 88 to
300 VDC
5 VDC/10 A and
24 VDC/1 A
3.9 (Page 63)
PS 405 10A R 6ES7405-0KR00-0AA0 19.2 to 72 VDC 5 VDC/10 A and
24 VDC/1 A
3.14 (Page 74)
PS 405 10A R 6ES7 405-0KR02-0AA0 19.2 to 72 VDC 5 VDC/10 A and
24 VDC/1 A
3.15 (Page 76)
Redundant operation
Using two power supply modules of type PS 407 10A R or PS 405 10A R, you can design a
redundant power supply for a rack. We recommend this if you want to increase the availability
of your programmable controller, particularly if you are operating it on an unreliable power
system.
Designing a redundant power supply
Redundant operation is possible with any of the S7 CPUs and racks described in this manual.
STEP 7 as of V4.02 is also required.
To design a redundant power supply, insert a power supply module into slots 1 and 3 of the
rack. You can then insert as many modules as can be supplied by a single power supply
module. In other words, in redundant operation all the modules can only draw a total of 10 A.
Features
The redundant power supply of an S7-400 has the following characteristics:
The power supply module features an inrush current in accordance with NAMUR.
Each of the power supply modules can take over the supply of power to the whole rack if
the other one fails. There is no loss of operation.
Each of the power supply modules can be exchanged while the system is in operation. No
loss of power and no peak stress occurs with the effective voltages when the modules are
removed or inserted.
Each of the power supply modules monitors its function and sends a message if it fails.
Neither of the power supply modules can generate an error which affects the output voltage
of the other power supply module.
Power supply modules
3.2 Redundant power supply modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 41
A redundant battery concept (backup concept) is only provided when two backup batteries
are used in each of the power supply modules. If only one battery is used in each module,
only non-redundant backup is possible, since both batteries are being used at the same
time.
The failure of a power supply module is registered via a plug and remove interrupt (default
STOP). If used in the second segment of the CR 2 no message is sent if the power supply
module fails.
If two power supply modules are inserted but only one is switched on, there is a power-up
delay of up to one minute when the line voltage is switched on.
Note
The check box "Startup if preset configuration not equal to actual configuration" should be
activated in the "Properties" dialog box of the CPU.
Power supply modules
3.2 Redundant power supply modules
S7-400 Automation System Module Data
42 Reference Manual, Ausgabe 11/2016, A5E00850736-08
3.3 Backup battery (option)
Introduction
The power supply modules of the S7-400 have a battery compartment for one or two backup
batteries. Use of these batteries is optional.
Function of the backup batteries
If backup batteries have been installed, the parameters set and the memory contents (RAM)
will be backed up via the backplane bus in CPUs and programmable modules if the power
supply module is turned off or the supply voltage fails. The battery voltage must be within the
tolerance range.
In addition, the backup battery enables you to carry out a restart of the CPU after power-on.
Both the power supply module and the backed up modules monitor the battery voltage.
Insert backup battery
Activate battery monitoring once you have installed one or two backup batteries. Make sure
that neither the respective LED BATT1F or BATT2F nor the LED BAF are illuminated. Only
then is the backup battery working properly and backup guaranteed as described above.
Note
Insert the power supply module in the rack and switch it on before you insert the backup battery
for the first time. This will increase the service life of the backup battery.
Power supply modules with two backup batteries:
Some power supply modules contain a battery compartment for two batteries. If you use two
batteries and set the switch to 2BATT, the power supply module defines one of the two batteries
as the backup battery. This assignment remains in force until the battery is empty. When the
backup battery is completely discharged, the system switches to the reserve battery which is
then in turn used as the backup battery for the duration of its life. The status "backup battery"
is also stored in the event of a power failure.
Battery type
You may only use batteries certified by Siemens! (see Appendix C: Spare parts (Page 429)).
The batteries can form a passivation layer. Depassivation takes place when the batteries are
inserted in the power supply module.
Power supply modules
3.3 Backup battery (option)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 43
Specifications of the backup battery
Backup battery
Order number 6ES7971-0BA00
Type 1 x lithium AA
Nominal voltage 3.6 V
Nominal capacity 2,3 Ah
Backup times
The maximum backup time is based on the capacity of the backup batteries used and the
backup current in the rack. The backup current is the sum of all individual currents of the
inserted backed-up modules as well as the requirements of the power supply module when
the power is switched off.
Example for the calculation of backup times
The capacity of the batteries is listed in the technical specifications of the power supply. The
typical and maximum backup current of the backed-up module is listed in the technical
specifications of the module.
The typical backup current of a CPU is an empirically determined value. The maximum backup
current is a worst-case value that is calculated based on the corresponding manufacturer
specifications for the memory blocks.
The following technical specifications produce backup times for a CR with a PS 407 4A
(6ES7407-0DA02-0AA0) and a CPU 417-4 (6ES7417-4XT05-0AB0) as the only backed-up
module:
Capacity of the backup battery: 2,3 Ah
Maximum backup current (including own requirement at power off) of the power supply:
100 µA
Typical backup current of the CPU 417-4: 225 µA to 40° C.
A nominal capacity of less than 100% is to be assumed when calculating the backup time
because the backup battery is also affected at power on by regular depassivation.
A battery capacity of 63% of the nominal capacity produces the following values:
Backup time = 2,3 Ah * 0.63 / (100 + 225) µA = (1,449 / 325) * 1 000 000 = 4458 h
This produces a maximum backup time of 185 days.
Power supply modules
3.3 Backup battery (option)
S7-400 Automation System Module Data
44 Reference Manual, Ausgabe 11/2016, A5E00850736-08
3.4 Operator controls and indicators
Introduction
The power supply modules of the S7-400 have essentially the same controls and indicators.
The main differences are:
Power supply modules with a backup battery have an LED (BATTF) that indicates an empty,
defective, or missing backup battery.
Power supply modules with two redundant backup batteries have two LEDs (BATT1F and
BATT2F) to indicate empty, defective or missing backup battery.
Operator controls and indicators
The figure shows you an example of a power supply module (PS 407 20A) with two (redundant)
backup batteries. The LEDs are at the top left of the module front plate.
36$5$$$;)05%$77,1',&%$77%$772)),17)%$)%$77)'&9'&9%$77)%$77%$77/('V,17)%$)%$77)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))%$77SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV
Figure 3-1 Operator controls and indicators on the PS 407 20A power supply module
Meaning of the LEDs
The meaning of the LEDs on the power supply modules is described in the tables below. The
following section contains a list of the faults indicated by these LEDs and notes on how to
acknowledge the faults.
Power supply modules
3.4 Operator controls and indicators
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 45
LEDs INTF, 5 VDC, 24 VDC
Table 3-2 LEDs INTF, 5 VDC, 24 VDC
LED Color Meaning
INTF Red Lights up in the event of an internal fault
5 VDC green Lights up as long as the 5 V voltage is within the tolerance limits
24 VDC green Lights up as long as the 24 V voltage is within the tolerance limits
LEDs BAF, BATTF
Power supply modules with a backup battery have the following indicators:
Table 3-3 LEDs BAF, BATTF
LED Color Meaning
BAF Red Lights up if the battery voltage on the backplane bus is too low and the
BATT.INDIC switch is at the BATT position
BATTF Yellow Lights up if the battery is empty, if the polarity is reversed, or if the battery
is missing, and the BATT.INDIC switch is at the BATT position
LEDs BAF, BATT1F, BATT2F
Power supply modules with two backup batteries have the following indicators:
Table 3-4 LEDs BAF, BATT1F, BATT2F
LED Color Meaning
BAF Red Lights up if the battery voltage on the backplane bus is too low and the
BATT.INDIC switch is at the 1 BATT or 2 BATT position
BATT1F Yellow Lights up if battery 1 is empty or if the polarity is reversed or if the battery
is missing, and the BATT.INDIC switch is at the 1 BATT or 2 BATT position
BATT2F Yellow Lights up if the battery 2 is empty, if the polarity is reversed, or if the battery
is missing, and the BATT.INDIC switch is at the 2 BATT position
Backup voltage to the backplane bus
The backup voltage is either supplied by the backup battery or fed externally into the CPU or
receiver IM. In its normal state, the level of the backup voltage is between 2.7 V and 3.6 V.
The backup voltage is monitored at the lower limit. Violation of the lower limit is indicated by
the BAF LED and reported to the CPU.
Power supply modules
3.4 Operator controls and indicators
S7-400 Automation System Module Data
46 Reference Manual, Ausgabe 11/2016, A5E00850736-08
BAF lights up if the backup voltage on the backplane bus is too low. Possible causes of this
include:
Battery (batteries) empty or battery polarity has been reversed.
External supply via CPU or receive IM is defective or supply from secondary power supply
module is defective or missing.
Short-circuit or overload on the battery voltage.
Note
Due to internal capacities, if you remove the battery or switch off the external supply, some
time may elapse before BAF, BATT1F, or BATT2F lights up.
Function of the operator controls of the power supply modules
Table 3-5 Function of the operator controls of the power supply modules
Control Function
FMR button For acknowledging and resetting a fault indicator after correcting the fault
Standby switch Switches the output voltages (5 V VDC24 VDC) to 0 V by intervening in the
control loop (no mains disconnection).
Output voltages at nominal value
Output voltage 0 V
Switches
BATT.INDIC
Used for setting LEDs and battery monitoring
Where one battery can be used (PS 407 4A, PS 405 4A):
OFF: LEDs and monitor signals inactive
BATT: BAF/BATTF LEDs and monitor signals active
Where two batteries can be used (PS 407 10A, PS 407 20A, PS 405 10A, PS
405 20A):
OFF: LEDs and monitor signals inactive
1 BATT: Only BAF/BATT1F LEDs (for battery 1) active.
2 BATT: BAF/BATT1F/BATT2F LEDs (for batteries 1 and 2) active.
Battery compart‐
ment
For backup battery (batteries)
Power connection 3-pin connector for the power main
(do not pull and plug under power)
Cover
The battery compartment, battery selector switch, voltage selector switch and power
connection are housed under one cover. The cover must remain closed during operation in
order to protect these operator controls and to prevent static electricity from affecting the
battery connections.
Discharge your body before you start taking any measurements on a module. Do so by
touching grounded metallic parts. Always use grounded measuring instruments.
Power supply modules
3.4 Operator controls and indicators
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 47
3.5 Fault/Error messages via LEDs
Introduction
The power supply modules of the S7-400 indicate module faults and backup battery faults via
LEDs on the front plate.
Overview of the error messages of the power supply modules
Table 3-6 Error messages of the power supply modules
Type of fault/error LED
Module error INTF
5 VDC
24 VDC
Backup battery fault Power supplies with 1 backup battery:
BAF
BATTF
Power supplies with 2 backup battery:
BAF
BATT1F
BATT2F
Power supply modules
3.5 Fault/Error messages via LEDs
S7-400 Automation System Module Data
48 Reference Manual, Ausgabe 11/2016, A5E00850736-08
INTF, 5 VDC, 24 VDC LEDs
The following table shows the faults indicated by the INTF, 5 VDC, and 24 VDC LEDs and lists
how to remedy the faults. The status of the BAF, BATTF, BATT1F, and BATT2F LEDs is not
relevant here.
Table 3-7 INTF, 5 VDC, 24 VDC LEDs
INTF
LED
LED
DC5V
LED
DC24V
Cause of fault Remedy
D D D Standby switch in position Set standby switch to the | posi‐
tion
Line voltage missing Check line voltage
Internal fault, power supply module
defective
Replace power supply module
Cutoff after overvoltage on 5 V or
non-permissible external supply
Disconnect from mains and recon‐
nect after approximately 3 mi‐
nutes; if necessary, remove exter‐
nal supply
Power supply module operated in
wrong slot
Install the power supply module in
the correct slot (slot 1)
Short-circuit or overload on 5 V Switch off the power supply mod‐
ule, remove the source of the
short-circuit; after approximately 3
seconds, the power supply mod‐
ule can be switched on with the
standby switch or via the power
system.*
D H D Overvoltage on 24 V Check if there is an external sup‐
ply; if not, replace power supply
module.
H D* D Short-circuit or overload on 5 V and
24 V and overheating
Check the load on the power sup‐
ply module. Remove module if
necessary. Wait 5 minutes before
switching the power supply mod‐
ule again.
H H D If the standby switch is set to the
position, illegal external supply on
5 V
Remove all modules; determine
which module is faulty.
If the standby switch is set to the |
position, short-circuit or overload on
24 V.
Check the load on the power sup‐
ply module. Remove module if
necessary.
D B H Voltage restored after short-circuit or
overload on 5 V if faults occur in op‐
eration
Press FMR button: Flashing
changes to steady light
Dynamic overload on 5 V Check load on the power supply
module. Possibly remove mod‐
ules.
D B B Voltage restored after short-circuit or
overload on 5 V and 24 V if faults oc‐
cur in operation
Press FMR button: Flashing
changes to steady light
Power supply modules
3.5 Fault/Error messages via LEDs
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 49
INTF
LED
LED
DC5V
LED
DC24V
Cause of fault Remedy
D B B Dynamic overload on 5 V and 24 V Check load on the power supply
module. Possibly remove mod‐
ules.
D = LED is dark; H = LED lights up; B = LED flashing;
* If the power supply module does not start up again after a few seconds once the overload
has been removed, remove power to the module for 5 minutes and then switch it on again. If
the module stills does not start up, you must replace it. This applies to the following power
supply modules:
6ES7407-0KA01-0AA0, Release 3
6ES7407-0KR00-0AA0, Release ≤ 5
6ES7407-0KA01-0AA0, Release ≥ 10
6ES7405-0DA02-0AA0, 6ES7407-0DA02-0AA0
6ES7405-0KA02-0AA0, 6ES7407-0KA02-0AA0
6ES7405-0KR02-0AA0, 6ES7407-0KR02-0AA0
6ES7405-0RA02-0AA0, 6ES7407-0RA02-0AA0
The same characteristic is displayed by the built-in overtemperature protection is triggered.
If either the 5 VDC or 24 VDC LEDs remains dark after switching on, the system has not
powered up.
If either of the 5 VDC or 24 VDC LEDs of the PS 407 10AR remains dark for longer than 1 or
2 seconds after it is switched on, the power supply module will not start up.
The following power supply modules will switch off in the event of a short-circuit or overload
after 1 to 3 seconds. The module will try to restart after no more than 3 seconds. If the error
has been eliminated by then, the module will start up. This applies to the following modules:
Modules
PS 405 4A (6ES7405-0DA01-0AA0) PS 407 4A (6ES7407-0DA01-0AA0)
PS 405 4A (6ES7405-0DA02-0AA0) PS 407 4A (6ES7407-0DA02-0AA0)
PS 405 10A (6ES7405-0KA01-0AA0) PS 407 10A (6ES7407-0KA01-0AA0),
release ≥5
PS 405 10A (6ES7405-0KA02-0AA0) PS 407 10A (6ES7407-0KA02-0AA0)
PS 405 10A R (6ES7405-0KR00-0AA0) PS 407 10A R (6ES7407-0KR00-0AA0),
release ≥7
PS 405 10A R (6ES7405-0KR02-0AA0) PS 407 10A R (6ES7407-0KR02-0AA0)
PS 405 20A (6ES7405-0RA01-0AA0) PS 407 20A (6ES7407-0RA01-0AA0)
PS 405 20A (6ES7405-0RA02-0AA0) PS 407 20A (6ES7407-0RA02-0AA0)
Power supply modules
3.5 Fault/Error messages via LEDs
S7-400 Automation System Module Data
50 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Overload at 24 V
In the event of overload at 24 V the output current is electronically limited to a value between
100% and 150% of the rated value. If the voltage then goes below the undervoltage threshold
of 19.2 V (-0/+ 5% corresponds to 19.2 V to 20.16 V), the modules respond as follows:
For the power supply modules, the 24 V voltage is disconnected and reconnected at a
repeat rate of approx. 0.5 to 1 seconds until there is an output voltage that exceeds the
undervoltage threshold.
For the power supply modules 6ES7407-0KA01-0AA0, 6ES740x-0KR00-0AA0 and
6ES740x-0KR01-0AA0, the voltage reaches the level determined by the load impedance,
the module is in the characteristic operating range.
After the overload has been eliminated, the voltage returns to the nominal range and the green
24 V LED flashes. The CPU sets the EXTF LED (external fault) and saves the fault in the
diagnostic buffer. You can trigger other responses, such as CPU STOP or a message to a
control room, in OB 81 (power supply error). If OB 81 is not configured, the CPU continues as
normal.
Overload at 5 V
In the event of an overload at 5 V, the power supply modules with 10 A or 20 A output current
can retain an output current of 16 A or 26 A for 300 ms. The power supply modules with 4 A
output current can retain an output current of 6 A for 300 ms. The CPU will then go to DEFECT
afterwards. If the 5 VDC LED flashes on the power supply and can be reset with the FMR
button, you will be able to perform a restart. The CPU will remain in STOP afterwards and will
then require a memory reset.
BAF, BATTF
The following table applies to power supply modules with one battery if the BATT.INDIC switch
is set to the BATT position. It shows the faults indicated and lists how to remedy the faults.
Table 3-8 BAF, BATTF; BATT.INDIC LEDs on BATT
LED
BAF
LED
BATF
Cause of fault Remedy
H H Battery empty or missing.
No external backup voltage available
Insert new battery. Press FMR button.
D H Battery is empty or missing.
Battery stored too long.
External backup voltage available.
Insert new battery. Press FMR button.
Depassivate battery (see
Installation Man‐
ual
).
H D Battery in order.
No backup voltage available (short-cir‐
cuit)
Fault after plugging in a module:
Plugged-in module defective
Fault after switching on: Remove all
modules and plug in individually
D D Battery OK.
External backup voltage available.
-
D = LED is dark; H = LED lights up;
Power supply modules
3.5 Fault/Error messages via LEDs
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 51
BAF, BATT1F, BATT2F
The following table applies to power supply modules with two batteries if the BATT.INDIC
switch is set to the 1BATT position. It shows the faults indicated and lists how to remedy the
faults.
Nothing is indicated about the condition of any second battery that may be in use.
Table 3-9 BAF, BATT1F, BATT2F, BATT.INDIC LEDs on 1BATT
LED
BAF
LED
BATT1F
LED
BATT2F
Cause of fault Remedy
H H D Battery 1 empty or missing
No external backup voltage
available.
Insert new battery in compartment 1.
Press FMR button.
D H D Battery 1 empty or missing
External backup voltage avail‐
able.
Insert new battery in compartment 1.
Press FMR button.
Battery stored too long.
External backup voltage avail‐
able.
Depassivate battery (see
Installation
Manual
)
H D D Battery 1 OK.
No external backup voltage
available (short-circuit)
Fault after plugging in a module:
Plugged-in module defective
Fault after switching on: Remove
all modules and plug in
individually
D D D Battery 1 OK.
External backup voltage avail‐
able.
-
D = LED is dark; H = LED lights up;
BAF, BATT1F, BATT2F
The following table applies to power supply modules with two batteries if the BATT.INDIC
switch is set to the 2BATT position. It shows the faults indicated and lists how to remedy the
faults.
Table 3-10 BAF, BATT1F, BATT2F, BATT.INDIC LEDs on 2BATT
LED
BAF
LED
BATT1F
LED
BATT2F
Cause of fault Remedy
H H H Both batteries are empty or
missing.
No external backup voltage
available
Insert new batteries in compart‐
ments 1 and 2 Press FMR button.
D H H Both batteries are empty or
missing.
External backup voltage avail‐
able
Insert new batteries in compart‐
ments 1 and 2 Press FMR button.
Power supply modules
3.5 Fault/Error messages via LEDs
S7-400 Automation System Module Data
52 Reference Manual, Ausgabe 11/2016, A5E00850736-08
LED
BAF
LED
BATT1F
LED
BATT2F
Cause of fault Remedy
H H D Battery 1 empty or missing
No external backup voltage
available (short-circuit or over‐
load)
Insert new battery in compartment 1.
Press FMR button.
Fault after plugging in a module:
Plugged-in module defective
Fault after switching on: Remove
all modules and plug in
individually
D H D Battery 1 empty or missing Insert new batteries in compart‐
ments 1 and 2 Press FMR button.
Battery has been stored for too
long
External backup voltage avail‐
able
Depassivate battery (see
Installation
Manual
).
H D H Battery 2 empty or missing
No external backup voltage
available (short-circuit or over‐
load)
Insert new battery in compartment 2.
Press FMR button.
Fault after plugging in a module:
Plugged-in module defective
Fault after switching on: Remove
all modules and plug in
individually
D D H Battery 2 empty or missing Insert new batteries in compart‐
ments 1 and 2 Press FMR button.
Battery has been stored for too
long
External backup voltage avail‐
able
Depassivate battery (see
Installation
Manual
).
H D D Both batteries in order.
No external backup voltage
available (short-circuit)
Fault after plugging in a module:
Plugged-in module defective
Fault after switching on: Remove
all modules and plug in
individually
D D D Both batteries in order.
External backup voltage avail‐
able
-
D = LED is dark; H = LED lights up;
Power supply modules
3.5 Fault/Error messages via LEDs
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 53
3.6 Power supply module PS 407 4A (6ES7407-0DA01-0AA0)
Function
The power module PS 407 4A is designed for connection to an 85 to 264 V AC network or an
88 to 300 V DC network, and supplies DC 5 V/4 A and DC 24 V/0.5 A at the secondary side.
PS 407 4A operator control and monitoring elements
/('V,17)%$)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV36$;)05%$77,1',&%$772)),17)%$)%$77)'&9'&9'$$$
Figure 3-2 PS 407 4A operator control and monitoring elements
Mains connection
An AC power plug is used with PS 407 4A for connection to an AC network and for connection
to a DC network.
Reverse polarity of L+ and L-
Reverse polarity of L+ and L with a supply voltage of DC 88 V to DC 300 V does not affect the
function of the power supply. The connection should comply with the instructions in the
installation manual.
Power supply modules
3.6 Power supply module PS 407 4A (6ES7407-0DA01-0AA0)
S7-400 Automation System Module Data
54 Reference Manual, Ausgabe 11/2016, A5E00850736-08
PS 407 4A technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
25 x290x217
0.76 kg
3x1.5 mm2 (stranded wire with wire end ferrule with insulating
sleeve; use hose line only)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Rated value DC 120/240 V
AC 120/240 V
Permitted range 88 to 300 V DC
85 to 264 V AC
(wide range input)
Line frequency
Rated value 50/60 Hz
Permitted range 47 to 63 Hz
Rated input current
With 120 V AC 0.38 A
With 120 V DC 0.37 A
With 240 V AC 0.22 A
With 240 V DC 0.19 A
Leakage current < 3.5 mA
Output variables
Output voltage
Rated values 5.1 V DC/24 V DC
Output current
Rated values 5 V DC: 4 A
24 V DC: 0.5 A
Parameters
Protection class pursuant to
IEC 60536
I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR recommendation
NE 21
Power consumption 240 V AC 52 W
Power loss 20 W
Backup current maximum of 100 µA when power off
Power supply modules
3.6 Power supply module PS 407 4A (6ES7407-0DA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 55
Back-up battery (option) 1 x lithium AA, 3.6 V/2.3 Ah
Protective separation in accord‐
ance with IEC 61131-2
Yes
Power supply modules
3.6 Power supply module PS 407 4A (6ES7407-0DA01-0AA0)
S7-400 Automation System Module Data
56 Reference Manual, Ausgabe 11/2016, A5E00850736-08
3.7 Power supply module PS 407 4A (6ES7407-0DA02-0AA0)
Function
The power module PS 407 4A is designed for connection to an 85 to 264 V AC network or an
88 to 300 V DC network, and supplies DC 5 V/4 A and DC 24 V/0.5 A at the secondary side.
PS 407 4A operator control and monitoring elements
/('V,17)%$)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV36$;)05%$77,1',&%$772)),17)%$)%$77)'&9'&9'$$$
Figure 3-3 PS 407 4A operator control and monitoring elements
Mains connection
An AC power plug is used with PS 407 4A for connection to an AC network and for connection
to a DC network.
Reverse polarity of L+ and L-
Reverse polarity of L+ and L with a supply voltage of 88 V DC to 300 V DC does not affect the
function of the power supply. The connection should comply with the instructions in the
installation manual.
Power supply modules
3.7 Power supply module PS 407 4A (6ES7407-0DA02-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 57
PS 407 4A technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
25 x290x217
0.76 kg
3x1.5 mm2 (stranded wire with wire end ferrule with insulating
sleeve; use hose line only)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Rated value 120/230 V DC
120/230 V AC
Permitted range 88 to 300 V DC
85 to 264 V AC
(wide range input)
Line frequency
Rated value 50/60 Hz
Permitted range 47 to 63 Hz
Rated input current
With 120 V AC 0.42 A
With 120 V DC 0.35 A
At 230 V AC 0.31 A
At 230 V DC 0.19 A
Inrush current
At 230 V AC Peak value 8.5 A
full width at half maximum 5 ms
At 300 V DC Peak value 8.5 A
full width at half maximum 5 ms
Leakage current < 3.5 mA
Output variables
Output voltage
Rated values 5.1 V DC/24 V DC
Output current
Rated values 5 V DC: 4 A
24 V DC: 0.5 A
Parameters
Protection class pursuant to
IEC 61140
I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR recommendation
NE 21
Power consumption 240 V AC 52 W
Power supply modules
3.7 Power supply module PS 407 4A (6ES7407-0DA02-0AA0)
S7-400 Automation System Module Data
58 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Power loss 20 W
Backup current maximum of 100 µA when power off
Back-up battery (option) 1 x lithium AA, 3.6 V/2.3 Ah
Protective separation in accord‐
ance with IEC 61131-2
Yes
Power supply modules
3.7 Power supply module PS 407 4A (6ES7407-0DA02-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 59
3.8 Power supply modules PS 407 10A (6ES7407-0KA01-0AA0) and PS
10A R (6ES7407-0KR00-0AA0)
Function
The power modules PS 407 10A (standard) and PS 407 10A R (for redundant operation, see
Redundant power supply modules (Page 41)) are designed for connection to an 85-264 V AC
network or an 88-300 V DC network, and supply 5 V/10 A DC and 24 V/1 A DC at the secondary
side.
PS 407 10A and PS 407 10A R operator control and monitoring elements
36$.$$$;)05%$77,1',&%$77%$772)),17)%$)%$77)'&9'&9%$77)%$77%$77/('GLVSOD\V,17)%$)%$77)%$77)'&9'&96HFXULQJVFUHZ6HFXULQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW%HORZFRYHU%DWWHU\FRPSDUWPHQW%$77,1',&VZLWFK%$772))%$77SLQSOXJLQSRZHUVXSSO\FRQQHFWRU6WDQGE\VZLWFKQRGLVFRQQHFWLRQIURPSRZHU
Figure 3-4 PS 407 10A and PS 407 10A R operator control and monitoring elements
Mains connection
An AC power plug is used with PS 407 10A and PS 407 10A R both for connection to an AC
network and connection to a DC network.
Reverse polarity of L+ and L-
Reverse polarity of L+ and L with a supply voltage of DC 88 V to DC 300 V does not affect the
function of the power supply. The connection must comply with the instructions in the
installation manual.
Power supply modules
3.8 Power supply modules PS 407 10A (6ES7407-0KA01-0AA0) and PS 10A R (6ES7407-0KR00-0AA0)
S7-400 Automation System Module Data
60 Reference Manual, Ausgabe 11/2016, A5E00850736-08
PS 407 10A and PS 407 10A R technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
Cable diameter
50x290x217
1.36 kg
3x1.5 mm2 (stranded wire with wire end ferrule with
insulating sleeve; use hose line only)
3 to 9 mm
Input variables
Input voltage
Rated value 110/230 V DC
120/230 V AC
Permitted range 88 to 300 V DC
85 to 264 V AC
(wide range input)
Line frequency
Rated value 50/60 Hz
Permitted range 47 to 63 Hz
Rated input current
With 120 V AC 0.9 A
At 110 V DC 1.0 A
At 230 V AC 0.5 A
At 230 V DC 0.5 A
Inrush current
At 230 V AC Peak value 230 A, full width at half maximum
200 µs
peak value 63 A*, full width at half maximum 1 ms*
At 300 V DC Peak value 230 A, full width at half maximum
200 µs
peak value 58 A*, full width at half maximum 1 ms*
Leakage current < 3.5 mA
Output variables
Output voltage
Rated values 5.1 V DC/24 V DC
Output current
Rated values 5 V DC: 10 A
24 V DC: 1.0 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Power supply modules
3.8 Power supply modules PS 407 10A (6ES7407-0KA01-0AA0) and PS 10A R (6ES7407-0KR00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 61
Backup for power failures > 20 ms
at a repeat rate of 1 s, meets NAMUR recommen‐
dation NE 21
Power consumption 105 W, PS 407 10A from product version 5
105 W, PS 407 10A R from product version 7
95 W, PS 407 10A from product version 10
Power loss 29.7 W
20 W, PS 407 10A from product version 10
Backup current maximum of 100 µA when power off
Back-up batteries (option) 2 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
*PS 407 10A: from product version 5
* PS 407 10A R: from product version 7
Power supply modules
3.8 Power supply modules PS 407 10A (6ES7407-0KA01-0AA0) and PS 10A R (6ES7407-0KR00-0AA0)
S7-400 Automation System Module Data
62 Reference Manual, Ausgabe 11/2016, A5E00850736-08
3.9 Power supply modules PS 407 10A (6ES7407-0KA02-0AA0) and PS
10A R (6ES7407-0KR02-0AA0)
Function
The power modules PS 407 10A (standard) and PS 407 10A R (for redundant operation, see
Redundant power supply modules (Page 41)) are designed for connection to an 85-264 V AC
network or an 88-300 V DC network, and supply 5 V/10 A DC and 24 V/1 A DC at the secondary
side.
PS 407 10A and PS 407 10A R operator control and monitoring elements
36$.$$$;)05%$77,1',&%$77%$772)),17)%$)%$77)'&9'&9%$77)%$77%$77/('V,17)%$)%$77)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))%$77SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV
Figure 3-5 PS 407 10A and PS 407 10A R operator control and monitoring elements
Mains connection
An AC power plug is used with PS 407 10A and PS 407 10A R both for connection to an AC
network and connection to a DC network.
Reverse polarity of L+ and L-
Reverse polarity of L+ and L with a supply voltage of 88 V DC to 300 V DC does not affect the
function of the power supply. The connection must comply with the instructions in the
installation manual.
Power supply modules
3.9 Power supply modules PS 407 10A (6ES7407-0KA02-0AA0) and PS 10A R (6ES7407-0KR02-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 63
PS 407 10A and PS 407 10A R technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
50x290x217
1.2 kg
3x1.5 mm2 (stranded wire with wire end ferrule with
insulating sleeve; use hose line only)
Input variables
Input voltage
Rated value 120/230 V DC
120/230 V AC
Permitted range 88 to 300 V DC
85 to 264 V AC
(wide range input)
Line frequency
Rated value 50/60 Hz
Permitted range 47 to 63 Hz
Rated input current
With 120 V AC 0.9 A
With 120 V DC 1.0 A
At 230 V AC 0.5 A
At 230 V DC 0.5 A
Inrush current
At 230 V AC Peak value 63 A, full width at half maximum 1 ms*
At 300 V DC Peak value 58 A, full width at half maximum 1 ms*
Leakage current < 3.5 mA
Output variables
Output voltage
Rated values 5.1 V DC/24 V DC
Output current
Rated values 5 V DC: 10 A
24 V DC: 1.0 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms
at a repeat rate of 1 s, meets NAMUR recommen‐
dation NE 21
Power consumption 95 W
Power loss 20 W
Backup current maximum of 100 µA when power off
Power supply modules
3.9 Power supply modules PS 407 10A (6ES7407-0KA02-0AA0) and PS 10A R (6ES7407-0KR02-0AA0)
S7-400 Automation System Module Data
64 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Back-up batteries (option) 2 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
Power supply modules
3.9 Power supply modules PS 407 10A (6ES7407-0KA02-0AA0) and PS 10A R (6ES7407-0KR02-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 65
3.10 Power supply module PS 407 20A (6ES7407-0RA01-0AA0)
Function
The power module PS 407 20A is designed for connection to an 85-264 V AC network or an
88-300 V DC network, and supply 5 V/20 A DC and 24 V/1 A DC at the secondary side.
PS 407 20A operator control and monitoring elements
36$5$$$;)05%$77,1',&%$77%$772)),17)%$)%$77)'&9'&9%$77)%$77%$77/('V,17)%$)%$77)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))%$77SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV
Figure 3-6 PS 407 20 A operator control and monitoring elements
Mains connection
An AC power plug is used with PS 407 20A both for connection to an AC network and for
connection to a DC network.
Reverse polarity of L+ and L-
Reverse polarity of L+ and L with a supply voltage of 88 V DC to 300 V DC does not affect the
function of the power supply. The connection must comply with the instructions in the
installation manual.
Power supply modules
3.10 Power supply module PS 407 20A (6ES7407-0RA01-0AA0)
S7-400 Automation System Module Data
66 Reference Manual, Ausgabe 11/2016, A5E00850736-08
PS 407 20A technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
75x290x217
2.2 kg
3x1.5 mm2 (stranded wire with wire end ferrule with
insulating sleeve; use hose line only)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Rated value 110/230 V DC
120/230 V AC
Permitted range 88 to 300 V DC
85 to 264 V AC
(wide range input)
Line frequency
Rated value 50/60 Hz
Permitted range 47 to 63 Hz
Rated input current
At 120 V AC/110 V DC 1.5 A
At 230 V AC/230 V DC 0.8 A
Inrush current Peak value 88 A full width at half maximum 1.1 ms
Leakage current < 3.5 mA
Output variables
Output voltage
Rated values 5.1 V DC/24 V DC
Output current
Rated values 5 V DC: 20 A
24 V DC: 1.0 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR
recommendation NE 21
Power consumption 168 W
Power loss 44 W
Backup current maximum of 100 µA when power off
Back-up batteries (option) 2 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
Power supply modules
3.10 Power supply module PS 407 20A (6ES7407-0RA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 67
3.11 Power supply module PS 407 20A (6ES7407-0RA02-0AA0)
Function
The power module PS 407 20A is designed for connection to an 85-264 V AC network or an
88-300 V DC network, and supply 5 V/20 A DC and 24 V/1 A DC at the secondary side.
PS 407 20A operator control and monitoring elements
36$5$$$;)05%$77,1',&%$77%$772)),17)%$)%$77)'&9'&9%$77)%$77%$77/('V,17)%$)%$77)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))%$77SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV
Figure 3-7 PS 407 20A power module operator control and monitoring elements
Mains connection
An AC power plug is used with PS 407 20A both for connection to an AC network and for
connection to a DC network.
Reverse polarity of L+ and L-
Reverse polarity of L+ and L with a supply voltage of 88 V DC to 300 V DC does not affect the
function of the power supply. The connection must comply with the instructions in the
installation manual
.
Power supply modules
3.11 Power supply module PS 407 20A (6ES7407-0RA02-0AA0)
S7-400 Automation System Module Data
68 Reference Manual, Ausgabe 11/2016, A5E00850736-08
PS 407 20A technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
25x290x217
1.3 kg
3x1.5 mm2 (stranded wire with wire end ferrule with
insulating sleeve; use hose line only)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Rated value 120/230 V DC
120/230 V AC
Permitted range 88 to 300 V DC
85 to 264 V AC
(wide range input)
Line frequency
Rated value 50/60 Hz
Permitted range 47 to 63 Hz
Rated input current
At 120 V AC/120 V DC 1.4 A
At 230 V AC/230 V DC 0.7 A
Inrush current Peak value 88 A full width at half maximum 1.1 ms
Leakage current < 3.5 mA
Output variables
Output voltage
Rated values 5.1 V DC/24 V DC
Output current
Rated values 5 V DC: 20 A
24 V DC: 1.0 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR
recommendation NE 21
Power consumption 158 W
Power loss 35 W
Backup current maximum of 100 µA when power off
Back-up batteries (option) 2 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
Power supply modules
3.11 Power supply module PS 407 20A (6ES7407-0RA02-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 69
3.12 Power supply module PS 405 4A (6ES7405-0DA01-0AA0)
Function
The PS 405 4A power supply module is designed for connection to a DC line voltage of 19.2
to 72 VDC and supplies 5 VDC/4 A and 24 VDC/0.5 A on the secondary side.
Operator controls and indicators on the PS 405 4A
/('V,17)%$)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV36$;,17)%$)%$77)'&9'&9)05%$77,1',&%$772))'$$$
Figure 3-8 Operator controls and indicators on the PS 405 4A
Specifications of the PS 405 4A
Dimensions, weight, and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
25x290x217
0.76 kg
3 x 1.5 mm2 (litz wire with wire end ferrule, use
component conductor or flexible sheath cable)
Cable diameter 3 to 9 mm
Input parameters
Input voltage
Nominal value 24 VDC / 48 V / 60 V
Power supply modules
3.12 Power supply module PS 405 4A (6ES7405-0DA01-0AA0)
S7-400 Automation System Module Data
70 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Permissible range Static: 19.2 to 72 VDC
Dynamic: 18.5 to 75.5 VDC
Nominal input current 2/1/0.8 A
Overvoltage resistance In accordance with DIN VDE 0160, curve B2
Output parameters
Output voltages
Nominal values 5.1 / 24 VDC
Output currents
Nominal values 5 VDC: 4 A
24 VDC: 0.5 A
Electrical parameters
Protection class in accordance with IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Nominal voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 VDC (secondary <-> PE)
2200 VDC (primary <-> secondary/PE)
Buffering of power failures >20 ms at a repeat rate of 1 s, complies with the
NAMUR recommendation NE 21
Power consumption (24 VDC) 48 W
Power loss 16 W
Backup current Max. 100 µA at power off
Backup battery (option) 1 x Lithium AA,
3.6 V/2.3 Ah
Protective separation to IEC 61131-2 Yes
Power supply modules
3.12 Power supply module PS 405 4A (6ES7405-0DA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 71
3.13 Power supply module PS 405 4A (6ES7405-0DA02-0AA0)
Function
The power module PS 405 4A is designed for connection to a 19.2 to 72 V DC network, and
supplies 5 V/4 A DC and 24 V/0.5 A DC at the secondary side.
PS 405 4A operator control and monitoring elements
/('V,17)%$)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV36$;,17)%$)%$77)'&9'&9)05%$77,1',&%$772))'$$$
Figure 3-9 PS 405 4A operator control and monitoring elements
PS 405 4A technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
25x290x217
0.76 kg
3x1.5 mm2 (stranded wire with wire end ferrule;
use single conductor or hose line)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Power supply modules
3.13 Power supply module PS 405 4A (6ES7405-0DA02-0AA0)
S7-400 Automation System Module Data
72 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Rated value 24 V/48 V/60 V DC
Permitted range Static: 19.2 to 72 V DC
Dynamic: 18.5 to 75.5 V DC
Rated input current 2 A/1 A/0.8 A
Inrush current Peak value 18 A
Full width at half maximum 20 ms
Output variables
Output voltage
Rated values 5.1 V DC/24 V DC
Output current
Rated values 5 V DC: 4 A
24 V DC: 0.5 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR
recommendation NE 21
Power consumption (24 V DC) 48 W
Power loss 16 W
Backup current maximum of 100 µA when power off
Back-up battery (option) 1 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
Power supply modules
3.13 Power supply module PS 405 4A (6ES7405-0DA02-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 73
3.14 Power supply modules PS 405 10A (6ES7405-0KA01-0AA0) and PS
405 10A R (405-0KR00-0AA0)
Function
The power modules PS 405 10A (standard) and PS 405 10A R (for redundant operation) are
designed for connection to a 19.2-72 V DC network, and supply 5 V/10 A DC and 24 V/1 A DC
at the secondary side.
PS 405 10A and PS 405 10A R operator control and monitoring elements
36$.$$$;)05,17)%$)%$77)'&9'&9%$77)%$77,1',&%$77%$772))%$77%$77/('V,17)%$)%$77)%$77)9'&9'&0RXQWLQJVFUHZV0RXQWLQJVFUHZV)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))%$77SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV
Figure 3-10 PS 405 10A and PS 405 10A R operator control and monitoring elements
PS 405 10A and PS 405 10A R technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
50x290x217
1.4 kg
3x1.5 mm2 (stranded wire with wire end ferrule;
use single conductor or hose line)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Power supply modules
3.14 Power supply modules PS 405 10A (6ES7405-0KA01-0AA0) and PS 405 10A R (405-0KR00-0AA0)
S7-400 Automation System Module Data
74 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Rated value 24 V/48 V/60 V DC
Permitted range Static: 19.2 to 72 V DC
Dynamic: 18.5 to 75.5 V DC
Rated input current 4.3 A/2.1 A/1.7 A
Inrush current Peak value 18 A
Full width at half maximum 20 ms
Output variables
Output voltage
Rated values
5.1 V DC/24 V DC
Output current
Rated values
5 V DC: 10 A
24 V DC: 1.0 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR
recommendation NE 21
Power consumption 104 W
Power loss 29 W
Backup current maximum of 100 µA when power off
Back-up batteries (option) 2 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
Power supply modules
3.14 Power supply modules PS 405 10A (6ES7405-0KA01-0AA0) and PS 405 10A R (405-0KR00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 75
3.15 Power supply modules PS 405 10A (6ES7405-0KA02-0AA0) and PS
405 10A R (405-0KR02-0AA0)
Function
The power modules PS 405 10A (standard) and PS 405 10A R (for redundant operation) are
designed for connection to a 19.2-72 V DC network, and supply 5 V/10 A DC and 24 V/1 A DC
at the secondary side.
PS 405 10A and PS 405 10A R operator control and monitoring elements
/('V,17)%$)%$77)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))%$77SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV36$.$$$;)05,17)%$)%$77)'&9'&9%$77)%$77,1',&%$77%$772))%$77%$77
Figure 3-11 PS 405 10A and PS 405 10A R operator control and monitoring elements
PS 405 10A and PS 405 10A R technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
50x290x217
1.2 kg
3x1.5 mm2 (stranded wire with wire end ferrule;
use single conductor or hose line)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Power supply modules
3.15 Power supply modules PS 405 10A (6ES7405-0KA02-0AA0) and PS 405 10A R (405-0KR02-0AA0)
S7-400 Automation System Module Data
76 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Rated value 24 V/48 V/60 V DC
Permitted range Static: 19.2 to 72 V DC
Dynamic: 18.5 to 75.5 V DC
Rated input current 4.0 A/2.0 A/1.6 A
Inrush current Peak value 18 A
Full width at half maximum 20 ms
Output variables
Output voltage
Rated values
5.1 V DC/24 V DC
Output current
Rated values
5 V DC: 10 A
24 V DC: 1.0 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR
recommendation NE 21
Power consumption 95 W
Power loss 20 W
Backup current maximum of 100 µA when power off
Back-up batteries (option) 2 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
Power supply modules
3.15 Power supply modules PS 405 10A (6ES7405-0KA02-0AA0) and PS 405 10A R (405-0KR02-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 77
3.16 Power supply module PS 405 20A (6ES7405-0RA01-0AA0)
Function
The power module PS 405 20A is designed for connection to a 19.2-72 V DC network, and
supplies 5 V/20 A DC and 24 V/1 A DC at the secondary side.
PS 405 20A operator control and monitoring elements
36$5$$$;)05,17)%$)%$77)'&9'&9%$77)%$77,1',&%$77%$772))%$77%$77/('V,17)%$)%$77)%$77)9'&9'&0RXQWLQJVFUHZV0RXQWLQJVFUHZV)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))%$77SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV
Figure 3-12 PS 405 20A operator control and monitoring elements
PS 405 20A technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
75x290x217
2.2 kg
3x1.5 mm2 (stranded wire with wire end ferrule;
use single conductor or hose line)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Rated value 24 V/48 V/60 V DC
Power supply modules
3.16 Power supply module PS 405 20A (6ES7405-0RA01-0AA0)
S7-400 Automation System Module Data
78 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Permitted range Static: 19.2 to 72 V DC
Dynamic: 18.5 to 75.5 V DC
Rated input current 7.3 A/3.45 A/2.75 A
Inrush current Peak value 56 A Full width at half maximum 1.5 ms
Output variables
Output voltage
Rated values
5.1 V DC/24 V DC
Output current
Rated values
5 V DC: 20 A
24 V DC: 1.0 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR
recommendation NE 21
Power consumption 175 W
Power loss 51 W
Backup current maximum of 100 µA when power off
Back-up batteries (option) 2 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
Power supply modules
3.16 Power supply module PS 405 20A (6ES7405-0RA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 79
3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0)
Function
The power module PS 405 20A is designed for connection to a 19.2-72 V DC network, and
supplies 5 V/20 A DC and 24 V/1 A DC at the secondary side.
PS 405 20A operator control and monitoring elements
36$5$$$;)05,17)%$)%$77)'&9'&9%$77)%$77,1',&%$77%$772))%$77%$77/('V,17)%$)%$77)%$77)9'&9'&0RXQWLQJVFUHZ0RXQWLQJVFUHZ)05EXWWRQ)DLOXUH0HVVDJH5HVHW8QGHUFRYHU%DWWHU\FRPSDUWPHQW6ZLWFK%$77,1',&%$772))%$77SLQSRZHUFRQQHFWRU6WDQGE\VZLWFKGRHVQRWFXWRIIPDLQV
Figure 3-13 PS 405 20A operator control and monitoring elements
PS 405 20A technical specifications
Dimensions, weight and cable cross-sections
Dimensions W x H x D (mm)
Weight
Cable cross-section
50x290x217
1.3 kg
3x1.5 mm2 (stranded wire with wire end ferrule;
use single conductor or hose line)
Cable diameter 3 to 9 mm
Input variables
Input voltage
Rated value 24 V/48 V/60 V DC
Power supply modules
3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0)
S7-400 Automation System Module Data
80 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Permitted range Static: 19.2 to 72 V DC
Dynamic: 18.5 to 75.5 V DC
Rated input current 7.0 A/3.2 A/2.5 A
Inrush current Peak value 56 A Full width at half maximum 1.5 ms
Output variables
Output voltage
Rated values
5.1 V DC/24 V DC
Output current
Rated values
5 V DC: 20 A
24 V DC: 1.0 A
Parameters
Protection class pursuant to IEC 60536 I, with protective conductor
Overvoltage category II
Pollution degree 2
Rated voltage Ue
0 < Ue ≤ 50 V
150 V < Ue ≤ 300 V
Test voltage
700 V DC (secondary <-> PE)
2200 V DC (primary <-> secondary/PE)
Backup for power failures > 20 ms at a repeat rate of 1 s, meets NAMUR
recommendation NE 21
Power consumption 168 W
Power loss 44 W
Backup current maximum of 100 µA when power off
Back-up batteries (option) 2 x lithium AA,
3.6 V/2.3 Ah
Protective separation in accordance with
IEC 61131-2
Yes
Power supply modules
3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 81
Power supply modules
3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0)
S7-400 Automation System Module Data
82 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Digital modules 4
4.1 Module overview
Characteristics of digital modules
The tables below summarize the essential characteristics of the digital modules. This overview
supports you in selecting a module to suit your requirements.
Table 4-1 Digital input modules: overview of features
Features SM 421;
DI 32xDC
24 V
(-1BL0x-)
SM 421;
DI 16xDC
24 V
(-7BH0x-)
SM 421;
DI 16xAC
120 V
(-5EH00-)
SM 421;
DI 16xUC
24/60 V
(-7DH00-)
SM 421;
DI 16xUC
120/230 V
(-1FH00-)
SM 421;
DI 16xUC
120/230 V
(-1FH20-)
SM 421;
DI 32xUC
120 V
(-1EL00-)
Number of
inputs
32 DI; isolated
in groups of
32
16 DI; isolated
in groups of
8
16 DI; isolated
in groups of
1
16 DI; isolated
in groups of
1
16 DI; isola‐
ted in
groups of
4
16 DI; isola‐
ted in groups
of
4
32 DI; isola‐
ted in groups
of
8
Nominal in‐
put voltage
24 VDC 24 VDC 120 VAC 24 to 60 VUC 120 VAC/
230 VDC
120/230 VUC 120 VAC/DC
Suitable
for...
Switches; 2-wire proximity switches (BEROs)
Configura‐
ble
diagnostics
No Yes No Yes No No No
Diagnostic
interrupt
No Yes No Yes No No No
Hardware
interrupt at
edge transi‐
tion:
No Yes No Yes No No No
Adjustable
input delays
No Yes No Yes No No No
Substitu‐
tion value
output
- Yes - - - - -
Special fea‐
tures
High packag‐
ing density
Quick and
with interrupt
capability
Channel-spe‐
cific isolation
Interrupt ca‐
pability with
low, variable
voltages
For high, var‐
iable voltag‐
es
For high, vari‐
able voltages
Input charac‐
teristic curve
in accord‐
ance with IEC
61131-2
High packag‐
ing density
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 83
Table 4-2 Digital output modules: overview of features
Features SM 422;
DO 16xDC
24 V / 2 A
(-1BH1x)
SM 422;
DO 16xDC
20-125 V/ 1.5
A
(-5EH10)
SM 422;
DO 32xDC
24 V / 0.5 A
(-1BL00)
SM 422;
DO 32xDC
24 V / 0.5 A
(-7BL00)
SM 422;
DO 8xAC
120/230 V/ 5 A
(-1FF00)
SM 422;
DO 16xAC
120/230 V/
2 A
(-1FH00)
SM 422;
DO 16xAC
20-120 V/ 2 A
(-5EH00)
Number of
outputs
16 DO; isola‐
ted in groups
of 8
16 DO; isola‐
ted and re‐
verse polarity
protection in
groups of 8
32 DO; isola‐
ted in groups
of
32
32 DO; isola‐
ted in groups
of
8
8 DO; isolated
in groups of 1
16 DO; iso‐
lated in
groups of
4
16 DO; isola‐
ted in
groups of
1
Output cur‐
rent
2 A 1.5 A 0.5 A 0.5 A 5 A 2 A 2 A
Nominal
load voltage
24 VDC 20 to 125 VDC 24 VDC 24 VDC 120/230 VAC 120/230
VAC
20 to 120
VAC
Configura‐
ble
diagnostics
No Yes No Yes No No Yes
Diagnostic
interrupt
No Yes No Yes No No Yes
Substitu‐
tion value
output
No Yes No Yes No No Yes
Special fea‐
tures
For high cur‐
rents
For variable
voltages
High packag‐
ing
density
Particularly
quick and with
interrupt capa‐
bility
For high cur‐
rents with
channel- spe‐
cific isolation
- For variable
currents
with chan‐
nel-specific
isolation
Table 4-3 Relay output module: overview of features
Features SM 422; DO 16 x UC 30/230 V/Rel. 5 A
(-1HH00)
Number of outputs 16 outputs, isolated in groups of 8
Load voltage 125 VDC
230 VAC
Special features -
Digital modules
4.1 Module overview
S7-400 Automation System Module Data
84 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.2 Steps in selecting and commissioning the digital module
Introduction
The following table contains the tasks that you have to perform one after the other to
commission digital modules successfully.
The sequence of steps is a suggestion, but you can perform individual steps either earlier or
later (for example, assign parameters to the module) or install, commission etc. other modules
in between times.
Overview of steps in selecting and commissioning the digital module
Step Procedure
1 Select the module. Section 4.1 (Page 83) and special sections for
modules beginning with Section 4.7 (Page 97)
2 Mount the module in the rack. "Installing" section in the
Automation System
S7-400, Hardware and Installation
manual
3 Assigning module parameters Section 4.3 (Page 85) and special sections for
modules beginning with Section 4.7
4 Commissioning the configuration "Commissioning" section in the
Automation
System S7-400, Hardware and Installation
manual
5 Analyzing the configuration if commission‐
ing is not successful
Section 4.4 (Page 88)
4.3 Assigning parameters to digital modules
4.3.1 Parameters
Introduction
Digital modules may have different features. You can configure the features of some modules.
Tools for parameter assignment
You assign parameters to digital modules in
STEP 7
.
After you have defined all parameters, download these from your programming device to the
CPU. On a transition from STOP RUN mode, the CPU then transfers the parameters to the
individual digital modules.
Static and dynamic parameters
The parameters are divided into static and dynamic parameters.
Digital modules
4.3 Assigning parameters to digital modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 85
Static parameters are passed to digital modules after a STOP RUN transition of the CPU,
as described above.
You may also edit dynamic parameters in the active user program of an S7 PLC using SFCs.
However, the parameters set in
STEP 7
will be applied again after a RUN > STOP, STOP >
RUN transition of the CPU. You will find a description of the parameter assignment of modules
in the user program in the Appendix.
Configuration in RUN (CiR)
CiR (Configuration in RUN) is a method you can use to modify your system or edit the
parameters of individual modules. These changes are made while your system is in operation,
that is, your CPU will stay in RUN over a maximum of 2.5 seconds while these changes are
applied.
For detailed information on this topic, refer to the "Configuration in RUN by means of CiR"
manual. This manual is found, for example, as a file in PDF format on the STEP 7
CD supplied.
Digital modules
4.3 Assigning parameters to digital modules
S7-400 Automation System Module Data
86 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.3.2 Parameters of digital input modules
Overview
The configurable digital input modules use a subset of the parameters and ranges of values
listed in the table below, depending on functionality. For information on subsets "supported"
by specific digital modules, refer to the chapter dealing with the relevant module. Do not forget
that some digital modules have different input delays after parameter assignment.
The defaults apply if you have not set any parameters in
STEP 7
.
Table 4-4 Parameters of digital input modules
Parameters Value range Default2Parameter
type
Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Hardware interrupt1Yes/no No
Destination CPU for
interrupt
1 to 4 - Static Module
Diagnostics
Wire break Yes/no No Static Channel
No load voltage L+/sensor
supply
Yes/no No
Hardware interrupt trigger
Positive edge Yes/no No Dynamic Channel
Negative edge Yes/no No
Input delay 0.1 ms (DC)
0.5 ms (DC)
3 ms (DC)
20 ms (DC/AC)
3 (DC) Static Channel
Reaction to error Set substitution
value (SSV)
Keep last value
(KLV)
SV Dynamic Module
Set substitution value "1" Yes/no No Dynamic Channel 3
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines
are not available in ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the digital modules with the default settings and
without support from HWCONFIG.
3 Channels not selected for substitute value "1" are assigned substitute value "0".
Digital modules
4.3 Assigning parameters to digital modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 87
4.3.3 Parameters of digital output modules
Overview
The configurable digital output modules use a subset of the parameters and ranges of values
listed in the table below, depending on the functionality. For information on subsets "supported"
by specific digital modules, refer to the section dealing with the relevant module beginning with
section 4.7.
The defaults apply if you have not set any parameters in
STEP 7
.
Table 4-5 Parameters of digital output modules
Parameters Value range Default2Parameter type Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Destination CPU for
interrupt
1 to 4 - Static Module
Reaction to CPU STOP Substitute a val‐
ue (SV)
Keep last value
(KLV)
SV Dynamic Module
Diagnostics
Wire break Yes/no No Static Channel
Load voltage L+
missing
Yes/no No
Short-circuit to M Yes/no No
Short-circuit to L+ Yes/no No
Fuse blown Yes/no No
Set substitution value "1" Yes/no No Dynamic Channel 3
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines
are not available in ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the digital modules with the default settings and
without support from HWCONFIG.
3 Channels not selected for substitute value "1" are assigned substitute value "0".
4.4 Diagnostics for digital modules
4.4.1 General information about diagnostic messages
Programmable and non-programmable diagnostic messages
Using the diagnostics function, we make a distinction between programmable and non-
programmable diagnostic messages.
Digital modules
4.4 Diagnostics for digital modules
S7-400 Automation System Module Data
88 Reference Manual, Ausgabe 11/2016, A5E00850736-08
You only obtain programmable diagnostic messages if you have enabled the diagnostics using
the relevant parameters. You perform parameter assignment in the "Diagnostics" tab in
STEP
7
, see section 6.7.
Digital modules always return non-programmable diagnostic messages, irrespective of
diagnostics being enabled.
Reactions to diagnostic messages in STEP 7
Actions initiated by diagnostic messages:
The diagnostic message is entered in the diagnostics of the digital module, forwarded to
the CPU and can be read out by the user program.
The fault LED on the digital module lights up.
If you have set "Enable diagnostic interrupt" in
STEP 7
, a diagnostic interrupt is triggered
and OB 82 is called, see section 5.5.
Reading diagnostic messages
You can read detailed diagnostic messages using SFCs in the user program (refer to the
appendix "Diagnostic data of signal modules").
You can view the cause of the error in
STEP 7
in the module diagnostics (refer to the
online
help for STEP 7
).
Diagnostics using the INTF and EXTF LEDs
Some digital modules indicate faults by means of their two fault LEDs INTF (internal fault) and
EXTF (external fault). The LEDs go out when all the internal and external faults have been
eliminated.
Refer to the specifications of the modules beginning with section 5.7 to find out which digital
modules have these fault LEDs.
See also
General information about parameter assignment (Page 199)
Interrupts of the digital modules (Page 93)
Digital modules
4.4 Diagnostics for digital modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 89
4.4.2 Diagnostic messages of the digital modules
Overview
The table below gives an overview of the diagnostic messages for the digital modules with
diagnostics capability.
You can find out which diagnostic message each module is capable of in the Appendix entitled
"Diagnostic data of the signal modules".
Table 4-6 Diagnostic messages of the digital modules
Diagnostic message LED Scope of diagnostics Programmable
Module error INTF/EXTF Module No
Internal error INTF Module No
External error EXTF Module No
Channel error INTF/EXTF Module No
External auxiliary voltage missing EXTF Module No
Front connector missing EXTF Module No
No module parameters INTF Module No
Incorrect parameters INTF Module No
Channel information available INTF/EXTF Module No
STOP mode - Module No
Internal voltage failure INTF Module No
EPROM error INTF Module No
Hardware interrupt lost INTF Module No
Parameter assignment error INTF Channel No
Short-circuit to M EXTF Channel Yes
Short-circuit to L+ EXTF Channel Yes
Wire break EXTF Channel Yes
Fuse blown INTF Channel Yes
Sensor supply missing EXTF Channel/channel
group
Yes
Load voltage L+ missing EXTF Channel/channel
group
Yes
Note
Prerequisite for detecting errors indicated by programmable diagnostic messages is an
appropriate configuration of the digital module in STEP 7.
Digital modules
4.4 Diagnostics for digital modules
S7-400 Automation System Module Data
90 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.4.3 Causes of errors and remedies for digital modules
Overview
Table 4-7 Diagnostic messages of the digital modules, causes of errors and remedies
Diagnostic message Possible cause of error Remedy
Module error Any, the module has detected an
error.
-
Internal error Module has detected an error within
the automation system.
-
External error Module has detected an error out‐
side of the automation system.
-
Channel error Indicates that only certain channels
are faulty.
-
External auxiliary volt‐
age missing
Voltage required to operate the
module is missing (load voltage,
sensor supply).
Supply missing voltage
Front connector miss‐
ing
Jumper between connections 1 and
2 in the front connector is missing.
Install jumper
No module
parameters
Module requires information wheth‐
er it should operate with default sys‐
tem parameters or with your param‐
eters.
Message queued after power-on until
parameter transmission by the CPU has
been completed; configure the module,
as required.
Incorrect parameters One parameter, or the combination
of parameters, is not plausible.
Reassign parameters to the module
Channel information
available
Channel error; module can provide
additional channel information.
-
STOP mode No parameters have been as‐
signed to the module and the first
module cycle has not been comple‐
ted.
If after rebooting the CPU all the input
values are in the intermediate memory,
this message is reset.
Internal voltage failure Module is defective Replace the module
EPROM error Module is defective Replace the module
Hardware interrupt
lost
The module cannot send an inter‐
rupt, since the previous interrupt
was not acknowledged; possible
configuration error.
Change the interrupt handling in the
CPU (change priority for interrupt OB;
shorten interrupt program).
Parameter assign‐
ment error
Incorrect parameters transferred to
the module (for example, impossi‐
ble input delay); the corresponding
channel is deactivated.
Reassign parameters to the module
Short-circuit to M Overload at output Eliminate overload
Short-circuit of output to M Check the wiring of the outputs.
Short-circuit to L+ Short-circuit of output to L+ Check the wiring of the outputs.
Digital modules
4.4 Diagnostics for digital modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 91
Diagnostic message Possible cause of error Remedy
Wire break Lines interrupted Connect the cable
No external sensor supply Wire sensors with10 to 18 kΩ.
Channel not connected (open) Disable the "Diagnostics – Wire break"
parameter for the channel in STEP 7.
Wire the channel
Fuse blown One or more fuses on the module
has blown and caused this fault.
Remove the overload and replace the
fuse.
Sensor supply missing Overload at sensor supply Eliminate overload
Short-circuit of sensor supply to M Eliminate the short-circuit.
Load voltage L+ miss‐
ing
Power supply L+ to module missing Feed in supply voltage L+.
Fuse in module is defective Replace the module
Digital modules
4.4 Diagnostics for digital modules
S7-400 Automation System Module Data
92 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.5 Interrupts of the digital modules
Introduction
This section describes the interrupt behavior of the digital modules. There are two types of
interrupt:
Diagnostic interrupt
Hardware interrupt
Note that not all digital modules have interrupt capability or they are only capable of a subset
of the interrupts described here. For information on the digital modules that support interrupts,
refer to their specifications.
For detailed information on the OBs and SFCs mentioned below, refer to the
STEP 7 Online
Help
.
Enabling interrupts
The interrupts are not preset - in other words, they are inhibited without appropriate parameter
assignment. Interrupts are enabled in
STEP 7
.
Special feature: The module is inserted in ER-1/ER-2
Note
If you use the digital module in ER-1/ER-2, you must set the parameters for enabling all the
interrupts to "No" because the interrupt lines are not available in ER-1/ER-2.
Diagnostic interrupt
When diagnostic interrupts are enabled, incoming error events (initial occurrence) and
outgoing error events (error is cleared) are reported by means of an interrupt.
The CPU interrupts user program execution, and executes diagnostic interrupt OB82.
In the user program, you can call SFC 51 or SFC 59 in OB 82 to obtain more detailed diagnostic
information from the module.
The diagnostic information is consistent until such time as OB 82 is exited. When OB 82 is
exited, the diagnostic interrupt is acknowledged on the module.
Hardware interrupt
A digital input module can trigger a hardware interrupt for each channel at a rising or falling
edge, or both, of a signal status change.
You perform parameter assignment for each channel separately. The parameters can be
changed at any time (in RUN mode in the user program.)
Digital modules
4.5 Interrupts of the digital modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 93
Pending hardware interrupts trigger hardware interrupt processing in the CPU (OB 40 to OB
47). The CPU interrupts the execution of the user program or the priority classes with low
priority.
In the user program of the hardware interrupt OB (OB 40 to OB 47) you can specify how the
programmable controller is to respond to an edge change. The module acknowledges the
hardware interrupt when the program exits the hardware interrupt OB.
For each channel the digital input module can buffer an interrupt that has not been triggered.
If no run levels of a higher priority class are pending processing, the CPU processes the
buffered interrupts (of all modules) in the order of their occurrence.
Hardware interrupt lost
A "Hardware interrupt lost" diagnostics interrupt is generated, if a successive interrupt occurs
at the same channel before the CPU has processed the previously buffered interrupt.
The CPU does not register any further interrupts at this channel unless it has completed
processing of the stacked interrupts of the same channel.
Interrupt-triggering channels
The interrupt-triggering channels are stored in the local data of the hardware interrupt OBs (in
the start information of the corresponding OB). The start information is two words long (bits 0
to 31). The bit number is the channel number. Bits 16 to 31 are not assigned.
See also
General information about parameter assignment (Page 199)
Digital modules
4.5 Interrupts of the digital modules
S7-400 Automation System Module Data
94 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.6 Input characteristic curve for digital inputs
IEC 61131, type 1 and type 2
The IEC 61131 standard requires the following for the input current:
In the case of type 2, an input current of ≥ 2 mA already at + 5 V
In the case of type 1, an input current of ≥ 0.5 mA already at + 5 V
EN 60947-5-2, 2-wire BEROs
The standard for BEROs (EN 60947-5-2) specifies that there can be a current of ≤ 1.5 mA for
BEROs in the "0" signal state.
The input current of the module in the "0" signal state is decisive for the operation of 2-wire
BEROs. This must be in accordance with BERO requirements.
Digital modules
4.6 Input characteristic curve for digital inputs
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 95
Input characteristic curve for digital inputs
As long as the current flowing into the module remains ≤ 1.5 mA, the module recognizes this
as a "0" signal.
0,5
1,5
2
6
7
0 5 11 13 15 24 30 L+ (V)
- 30 V
I E (mA)
“0” “1”
1
0
L+
M
I < 1,5 mA
Typ. switching threshold(9.5 V)
Resistance characteristic curve
I min to IEC 61131; type 2
BERO
standard
I < 1,5 mA
PLC input resistance
--> “0” Signal
2-wire BERO
I min to IEC 61131; type 1
Figure 4-1 Input characteristic curve for digital inputs
Digital modules
4.6 Input characteristic curve for digital inputs
S7-400 Automation System Module Data
96 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.7 Digital input module SM 421; DI 32 x DC 24 V (6ES7421-1BL01-0AA0)
Properties
Key properties of the SM 421; DI 32 x 24 V DC:
32 inputs, isolated in a group of 32
Rated input voltage 24 V DC
Suitable for switches and 2-/3-/4-wire proximity switches (BEROs, IEC 61131; type 1)
The status LEDs indicate the process status.
Digital modules
4.7 Digital input module SM 421; DI 32 x DC 24 V (6ES7421-1BL01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 97
Connection and circuit diagram for SM 421; DI 32 x 24 V DC
1
2
3
4
5
6
7
0
M
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
M
L+
M
Process Module
Data register and bus control
Figure 4-2 Connection and circuit diagram for SM 421; DI 32 x 24 V DC
Technical specifications for SM 421; DI 32 x DC 24 V
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 500 g
Module-specific data
Digital modules
4.7 Digital input module SM 421; DI 32 x DC 24 V (6ES7421-1BL01-0AA0)
S7-400 Automation System Module Data
98 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Number of inputs 32
Cable length
unshielded Maximum 600 m
shielded max. 1000 m
Voltage, current and potential
Rated supply voltage of electronics L+ Not required
Number of inputs that can be enabled simultaneously 32
Electrical isolation
Between channels and backplane bus Yes
Between channels No
Permissible potential difference
Between different circuits 60 V DC/30 V AC (SELV)
Insulation tested at
Channels to backplane bus and load voltage L+ 500 Vac or 707 Vdc (type test)
Current consumption
from backplane bus (5 V) 20 mA maximum
Module power loss Typ. 6 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions None
Substitute values can be connected No
Data for selecting a sensor
Input voltage
Rated value 24 V DC
For "1" signal 13 to 30 V
For "0" signal -30 to 5 V
Input current
For "1" signal 7 mA
Input delay
For "0" to "1" 1.2 to 4.8 ms
For "1" to "0" 1.2 to 4.8 ms
Input characteristic In accordance with IEC 61131-2; type 1
Connection of 2-wire BEROs Possible
Permissible quiescent current Maximum 1.5 mA
Digital modules
4.7 Digital input module SM 421; DI 32 x DC 24 V (6ES7421-1BL01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 99
4.8 Digital input module SM 421; DI 16 x DC 24 V
(6ES7421-7BH01-0AB0)
4.8.1 Features
Overview
SM 421; DI 16 x 24 V DC has the following properties:
16 inputs, isolated in 2 groups of 8
Rapid signal processing Input filter from 50 µs
Rated input voltage 24 V DC
Suitable for switches and 2-/3-/4-wire proximity switches (BEROs, IEC 61131-2; type 2)
2 short-circuit proof sensor supplies for 8 channels each
External redundant supply for sensor supply possible
Status display "Sensor voltage (Vs) O.K."
Group fault display for internal faults (INTF) and external faults (EXTF)
Configurable diagnostics
Configurable diagnostic interrupt
Configurable hardware interrupts
Configurable input delays
Configurable substitute values in the input range
The status LEDs indicate the process status.
Note
The module spare parts are compatible with SM 421 module; DI 16 x 24 V DC;
(6ES7 421-7BH00-0AB0)
To use the new function "Input delay 50 µs", you require STEP7 from V 5.2.
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
100 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection and circuit diagram for SM 421; DI 16 x 24 V DC
INTF
EXTF
1L+
0
1
2
3
1Vs
4
5
6
7
1M
1M
2L+
2L+
0
1
2
3
2Vs
4
5
6
7
2M
2M
1L+
2M
2L+
1M
M
L+
1L+
1L+
2L+
1M
2M
2M
1M
24 V
24 V
24 V
2L+
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Front connector monitoring
Monitoring of external auxiliary voltage 1L+
Monitoring of internal voltage
Short-circuit
protection
Monitoring of encoder supply 1Vs
Monitoring of external auxiliary voltage 2L+
Monitoring of internal voltage
Short-circuit
protection
Monitoring of encoder supply 2Vs
Backplane bus connection
Figure 4-3 Connection and circuit diagram for SM 421; DI 16 x 24 V DC
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 101
Connection diagram for redundant sensor supply
The image below shows how sensors can be supplied with a redundant voltage source over
Vs (e.g. through another module).
Vs
M
L+ 1 L+
2 L+
±
Short-circuit-
proof driver
Digital input
module
to the sensors
Figure 4-4 Connection diagram for redundant sensor supply for SM 421; DI 16 x 24 V DC
Technical specifications for SM 421; DI 16 x 24 V DC
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 600 g
Module-specific data
Number of inputs 16
Cable length
Unshielded, input delay
0.1 ms
0.5 ms
3 ms
20 m maximum
50 m maximum
600 m maximum
Shielded, input delay
0.1 ms
0.5 ms
3 ms
30 m maximum
70 m maximum
1000 m maximum
Voltage, current and potential
Rated supply voltage of electronics and sensor L+ 24 V DC
Reverse polarity protection Yes
Number of inputs that can be enabled simultaneously 16
Electrical isolation
Between channels and backplane bus Yes
Between channels and electronics power supply No
Between channels
in groups of
Yes
8
Permissible potential difference
Between different circuits 60 V DC/30 V AC (SELV)
Insulation tested at
channels against rear panel and load voltage L+ 500 V DC
Between channel groups 500 V DC
Current consumption
from backplane bus (5 V) 130 mA maximum
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
102 Reference Manual, Ausgabe 11/2016, A5E00850736-08
from supply voltage L+ 120 mA maximum
Module power loss Typ. 5 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts
Hardware interrupt Configurable
Diagnostic interrupt Configurable
Diagnostic functions
Supply voltage monitoring for electronics Yes
Load voltage monitoring Green LED per group
Group fault display
for internal fault
for external fault
red LED (INTF)
red LED (EXTF)
Channel fault display None
Diagnostic information can be read out Yes
Monitoring for
Wire break I < 1 mA
Substitute values can be connected Yes
Sensor supply outputs
Number of outputs 2
Output voltage
loaded At least L+(-2.5 V)
Output current
Rated value 120 mA
Permitted range 0 to 150 mA
Additional (redundant) supply Possible
Short-circuit protection Yes, electronic
Data for selecting a sensor
Input voltage
Rated value 24 V DC
For "1" signal 11 to 30 V
For "0" signal -30 to 5 V
Input current
For "1" signal 6 to 12 mA
For "0" signal < 6 mA
Input characteristic In accordance with IEC 61131; type 2
Connection of 2-wire BEROs
Permissible quiescent current
Possible
3 mA maximum
Time, frequency
Internal preparation time 1 for
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 103
Status recognition only
Input delay for channel groups 0.05 ms/0.05 ms
Input delay for channel groups 0.05 ms/0.1 ms or
0.1 ms/0.1 ms
Input delay for channel groups ≥ 0.5 ms
Maximum 50 µs
Maximum 70 µs
Maximum 180 µs
Status recognition and hardware interrupt enable
Input delay for channel groups 0.05 ms/0.05 ms 2)
Input delay for channel groups 0.05 ms/0.1 ms or
0.1 ms/0.1 ms
Input delay for channel groups ≥ 0.5 ms
Maximum 60 µs
Maximum 80 µs
Maximum 190 µs
Internal processing time for diagnostics/diagnostic inter‐
rupt
Maximum 5 ms
Input delay
Configurable Yes
Rated value 0.05 / 0.1 /0.5 / 3 ms
Input frequency
(with 0.1 ms delay time)
< 2kHz
Values included in cycle and response times.
Sensor circuit
Sensor resistor circuit for wire-break monitoring 10 to 18 kΩ
1 The filter times for the selected input delay are added to the total runtime.
2 Substitute value function; diagnostics and diagnostic interrupt must not be selected.
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
104 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.8.2 Assigning parameters to the SM 421; DI 16 x DC 24 V
Parameter assignment
You will find a description of the general configuration of digital modules in section 5.3.
Parameters of SM 421; DI 16 x DC 24 V
The table below shows an overview of configurable parameters and their default settings for
SM 421; DI 16 x DC 24 V.
Table 4-8 Parameters of SM 421; DI 16 x DC 24 V
Parameters Value range Default2Parameter
type
Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Hardware interrupt1Yes/no No
Destination CPU for interrupt 1 to 4 - Static Module
Diagnostics
Wire break Yes/no No Static Channel
Channel group
No load voltage L+/sensor supply Yes/no No
Hardware interrupt trigger
Positive edge Yes/no - Dynamic Channel
Negative edge Yes/no
Input delay 0.05 ms
0.1 ms
0.5 ms
3 ms
3 ms Static Channel group
Reaction to error Set substitution val‐
ue (SSV)
Hold last value (HLV)
SV Dynamic Module
Set substitution value "1" Yes/no No Dynamic Channel
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the digital modules with the default settings.
Allocating the sensor supplies to channel groups
The two sensor supplies of the module are used to supply two channel groups: Inputs 0 to 7
and inputs 8 to 15. You also configure diagnostics for the sensor supply at those two channel
groups.
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 105
Ensuring a wire break check is carried out
To ensure that a wire break check is carried out, you require an external sensor circuit using
a resistor of 10 to 18 kΩ. The resistor should be connected parallel to the contact and should
be arranged as closely as possible to the sensor.
This additional resistor is not required in the following cases:
If 2-wire BEROs are used
If you do no configure the "Wire break" diagnostics
Setting the input delay for channel groups
You can only set the input delay for each group of channels. In other words, the setting for
channel 0 applies to inputs 0 to 7 and the setting for channel 8 applies to inputs 8 to 15.
Note
The parameters that are entered for the remaining channels (1 to 7 and 9 to 15) must be equal
to the value 0 or 8, otherwise those channels will be reported as being incorrectly configured.
Any hardware interrupts that have occurred in the meantime will be reported after
acknowledgement.
Optimum signal propagation delays
You can achieve the fastest signal propagation delay with the following settings:
Both channel groups are configured with an input delay of 50 µs
All the diagnoses (load voltage error, wire break) are deactivated
Diagnostic interrupt is not enabled
See also
Parameters (Page 85)
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
106 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.8.3 Behavior of the SM 421; DI 16 x DC 24 V
Effect of operating mode and supply voltage on the input values
The input values of the SM 421; DI 16 x 24 DC depend on the operating mode of the CPU and
on the supply voltage of the module.
Table 4-9 Relationships of the analog input values on the CPU's operating state and on the L+ supply
voltage
CPU operating state Power supply L+ at digital module Input value of digital module
POWER ON RUN L+ present Process value
L+ missing 0 signal*
STOP L+ present Process value
L+ missing 0 signal*
POWER OFF - L+ present -
L+ missing -
* Depends on the parameter assignment
Reaction to failure of the supply voltage
Failure of the supply voltage of the SM 421; DI 16 x 24 DC is always indicated by the EXTF
LED on the module. This information is also available on the module (entry in diagnostic data.)
Diagnostics interrupt triggering is based on parameter settings.
Short-circuit at the sensor supply Vs
The relevant Vs LED goes dark if a short-circuit is detected at the sensor supply Vs, irrespective
of parameter settings.
Effect of errors and parameter assignment on the input values
The input values of the SM 421; DI 16 x 24 DC are affected by certain errors and the parameter
assignment of the module. The following table lists the effects on the input values.
You can find more diagnostic messages in the Appendix "Diagnostic Data of the Signal
Modules".
Table 4-10 Relationships between the input values of errors and the configuration
Diagnostic message "Diagnostics"
parameter
"Reaction to Error"
parameter
Input value of digital module
No module parame‐
ters
Cannot be disa‐
bled
Not relevant 0 signal (all channels)
Front connector miss‐
ing
Substitute a value
(SV)
Configured substitute value
KLV Last read, valid value
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 107
Diagnostic message "Diagnostics"
parameter
"Reaction to Error"
parameter
Input value of digital module
Incorrect parameters
(module/channel)
Cannot be disa‐
bled
Not relevant 0 signal (module/all incorrectly config‐
ured channels)
Internal voltage failure Cannot be disa‐
bled
Substitute a value
(SV)
Configured substitute value
KLV Last read, valid value
Hardware interrupt
lost
Cannot be disa‐
bled
Not relevant Current process value
Wire break (for each
channel)
Disabled - 0 signal
Activated Substitute a value
(SV)
Configured substitute value
KLV Last read, valid value
Sensor supply miss‐
ing (also activated via
"No Load Voltage L+")
Disabled - 0 signal
Activated Substitute a value
(SV)
Configured substitute value
KLV Last read, valid value
No load voltage L+
(for each channel
group)
Disabled - 0 signal, if the contact is connected via
the sensor supply; process value for
the external sensor supply
Activated Substitute a value
(SV)
Configured substitute value
KLV Last read, valid value
Behavior when the input delay equals 0.1 ms or 0.05 ms and an error occurs
If you have set the following parameters:
Input delay: 0.1 ms or 0.05 ms
Reaction to error: "Keep Last Value" (KLV) or "Substitute Value" (SV)
Set substitution value "1"
In the event of a fault on a channel that has a 1 signal, the following could occur:
A 0 signal may be briefly output
If configured, a hardware interrupt may be generated.
This occurs before the last valid value or substitute value "1" is output.
Digital modules
4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0)
S7-400 Automation System Module Data
108 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.9 Digital input module SM 421; DI 16 x AC 120 V
(6ES7421-5EH00-0AA0)
Features
The SM 421; DI 16 x AC 120 V has the following features:
16 inputs, isolated
Nominal input voltage 120 VAC
Suitable for switches and 2-wire proximity switches (BEROs, IEC 61131; type 2)
Digital modules
4.9 Digital input module SM 421; DI 16 x AC 120 V (6ES7421-5EH00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 109
Wiring diagram of the SM 421; DI 16 x AC 120 V
1
2
3
4 0
Byte 0
5
61
7
82
9
10 3
11
13
1N
12
14
15 4
16
17 5
18
19 6
20
21 7
22
24
23
26
27
28
29
30
31
32
33
34
36
35
38
39
40
41
42
43
44
45
46
48
47
25
37
0
1
2
3
4
5
6
7
2N
3N
4N
5N
6N
7N
8N
9N
10N
11N
12N
13N
14N
15N
16N
Byte 1
Process Module
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Data register and bus control
Figure 4-5 Wiring diagram of the SM 421; DI 16 x AC 120
Specifications of SM 421; DI 16 x AC 120 V
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight Approx. 650 g
Module-specific data
Digital modules
4.9 Digital input module SM 421; DI 16 x AC 120 V (6ES7421-5EH00-0AA0)
S7-400 Automation System Module Data
110 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Number of inputs 16
Cable length
Unshielded 600 m
Shielded 1000 m
Voltages, currents, electrical potentials
Number of simultaneously controlled inputs 16
Electrical isolation
Between channels and the backplane bus Yes
Between channels
In groups of
Yes
1
Permissible potential difference
Between Minternal and the inputs 120 VAC
Between inputs of different groups 250 VAC
Isolation test voltage 1500 VAC
Current consumption
From the backplane bus (5 V) Max. 100 mA
Power loss of the module Typ. 3.0 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions None
Sensor selection data
Input voltage
Nominal value 120 V
For "1" signal 72 to 132 VAC
For "0" signal 0 to 20 V
Frequency band 47 to 63 Hz
Input current
With "1" signal 6 to 20 mA
With "0" signal 0 to 4 mA
Input delay
At "0" to "1" transitions 2 to 15 ms
With "1" to "0" 5 to 25 ms
Input characteristics In accordance with IEC 61131; type 2
Connection of 2-wire BEROs
Permissible quiescent current
Supported
Max. 4 mA
Digital modules
4.9 Digital input module SM 421; DI 16 x AC 120 V (6ES7421-5EH00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 111
4.10 Digital input module SM 421; DI 16 x UC 24/60 V
(6ES7421-7DH00-0AB0)
4.10.1 Features
Overview
SM 421; DI 16 x UC 24/60 V has the following features:
16 inputs, individually isolated
Rated input voltage UC 24 V to UC 60 V
Suitable for switches and 2-wire proximity switches (BEROs)
Suitable as P-reading and M-reading input
Group fault display for internal faults (INTF) and external faults (EXTF)
Configurable diagnostics
Configurable diagnostic interrupt
Configurable hardware interrupts
Configurable input delays
The status LEDs indicate the process status.
Digital modules
4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0)
S7-400 Automation System Module Data
112 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection and circuit diagram for SM 421; DI 16 x UC 24/60 V
L
N
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1 N
1
2
4 N
4
5
6
0
2 N
3 N
3
5 N
6 N
7 N
7
8 N
0
9 N
1
10 N
2
11 N
3
12 N
4
13 N
5
14 N
6
15 N
7
16 N
INTF
EXTF
N
L
N
L
N
L
N
L
N
L
N
L
N
L
N
L
N
L
N
L
N
L
N
L
N
L
N
L
N
L
Process Module
Front connector jumper
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Adaptation
Data register and bus control
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Input
Diagnostics
Figure 4-6 Connection and circuit diagram for SM 421; DI 16 x UC 24/60 V
Technical specifications for SM 421; DI 16 x UC 24/60 V
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 600 g
Module-specific data
Digital modules
4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 113
Number of inputs 16
Cable length
Unshielded, input delay
0.5 ms
3 ms
10 / 20 ms
Maximum 100 m
Maximum 600 m
Maximum 600 m
Cable length, shielded 1000 m
Voltage, current and potential
Number of inputs that can be enabled simultaneously 16
Electrical isolation
Between channels and backplane bus Yes
Between channels
in groups of
Yes
1
Permissible potential difference
Between different circuits 60 V DC/30 V AC (SELV)
Insulation tested at
Channels to backplane bus and load voltage L+ 1500 V AC
Between channels 1500 V AC
Current consumption
from backplane bus (5 V) Maximum 150 mA
Module power loss Typ. 8 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts
Hardware interrupt Configurable
Diagnostic interrupt Configurable
Diagnostic functions Configurable
Group fault display
for internal fault
for external fault
red LED (INTF)
red LED (EXTF)
Channel fault display None
Diagnostic information can be read out Possible
Monitoring for
Wire break I > 0.7 mA
Substitute values can be connected No
Data for selecting a sensor
Input voltage
Rated value UC 24 to 60 V
For "1" signal 15 to 72 V DC
- 15 to -72 V DC
15 to 60 V AC
For "0" signal DC - 6 to +6 V
AC 0 to 5 V
Frequency range DC/AC 47 to 63 Hz
Digital modules
4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0)
S7-400 Automation System Module Data
114 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Input current
For "1" signal Typ. 4 to 10 mA
Input characteristic as IEC 61131-2 1)
Connection of 2-wire BEROs
Permissible quiescent current
Possible
Maximum 0.5 to 2 mA2)
Time, frequency
Internal processing time for
hardware interrupt enable only Maximum 450 µs
Hardware and diagnostic interrupt enable Maximum 2 ms
Input delay
Configurable Yes
Rated value 0.5 / 3 / 10 / 20 ms
Values included in cycle and response times.
Sensor circuit
Sensor resistor circuit for wire-break monitoring
Rated voltage 24 V(15 to 35 V) 18 kΩ
Rated voltage 48 V(30 to 60 V) 39 kΩ
Rated voltage 60 V(50 to 72 V) 56 kΩ
1 IEC 61131-2 does not specify any data for UC modules. The values were, however, adjusted as far
as possible to IEC 61131-2.
2 Minimum quiescent current is required for wire break monitoring.
Digital modules
4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 115
4.10.2 Assigning parameters to the SM 421; DI 16 x UC 24/60 V
Parameter assignment
You will find a description of the general configuration of digital modules in section 5.3.
Parameters of the SM 421; DI 16 x UC 24/60 V
The following table contains an overview of the parameters you can set and their default
settings for the SM 421; DI 16 x UC 24/60 V.
Table 4-11 Parameters of the SM 421; DI 16 x UC 24/60 V
Parameters Value range Default2Parameter type Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Hardware interrupt1Yes/no No
Destination CPU for interrupt 1 to 4 - Static Module
Diagnostics
Wire break Yes/no No Static Channel
Hardware interrupt trigger
Positive edge
Negative edge
yes/no
yes/no
- Dynamic Channel
Input delay30.5 ms (DC)
3 ms (DC)
20 ms (DC/AC)
3 ms (DC) Static Channel group
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the digital modules with the default settings.
3 If you assign 0.5 ms , then you should not configure diagnostics because the internal processing time for diagnostic functions
can be > 0.5 ms.
Ensuring a wire break check is carried out
To ensure that a wire break check is carried out, you require an external sensor circuit using
a resistor of 18 to 56 kΩ. The resistor should be connected parallel to the contact and should
be arranged as closely as possible to the sensor.
This additional resistor is not required in the following cases:
If 2-wire BEROs are used
If you do no configure the "Wire Break" diagnostics
Digital modules
4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0)
S7-400 Automation System Module Data
116 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Setting the input delay for channel groups
You can only set the input delay for each group of channels. In other words, the setting for
channel 0 applies to inputs 0 to 7 and the setting for channel 8 applies to inputs 8 to 15.
Note
The parameters that are entered for the remaining channels (1 to 7 and 9 to 15) must be equal
to the value 0 or 8, otherwise those channels will be reported as being incorrectly configured.
Any hardware interrupts that have occurred in the meantime will be reported after
acknowledgement.
Optimum signal propagation delays
You can achieve the fastest signal propagation delay with the following settings:
Both channel groups are configured with an input delay of 0.5 ms
The diagnostics parameter is disabled
The diagnostic interrupt parameter is disabled
Circuit as for active high or active low input
"1"
"0"
0V
- L+
U_s
"1"
U_s
DI_x
"1"
"0"
0V
L+
- L+
U_s
DI_xN SM 421 DI 16xUC 24/60 V
L+
U_s
Channel x of the
Active high Source input
Input threshold
Figure 4-7 Circuit as for active high or active low input
Digital modules
4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 117
See also
Parameters (Page 85)
Digital modules
4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0)
S7-400 Automation System Module Data
118 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.11 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7
421-1FH00-0AA0)
Features
The SM 421; DI 16 x UC 120/230 is characterized by the following features:
16 inputs, isolated
Nominal input voltage 120/230 VUC
Suitable for switches and 2-wire proximity switches
Digital modules
4.11 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7 421-1FH00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 119
Wiring and block diagram of the SM 421; DI 16 x UC 120/230 V
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 4 N
3 N
1
2
0
3
5
6
4
7
5
6
4
7
1
2
0
3
1N
2N
Process Module
Data register and bus control
Figure 4-8 Wiring and block diagram of the SM 421; DI 16 x UC 120/230 V
Specifications of the SM 421; DI 16 x UC 120/230 V
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight Approx. 650 g
Module-specific data
Number of inputs 16
Digital modules
4.11 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7 421-1FH00-0AA0)
S7-400 Automation System Module Data
120 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Cable length
Unshielded 600 m
Shielded 1000 m
Voltages, currents, electrical potentials
Number of simultaneously controlled inputs 16 at 120 V
8 at 240 V
16 with fan subassembly
Electrical isolation
Between channels and the backplane bus Yes
Between channels
In groups of
Yes
4
Permissible potential difference
between Minternal and inputs 230 VAC
Between inputs of different groups 500 VAC
Insulation resistance 4000 VAC
Current consumption
From the backplane bus (5 V) Max. 100 mA
Power loss of the module Typ. 3.5 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions None
Sensor selection data
Input voltage
Nominal value 120/230 VUC
For "1" signal 79 to 264 V AC
80 to 264 V DC
For "0" signal 0 to 48 V UC
Frequency band 47 to 63 Hz
Input current
With "1" signal 2 to 5 mA
With "0" signal 0 to 1 mA
Input delay
At "0" to "1" transitions 5 to 25 ms
With "1" to "0" 5 to 25 ms
Input characteristics In accordance with IEC 61131-2; Type 1
Connection of 2-wire BEROs
Permissible quiescent current
Supported
Max. 1 mA
Digital modules
4.11 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7 421-1FH00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 121
4.12 Digital input module SM 421; DI 16 x UC 120/230 V
(6ES7421-1FH20-0AA0)
Properties
SM 421; DI 16 x UC 120/230 V has the following features:
16 inputs, isolated in groups of 4
Rated input voltage UC 120/230 V
Input characteristic in accordance with IEC 61131-2; type 2
Suitable for switches and 2-wire proximity switches (BEROs)
The status LEDs indicate the process status.
Digital modules
4.12 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7421-1FH20-0AA0)
S7-400 Automation System Module Data
122 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection and circuit diagram for SM 421; DI 16 x UC 120/230 V
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1
2
0
3
5
6
4
7
5
6
4
7
1
2
0
3
4N
1N
10
2N
3N
Process Module
Data register and bus control
Figure 4-9 Connection and circuit diagram for SM 421; DI 16 x UC 120/230 V
Technical specifications for SM 421; DI 16 x UC 120/230 V
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 650 g
Module-specific data
Number of inputs 16
Cable length
unshielded 600 m
Digital modules
4.12 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7421-1FH20-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 123
shielded 1000 m
Voltage, current and potential
Rated supply voltage of electronics L+ None
Number of inputs that can be enabled simultaneously 16
Electrical isolation
Between channels and backplane bus Yes
Between channels
in groups of
Yes
4
Permissible potential difference
Between Mintern and the inputs 250 V AC (reinforced insulation)
Test voltage:
4000 Vac (type test)
2400 AC (routine test)
Between inputs of different groups 500 V AC (basic insulation)
Test voltage:
2400 Vac (routine test)
2300 Vac (type test)
Current consumption
From backplane bus (5 V) Maximum 80 mA
Module power loss Typ. 12 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions None
Substitute values can be connected No
Data for selecting a sensor
Input voltage
Rated value UC 120/230 V
For "1" signal 74 to 264 V AC
80 to 264 V DC
-80 to -264 V DC
For "0" signal 0 to 40 V AC
-40 to +40 V DC
Frequency range 47 to 63 Hz
Input current
For "1" signal (120 V) Typ. 10 mA AC
Typ. 1.8 mA DC
For "1" signal (230 V) Typ. 14 mA AC
Typ. 2 mA DC
For "0" signal 0 to 6 mA AC
0 to 2 mA DC
Input delay
For "0" to "1" Maximum 20 ms AC
Maximum 15 ms DC
Digital modules
4.12 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7421-1FH20-0AA0)
S7-400 Automation System Module Data
124 Reference Manual, Ausgabe 11/2016, A5E00850736-08
For "1" to "0" Maximum 30 ms AC
Maximum 25 ms DC
Input characteristic In accordance with IEC 61131-2; type 2
Connection of 2-wire BEROs
Permissible quiescent current
Possible
Maximum 5 mA AC
Digital modules
4.12 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7421-1FH20-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 125
4.13 Digital input module SM 421; DI 32xUC 120 V
(6ES7421-1EL00-0AA0)
Properties
SM 421; DI 32 x UC 120 V has the following features:
32 inputs, isolated
Rated input voltage UC 120 V
Suitable for switches and 2-wire proximity switches
Digital modules
4.13 Digital input module SM 421; DI 32xUC 120 V (6ES7421-1EL00-0AA0)
S7-400 Automation System Module Data
126 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection and circuit diagram for SM 421; DI 32 x UC 120 V
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1
2
3
4
5
6
7
0
4N
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
3N
2N
1N
Process Module
Data register and bus control
Figure 4-10 Connection and circuit diagram for SM 421; DI 32 x UC 120 V
Technical specifications for SM 421; DI 32 x UC 120 V
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 600 g
Module-specific data
Number of inputs 32
Digital modules
4.13 Digital input module SM 421; DI 32xUC 120 V (6ES7421-1EL00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 127
Cable length
unshielded 600 m
shielded 1000 m
Voltage, current and potential
Reverse polarity protection Yes
Number of inputs that can be enabled simultaneously 32
Electrical isolation
Between channels and backplane bus Yes
Between channels
in groups of
Yes
8
Permissible potential difference
Between Mintern and the inputs 120 V AC (reinforced insulation)
Between inputs of different groups 250 V AC (basic insulation)
Insulation tested at 1500 V AC
Current consumption
From backplane bus (5 V) Maximum 200 mA
Module power loss Typ. 6.5 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions None
Data for selecting a sensor
Input voltage
Rated value UC 120 V
For "1" signal 79 to 132 V AC
80 to 132 V DC
For "0" signal 0 to 20 V
Frequency range 47 to 63 Hz
Input current
For "1" signal 2 to 5 mA
For "0" signal 0 to 1 mA
Input delay
For "0" to "1" 5 to 25 ms
For "1" to "0" 5 to 25 ms
Input characteristic In accordance with IEC 61131; type 1
Connection of 2-wire BEROs Possible
Permissible quiescent current Maximum 1 mA
Digital modules
4.13 Digital input module SM 421; DI 32xUC 120 V (6ES7421-1EL00-0AA0)
S7-400 Automation System Module Data
128 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A;
(6ES7422-1BH11-0AA0)
Properties
SM 422; DO 16 x DC 24 V/2 A has the following features:
16 outputs, isolated in two groups of 8
Output current 2 A
Rated load voltage 24 V DC
The status LEDs indicate the system state even if the front connector is not connected.
Special points to note when commissioning
Digital output module SM 422; DO 16 x DC 24 V/2 A, order number 6ES7422-1BH11-0AA0,
differs from digital output module SM 422; DO 16 x DC 24 V/2 A, order number
6ES7422-1BH10-0AA0, in the following feature:
To commission the module, it is not necessary to supply each group of 8 outputs with load
voltage (e.g. connection of 1L+ and 3L+). The module is fully functional even if only one group
is supplied with L+.
Note
Any switch-off of all outputs by switching off a single L+ supply implemented with the previous
module 6ES7422-1BH10-0AA0 is no longer possible.
Digital modules
4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES7422-1BH11-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 129
Connection and circuit diagram for SM 422; DO 16 x DC 24 V/2 A
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1
2
0
3
1L+
5
6
4
7
5
6
4
7
1
2
0
3
2M
2L+
2L+
1M
3L+
3L+
2M
4L+
4L+
Process Module
Data memory and bus control
LED control
1st supply group
2nd supply group
3rd supply group
4th supply group
5th supply group
6th supply group
7th supply group
8th supply group
Front connector jumper
Figure 4-11 Connection and circuit diagram for SM 422; DO 16 x DC 24 V/2 A
Technical specifications for SM 422, DO 16 x DC 24 V/2 A
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 600 g
Module-specific data
Digital modules
4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES7422-1BH11-0AA0)
S7-400 Automation System Module Data
130 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Number of outputs 16
Cable length
unshielded 600 m
shielded 1000 m
Voltage, current and potential
Rated supply voltage of electronics L+ 24 V DC
Rated load voltage L+ 24 V DC
Total current of outputs (1 to 2 outputs for each supply group)
Up to 40°C Maximum 3 A
Up to 60°C Maximum 2 A
Electrical isolation
Between channels and backplane bus Yes
Between channels
in groups of
Yes
8
Permissible potential difference
Between different circuits 60 V DC/30 V AC (SELV)
Insulation tested at
Channels to backplane bus and load voltage L+ 500 Vac or 707 Vdc (type test)
Between outputs of different groups 500 Vac or 707 Vdc (type test)
Current consumption
From backplane bus (5 V) Maximum 160 mA
Supply and load voltage L + (no load) Maximum 30 mA
Module power loss Typ. 5 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions None
Data for selecting an actuator
Output voltage
For "1" signal At least L+ (-0.5 V)
Output current
For "1" signal
Rated value
Permitted range
2A
5 mA to 2.4 A
For "0" signal (residual current) Maximum 0.5 mA
Output delay (with resistive load)
For "0" to "1" Maximum 1 ms
For "1" to "0" Maximum 1 ms
Load resistance range 24 Ω to 4 kΩ
Lamp load Maximum 10 W
Connection of 2 outputs in parallel
For redundant control of a load Possible (only outputs of the same group)
For increasing the power Not possible
Digital modules
4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES7422-1BH11-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 131
Control of a digital input Possible
Switching frequency max.
With resistive load 100 Hz
With an inductive load in accordance with IEC
947-51, DC 13
0.2 Hz at 1 A
0.1 Hz at 2 A
With lamp load Maximum 10 Hz
(Internal) limitation of inductive switch-off voltage to Maximum -30 V
Short-circuit protection for output
Response threshold
Clocked electronically2
2.8 to 6 A
1 A supply group always consists of 2 neighboring channels, starting from channel 0. Channels 0 and
1, 2 and 3, ... 14 and 15 therefore each form a supply group.
2 Reclosing at full load is not guaranteed after a short circuit. Measures for dealing with this problem:
Change the signal at the output or
Interrupt the load voltage of the module
Briefly disconnect the load from the output
4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A
(6ES7422-5EH10-0AB0)
4.15.1 Features
Overview
The SM 422; DO 16 x DC 20-125 V/1.5 A has the following features:
16 outputs, each channel is fused; reverse polarity protection and isolated in groups of 8
Output current 1,5 A
Nominal load voltage 20 to 125 VDC
Group error display for internal faults (INTF) and external faults (EXTF)
Programmable diagnostics
Programmable diagnostic interrupt
Programmable substitution value output
Digital modules
4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0)
S7-400 Automation System Module Data
132 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Wiring diagram of the SM 422; DO 16 x DC 20-125 V/1.5 A
1
2
3
4 0
Byte 0
5
6 1
7
8 2
9
10 3
11
13 L1+
12
14
15 4
16
17 5
18
19 6
20
21 7
22
24
23
26
27
28
29
30
31
32
33
34
36
35
38
39
40
41
42
43
44
45
46
48
47
25
37
0
1
2
3
4
5
6
7
M1
- +
L1+
Byte 1
L2+
M2
- +
L2+
M2
Process Module
Data memory and bus control
LED control
Front connector jumper
Figure 4-12 Wiring diagram of the SM 422; DO 16 x DC 20-125 V/1.5 A
Specifications of the SM 422; DO 16 x DC 20-125 V/1.5 A
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight Approx. 800 g
Module-specific data
Number of outputs 16
Digital modules
4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 133
Cable length
Unshielded Max. 600 m
Shielded Max. 1000 m
Voltages, currents, electrical potentials
Nominal load voltage L1 20 to 138 V DC
Reverse polarity protection Yes, with fuse
Total current of the outputs 1)
With fan subassembly
Up to 40° C Max. 16 A 21 A
Up to 60° C Max. 8 A 14 A
Electrical isolation
Between channels and the backplane bus Yes
Between channels Yes
In groups of 8
Permissible potential difference
Between outputs of different groups 250 VAC
Isolation test voltage 1500 VAC
Current consumption
From the backplane bus (5 V) Max. 700 mA
From load voltage L+ (no load) Max. 2 mA
Power loss of the module Typ. 10 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts
Diagnostic interrupt Programmable
Diagnostic functions
Group error display
for internal disruption
for external disruption
Configurable
Red LED (INTF)
Red LED (EXTF)
Diagnostic information dump Yes
Injection of substitution values Yes, programmable
Actuator selection data
Output voltage
With "1" signal Min. L+ (-1.0 V)
Output current
With signal "1"
Rated value
Permissible range
Permissible peak current
1.5 A
10 mA to 1.5 A
Maximum 3 A (for 10 ms)
With "0" signal (residual current) Max. 0,5 mA
Output delay (resistive load)
At "0" to "1" transitions Max. 2 ms
With "1" to "0" Max. 13 ms
Digital modules
4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0)
S7-400 Automation System Module Data
134 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Wiring two outputs in parallel
For redundant load control Supported (only outputs of the same group)
For performance increase Supported (only outputs of the same group)
Triggering a digital input Supported
Switching frequency
With resistive load Max. 10 Hz
With inductive load in accordance with IEC 947-5-1,
DC 13
Max. 0.5 Hz
Short-circuit protection of the output Electronically protected2)
Threshold Typ. 04 to 5 A
Replacement fuses Fuse, 8 A/250 V, quick blow
1 To achieve maximum performance capability, distribute the high-current load between the two groups.
2 To reset a deactivated output, first set the output signal to 0 and then to 1.
If output signal 1 is written to a deactivated output and the short-circuit remains, additional interrupts
are generated (provided the diagnostic interrupt parameter was set).
Note
If the power supply is switched on by means of a mechanical contact, a voltage pulse may
occur at the outputs. The transient pulse lasts a maximum of 0.5 ms.
Changing fuses
WARNING
This can result in injury.
If you change a fuse without removing the front connector of the module, you could be injured
by an electric shock.
Consequently, always remove the front connector before you change the fuse.
Digital modules
4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 135
4.15.2 Assigning parameters to the SM 422; DO 16 x DC 20-125 V/1.5 A
Parameter assignment
You will find a description of the general procedure for assigning parameters to digital modules
in the respective sections.
Parameters of the SM 421; DO 16 x DC 20-125 V/1.5 A
You will find an overview of the parameters you can set and their default settings for the SM
422; DO 16 x DC 20-125 V/1.5 A in the following table.
Table 4-12 Parameters of the SM 421; DO 16 x DC 20-125 V/1.5 A
Parameters Value range Default setting2Parameter type Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Destination CPU for interrupt 1 to 4 - Static Module
Reaction to CPU STOP Substitute a value (SV)
Keep last value (KLV)
SV Dynamic Module
Diagnostics
Load voltage L+ missing Yes/no No Static Channel group
Short-circuit to M Yes/no No Static Channel
Set substitution value "1" Yes/no No Dynamic Channel
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the digital modules with the default settings.
Assigning the "No load voltage L+" diagnostics to channel groups
You can only set the "No load voltage L+" diagnostics separately for each channel group. In
other words, the setting for channel 0 applies to inputs 0 to 7, and the setting for channel 8
applies to inputs 8 to 15.
See also
Parameters (Page 85)
Digital modules
4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0)
S7-400 Automation System Module Data
136 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A
(6ES7422-1BL00-0AA0)
Properties
SM 422; DO 32 x DC 24 V/0.5 A has the following features:
32 outputs, isolated in a group of 32
Power supply in groups of 8 channels.
A supply group always consists of 8 neighboring channels, starting from channel 0.
Channels 0 to 7, 8 to 15, ... 16 to 23 and 24 to 31 each form a supply group.
Each of these supply groups can be switched off separately by disconnecting L+; however,
you must remember the common ground connection.
Output current 0.5 A
Rated load voltage 24 V DC
The status LEDs indicate the system state even if the front connector is not connected.
Digital modules
4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-1BL00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 137
Connection and circuit diagram for SM 422\; DO 32 x DC 24 V/0.5 A
L+
3L+
2L+
4L+
1L+
M
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1
2
4
7
0
3
5
6
1
2
4
7
0
3
5
6
1
2
4
7
0
3
5
6
1
2
4
7
0
3
5
6
M
1L+
2L+
2L+
3L+
3L+
4L+
4L+
Process Module
Data memory and bus control
LED control
Front connector jumper
Figure 4-13 Connection and circuit diagram for SM 422; DO 32 x DC 24 V/0.5 A
Technical specifications for SM 422; DO 32 x DC 24 V/0.5 A
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 600 g
Module-specific data
Digital modules
4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-1BL00-0AA0)
S7-400 Automation System Module Data
138 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Number of outputs 32
Cable length
unshielded 600 m
shielded 1000 m
Voltage, current and potential
Rated supply voltage of electronics L+ 24 V DC
Rated load voltage L+ 24 V DC
Total current of outputs (1 to 8 outputs for each supply group)
Up to 40°C
Up to 60°C
Maximum 4 A
Maximum 2 A
Electrical isolation
Between channels and backplane bus Yes
Between channels No
Permissible potential difference
Between different circuits 60 V DC/30 V AC (SELV)
Insulation tested at
Channels to backplane bus and load voltage L+ 500 Vac or 707 Vdc (type test)
Load voltage L+ to backplane bus 500 Vac or 707 Vdc (type test)
Current consumption
From backplane bus (5 V) Maximum 200 mA
Supply and load voltage L + (no load) Maximum 30 mA
Module power loss Typ. 4 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions None
Data for selecting an actuator
Output voltage
For "1" signal At least L+ (-0.3 V)
Output current
For "1" signal
Rated value
Permitted range
500 mA
5 mA to 600 mA
For "0" signal (residual current) Maximum 0.3 mA
Output delay (with resistive load)
For "0" to "1" Maximum 1 ms
For "1" to "0" Maximum 1 ms
Load resistance range 48 Ω to 4 kΩ
Lamp load Maximum 5 W
Connection of 2 outputs in parallel
For redundant control of a load Possible (only outputs of the same group)
For increasing the power Possible (only outputs of the same group)
Control of a digital input Possible
Digital modules
4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-1BL00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 139
Switching frequency
With resistive load Maximum 100 Hz
With an inductive load in accordance with IEC
947-5-1, DC 13
Maximum 2 Hz at 0.3 A
Maximum 0.5 Hz at 0.5 A
With lamp load Maximum 10 Hz
(Internal) limitation of inductive switch-off voltage to Typ. - 27 V
Short-circuit protection for output Clocked electronically
Response threshold Typ. 0.7 to 1.5 A
1 A supply group always consists of 8 neighboring channels, starting from channel 0. Channels 0 to 7,
8 to 15, 16 to 23 and 24 to 32 therefore each form a supply group.
4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A
(6ES7422-7BL00-0AB0)
4.17.1 Features
Overview
SM 422; DO 32 x DC 24 V/0.5 A has the following features:
32 outputs, fused and isolated in groups of 8
Output current 0.5 A
Rated load voltage 24 V DC
Group fault display for internal faults (INTF) and external faults (EXTF)
Configurable diagnostics
Configurable diagnostic interrupt
Configurable substitute value output
The status LEDs indicate the system state even if the front connector is not connected.
Digital modules
4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0)
S7-400 Automation System Module Data
140 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection and circuit diagram for SM 422; DO 32 x DC 24 V/0.5 A
L+
3L+
2L+
4L+
1L+
24 V
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1
2
4
7
0
3
5
6
1
2
4
7
0
3
5
6
1
2
4
7
0
3
5
6
1
2
4
7
0
3
5
6
4M
1L+
2L+
2L+
3L+
3L+
4L+
4L+
INTF
EXTF
1M
10
1M
2M
2M
3M
3M
4M 4M
4L+
3M
3L+
2M
1M
2L+
Process Module
%DFNSODQHEXVFRQQHFWLRQ
1L+ monitoring
Control
Monitoring of internal voltage
Control
Diagnostics
Output status
Channel status
display
Front connector jumper
Figure 4-14 Connection and circuit diagram for SM 422; DO 32 x DC 24 V/0.5 A
Technical specifications for SM 422; DO 32 x DC 24 V/0.5 A
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 600 g
Digital modules
4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 141
Module-specific data
Number of outputs 32
Cable length
unshielded 600 m
shielded 1000 m
Voltage, current and potential
Rated supply voltage of electronics L+ 24 V DC
Rated load voltage L+ 24 V DC
Total current of outputs (per group)
Up to 40°C Maximum 4 A
Up to 60°C Maximum 2 A
Electrical isolation
Between channels and backplane bus Yes
Between channels Yes
In groups of 8
Permissible potential difference
Between different circuits 60 V DC/30 V AC (SELV)
Insulation tested at
Channels to backplane bus and load voltage L+ 500 V DC
Between outputs of different groups 500 V DC
Current consumption
From backplane bus (5 V) Maximum 200 mA
Supply and load voltage L + (no load) 120 mA maximum
Module power loss Typ. 8 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts
Diagnostic interrupt Configurable
Hardware interrupt Configurable
Diagnostic functions
Load voltage monitoring Yes
Group fault display
For internal fault Red LED (INTF)
For external fault Red LED (EXTF)
Diagnostic information can be read out Yes
Monitoring for
Short circuit > 1 A (typ.)
Wire break < 0.15 mA
Substitute values can be connected Yes
Data for selecting an actuator
Output voltage
For "1" signal At least L+ (-0.8 V)
Digital modules
4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0)
S7-400 Automation System Module Data
142 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Output current
For "1" signal
Rated value
Permitted range
0.5 A
5 mA to 600 mA
For "0" signal (residual current) Maximum 0.5 mA
Load resistance range 48 Ω to 4 kΩ
Connection of 2 outputs in parallel
For redundant control of a load Possible (only outputs of the same group)
For increasing the power Possible (only outputs of the same group)
Control of a digital input Possible
Switching frequency
With resistive load Maximum 100 Hz
With an inductive load in accordance with IEC 947-5-1,
DC 13
Maximum 2 Hz
With lamp load Maximum 2 Hz
(Internal) limitation of inductive switch-off voltage to Typ. L + (- 45 V)
Short-circuit protection for output
Response threshold
Clocked electronically
Typ. 0.75 to 1.5 A
Time, frequency
Internal processing time between backplane bus and input of the output driver 1)
Up to product version 03
Irrespective of diagnostics/diagnostic interrupt/
substitute value enable
Maximum 100 µs
Up to product version 04
Without diagnostics/diagnostic interrupt/substitute
value enable
Maximum 60 µs
With diagnostics/diagnostic interrupt/substitute value
enable
Maximum 100 µs
1 The switching time of the output driver (< 100 µs with resistive load) is added to the total runtime
Digital modules
4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 143
4.17.2 Assigning parameters to the SM 422; DO 32 x DC 24 V/0.5 A
Parameter assignment
You will find a description of the general procedure for assigning parameters to digital modules
in the respective sections.
Parameters of SM 422; DO 32 x DC 24 V/0.5 A
You will find an overview of the parameters that you can set and their default settings for the
SM 422; DO 32 x DC 24 V/0.5 A in the table below.
Table 4-13 Parameters of SM 422; DO 32 x DC 24 V/0.5 A
Parameters Value range Default2Parameter type Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Destination CPU for interrupt 1 to 4 - Static Module
Reaction to CPU STOP Set substitution val‐
ue (SSV)
Keep last value
(KLV)
SV Dynamic Module
Diagnostics
Wire break Yes/no No Static Channel
No load voltage L+/sensor supply Yes/no No Channel group
Short-circuit to M Yes/no No Channel
Short-circuit to L+ Yes/no No Channel
Set substitution value "1" Yes/no No Dynamic Channel
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the digital modules with the default settings.
See also
Parameters (Page 85)
Digital modules
4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0)
S7-400 Automation System Module Data
144 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.17.3 Behavior of the SM 422; DO 32 x DC 24 V/0.5 A
Influence of the operating state and supply voltage on output values
The output values of the SM 422; DO 32 x DC 24 V/0.5 A depend on the operating mode of
the CPU and on the supply voltage of the module.
Table 4-14 Relationships of the analog output values on the CPU's operating state and on the L+
supply voltage
CPU operating mode Power supply L+ at digital module Output value of digital module
POWER ON RUN L+ present CPU value
L+ missing 0 signal
STOP L+ present Substitution value/last value (de‐
fault = 0 signal)
L+ missing 0 signal
POWER OFF - L+ present 0 signal
L+ missing 0 signal
Reaction to failure of the supply voltage
The failure of the supply voltage of the SM 422; DO 32 x DC 24 V/0.5 A is always indicated
by the EXTF LED on the module. This information is also available on the module (entry in
diagnostic data.)
Diagnostics interrupt triggering is based on parameter settings.
See also
Assigning parameters to the SM 422; DO 32 x DC 24 V/0.5 A (Page 144)
4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A
(6ES7422-1FF00-0AA0)
Properties
SM 422; DO 8 x AC 120/230 V/5 A has the following features:
8 outputs, isolated in groups of 1
Output current 5 A
Rated load voltage 120/230 V AC
The status LEDs indicate the system state even if the front connector is not connected.
Digital modules
4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES7422-1FF00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 145
Connection and circuit diagram for SM 422; DO 8 x AC 120/230 V/5 A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1L
1N
1
2L
0
7L
7N
7
8L
6
3L
3N
3
4L
2
5L
5N
5
6L
4
t
F100
F200
F300
F400
F500
F600
F700
F800
6N
8N
2N
4N
INFT
EXTF
Process Module
Data register and bus control
LED control
Figure 4-15 Connection and circuit diagram for SM 422; DO 8 x AC 120/230 V/5 A
Technical specifications for SM 422; DO 8 x AC 120/230 V/5 A
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 800 g
Module-specific data
Digital modules
4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES7422-1FF00-0AA0)
S7-400 Automation System Module Data
146 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Number of outputs 8
Cable length
unshielded 600 m
shielded 1000 m
Voltage, current and potential
Rated load voltage L1
Permissible frequency range
79 to 264 V AC
47 to 63 Hz
Total current of outputs
With fan module
Up to 40°C 24 A 24 A
Up to 60°C max. 16 A 20 A
Electrical isolation
Between channels and backplane bus Yes
Between channels Yes
In groups of 1
Permissible potential difference
Between outputs of different groups 500 V AC
Insulation strength 4000 V AC
Current consumption
From backplane bus (5 V) Maximum 250 mA
From load voltage L + (no load) Maximum 1.5 mA
Module power loss Typ. 16 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions Not configurable
Group fault display
for internal fault
for external fault
red LED (INTF) fuse failure
red LED (EXTF) no load voltage
Data for selecting an actuator
Output voltage
For "1" signal At maximum current at least L1
(-1.5 Vrms)
At minimum current at least L1
(-10.7 Vrms)
Output current
For "1" signal
Rated value
Permitted range
Permitted surge current (per group)
5 A
10 mA to 5 A
Maximum 50 A per cycle
For "0" signal (residual current) Maximum 3.5 mA
Output delay (with resistive load)
For "0" to "1" Maximum 1 AC cycle
For "1" to "0" Maximum 1 AC cycle
Digital modules
4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES7422-1FF00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 147
Minimum load current 10 mA
Zero crossing Maximum 55 V
Size of motor starter Maximum 5 pursuant to NEMA
Lamp load Maximum 100 W
Connection of 2 outputs in parallel
For redundant control of a load Possible (only outputs connected to
same load)
Control of a digital input Possible
Switching frequency
With resistive load Maximum 10 Hz
With an inductive load in accordance with IEC
947-5-1, DC 13
Maximum 0.5 Hz
With lamp load 1 Hz
Short-circuit protection for output Fuse, 8 A, 250 V (per output)
Current required for safety shutdown At least 100 A
Response time Maximum 100 ms
Spare fuses Fuse, 8 A, quick-response
Wickmann 194-1800-0
Schurter SP001.1013
Littelfuse 217.008
Changing the fuse
WARNING
Injury is possible.
If you change a fuse without first unplugging the front connector of the module, you may
receive an electric shock.
Always remove the front connector before changing a fuse.
Digital modules
4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES7422-1FF00-0AA0)
S7-400 Automation System Module Data
148 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A
(6ES7422-1FF00-0AA0)
Properties
SM 422; DO 16 x AC 120/230 V/2 A has the following features:
16 outputs, isolated in groups of 4
Output current 2 A
Rated load voltage 120/230 V AC
The status LEDs indicate the system state even if the front connector is not connected.
Digital modules
4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES7422-1FF00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 149
Connection and circuit diagram for SM 422; DO 16 x AC 120/230 V/2 A
Byte 0
Byte 1
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
47
46
48
10
F1
F2
F3
F4
1
2
3
4
5
6
7
8
9
1
2
0
3
5
6
4
7
5
6
4
7
1
2
0
3
4N
1N
1L
2L
3L
2N
4L
3N
INTF
EXTF
Process Module
Data memory and bus control
LED control
16 digital outputs (four to ground)
Front connector jumper
Figure 4-16 Connection and circuit diagram for SM 422; DO 16 x AC 120/230 V/2 A
Technical specifications for SM 422; DO 16 x AC 120/230 V/2 A
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 800 g
Module-specific data
Digital modules
4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES7422-1FF00-0AA0)
S7-400 Automation System Module Data
150 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Number of outputs 16
Cable length
unshielded 600 m
shielded 1000 m
Voltage, current and potential
Rated load voltage L1
Permissible frequency range
79 to 264 V AC
47 to 63 Hz
Total current of outputs (per group)
With fan module
Up to 40°C max. 4 A 6 A
Up to 60°C max. 2 A 5 A
Electrical isolation
Between channels and backplane bus Yes
Between channels
in groups of
Yes
4
Permissible potential difference
Between outputs of different groups 500 V AC (basic insulation)
Test voltage:
1350 Vac (routine test)
Between Mintern and the outputs 250 V AC (reinforced insulation)
Test voltage:
4000 Vac (type test)
1350 AC (routine test)
Current consumption
From backplane bus (5 V) Maximum 400 mA
From load voltage L + (no load) 1.5 mA
Module power loss Typ. 16 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts None
Diagnostic functions Not configurable
Group fault display
for internal fault
for external fault
Red LED (INTF) fuse failure
Red LED (EXTF) no load voltage
Data for selecting an actuator
Output voltage
For "1" signal At maximum current at least L1
(-1.3 Vrms)
At minimum current at least L1
(-18.1 Vrms)
Output current
For "1" signal
Rated value
Permitted range
Permitted surge current (per group)
2 A
10 mA to 2 A
Maximum 50 A per cycle
Digital modules
4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES7422-1FF00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 151
For "0" signal (residual current) Maximum 2.6 mA
Output delay (with resistive load)
For "0" to "1" Maximum 1 ms
For "1" to "0" Maximum 1 AC cycle
Minimum load current 10 mA
Zero crossing No zero crossing switch
Size of motor starter Maximum 5 pursuant to NEMA
Lamp load Maximum 50 W
Connection of 2 outputs in parallel
For redundant control of a load Possible (only outputs connected to same
load)
Control of a digital input Possible
Switching frequency
With resistive load Maximum 10 Hz
With an inductive load in accordance with IEC
947-5-1, AC 15
Maximum 0.5 Hz
With lamp load 1 Hz
Short-circuit protection for output Fuse, 8 A, 250 V (per group)
Current required for safety shutdown At least 100 A
Response time Maximum 100 ms
Spare fuses Fuse, 8 A, quick-response
Wickmann 194-1800-0
Schurter SP001.1013
Littelfuse 217.008
Changing the fuse
Note
Injury is possible.
If you change a fuse without first unplugging the front connector of the module, you may receive
an electric shock.
Always remove the front connector before changing a fuse.
Digital modules
4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES7422-1FF00-0AA0)
S7-400 Automation System Module Data
152 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A
(6ES7422-5EH00-0AB0)
4.20.1 Features
Overview
The SM 422; DO 16 x AC 20-120 V/2 A has the following features:
16 outputs, isolated in groups of 1
Output current 2 A
Nominal load voltage 20 VAC to 120 VAC
Group error display for internal faults (INTF) and external faults (EXTF)
Programmable diagnostics
Programmable diagnostic interrupt
Programmable substitution value output
Digital modules
4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 153
Wiring diagram of the SM 422; DO 16 x AC 20-120 V/2 A
1
2
3
40
Byte 0
5
61
7
82
9
10 3
11
13
1L1
12
14
15 4
16
17 5
18
19 6
20
21 7
22
24
23
26
27
28
29
30
31
32
33
34
36
35
38
39
40
41
42
43
44
45
46
48
47
25
37
0
1
2
3
4
5
6
7
2L1
3L1
4L1
5L1
6L1
7L1
8L1
9L1
10L1
11L1
12L1
13L1
14L1
15L1
16L1
Byte 1
INTF
EXTF
t
Process Module
Data register and bus control
LED control
Figure 4-17 Wiring diagram of the SM 422; DO 16 x AC 20-120 V/2 A
Specifications of the SM 422; DO 16 x AC 20-120 V/2 A
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight Approx. 800 g
Module-specific data
Digital modules
4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0)
S7-400 Automation System Module Data
154 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Number of outputs 16
Cable length
Unshielded Max. 600 m
Shielded Max. 1000 m
Voltages, currents, electrical potentials
Nominal load voltage L+ 20 to 132 VAC
Permitted frequency range 47 to 63 Hz
Total current of the outputs
With fan subassembly
Up to 40° C Max. 16 A 24 A
Up to 60° C Max. 7 A 16 A
Electrical isolation
Between channels and the backplane bus Yes
Between channels
In groups of
Yes
1
Permissible potential difference
Between M-internal and the outputs 120 VAC
Between outputs of different groups 250 VAC
Isolation test voltage 1500 VDC
Current consumption
From the backplane bus (5 V) Max. 600 mA
From load voltage L+ (no load) Max. 0 mA
Power loss of the module Typ. 20 W
Status, interrupts, diagnostics
Status display Green LED per channel
Interrupts
Diagnostic interrupt Programmable
Diagnostic functions Programmable
Group error display
for internal disruption
for external disruption
Red LED (INTF)
Red LED (EXTF)
Diagnostic information dump Supported
Injection of substitution values Yes, programmable
Actuator selection data
Output voltage
With "1" signal
L1 (-1.5 Vrms)
Output current
With "1" signal
Nominal value
Permissible range
Permissible inrush current (per group)
2 A
100 mA
to 2 A
Maximum 20 A / 2 cycle
With "0" signal (residual current) Max. 2.5 mA at 30 V
Max. 4.5 mA at 132 V
Output delay (resistive load)
Digital modules
4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 155
At "0" to "1" transitions 1 ms
With "1" to "0" 1 AC cycle
Zero transition Non-zero cross outputs
Size of the motor starter Max. size 5 to NEMA
Lamp load Max. 50 W
Wiring two outputs in parallel
For redundant load control Supported (only outputs of the same group)
For performance increase Not supported
Triggering a digital input Supported
Switching frequency
With resistive load Max. 10 Hz
With inductive load in accordance with IEC 947-5-1,
13 DC
Max. 0.5 Hz
With lamp load Max. 1 Hz
Short-circuit protection of the output Fuse 8A/125 V 2AG (per output)
Fuse-tripping current Min. 40 A
Response time Typ. 33 ms
Replacement fuses
Littelfuse
8 A fuse, fast-blowing
225.008
Changing fuses
WARNING
This can result in injury.
If you change a fuse without removing the front connector of the module, you could be injured
by an electric shock.
Consequently, always remove the front connector before you change the fuse.
Digital modules
4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0)
S7-400 Automation System Module Data
156 Reference Manual, Ausgabe 11/2016, A5E00850736-08
4.20.2 Assigning parameters to the SM 422; DO 16 x AC 20-120 V/2 A
Parameter assignment
You will find a description of the general procedure for assigning parameters to digital modules
in the respective sections.
Parameters of the SM 422; DO 16 x AC 20-120 V/2 A
You will find an overview of the parameters you can set and their default settings for the SM
422; DO 16 x AC 20-120 V/2 A in the following table.
Table 4-15 Parameters of the SM 422; DO 16 x AC 20-120 V/2 A
Parameters Value range Default2Parameter type Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Destination CPU for interrupt 1 to 4 - Static Module
Reaction to CPU STOP Substitute a value
(SV)
Keep last value
(KLV)
SV Dynamic Module
Diagnostics
Fuse blown Yes/no No Static Channel
Set substitution value "1" Yes/no No Dynamic Channel
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the digital modules with the default settings.
See also
Parameters (Page 85)
Digital modules
4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 157
4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A
(6ES7422-1HH00-0AA0)
Properties
SM 422; DO 16 x UC 30/230 V/Rel. 5 A has the following features:
16 outputs, isolated in 8 groups of 2
Output current 5 A
Rated load voltage 230 V AC/125 V DC
The status LEDs indicate the system state even if the front connector is not connected.
Digital modules
4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0)
S7-400 Automation System Module Data
158 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection and circuit diagram for SM 422, DO 16 x UC 30/230 V/Rel. 5 A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1L
2L
3L
5L
4L
6L
7L
8L
1
0
2
3
6
7
0
1
3
2
5
4
7
6
4
5
Process Module
Data memory and bus control
LED control
Front connector jumper
Figure 4-18 Connection and circuit diagram for SM 422, DO 16 x UC 30/230 V/Rel. 5 A
Technical specifications for SM 422, DO 16 x UC 30/230 V/Rel. 5 A
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 700 g
Module-specific data
Number of outputs 16
Digital modules
4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 159
Cable length
unshielded Maximum 600 m
shielded max. 1000 m
Voltage, current and potential
Total current of outputs (per group)
With fan module
Up to 40°C Max. 10 A 10 A
Up to 60°C Max. 5 A 10 A
Electrical isolation
Between channels and backplane bus Yes
Between channels
in groups of
Yes
2
Permissible potential difference
Between outputs of different groups 500 V AC (basic insulation)
Test voltage:
1350 Vac (routine test)
Between Mintern and outputs 250 V AC (reinforced insulation)
Test voltage:
4000 Vac (type test)
1350 AC (routine test)
Current consumption
From backplane bus (5 V) Maximum 1 A
Module power loss Typ. 4.5 W
Status, interrupts, diagnostics
Status display
Interrupt
Diagnostic functions
Green LED per channel
None
None
Relay features
Relay response times
Switch on Maximum 10 ms
typ. 5.5 ms
Switch off Maximum 5 ms
typ. 3 ms
Debounce time typ. 0.5 ms
Data for selecting an actuator
Thermal continuous current Maximum 5 A
Minimum load current 10 mA
External fuse for relay outputs Fuse, 6 A, quick-response
Switching capacity and service life of contacts
For resistive load
Digital modules
4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0)
S7-400 Automation System Module Data
160 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Voltage Current Number of op‐
erating cycles
(typ.)
30 V DC
60 V DC
125 V DC
230 V AC
5.0 A
1.2 A
0.2 A
5.0 A
0.18 million
0.1 million
0.1 million
0.18 million
For an inductive load in accordance with IEC 947-5-1DC 13 / AC 15
Voltage Current Number of op‐
erating cycles
(typ.)
30 V DC
(τ=7 ms max.)
5.0 A 0.1 million
230 V AC
(pf=0.4)
5.0 A 0.1 million
Size of motor starter Maximum 5 pursuant to NEMA
Lamp load Maximum 60 W
Contact wiring (internal) None
Connection of 2 outputs in parallel
For redundant load control Possible (only outputs with same load volt‐
age)
For increasing the power Not possible
Control of a digital input Possible
Switching frequency
Mechanical Maximum 20 Hz
With resistive load Maximum 10 Hz
With inductive load in accordance with IEC 947-5-1,
DC 13/AC 15
Maximum 1 Hz
With lamp load Maximum 1 Hz
Note
Use a suppressor circuit in environments with high humidity and where sparks might occur at
the relay contacts. This will increase the service life of the relay contacts.
To install the suppressor circuit, connect an RC element or a varistor in parallel with the relay
contacts or load. The dimensions depend on the size of the load.
Digital modules
4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 161
Digital modules
4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0)
S7-400 Automation System Module Data
162 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Analog modules 5
5.1 General information
Structure
This section contains the following topics:
1. Overview of the analog modules available
2. General information concerning all analog modules (such as parameter assignment and
diagnostics)
3. Information that refers to specific modules (for example, features, wiring diagram and block
diagrams, specifications and special characteristics of the module):
a) for analog input modules
b) for analog output modules
STEP 7 blocks for analog functions
You can use blocks FC 105 and FC 106 to read and output analog values in
STEP 7
. You will
find the FCs in the standard library of
STEP 7
in the subdirectory called "S5-S7 Converting
Blocks" (for a description refer to the
STEP 7 Online Help
for the FCs).
Further information
The appendix describes the structure of the parameter records (data records 0 and 1) and
diagnostic information (data records 0 and 1) in the system data. You must be familiar with
this configuration if you want to modify the parameters of the modules in the
STEP 7
user
program.
The structure of diagnostic information (data records 0 and 1) is described in the system data
section of the appendix. You must be familiar with this configuration if you want to evaluate
the diagnostic data of the modules in the
STEP
7
user program.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 163
5.2 Module overview
Features of the analog modules
The tables below set out the main features of the analog modules. This summary is designed
to help you select the right module for your requirements.
Table 5-1 Analog input modules: Summary of features
Properties SM 431;
AI 8 x 13 bit
(-1KF00-)
SM 431;
AI 8 x 14 bit
(-1KF10-)
SM 431;
AI 8 x 14 bit
(-1KF20-)
SM 431;
AI 16 x 13 bit
(-0HH0-)
SM 431;
AI 16 x 16 bit
(-7QH00-)
SM 431;
AI 8 x RTD
16 bit
(-7KF10-)
SM 431;
AI 8 x 16 bit
(-7KF00-)
Number of inputs 8 AI for U/I
measure‐
ment
4 AI for re‐
sistance
measure‐
ment
8 AI for U/I
measure‐
ment
4 AI for re‐
sist. / temp.
measure‐
ment
8 AI for U/I
measure‐
ment
4 AI for re‐
sistance
measure‐
ment
16 inputs 16 AI for U/
I / temp.
measure‐
ment
8 AI for re‐
sistance
measure‐
ment
8 inputs 8 inputs
Resolution 13 bits 14 bits 14 bits 13 bits 16 bits 16 bits 16 bits
Type of measure‐
ment
Voltage
Current
Resistance
Voltage
Current
Resistance
Tempera‐
ture
Voltage
Current
Resistance
Voltage
Current
Voltage
Current
Resistance
Tempera‐
ture
Resistance Voltage
Current
Tempera‐
ture
Measuring principle Integrating Integrating Instantane‐
ous value
encoding
Integrating Integrating Integrating Integrating
Configurable diag‐
nostics
No No No No Yes Yes Yes
Diagnostic interrupt No No No No Can be set Yes Yes
Threshold value
monitoring
No No No No Can be set Can be set Can be set
Hardware interrupt
upon limit violation
No No No No Can be set Can be set Can be set
Hardware interrupt at
end of cycle
No No No No Can be set No No
Voltage relationships Analog section isolated from the CPU Non-isola‐
ted
Analog section isolated from the CPU
Analog modules
5.2 Module overview
S7-400 Automation System Module Data
164 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Properties SM 431;
AI 8 x 13 bit
(-1KF00-)
SM 431;
AI 8 x 14 bit
(-1KF10-)
SM 431;
AI 8 x 14 bit
(-1KF20-)
SM 431;
AI 16 x 13 bit
(-0HH0-)
SM 431;
AI 16 x 16 bit
(-7QH00-)
SM 431;
AI 8 x RTD
16 bit
(-7KF10-)
SM 431;
AI 8 x 16 bit
(-7KF00-)
Maximum permitted
common mode volt‐
age
between
channels or
between ref‐
erence po‐
tential of
connected
sensors and
MANA:
30 V AC
between
channels or
between
channel and
central
grounding
point:
60 V DC /
30 V AC
(SELV)
between
channels or
between ref‐
erence po‐
tential of
connected
sensors and
MANA:
8 V AC
between
channels or
between ref‐
erence po‐
tential of
connected
sensors and
central
grounding
point:
2 V DC/AC
between
channels or
between
channel and
central
grounding
point:
60 V DC /
30 V AC
(SELV)
between
channel and
central
grounding
point:
60 V DC /
30 V AC
(SELV)
between
channels or
between
channel and
central
grounding
point:
60 V DC /
30 V AC
(SELV)
External power sup‐
ply required
No 24 V DC (on‐
ly with cur‐
rent, 2
DMU) 1
24 V DC (on‐
ly with cur‐
rent, 2
DMU) 1
24 V DC (on‐
ly with cur‐
rent, 2
DMU) 1
24 V DC (on‐
ly with cur‐
rent, 2
DMU) 1
No No
Special features - Suitable for
temp. meas‐
urement
Tempera‐
ture sensor
types config‐
urable
Lineariza‐
tion of sen‐
sor charac‐
teristic
curves
Measured
value
smoothing
can be set
Rapid A/D
change,
suitable for
highly dy‐
namic pro‐
cesses
Measured
value
smoothing
can be set
- Suitable for
temp. meas‐
urement
Tempera‐
ture sensor
types config‐
urable
Lineariza‐
tion of sen‐
sor charac‐
teristic
curves
Measured
value
smoothing
can be set
Resistance
thermome‐
ter configu‐
rable
Lineariza‐
tion of sen‐
sor charac‐
teristic
curves
Measured
value
smoothing
can be set
Internal
measure‐
ment resist‐
ance
Field con‐
nection with
internal ref‐
erence tem‐
perature (in‐
cluded in
module
scope of de‐
livery)
Measured
value
smoothing
can be set
1 2-DMU 2-wire transducer
Table 5-2 Analog output modules: Summary of features
Properties Module
SM 432; AO 8 x 13 bit
(-1HF00-)
Number of outputs 8 outputs
Resolution 13 bits
Type of output Channel by channel:
Voltage
Current
Configurable diagnostics No
Diagnostic interrupt No
Analog modules
5.2 Module overview
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 165
Properties Module
SM 432; AO 8 x 13 bit
(-1HF00-)
Substitute value output No
Voltage relationships Analog section isolated from:
the CPU
the load voltage
Maximum permitted common mode voltage Between channels or between channels and MANA
3 V DC
Special features -
Analog modules
5.2 Module overview
S7-400 Automation System Module Data
166 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.3 Steps for commissioning analog modules
Introduction
The following table contains the tasks that you have to perform one after the other to
commission analog modules successfully.
The sequence of steps is a suggestion, but you can perform individual steps either earlier or
later (for example, assign parameters to the module) or install, commission etc. other modules
in between times.
Steps
Table 5-3 Steps from the selection of analog modules to commissioning
Step Procedure
1 Select the module.
2 For certain analog input modules: Set the measuring type and range using the measuring
range module.
3 Mount the module in the rack.
4 Assign parameters to module.
5 Connect the measuring sensors or loads to the module.
6 Commission the configuration.
7 Analyze the configuration if commissioning failed.
5.4 Representation of analog values
5.4.1 General information
Introduction
This chapter describes the analog values for all measuring or output ranges supported by the
analog modules.
Analog to digital conversion
Analog input modules convert the analog process signal into digital form.
Analog output modules convert digital output values to analog signals.
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 167
Representation of analog values at a resolution of 16 bits
The digitized analog value applies to input and output values of the same nominal range.
Analog values are output as real numbers in two's complement. The resulting assignment:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit values 215 214 213 212 211 210 29282726252423222120
Bit 15 can be interpreted as a sign
The sign of the analog value is always set at bit 15:
"0" → +
"1" → -
Resolution less than 16 bits
On analog modules with a resolution of less than 16 bits, the analog value is stored left-justified.
The unused least significant bit positions are padded with "0".
Example
The example below demonstrates the "0" padding of unused bit positions for low resolution
values.
Table 5-4 Example: Bit pattern of a 16-bit and 13-bit analog value
Resolution Analog value
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
16-bit analog value 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1
13-bit analog value 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
168 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.4.2 Representation of analog values of analog input channels
Introduction
The tables in this section contain the measured value representations for the various
measuring ranges of the analog input modules. The values in the tables apply to all modules
with the corresponding measuring ranges.
Notes for readers of the tables
The tables "Bipolar input ranges", "Unipolar input ranges", "Life-zero input ranges" contain the
binary representation of the measured values.
The binary representation of the measured values is always the same, so the analog
representation tables only compare the measuring ranges and the units.
Measured value resolution
The resolution of the analog values may differ, based on the analog module and module
parameters. At resolutions < 16 bits, all bits identified by "x" are set to "0".
Note
This resolution does not apply to temperature values. The converted temperature values are
the result of a conversion in the analog module (see tables for analog representation of
resistance thermometer and for thermometer elements).
Table 5-5 Supported analog value resolutions
Resolution in bits Unit decimal Unit hexadecimal Analog value
High byte
Analog value
Low byte
9 128 80H0 0 0 0 0 0 0 0 1 x x x x x x x
10 64 40H0 0 0 0 0 0 0 0 0 1 x x x x x x
11 32 20H0 0 0 0 0 0 0 0 0 0 1 x x x x x
12 16 10H0 0 0 0 0 0 0 0 0 0 0 1 x x x x
13 8 8H0 0 0 0 0 0 0 0 0 0 0 0 1 x x x
14 4 4H0 0 0 0 0 0 0 0 0 0 0 0 0 1 x x
15 2 2H0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x
16 1 1H0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 169
5.4.3 Binary representation of input ranges
Input ranges
The input ranges shown in tables "Bipolar input ranges", "Unipolar input ranges", "Life-zero
input ranges" are defined in complementary 2-by-2 representation:
Table 5-6 Bipolar input ranges
Units Measured
value
in %
Data word Range
215 214 213 212 211 210 29282726252423222120
32767 >118,515 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Overflow
32511 117,589 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Overshoot range
27649 >100,004 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1
27648 100,000 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0,003617 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Nominal range
- 1 - 0,003617 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 27648 - 100,000 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
- 27649 ≤- 100,004 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 Undershoot range
- 32512 - 117,593 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
- 32768 ≤- 117,596 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Underflow
Table 5-7 Unipolar input ranges
Units Measured
value in %
Data word Range
215 214 213 212 211 210 29282726252423222120
32767 ≧118,515 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Overflow
32511 117,589 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Overshoot range
27649 ≧100,004 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1
27648 100,000 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0,003617 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Nominal range
0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 1 - 0,003617 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Undershoot range
- 4864 - 17,593 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0
-32768 ≤- 17,596 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Underflow
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
170 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Table 5-8 Life-zero input ranges
Units Meas‐
ured val‐
ue in %
Data word Range
215 214 213 212 211 210 29282726252423222120
32511 117,589 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Overshoot range
27649 ≧100,004 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1
27648 100,000 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 Nominal range
1 0,003617 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 1 -
0,003617
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Undershoot range
- 4864 - 17,593 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0
In the event of a wire break, the module reports 7FFFH
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 171
5.4.4 Representation of analog values in voltage measuring ranges
Table 5-9 Representation of analog values in the ±1 V to ±10 V voltage measuring ranges
System Voltage measuring range
Dec. Hex. ± 10 V ± 5 V ± 2.5 V ± 1 V
118,515 % 32767 7FFF 11.851 V 5.926 V 2.963 V 1.185 V Overflow
117,593 % 32512 7F00
117,589 % 32511 7EFF 11.759 V 5.879 V 2.940 V 1.176 V Overshoot range
27649 6C01
100,000 % 27648 6C00 10 V 5 V 2.5 V 1 V
Nominal range
75,000 % 20736 5100 7.5 V 3.75 V 1.875 V 0.75 V
0,003617 % 1 1 361.7 µV 180.8 µV 90.4 µV 36.17 µV
0 % 0 0 0 V 0 V 0 V 0 V
- 1 FFFF
- 75,00 % - 20736 AF00 - 7.5 V - 3.75 V - 1.875 V - 0.75 V
- 100,000 % - 27648 9400 - 10 V - 5 V - 2.5 V - 1 V
- 27649 93FF Undershoot range
- 117,593 % - 32512 8100 - 11.759 V - 5.879 V - 2.940 V - 1.176 V
- 117,596 % - 32513 80FF Underflow
- 118,519 % - 32768 8000 - 11.851 V - 5.926 V - 2.963 V - 1.185 V
Table 5-10 Representation of analog values in the ±25 to ±500 mV voltage measuring ranges
System Voltage measuring range
Dec. Hex. ± 500 mV ± 250 mV ± 80 mV ± 50 mV ± 25 mV
118,515 % 32767 7FFF 592.6 mV 296.3 mV 94.8 mV 59.3 mV 29.6 mV Overflow
117,593 % 32512 7F00
117,589 % 32511 7EFF 587.9 mV 294.0 mV 94.1 mV 58.8 mV 29.4 mV Overshoot
range
27649 6C01
100,000 % 27648 6C00 500 mV 250 mV 80 mV 50 mV 25 mV
Nominal range
75 % 20736 5100 375 mV 187.54 mV 60 mV 37.5 mV 18.75 mV
0,003617% 1 1 18.08 µV 9.04 µV 2.89 µV 1.81 µV 904.2 nV
0 % 0 0 0 mV 0 mV 0 mV 0 mV 0 mV
- 1 FFFF
- 75,00 % - 20736 AF00 - 375 mV -187.54 mV - 60 mV - 37.5 mV - 18.75 mV
- 100,000% - 27648 9400 - 500 mV - 250 mV - 80 mV - 50 mV - 25 mV
- 27649 93FF Undershoot
range
- 117,593% - 32512 8100 - 587.9 mV - 294.0 mV - 94.1 mV - 58.8 mV - 29.4 mV
- 117,596% - 32513 80FF Underflow
- 118,519% - 32768 8000 - 592.6mV - 296.3 mV - 94.8mV - 59.3 mV - 29.6 mV
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
172 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Table 5-11 Representation of analog values in the voltage measuring ranges 1 to 5 V and 0 to 10 V
System Voltage measuring range
Dec. Hex. 1 to 5 V 0 to 10 V
118,515 % 32767 7FFF 5.741 V 11.852 V Overflow
117,593 % 32512 7F00
117,589 % 32511 7EFF 5.704 V 11.759 V Overshoot range
27649 6C01
100,000 % 27648 6C00 5 V 10 V
Nominal range
75 % 20736 5100 3.75 V 7.5 V
0,003617 % 1 1 1 V + 144.7 µV 0 V + 361.7 µV
0 % 0 0 1 V 0 V
- 1 FFFF Undershoot range
- 17,593 % - 4864 ED00 0.296 V Negative values are not
supported
Wire break
≤-17,596 % 32767 7FFF
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 173
5.4.5 Representation of analog values in the current measuring ranges
Table 5-12 Representation of analog values in the ±3.2 mA to ±20 mA current measuring ranges
System Current measuring range
Dec. Hex. ± 20 mA ± 10 mA ± 5 mA ± 3.2 mA
118,515 % 32767 7FFF 23.70 mA 11.85 mA 5.93 mA 3.79 mA Overflow
117,593 % 32512 7F00
117,589 % 32511 7EFF 23.52 mA 11.76 mA 5.88 mA 3.76 mA Overshoot
range
27649 6C01
100,000 % 27648 6C00 20 mA 10 mA 5 mA 3.2 mA
Nominal range
75 % 20736 5100 15 mA 7.5 mA 3.75 mA 2.4 mA
0,003617 % 1 1 723.4 nA 361.7 nA 180.8 nA 115.7 nA
0 % 0 0 0 mA 0 mA 0 mA 0 mA
- 1 FFFF
- 75 % - 20736 AF00 - 15 mA - 7.5 mA - 3.75 mA - 2.4 mA
- 100,000 % - 27648 9400 - 20 mA - 10 mA - 5 mA - 3.2 mA
- 27649 93FF Undershoot
range
- 117,593 % - 32512 8100 - 23.52 mA - 11.76 mA - 5.88 mA - 3.76 mA
- 117,596 % - 32513 80FF Underflow
- 118,519 % - 32768 8000 - 23.70 mA - 11.85 mA - 5.93 mA - 3.79 mA
Table 5-13 Representation of analog values in current measuring ranges 0 to 20 mA
System Current measuring range
Dec. Hex. 0 to 20 mA
118,515 % 32767 7FFF 23.70 mA Overflow
117,593 % 32512 7F00
117,589 % 32511 7EFF 23.52 mA Overshoot range
27649 6C01
Nominal range
100,000 % 27648 6C00 20 mA
75 % 20736 5100 15 mA
0,003617 % 1 1 723.4 nA
0 % 0 0 0 mA
- 1 FFFF Undershoot range
- 17,593 % - 4864 ED00 - 3.52 mA
- 4865 ECFF Underflow
≤ - 17,596 % - 32768 8000
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
174 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Table 5-14 Representation of analog values in current measuring ranges 4 to 20 mA
System Current measuring range
Dec. Hex. 4 to 20 mA
118,515 % 32767 7FFF 22.96 mA Overflow
117,593 % 32512 7F00
117,589 % 32511 7EFF 22.81 mA Overshoot range
27649 6C01
Nominal range
100,000 % 27648 6C00 20 mA
75 % 20736 5100 16 mA
0,003617 % 1 1 4 mA + 578.7 nA
0 % 0 0 4 mA
- 1 FFFF Undershoot range
- 17,593 % - 4864 ED00 1.185 mA
Wire break
≤ - 17,596 % 32767 7FFF
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 175
5.4.6 Representation of analog values for resistance-type sensors
Table 5-15 Analog value representation for resistance-type sensors from 48 Ω to 6 kΩ
System Resistive transducer range
Dec. Hex. 48 Ω 150 Ω 300 Ω 600 Ω 6 kΩ
118,515 % 32767 7FFF 56.89 Ω 177.77 Ω 355.54 Ω 711.09 Ω 7.11 kΩ Overflow
117,593 % 32512 7F00
117,589 % 32511 7EFF 56.44 Ω 176.38 Ω 352.77 Ω 705.53 Ω 7.06 kΩ Overshoot
range
27649 6C01
100,000 % 27648 6C00 48 Ω 150 Ω 300 Ω 600 Ω 6 kΩ Nominal range
75 % 20736 5100 36 Ω 112.5 Ω 225 Ω 450 Ω 4.5 kΩ
0,003617 % 1 1 1.74 mΩ 5.43 mΩ 10.85 mΩ 21.70 mΩ 217.0 mΩ
0 % 0 0 0 Ω 0 Ω 0 Ω 0 Ω 0 Ω
(negative values are physically impossible) Undershoot
range
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
176 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.4.7 Representation of analog values for resistance thermometer
Representation of the analog values of Pt x00 standard resistance thermometers
Table 5-16 Representation of analog values for Pt 100/200/500/1000 resistance thermometers
Pt x00
Standard in
° C
(1 digit
= 0.1° C)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Pt x00
Standard in
° F
(1 digit
= 0.1 ° F)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Pt x00
Standard in
K
(1 digit
= 0.1 K)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 1000,0 32767 7FFFH> 1832,0 32767 7FFFH> 1273,2 32767 7FFFHOverflow
1000,0
:
850,1
10000
:
8501
2710H
:
2135H
1832,0
:
1562,1
18320
:
15621
4790H
:
3D05H
1273,2
:
1123,3
12732
:
11233
31BCH
:
2BE1H
Overshoot
range
850,0
:
-200,0
8500
:
-2000
2134H
:
F830H
1562,0
:
-328,0
15620
:
-3280
3D04H
:
F330H
1123,2
:
73,2
11232
:
732
2BE0H
:
2DCH
Nominal range
-200,1
:
-243,0
-2001
:
-2430
F82FH
:
F682H
-328,1
:
-405,4
-3281
:
-4054
F32FH
:
F02AH
73,1
:
30,2
731
:
302
2DBH
:
12EH
Undershoot
range
< -243,0 -32768 8000H< -405,4 -32768 8000H< 30,2 32768 8000HUnderflow
Representation of analog values for Pt x00 climatic resistance thermometers
Table 5-17 Representation of analog values for Pt 100/200/500/1000 resistance thermometers
Pt x00 Cli‐
matic in °C
(1 digit =
0.01° C)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Pt x00 Cli‐
matic in °F
(1 digit =
0.01 °F)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 155,00 32767 7FFFH> 311,00 32767 7FFFHOverflow
155,00
:
130,01
15500
:
13001
3C8CH
:
32C9H
311,00
:
266,01
31100
:
26601
797CH
:
67E9H
Overshoot range
130,00
:
-120,00
13000
:
-12000
32C8H
:
D120H
266,00
:
-184,00
26600
:
-18400
67E8H
:
B820H
Nominal range
-120,01
:
-145,00
-12001
:
-14500
D11FH
:
C75CH
-184,01
:
-229,00
-18401
:
-22900
B81FH
:
A68CH
Undershoot range
< - 145,00 -32768 8000H< -229,00 -32768 8000HUnderflow
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 177
Representation of analog values for Ni x00 standard resistance thermometers
Table 5-18 Analog value representation for resistance thermometers Ni100, 120, 200, 500, 1000
Ni x00
Standard in
°C (1 digit =
0.1° C)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Ni x00
Standard in
°F (1 digit =
0.1 °F)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Ni x00
standard in
K (1 digit =
0.1 K)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 295,0 32767 7FFFH> 563,0 32767 7FFFH> 568,2 32767 7FFFHOverflow
295,0 2950 B86H563,0 5630 15FEH568,2 5682 1632HOvershoot
range
: : : : : : : : :
250,1 2501 9C5H482,1 4821 12D5H523,3 5233 1471H
250,0 2500 9C4H482,0 4820 12D4H523,2 5232 1470HNominal range
: : : : : : : : :
-60,0 -600 FDA8H-76,0 -760 FD08H213,2 2132 854H
-60,1 -601 FDA7H -76,1 -761 FD07H 213,1 2131 853HUndershoot
range
: : : : : : : : :
-105,0 -1050 FBE6H-157,0 -1570 F9DEH168,2 1682 692H
< -105,0 -32768 8000H< -157,0 -32768 8000H< 168,2 32768 8000HUnderflow
Representation of analog values for Ni x00 climatic resistance thermometers
Table 5-19 Analog value representation for resistance thermometers Ni 100, 120, 200, 500, 1000
Ni x00 Cli‐
matic in °C
(1 digit =
0.01° C)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Ni x00 Cli‐
matic in °F
(1 digit =
0.01 °F)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 295,00 32767 7FFFH> 325,11 32767 7FFFHOverflow
295,00
:
250,01
29500
:
25001
733CH
:
61A9H
327,66
:
280,01
32766
:
28001
7FFEH
:
6D61H
Overshoot range
250,00
:
-60,00
25000
:
-6000
61A8H
:
E890H
280,00
:
-76,00
28000
:
-7600
6D60H
:
E250H
Nominal range
-60,01
:
-105,00
-6001
:
-10500
E88FH
:
D6FCH
-76,01
:
-157,00
-7601
:
-15700
E24FH
:
C2ACH
Undershoot range
< -105,00 -32768 8000H< -157,00 -32768 8000HUnderflow
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
178 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Representation of analog values for Cu 10 standard resistance thermometers
Table 5-20 Representation of analog values for Cu 10 standard resistance thermometers
Cu 10
Standard in
°C (1 digit =
0.01° C)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Cu 10
Standard in
°F (1 digit =
0.01° F)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Cu 10
Standard in
K (1 digit =
0.01 K)
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 312,0 32767 7FFFH> 593,6 32767 7FFFH> 585,2 32767 7FFFHOverflow
312,0
:
260,1
3120
:
2601
C30H
:
A29H
593,6
:
500,1
5936
:
5001
1730H
:
12D5H
585,2
:
533,3
5852
:
5333
16DCH
:
14D5H
Overshoot
range
260,0
:
-200,0
2600
:
-2000
A28H
:
F830H
500,0
:
-328,0
5000
:
-3280
1389H
:
F330H
533,2
:
73,2
5332
:
732
14D4H
:
2DCH
Nominal range
-200,1
:
-240,0
-2001
:
-2400
F82FH
:
F6A0H
-328,1
:
-400,0
-3281
:
-4000
F32FH
:
F060H
73,1
:
33,2
731
:
332
2DBH
:
14CH
Undershoot
range
< -240,0 -32768 8000H< -400,0 -32768 8000H< 33,2 32768 8000HUnderflow
Representation of analog values for Cu 10 climatic resistance thermometers
Table 5-21 Representation of analog values for Cu 10 climatic resistance thermometers
Cu 10 Cli‐
matic in °C
(1 digit =
0.01° C)
Unit deci‐
mal
Unit hexadeci‐
mal
Cu 10 Climatic in
°F (1 digit = 0.01°
F)
Unit decimal Unit hexadecimal Range
> 180,00 32767 7FFFH>325,11 32767 7FFFHOverflow
180,00
:
150,01
18000
:
15001
4650H
:
3A99H
327,66
:
280,01
32766
:
28001
7FFEH
:
6D61H
Overshoot range
150,00
:
-50,00
15000
:
-5000
3A98H
:
EC78H
280,00
:
-58,00
28000
:
-5800
6D60H
:
E958H
Nominal range
-50,01
:
-60,00
-5001
:
-6000
EC77H
:
E890H
-58,01
:
-76,00
-5801
:
-7600
E957H
:
E250H
Undershoot range
< -60,00 -32768 8000H< -76,00 -32768 8000HUnderflow
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 179
5.4.8 Representation of analog values for thermocouples
Representation of analog values for thermocouples type B
Table 5-22 Representation of analog values for thermocouples type B
Type B in °C Unit dec‐
imal
Unit dec‐
imal
Type B in °F Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type B in K Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 2070,0 32767 7FFFH>3276,6 3276,6 7FFFH> 2343,2 32767 7FFFHOverflow
2070,0
:
1821,0
20700
:
18210
50DCH
:
4722H
3276,6
:
2786,6
32766
:
27866
7FFEH
:
6CDAH
2343,2
:
2094,2
23432
:
20942
5B88H
:
51CEH
Overshoot
range
1820,0
:
0,0
18200
:
0
4718H
:
0000H
2786,5
:
-32,0
27865
:
-320
6CD9H
:
FEC0H
2093,2
:
273,2
20932
:
2732
51C4H
:
0AACH
Nominal range
:
-120,0
:
-1200
:
FB50H
:
-184,0
:
-1840
:
F8D0H
:
153,2
:
1532
:
05FCH
Undershoot
range
< -120,0 -32768 8000H< -184,0 -32768 8000H< 153,2 32768 8000HUnderflow
Representation of analog values for thermocouples type E
Table 5-23 Representation of analog values for thermocouples type E
Type E in °C Unit dec‐
imal
Unit hex‐
adecimal
Type E in °F Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type E in K Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 1200,0 32767 7FFFH> 2192,0 32767 7FFFH> 1473,2 32767 7FFFHOverflow
1200,0
:
1000,1
12000
:
10001
2EE0H
:
2711H
2192,0
:
1833,8
21920
:
18338
55A0H
:
47A2H
1473,2
:
1274,2
14732
:
12742
398CH
:
31C6H
Overshoot
range
1000,0
:
-270,0
10000
:
-2700
2710H
:
F574H
1832,0
:
-454,0
18320
:
-4540
4790H
:
EE44H
1273,2
:
0
12732
:
0
31BCH
:
0000H
Nominal range
< -270,0 < -2700 < F574H< -454,0 < -4540 <EE44H< 0 <0 <0000HUnderflow
Faulty wiring (polarity reversal, or open inputs, for example), or sensor error in the negative range (wrong
type of thermocouple, for example) will cause the analog input module to signal underflow, starting at ...
... F0C4H, and to output 8000H. ... FB70H, and to output 8000H. ... E5D4H, and to output 8000H.
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
180 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Representation of analog values for thermocouples type J
Table 5-24 Representation of analog values for thermocouples type J
Type J in °C Unit dec‐
imal
Unit hex‐
adecimal
Type J in °F Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type J in K Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 1450,0 32767 7FFFH> 2642,0 32767 7FFFH> 1723,2 32767 7FFFHOverflow
1450,0
:
1201,0
14500
:
12010
38A4H
:
2EEAH
2642,0
:
2193,8
26420
:
21938
6734H
:
55B2H
1723,2
:
1474,2
17232
:
14742
4350H
:
3996H
Overshoot
range
1200,0
:
-210,0
12000
:
-2100
2EE0H
:
F7CCH
2192,0
:
-346,0
21920
:
-3460
55A0H
:
F27CH
1473,2
:
63,2
14732
:
632
398CH
:
0278H
Nominal range
< -210,0 < -2100 <F7CCH< -346,0 < -3460 <F27CH< 63,2 < 632 < 0278HUnderflow
Faulty wiring (polarity reversal, or open inputs, for example), or sensor error in the negative range (wrong
type of thermocouple, for example) will cause the analog input module to signal underflow, starting at ...
... F31CH, and to output 8000H. ... EA0CH, and to output 8000H. ... FDC8H, and to output 8000H.
Representation of analog values for thermocouples type K
Table 5-25 Representation of analog values for thermocouples type K
Type K in °C Unit dec‐
imal
Unit hex‐
adecimal
Type K in °F Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type K in K Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 1622,0 32767 7FFFH> 2951,6 32767 7FFFH> 1895,2 32767 7FFFHOverflow
1622,0
:
1373,0
16220
:
13730
3F5CH
:
35A2H
2951,6
:
2503,4
29516
:
25034
734CH
:
61CAH
1895,2
:
1646,2
18952
:
16462
4A08H
:
404EH
Overshoot
range
1372,0
:
-270,0
13720
:
-2700
3598H
:
F574H
2501,6
:
-454,0
25016
:
-4540
61B8H
:
EE44H
1645,2
:
0
16452
:
0
4044H
:
0000H
Nominal range
< -270,0 < -2700 < F574H< -454,0 < -4540 <EE44H< 0 < 0 < 0000HUnderflow
Faulty wiring (polarity reversal, or open inputs, for example), or sensor error in the negative range (wrong
type of thermocouple, for example) will cause the analog input module to signal underflow, starting at ...
... F0C4H, and to output 8000H. ... E5D4H, and to output 8000H. ... FB70H, and to output 8000H.
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 181
Representation of analog values for thermocouples type L
Table 5-26 Representation of analog values for thermocouples type L
Type L in °C Unit deci‐
mal
Unit hex‐
adecimal
Type L in °F Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type L in K Unit dec‐
imal
Unit hex‐
adecimal
Range
> 1150,0 32767 7FFFH> 2102,0 32767 7FFFH> 1423,2 32767 7FFFHOverflow
1150,0
:
901,0
11500
:
9010
2CECH
:
2332H
2102,0
:
1653,8
21020
:
16538
521CH
:
409AH
1423,2
:
1174,2
14232
:
11742
3798H
:
2DDEH
Overshoot
range
900,0
:
-200,0
9000
:
-2000
2328H
:
F830H
1652,0
:
-328,0
16520
:
-3280
4088H
:
F330H
1173,2
:
73,2
11732
:
732
2DD4H
:
02DCH
Nominal
range
< -200,0 < -2000 < F830H< -328,0 < -3280 < F330H< 73,2 < 732 <02DCHUnderflow
Faulty wiring (polarity reversal, or open inputs, for example), or sensor error in the negative range (wrong
type of thermocouple, for example) will cause the analog input module to signal underflow, starting at ...
... F380H, and to output 8000H. ... EAC0H, and to output 8000H. ... FE2CH, and to output 8000H.
Representation of analog values for thermocouples type N
Table 5-27 Representation of analog values for thermocouples type N
Type N in °C Unit dec‐
imal
Unit hex‐
adecimal
Type N in °F Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type N in K Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 1550,0 32767 7FFFH> 2822,0 32767 7FFFH> 1823,2 32767 7FFFHOverflow
1550,0
:
1300,1
15500
:
13001
3C8CH
:
32C9H
2822,0
:
2373,8
28220
:
23738
6E3CH
:
5CBAH
1823,2
:
1574,2
18232
:
15742
4738H
:
3D7EH
Overshoot
range
1300,0
:
-270,0
13000
:
-2700
32C8H
:
F574H
2372,0
:
-454,0
23720
:
-4540
5CA8H
:
EE44H
1573,2
:
0
15732
:
0
3D74H
:
0000H
Nominal range
< -270,0 < -2700 < F574H< -454,0 < -4540 <EE44H< 0 < 0 < 0000HUnderflow
Faulty wiring (polarity reversal, or open inputs, for example), or sensor error in the negative range (wrong
type of thermocouple, for example) will cause the analog input module to signal underflow, starting at ...
... F0C4H, and to output 8000H. ... E5D4H, and to output 8000H. ... FB70H, and to output 8000H.
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
182 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Representation of analog values for thermocouple types R, S
Table 5-28 Representation of analog values for thermocouple types R, S
Type R, S in
°C
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type R, S in
°F
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Types R, S
in K
Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 2019,0 32767 7FFFH> 3276,6 32767 7FFFH> 2292,2 32767 7FFFHOverflow
2019,0
:
1770,0
20190
:
17770
4EDEH
:
4524H
3276,6
:
3218,0
32766
:
32180
7FFEH
:
7DB4H
2292,2
:
2043,2
22922
:
20432
598AH
:
4FD0H
Overshoot
range
1769,0
:
-50,0
17690
:
-500
451AH
:
FE0CH
3216,2
:
-58,0
32162
:
-580
7DA2H
:
FDBCH
2042,2
:
223,2
20422
:
2232
4FC6H
:
08B8H
Nominal range
-51,0
:
-170,0
-510
:
-1700
FE02H
:
F95CH
-59,8
:
-274,0
-598
:
-2740
FDAAH
:
F54CH
222,2
:
103,2
2222
:
1032
08AEH
:
0408H
Undershoot
range
< -170,0 -32768 8000H< -274,0 -32768 8000H< 103-2 < 1032 8000HUnderflow
Representation of analog values for thermocouples type T
Table 5-29 Representation of analog values for thermocouples type T
Type T in °C Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type T in °F Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type T in K Unit dec‐
imal
Unit hex‐
adeci‐
mal
Range
> 540,0 32767 7FFFH> 1004,0 32767 7FFFH> 813,2 32767 7FFFHOverflow
540,0
:
401,0
5400
:
4010
1518H
:
0FAAH
1004,0 10040 2738H813,2 8132 1FC4HOvershoot
range
400,0
:
-270,0
4000
:
-2700
0FA0H
:
F574H
752,0
:
-454,0
7520
:
-4540
1D60H
:
EE44H
673,2
:
3,2
6732
:
32
1AACH
:
0020H
Nominal range
< -270,0 < -2700 < F574H< -454,0 < -4540 <EE44H< 3,2 < 32 < 0020HUnderflow
Faulty wiring (polarity reversal, or open inputs, for example), or sensor error in the negative range (wrong
type of thermocouple, for example) will cause the analog input module to signal underflow, starting at ...
... F0C4H, and to output 8000H. ... E5D4H, and to output 8000H. ... FB70H, and to output 8000H.
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 183
Representation of analog values for thermocouples type U
Table 5-30 Representation of analog values for thermocouples type U
Type U in °C Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type U in °F Unit dec‐
imal
Unit hex‐
adeci‐
mal
Type U in K Unit dec‐
imal
Unit hex‐
adecimal
Range
> 850,0 32767 7FFFH> 1562,0 32767 7FFFH> 1123,2 32767 7FFFHOverflow
850,0
:
601,0
8500
:
6010
2134H
:
177AH
1562,0
:
1113,8
15620
:
11138
2738,0H
:
2B82H
1123,2
:
874,2
11232
:
8742
2BE0H
:
2226H
Overshoot
range
600,0
:
-200,0
6000
:
-2000
1770H
:
F830H
1112,0
:
-328,0
11120
:
-3280
2B70H
:
F330H
873,2
:
73,2
8732
:
732
221CH
:
02DCH
Nominal range
< -200,0 < -2000 < F830H< -328,0 < -3280 < F330H< 73,2 < 732 <02DCHUnderflow
Faulty wiring (polarity reversal, or open inputs, for example), or sensor error in the negative range (wrong
type of thermocouple, for example) will cause the analog input module to signal underflow, starting at ...
... F380H, and to output 8000H. ... EAC0H, and to output 8000H. ... FE2CH, and to output 8000H.
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
184 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.4.9 Representation of analog values for analog output channels
Introduction
The tables in this section contain the analog value representation for output channels of the
analog output modules. The values in the tables apply to all modules with the corresponding
output ranges.
Notes for readers of the tables
The tables "Bipolar output ranges", "Unipolar output ranges", "Life-zero output ranges" contain
the binary representation of the measured values.
Since the binary representation of the output values is always the same, starting with the table
at "Representation of Analog Values in the Voltage Output Range ± 10 V" these tables only
contain the output ranges and the units.
Binary representation of output ranges
The input ranges shown in tables "Bipolar output ranges", "Unipolar output ranges", "Life-zero
output ranges" are defined in complementary 2-by-2 representation:
Table 5-31 Bipolar output ranges
Units Output
value in
%
Data word Range
215 214 213 212 211 210 29282726252423222120
≧3251
2
0 % 0 1 1 1 1 1 1 1 x x x x x x x x Overflow
32511 117,589 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Overshoot
range
27649 ≧100,004 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1
27648 100,000 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 Nominal
range
1 0,003617 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 1 -0,00361
7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-
27648
-100,000 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
-
27649
≤100,004 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
Undershoot
range
-
32512
-117,593 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
32513
0 % 1 0 0 0 0 0 0 0 x x x x x x x x Underflow
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 185
Table 5-32 Unipolar output ranges
Units Output
value in
%
Data word Range
215 214 213 212 211 210 29282726252423222120
≧3251
2
0 % 0 1 1 1 1 1 1 1 x x x x x x x x Overflow
32511 117,589 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Overshoot
range
27649 ≧100,004 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1
27648 100,000 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 Nominal
range
1 0,003617 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 1 0,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Limited to
the low limit
of the nomi‐
nal range, 0
V or 0 mA
- 32512 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
32513
0 % 1 0 0 0 0 0 0 0 x x x x x x x x Underflow
Table 5-33 Life-zero input ranges
Units Output
value in
%
Data word Range
215 214 213 212 211 210 29282726252423222120
≧3251
2
0 % 0 1 1 1 1 1 1 1 x x x x x x x x Overflow
32511 117,589 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Overshoot
range
27649 ≧100,004 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1
27648 100,000 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 Nominal
range
1 0,003617 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 1 -0,00361
7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Undershoot
range
- 6912 -25,000 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
- 6913
-25,000
1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Limited to
overshoot
range lower
limit 0 V and
0 mA
- 32512
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
≤-3251
3
- 25 % 1 0 0 0 0 0 0 0 x x x x x x x x Underflow
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
186 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Representation of analog values in the voltage output ranges
Table 5-34 Representation of analog values in the ±10 V output range
System Voltage output range
Dec. Hex. ±10 V
118,5149 % 32767 7FFF 0.00 V Overflow, off power
32512 7F00
117,589 % 32511 7EFF 11.76 V Overshoot range
27649 6C01
100 % 27648 6C00 10 V
75 % 20736 5100 7.5 V Nominal range
0,003617 % 1 1 361.7 µV
0 % 0 0 0 V
- 1 FFFF - 361.7 µV
- 75 % - 20736 AF00 - 7.5 V
- 100 % - 27648 9400 - 10 V
- 27649 93FF Undershoot range
- 117,593 % - 32512 8100 - 11.76 V
- 32513 80FF Underflow, idle state
- 118,519 % - 32768 8000 0.00 V
Table 5-35 Representation of analog values in the 0 V to 10 V and 1 V to 5 V output ranges
System Voltage output range
Dec. Hex.0 to 10 V 1 to 5 V
118,5149 % 32767 7FFF 0.00 V 0.00 V Overflow, off power
32512 7F00
117,589 % 32511 7EFF 11.76 V 5.70 V Overshoot range
27649 6C01
100 % 27648 6C00 10 V 5 V
Nominal range
75 % 20736 5100 7.5 V 3.75 V
0,003617 % 1 1 361.7 µV 1V+144.7µV
0 % 0 0 0 V 1 V
- 1 FFFF Undershoot range
- 25 % - 6912 E500 0 V
- 6913 E4FF Not possible. The output value is limi‐
ted to 0 V.
- 117,593 % - 32512 8100
- 32513 80FF Underflow, idle state
- 118,519 % - 32768 8000 0.00 V 0.00 V
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 187
Representation of analog values in the current output ranges
Table 5-36 Representation of analog values in the ±20 mA output range
System Current output range
Dec. Hex. ± 20 mA
118,5149 % 32767 7FFF 0.00 mA Overflow, off power
32512 7F00
117,589 % 32511 7EFF 23.52 mA Overshoot range
27649 6C01
100 % 27648 6C00 20 mA
75 % 20736 5100 15 mA Nominal range
0,003617 % 1 1 723.4 mA
0 % 0 0 0 mA
- 1 FFFF - 723.4 mA
- 75 % - 20736 AF00 - 15 mA
- 100 % - 27648 9400 - 20 mA
- 27649 93FF Undershoot range
- 117,593 % - 32512 8100 - 23.52 mA
- 32513 80FF Underflow, idle state
- 118,519 % - 32768 8000 0.00 mA
Table 5-37 Representation of analog values in the 0 to 20 mA and 4 to 20 mA output ranges
System Current output range
Dec. Hex.0 to 20 mA 4 to 20 mA
118,5149 % 32767 7FFF 0.00 mA 0.00 mA Overflow, off power
32512 7F00
117,589 % 32511 7EFF 23.52 mA 22.81 mA Overshoot range
27649 6C01
100 % 27648 6C00 20 mA 20 mA Nominal range
75 % 20736 5100 15 mA 15 mA
0,003617 % 1 1 723.4 mA 4mA+578.7 nA
0 % 0 0 0 mA 4 mA
- 1 FFFF Undershoot range
- 25 % - 6912 E500 0 mA
- 6913 E4FF Not possible. Output value
limited to 0 mA.
- 117,593 % - 32512 8100
- 32513 80FF Underflow, idle state
- 118,519 % - 32768 8000 0.00 mA 0.00 mA
Analog modules
5.4 Representation of analog values
S7-400 Automation System Module Data
188 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.5 Setting the measuring method and ranges of analog input channels
Two procedures
There are two procedures for setting the measuring method and ranges of analog input
channels of analog modules:
With a measuring range module and STEP 7
By hardwiring the analog input channel, and programming in STEP 7
The method to use for the various analog modules is module-specific, and described in detail
in the relevant module sections.
The procedure for setting the measuring method and measuring range of the module in STEP
7 is described in the respective sections.
This section describes how to set the measuring method and range using measuring range
modules.
Setting the measuring method and range using measuring range modules
Analog modules are supplied with measuring range modules as required.
Reposition the measuring range modules to suit the measuring method and range.
Note
Make sure that the measuring range modules are on the side of the analog input module.
Before you install the analog input module, check the measuring method and range of the
measuring range modules, and adapt these as required.
Optional settings of the measuring range modules
Optional settings of the measuring range modules are: "A", "B", "C" and "D".
For detailed information on specific measuring method and range settings, refer to the relevant
module section.
The settings for the various measuring methods and ranges are also shown on the printed
label of the analog module.
Analog modules
5.5 Setting the measuring method and ranges of analog input channels
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 189
Replugging measuring range modules
To reconnect a measuring range module:
Graphic Description
Use a screwdriver to lever the measur‐
ing range module out of the analog in‐
put module.
Analog modules
5.5 Setting the measuring method and ranges of analog input channels
S7-400 Automation System Module Data
190 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Graphic Description
1
2
Insert the measuring range module in‐
to the required slot (1) of the analog
input module.
The measuring range selected is the
one that points to the marker point on
module (2).
Continue with the insertion of all other
measuring range modules.
Then mount the module.
CAUTION
Danger of damage to equipment.
Faulty measuring range module settings may lead to the destruction of the module.
Always make sure the measuring range module is in the correct position before you connect
any sensors to the module.
Analog modules
5.5 Setting the measuring method and ranges of analog input channels
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 191
5.6 Behavior of the analog modules
5.6.1 Introduction
Overview
This section describes:
How the analog input and output values depend on the operating states of the CPU and
the supply voltage of the analog module
The reaction of analog modules, based on the actual analog value within the relevant value
range
The effect of errors on analog modules with diagnostics capability
The effect of the operational limit of the analog module on the analog input and output value,
as illustrated by an example
Analog modules
5.6 Behavior of the analog modules
S7-400 Automation System Module Data
192 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.6.2 Effect of supply voltage and operating mode
Overview
The IO values of analog modules are determined by the CPU operating state and the module's
supply voltage.
Table 5-38 Dependencies of the analog IO values on the CPU's operating State and on the L+ supply voltage
CPU operating state Supply voltage L+ at the an‐
alog module
Output value of the
analog output module
Input value of the
analog input module*
POWER
ON
RUN L+ present CPU values Measured value
Until the first conversion...
after power-up has been
completed, a signal of 0 mA or
0 V is output.
after programming is
successfully completed, it
outputs the previous value.
7FFFH, until the first conversion
after POWER ON is completed,
or when the module has been
programmed.
L+ missing 0 mA / 0 V
POWER
ON
STOP L+ present Substitution value / last value
(default: 0 mA / 0 V)
Measured value
7FFFH, until the first conversion
after POWER ON is completed,
or when the module has been
programmed.
L+ missing 0 mA / 0 V
POWER
OFF
- L+ present 0 mA / 0 V -
L+ missing 0 mA / 0 V -
* L+ only required with 2-wire sensors
Behavior on failure of the supply voltage
Failure of the load power supply L+ of the diagnostics-capable analog module is indicated in
the case of configured 2-wire sensors by the EXTF LED on the module. This information is
also available on the module (in the diagnostic buffer data.)
Diagnostics interrupt triggering is based on parameter settings.
See also
General information about parameter assignment (Page 199)
Analog modules
5.6 Behavior of the analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 193
5.6.3 Effect of the value range for analog values
Effect of errors on analog modules with diagnostics capability
Errors may lead to an entry in the diagnostics buffer and trigger a diagnostic interrupt at analog
modules with diagnostics function and corresponding parameter settings. You will find the
errors that might be involved in the section "Diagnostics of the analog modules".
Effect of value range on the analog input module
The reaction of analog modules is determined by the actual input values within the value range.
Table 5-39 Reaction of analog input modules as a function of the actual analog value within the value range
Measured value within Input value LED (EXTF) Diagnostics Interrupt
Nominal range Measured value - - -
Overshoot/undershoot range Measured value - - -
Overflow 7FFFH lit1Entry is made1Diagnostic interrupt1
Underflow 8000H lit1Entry is made1Diagnostic interrupt1
Outside of the programmed limit Measured value - - Hardware interrupt1
1 Only for modules with diagnostics function and depending on parameter settings
Effect of value range on the analog output module
The reaction of analog modules is determined by the actual output values within the value
range.
Table 5-40 Behavior of the analog output modules as a function of the position of the analog value within the value range
Output value within Output value LED (EXTF) Diagnostics Interrupt
Nominal range CPU value - - -
Overshoot/undershoot range CPU value - - -
Overflow 0 signal - - -
Underflow 0 signal - - -
Analog modules
5.6 Behavior of the analog modules
S7-400 Automation System Module Data
194 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.6.4 Effect of operational limit and basic error limit
Operational limit
The operational limit represents the measuring error, or output error, of an analog module
across the entire permissible temperature range of the module, based on the module's nominal
range.
Basic error limit
The basic error limit represents the operational limit at 25° C, based on the module's nominal
range.
Note
The percentage details of operational and basic error limits in the specifications of the modules
always refer to the highest possible input and output value in the nominal range of the module.
In the ± 10 V measurement range this would be the 10 V.
Example of determination of the output error of a module
An analog output module SM 432; AO 8 x 13 Bit is being used for voltage output. An output
range of "±10 V" is set. The module is operating at an ambient temperature of 30° C, i.e. the
operational limit applies. The specifications of the module state:
Operational limit for voltage output: ±0,5 %
Hence, an output error of ±0.05 V (±0.5 % of 10 V) across the nominal range of the module
must be expected.
This means that with an actual voltage of, say, 1 V, a value in the range from 0.95 V to 1.05
V is output by the module. The relative error is ±5 % in this case.
For the example, the figure below shows how the relative error decreases as the output value
approaches the end of the 10V range.
1
( ±0,5 %*)
1 V0 V
( ±0,625 %)
( ±5 %)
8 V 10 V
-1 V
±0,05 V
±0,05 V
±0,05 V
=
^=
^=
^
Figure 5-1 Example of the relative error of an analog output module
* Operational limit
(1) Output value
Analog modules
5.6 Behavior of the analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 195
5.7 Conversion, cycle, settling and response time of analog modules
Conversion time of analog input channels
The conversion time is the total of the basic conversion time plus additional processing times
of the module for:
Resistance measurement
Wire break monitoring
The basic conversion time depends directly on the conversion method of the analog input
channel (integrating method, actual value conversion.)
The integration time of integrating conversions has a direct influence on conversion times. The
integration time depends on the interference frequency suppression you set in STEP 7.
For information on basic conversion times and additional processing times of the various
analog modules, refer to the specifications of the relevant module.
Cycle time of analog input channels
The analog/digital conversion and the transfer of the digitized measured values to memory or
to the backplane bus take place sequentially. In other words, the analog input channels are
converted one after the other. The scan time - in other words, the time elapsing until an analog
input value is again converted - is the sum of the conversion times of all activated analog input
channels of the analog input module.
The figure below provides an overview of the cycle time elements for an n-channel analog
module.
Conversion time, channel 1
Conversion time, channel 2
Conversion time, channel 3
Cycle time
Figure 5-2 Scan time of an analog input or output module
Basic execution time of the analog input channels
The basic execution time corresponds to the cycle time for all the enabled channels.
Setting of the smoothing of analog values
You can set the smoothing of the analog values in STEP 7 for some analog input modules.
Analog modules
5.7 Conversion, cycle, settling and response time of analog modules
S7-400 Automation System Module Data
196 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Use of smoothing
Smoothing of analog values ensures a stable analog signal for further processing.
It makes sense to smooth the analog values with slow variations of measured values, for
example, with temperature measurements.
Smoothing principle
The measured values are smoothed by digital filtering. Smoothing is accomplished by the
module calculating mean values, derived from a defined number of converted (digitized) analog
values.
The user assigns parameters to smoothing with a maximum of four levels (none, weak,
medium, strong). The grade determines the number of analog signals used for averaging.
A higher smoothing provides a more reliable analog value, and prolongs the time it takes to
apply a smoothed analog signal following a step response (see the example below.)
Example
The figure below shows the number of cycles a module requires to apply an almost 100%
analog value after a step response, based on the smoothing function settings. The figure
applies to all signal changes at the analog input.
50
100
0
63
50 100 150 200
Step response for any analog input signalSignal variation in
percent
Smoothing Low:
average:
high:
Module cycles
Figure 5-3 Example of the effect of smoothing on step responses
Further information on smoothing
For information showing whether a specific module supports smoothing functions, and special
features to observe, refer to the section dealing with the analog input module.
Analog modules
5.7 Conversion, cycle, settling and response time of analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 197
Conversion time of the analog output channels
The conversion time of the analog output channels includes the transfer of digitized output
values from internal memory, and their digital-to-analog conversion.
Cycle time of analog output channels
The analog output channels are converted sequentially - that is the analog output channels
are converted one after the other.
The cycle time - that is the time expiring until an analog output value is converted again, is
equivalent to the accumulated conversion times of all activated analog output channels. Refer
to the figure "Cycle Time of an Analog Input/Output Channel".
Basic execution time of the analog output channels
The basic execution time corresponds to the cycle time for all the enabled channels.
Note
You should disable any analog channels that are not being used to reduce the scan time in
STEP 7.
Overview of the settling time and response time of the analog output modules
tA
tZ
tE
t1t2t3
Figure 5-4 Settling and response times of the analog output channels
tA = Response time
tS = Setting time
t3 = Specified output value reached
t2 = Output value transferred and converted
tC = Cycle time, corresponds to n x conversion time (n = activated channels)
t1 = New output value is present
Settling time
The settling time (t2 to t3) - that is the time from the application of the converted value until the
specified value is obtained at the analog output - depends on the load. We therefore distinguish
between resistive, capacitive and inductive load.
For information on settling times as a function of load at the various analog output modules,
refer to the specifications of the relevant module.
Analog modules
5.7 Conversion, cycle, settling and response time of analog modules
S7-400 Automation System Module Data
198 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Response time
The response time (t1 to t3) - that is the time from the application of the digital output values in
internal memory until the specified value is obtained at the analog output - is, in the most
unfavorable case, the sum of the cycle time and the settling time.
The worst case scenario is given, when the analog channel has been converted immediately
before a new output value is transferred, and is not converted again until all other channels
have been converted (cycle time.)
See also
Commissioning the SM 431; AI 8 x 13 Bit (Page 235)
5.8 Assigning parameters to analog modules
5.8.1 General information about parameter assignment
Introduction
The characteristics of analog modules may differ. The characteristics of the modules can be
defined by assigning parameters.
Tools for parameter assignment
You program analog modules in
STEP 7
.
After you have defined all parameters, download these from your programming device to the
CPU. The CPU transfers the parameters to the relevant analog modules at the STOP > RUN
transition.
Static and dynamic parameters
The parameters are divided into static and dynamic parameters.
Set the static parameters in STOP mode of the CPU, as described above.
You may also edit dynamic parameters in the active user program of an S7 PLC using SFCs.
However, the parameters set in
STEP 7
will be applied again after a RUN > STOP, STOP >
RUN transition of the CPU. You will find a description of the parameter assignment of modules
in the user program in the Appendix.
Configuration in RUN (CiR)
CiR (Configuration in RUN) is a method you can use to modify your system or edit the
parameters of individual modules. These changes are made while your system is in operation,
that is, your CPU will stay in RUN over a maximum of 2.5 seconds while these changes are
applied.
Analog modules
5.8 Assigning parameters to analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 199
For detailed information on this topic, refer to the "Configuration in RUN by means of CiR"
manual. This manual is found, for example, as a file in PDF format on the STEP 7
CD supplied.
Analog modules
5.8 Assigning parameters to analog modules
S7-400 Automation System Module Data
200 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.8.2 Parameters of analog input modules
Overview
Analog input modules use a subset of the parameters and value range listed in the table below,
based on their functionality. For information on subsets "supported" by specific analog
modules, refer to the section dealing with the relevant module.
The defaults apply if you have not set any parameters in
STEP 7
.
Table 5-41 Parameters of analog input modules
Parameters Value range Default2Parameter
type
Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Hardware interrupt1Yes/no No
Destination CPU for
interrupt
1 to 4 - Static Module
Hardware interrupt trigger
End of scan cycle reached
at input
Yes/no No Static Channel
May be restricted by the measuring range
High limit 32511 to - 32512 - Dynamic Channel
Low limit -32512 to 32511
Diagnostics
Wire break Yes/no No
Static
Channel
Reference channel error Yes/no No
Underflow Yes/no No
Overflow Yes/no No
Short-circuit to M Yes/no No
Measurement
Measuring method Disabled U
Static
Channel
U Voltage
4DMU Current (4-wire sensor)
2DMU Current (2-wire sensor)
R-4L Resistance (4-conductor con‐
nection)
R-3L Resistance (3-conductor con‐
nection)
RTD-4L Thermal resistance (linear, 4-
conductor connection)
RTD-3L Thermal resistance (linear, 3-
conductor connection)
TC-L Thermocouple (linear)
Analog modules
5.8 Assigning parameters to analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 201
Parameters Value range Default2Parameter
type
Scope
Measuring range For information on configurable measuring
ranges of the input channels, refer to the rel‐
evant module description.
± 10 V
Reference temperature - 273.15 to 327.67° C 0° C Dynamic Module
Temperature unit Degrees Celsius; degrees Fahrenheit; Kelvin Degrees
Celsius
Static Module
Temperature coefficient
for temperature
measurement with
thermal resistance (RTD)
Platinum (Pt)
0.00385 Ω/Ω/° C
0.003916 Ω/Ω/° C
0.003902 Ω/Ω/° C
0.003920 Ω/Ω/° C
Nickel (Ni)
0.00618 Ω/Ω/° C
0.00672 Ω/Ω/° C
0,00385 Static Channel
Interference frequency
suppression
400 Hz; 60 Hz; 50 Hz; 10 Hz; none 50 or 60 Hz
Smoothing None
Weak
Medium
Strong
None
Reference junction None
internal
RTD on channel 0
dynamic reference temperature value
None
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
See also
Commissioning the SM 431; AI 8 x 14 Bit (Page 247)
Analog modules
5.8 Assigning parameters to analog modules
S7-400 Automation System Module Data
202 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.8.3 Parameters of analog output modules
Overview
Analog output modules use a subset of the parameters and value range listed in the table
below, based on their functionality. For information on subsets "supported" by specific analog
modules, refer to the section dealing with the relevant module.
The default settings apply if you have not set any parameters in STEP 7.
Table 5-42 Parameters of analog output modules
Parameters Value range Default set‐
ting1
Parameter
type
Scope
Output
Output type Deactivated
voltage
current
U Static Channel
Output range For information on configurable measuring rang‐
es of output channels, refer to the relevant mod‐
ule description.
± 10 V
1 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
See also
Commissioning the SM 431; AI 8 x 14 Bit (Page 247)
Analog modules
5.8 Assigning parameters to analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 203
5.9 Connecting sensors to analog inputs
Introduction
The analog input modules support various sensors, such as voltage/current sensors, and
resistors, depending on the set measuring method.
This section contains general information that is generally applicable to all the connection
options for sensors described in the sections that follow.
Cables for analog signals
Always use shielded twisted-pair cables to wire analog signals. This reduces interference.
Connect both ends of the analog cable shield to ground.
If there are potential differences between the cable ends, an equipotential bonding current,
which can flow over the shield, can cause interference of the analog signals. To avoid this
situation, you should ground the shield only at one end of the cable.
Non-isolated analog input modules
In the case of the non-isolated analog input modules there is an electrical connection between
the reference point of the measuring circuit MANA and chassis ground.
You use non-isolated analog modules if there are few or no potential differences between the
measuring sensors and chassis ground.
Isolated analog input modules
With the isolated analog input modules there is no electrical connection between the reference
point of the measuring circuit MANA and chassis ground.
You use isolated analog input modules if a potential difference UISO can occur between the
reference point of the measuring circuit MANA and chassis ground. By means of an equipotential
bonding conductor between the MANA terminal and chassis ground, make sure that UISO does
not exceed the permitted value.
Limited potential difference UCM
Only a limited potential difference UCM (common mode voltage) may occur amongst the M-
measuring lines of the input channels and between the leads and the reference point of the
measuring circuit MANA. In order to prevent the permissible value from being exceeded, you
must take different actions, described below, depending on the potential connection of the
sensors.
Connecting electrically isolated sensors
The isolated sensors are not connected with the local ground potential (chassis ground). They
can be floating.
With isolated sensors, potential differences might arise between the different sensors. These
potential differences can arise as a result of interference or the local distribution of the sensors.
Analog modules
5.9 Connecting sensors to analog inputs
S7-400 Automation System Module Data
204 Reference Manual, Ausgabe 11/2016, A5E00850736-08
To ensure that the permissible value for UCM is not exceeded during use in heavily EMC-
affected environments, connect M- to MANA in modules with an MANA connection.
1
2
3
M+
M-
UISO
M+
M-
MANA
Figure 5-5 Connecting isolated sensors to an electrically isolated AI
(1) Electrically isolated sensors
(2) Chassis ground
(3) Connection required for modules with MANA
M +: Measuring line (positive)
M -: Measuring line (negative)
MANA: Reference potential of the analog measuring circuit
UISO: Potential difference between MANA and chassis ground
Note
Do not connect M- to MANA when connecting 2-wire transducers for current measurement
and when connecting resistance-type sensors. This also applies to inputs which are
programmed accordingly, but remain unused.
Non-isolated sensors
The isolated sensors are not connected with the local ground potential (chassis ground). When
using non-isolated sensors, you must connect MANA to chassis ground.
Analog modules
5.9 Connecting sensors to analog inputs
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 205
Connecting non-isolated sensors
Depending on local conditions or interference, potential differences UCM (static or dynamic)
can occur between the locally distributed measuring points. If the permitted value for UCM is
exceeded, there must be equipotential bonding conductors between the measuring points.
1
2
3
M+
M-
UISO
M+
M-
MANA
UCM
Figure 5-6 Connecting non-isolated sensors to an isolated AI
(1) Non-isolated sensors
(2) Chassis ground
(3) Equipotential bonding conductor
M +: Measuring line (positive)
M -: Measuring line (negative)
MANA: Reference potential of the analog measuring circuit
UISO: Potential difference between MANA and chassis ground
Note
Do not use non-isolated 2-wire transducers and non-isolated resistance-type sensors!
Analog modules
5.9 Connecting sensors to analog inputs
S7-400 Automation System Module Data
206 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.10 Connecting voltage sensors
Connecting voltage sensors
Note
The cables required to connect the analog input module and the sensors are not drawn in the
figures shown below.
In other words, you must continue to read and follow the instructions in the section "Connecting
sensors to analog inputs", which contains general information on connecting sensors.
+
-U
+
-U
M+
M-
M+
MANA*
M-
Figure 5-7 Connecting voltage sensors to an AI
M +: Measuring line (positive)
M -: Measuring line (negative)
MANA: Reference potential of the analog measuring circuit
(1) Connection required for modules with Mana
Analog modules
5.10 Connecting voltage sensors
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 207
5.11 Connecting current sensors
Sensor supply voltage
Note
The cables required to connect the analog input module and the sensors are not drawn in the
figures shown below.
In other words, you must continue to read and follow the instructions in the section "Connecting
sensors to analog inputs", which contains general information on connecting sensors.
The 2-wire sensor is wired to a short-circuit-proof supply voltage at the terminals of the analog
input module. This 2-wire transducer then converts the measured variable into a current.
Because the 2-wire transducer is supplied by the module, you must not ground the M- cables.
4-wire transducers require a separate supply voltage UH (auxiliary supply).
Connecting 2-wire transducers
1
2 3
4
+24 V
+
-
L+
M+
M-
M+
M-
M
+
-
M
P
P
MANA
Figure 5-8 Connecting 2-wire transducers to an isolated AI
M +: Measuring line (positive)
M -: Measuring line (negative)
L +: Power supply connection 24 VDC
MANA: Reference potential of the analog measuring circuit
(1) Sensor, for example, pressure gauge
(2) + (3) 2-wire transducer
(4) Connection required for modules with Mana
Analog modules
5.11 Connecting current sensors
S7-400 Automation System Module Data
208 Reference Manual, Ausgabe 11/2016, A5E00850736-08
SM 431; 8 x 13 Bit: Connecting 2-wire transducers
Because the supply voltage for the 2-wire transducers is not fed by the SM 431; 8 x 13 Bit,
you must supply the sensors separately with 24 V.
1
2 3 +24 V
+
-MI+
M-
+
-
MANA
MV+
MV+
MI+
M-
MI+
MI+
M
P
P
Figure 5-9 Connecting 2-wire transducers to an SM 431; 8 x 13 Bit
MI+: Measuring current (positive)
MV+: Measuring voltage (positive)
M +: Measuring line (positive)
MANA: Reference potential of the analog measuring circuit
M -: Measuring line (negative)
(1) Sensor, for example, pressure gauge
(2)+(3) 2-wire transducer
Analog modules
5.11 Connecting current sensors
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 209
Connecting 4-wire transducers
1
2
3
M+
M-
M+
M-
MANA
+
-
+
-
UH
P
P
Figure 5-10 Connecting 4-wire transducers to an AI
M +: Measuring line (positive)
M -: Measuring line (negative)
MANA: Reference potential of the analog measuring circuit
UH: Auxiliary voltage
(1) Sensor, for example, pressure gauge
(2) 4-wire transducer
(3) Connection required for modules with Mana
SM 431; 8 x 13 Bit: Connecting 4-wire transducers
To ensure that the permissible value for UCM is not exceeded, you must connect the M-cables
to MANA.
1
2
M
+
-
+
-
UH
MI+
MI+
M-
MV+
MV+
MI+
MI+
M-
P
P
Figure 5-11 Connecting 4-wire transducers to an SM 431; 8 x 13 Bit
Analog modules
5.11 Connecting current sensors
S7-400 Automation System Module Data
210 Reference Manual, Ausgabe 11/2016, A5E00850736-08
MI+: Measuring current (positive)
MV+: Measuring voltage (positive)
M +: Measuring line (positive)
M -: Measuring line (negative)
UH: Auxiliary voltage
(1) Sensor, for example, pressure gauge
(2) 4-wire transducer
Analog modules
5.11 Connecting current sensors
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 211
5.12 Connecting resistance thermometers and resistors
Connecting resistance thermometers and resistors
Note
The cables required to connect the analog input module and the sensors are not drawn in the
figures shown below.
In other words, you must continue to read and follow the instructions in the section "Connecting
sensors to analog inputs", which contains general information on connecting sensors.
Resistance thermometers/resistors are wired in 2-, 3- or 4-wire technique.
With 4-conductor and 3-conductor connections, the module supplies a constant current via
terminals IC + and IC - so that the potential drop occurring on the measuring cables is
compensated. It is imperative to wire the constant current cables directly to the resistance
thermometer/resistor.
Compensated measurements with 3- or 4-wire elements return a more precise result compared
to 2-wire measurements.
4-conductor connection of a resistance thermometer
The voltage generated at the resistance thermometer is measured via the M+ and M- terminals.
When you connect, watch out for the polarity of the connected cable (connect IC + and M+ as
well as IC- and M- to the resistance thermometer).
Make sure that the connected cables IC + and M+ andSO and SE+ and cables IC - and M- and
AGND and SE- are connected directly on the resistance thermometer.
IC
M+
M-
IC+
IC-
SE+
SE-
SO
AGND
Figure 5-12 4-conductor connection of a resistance thermometer to an AI
IC+ Constant current line (positive)
IC- Constant current line (negative)
M+Measuring line (positive)
M-Measuring line (negative)
Analog modules
5.12 Connecting resistance thermometers and resistors
S7-400 Automation System Module Data
212 Reference Manual, Ausgabe 11/2016, A5E00850736-08
3-conductor connection of a resistance thermometer
With a 3-conductor connection to modules with 4 terminals per resistance thermometer, you
must set up a jumper between M- and IC- and SE- and AGND (see Figure).
The module compensates in this circuit for the effect of the line resistance between the module
and the resistance thermometer/resistor.
Make sure that the connected cables IC + and M+ and SO and SE+ are directly connected to
the resistance thermometer.
To get an accurate measurement, make sure that the connected cables M+, IC + and IC- and
SE+, SO and AGND are the same length and have the same cross-section.
IC
M+
M-
IC+
IC-
SE+
SE-
SO
AGND
Figure 5-13 3-conductor connection of a resistance thermometer to an electrically isolated analog input
IC+ Constant current line (positive)
IC- Constant current line (negative)
M+Measuring line (positive)
M-Measuring line (negative)
2-conductor connection of a resistance thermometer
For 2-conductor connections, bridge the M+ and IC+, and the M- and IC- terminals of the module.
Note: Cable resistance is also measured.
M+
M-
IC+
IC-
Figure 5-14 2-conductor connection of a resistance thermometer to an electrically isolated analog input
Analog modules
5.12 Connecting resistance thermometers and resistors
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 213
IC+ Constant current line (positive)
IC- Constant current line (negative)
M+Measuring line (positive)
M-Measuring line (negative)
Analog modules
5.12 Connecting resistance thermometers and resistors
S7-400 Automation System Module Data
214 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.13 Connecting thermocouples
Thermocouple design
Thermocouples consist of a pair of thermal probes, and all necessary installation and
connecting parts. The thermocouple consists of two wires of dissimilar metals or metal alloys
soldered or welded together at the ends.
There are different types of thermocouple, depending on the composition of the material used,
for example, K, J, N thermocouples. The measuring principle of all thermocouples is the same,
irrespective of their type.
12
3
4
5
6
7
°C
(1) Measuring junction
(2) Thermocouple with positive or negative limbs
(3) Connecting point
(4) Compensating leads
(5) Reference junction
(6) Leads
(7) Measurement input
Figure 5-15 Thermocouple design
Operating principle of thermocouples
If the measuring point is subjected to a temperature different from that of the free ends of the
thermocouple (point of connection), a voltage, the thermo e.m.f., occurs at the free ends. The
magnitude of the thermo-e.m.f. generated depends on the difference between the temperature
at the measuring junction and the temperature at the free ends, as well as on the material
combination used for the thermocouple.
Since a thermocouple always measures a temperature difference, the free ends must be kept
at a known temperature at a reference junction in order to determine the temperature of the
measuring junction.
Analog modules
5.13 Connecting thermocouples
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 215
The thermocouples can be extended from their point of connection to the reference junction
by means of compensating wires. These compensating wires are made of the same materials
as the thermocouple wires. The supply lines are made of copper.
Note
Make sure that the polarity is correct, otherwise significant measuring errors will occur.
Compensation of the reference junction temperature
There are several options for you to choose from for acquiring the reference junction
temperature in order to obtain an absolute temperature value from the difference in
temperature between the reference junction and measuring point.
You can use internal or external compensation, depending on where you want the reference
junction to be.
The last column of the following table lists the feature you must set for the "Reference Junction"
parameter in STEP 7. The reference temperature value is a separate parameter in STEP 7.
Options for compensation of the reference junction temperature
Option Explanations Reference junction
No compensation When you want to acquire only the difference in tempera‐
ture between the measuring point and the reference junction
None
Internal compensation If you employ internal compensation, the internal tempera‐
ture of the module is used for comparison purposes.
Internal
External compensation with a compensat‐
ing box in leads of an individual thermo‐
couple
You have already acquired and compensated the reference
junction temperature using a compensating box, which you
have looped into an individual thermocouple.
Further processing at the module is not required.
None
External compensation with a resistance
thermometer to obtain the reference junc‐
tion temperature (recommended method)
You can acquire the reference temperature by means of a
resistance thermometer (pt 100) and have it calculated by
the module for any thermocouple.
RTD on Channel 0
External compensation with a resistance
thermometer when thermocouples with
the same reference junction are divided
amongst several modules
Use a resistance thermometer on a module that measures
the reference junction temperature. Read in the climatic
temperature value to the CPU and transfer the value to the
other modules using SFC55.
RTD on Channel 0
Constant reference junction temperature
(thermometer, ice bath)
If the reference junction temperature is constant and known,
you can specify this value in parameter assignment in STEP
7.
Reference temper‐
ature value
Principle of operation of internal compensation
Internal compensation allows you to form the reference point at the terminals of the analog
input module. In this case, route the compensating lines directly to the analog module. The
internal temperature sensor measures the module's temperature and returns a compensation
voltage.
Note: internal compensation is not as accurate as external compensation.
Analog modules
5.13 Connecting thermocouples
S7-400 Automation System Module Data
216 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Principle of operation of external compensation with compensating box
If you employ external compensation, the temperature of the reference junction of the
thermocouples is taken into account via a compensating box, for example.
The compensating box contains a bridge circuit calibrated for a definite reference junction
temperature. The reference junction is formed by the connecting ends of the thermocouple's
compensating lines.
The resistance of the temperature-sensitive bridge changes as a function of the difference
between the actual reference temperature and calibrating temperature. This difference induces
a positive or negative compensating voltage, which is added to the thermal voltage.
Note
The diagrams below do not show the connecting lines required for connecting the electrical
potentials of the analog input module and the sensors. This means that you must still read and
follow the instructions in the generally applicable information on connecting sensors.
Connection of thermocouples without compensation or using the reference temperature value
Wire the thermocouples either directly to the inputs of the module, or indirectly via
compensating lines. Each channel can use a thermocouple type supported by the analog
module independently of the other channels.
1
M+
M-
M+
M-
M +: Measuring line (positive)
M -: Measuring line (negative)
(1) Compensating leads (same material as thermocouple)
Figure 5-16 Connection of thermocouples without compensation or using the reference temperature
value to an isolated AI
Connecting the compensating box
The compensating box is looped in through the leads of each thermocouple. The compensating
box must be supplied on an isolated basis. The power supply module must provide adequate
noise filtering, for example, by means of grounded cable shielding.
Analog modules
5.13 Connecting thermocouples
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 217
Each channel can use a thermocouple type supported by the analog module independently of
the other channels. Each channel requires its own compensating box.
Note
Use compensating boxes with a reference junction temperature of 0° C for analog input
modules.
Connecting thermocouples using resistance thermometers
Connect the resistance thermometer to channel 0 of the module. Make sure that you configure
the "RTD on Channel 0" reference junction in STEP 7 for each channel that has a thermocouple
connected to it.
If all thermocouples connected to the module's inputs share a common reference junction,
compensate the circuit as follows:
1
2
34
M+
M-
M+
M-
M-
I
I
C+
C-
M+
M +: Measuring line (positive)
M -: Measuring line (negative)
IC+: Constant current line (negative)
IC+: Constant current line (negative)
(1) Compensating leads (same material as thermocouple)
(2) RTD on Channel 0
(3) Incoming line (Cu)
(4) Reference junction
Figure 5-17 Connection of thermocouples of the same type with external compensation by means of
a resistance thermometer, connected to channel 0
Analog modules
5.13 Connecting thermocouples
S7-400 Automation System Module Data
218 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.14 Connecting loads/actuators to analog outputs
Introduction
The analog output modules can be used to supply power to loads and actuators.
This section contains general information that is generally applicable to all the connection
options for loads and actuators described in the sections that follow.
Cables for analog signals
Always use shielded twisted-pair cables to wire analog signals. Form two twisted pairs of the
QV and S+, and M and S- signals. This reduces interference. Connect both ends of the analog
cable shield to ground.
If there are potential differences between the cable ends, an equipotential bonding current,
which can flow over the shield, can cause interference of the analog signals. To avoid this
situation, you should ground the shield only at one end of the cable.
Isolated analog output modules
With the isolated analog output modules there is no electrical connection between the
reference point of the measuring circuit MANA and chassis ground.
You must use isolated analog output modules if a potential difference UISO can occur between
the reference point of the measuring circuit MANA and chassis ground. By means of an
equipotential bonding conductor between the MANA terminal and chassis ground, make sure
that UISO does not exceed the permitted value.
Analog modules
5.14 Connecting loads/actuators to analog outputs
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 219
5.15 Connecting loads/actuators to voltage outputs
Connecting loads to a voltage output
Connecting loads to a voltage output is possible both in a 4-conductor and a 2-conductor
connection.
Note
The cables required to connect the analog output module are not drawn in the figures shown
below.
In other words, you must continue to read and follow the instructions in the section "Connecting
loads/actuators to analog outputs", which contains general information on connecting sensors.
4-conductor connection of loads to a voltage output
You can use the 4-wire technique to achieve a high accuracy at the load by wiring the S- and
S+ sensor lines directly to the load. This results in direct measurement and correction of the
voltage at the load.
Faults or a voltage drop can result in a potential difference between the sensor lead S- and
the reference circuit of the analog circuit MANA. This potential difference (UCM) must not exceed
the permissible value. A negative influence on the accuracy of the analog signal is otherwise
inevitable.
1
+24 V
L+
QV
S+
S-
MANA
0 V
MUISO
RL
Figure 5-18 4-conductor connection of loads to a voltage output of an electrically isolated analog output
module
L +: Terminal for 24 VDC supply voltage
QV: Analog output voltage
S +: Sensing line (positive)
S -: Sensing line (negative)
Analog modules
5.15 Connecting loads/actuators to voltage outputs
S7-400 Automation System Module Data
220 Reference Manual, Ausgabe 11/2016, A5E00850736-08
MANA: Reference potential of the analog circuit
M : Ground
UISO: Potential difference between MANA and chassis ground
(1) Chassis ground
2-conductor connection of loads to a voltage output
In the case of a 2-conductor connection, connect QV with S+ and MANA with S on the front
connector. However, this will not provide the accuracy of a 4-conductor connection.
Wire the loads to the QV terminals and to the reference point of measuring circuit MANA.
1
+24 V
L+
QV
S+
S-
MANA
0 V
MUISO
RL
Figure 5-19 2-conductor connection of loads to a voltage output of an electrically isolated analog output
module
L +: Terminal for 24 VDC supply voltage
QV: Analog output voltage
S +: Sensing line (positive)
S -: Sensing line (negative)
MANA: Reference potential of the analog circuit
M : Ground
UISO: Potential difference between MANA and chassis ground
(1) Chassis ground
See also
Connecting loads/actuators to analog outputs (Page 219)
Analog modules
5.15 Connecting loads/actuators to voltage outputs
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 221
5.16 Connecting loads/actuators to current outputs
Connecting loads to current outputs
Always connect loads to QI and to the reference point of analog circuit MANA of a current output.
Note
The cables required to connect the analog output module are not drawn in the figure shown
below.
In other words, you must continue to read and follow the instructions in the section "Connecting
loads/actuators to analog outputs", which contains general information on connecting sensors.
1
+24 V
L+
QI
MANA
0 V
M
UISO
RL
Figure 5-20 Connecting loads to a current output of an isolated AO
L +: Terminal for 24 VDC supply voltage
QI: Analog output current
MANA: Reference potential of the analog circuit
M : Ground
UISO: Potential difference between MANA and chassis ground
(1) Chassis ground
See also
Connecting loads/actuators to analog outputs (Page 219)
Analog modules
5.16 Connecting loads/actuators to current outputs
S7-400 Automation System Module Data
222 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.17 Diagnostics functions of analog modules
Programmable and non-programmable diagnostic messages
We distinguish between programmable and non-programmable diagnostic messages.
You only obtain programmable diagnostic messages if you have enabled the diagnostics using
the relevant parameters. You perform parameter assignment in the "Diagnostics" tab in
STEP
7
.
The analog module always provides non-programmable diagnostic messages, irrespective of
the enable state of diagnostics functions.
Reactions to diagnostic messages in STEP 7
Actions initiated by diagnostic messages:
The diagnostic message is entered in the diagnostics of the analog module, forwarded to
the CPU and can be read out by the user program.
The error LED on the analog module is lit.
If you have set "Enable Diagnostic Interrupt" in
STEP 7
, a diagnostic interrupt is triggered
and OB 82 is called.
Reading diagnostic messages
You can read detailed diagnostic messages using SFCs in the user program (refer to the
appendix "Diagnostic data of signal modules").
You can view the cause of the error in
STEP 7
in the module diagnostics (refer to the
online
help for STEP 7
).
Diagnostic message in the measured value of analog input modules
All analog input modules return the measured value 7FFFH as a reaction to errors, irrespective
of parameter settings. This measured value indicates either overflow, error, or a disabled
channel.
Diagnostics using the INTF and EXTF LEDs
Some analog input modules indicate faults by means of their two fault LEDs INTF (internal
fault) and EXTF (external fault). The LEDs go out when all the internal and external faults have
been eliminated.
Refer to the specifications of the modules to find out which analog input modules have these
fault LEDs.
Diagnostic messages of the analog input modules
The table below gives an overview of the diagnostic messages for the analog input modules
with diagnostics capability.
Analog modules
5.17 Diagnostics functions of analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 223
You can find out which diagnostic messages are possible with which modules in the Appendix
entitled "Diagnostic Data of the Signal Modules".
Table 5-43 Diagnostic messages of the analog input modules
Diagnostic message LED Scope of diagnostics Programmable
Module error INTF/EXTF Module No
Internal error INTF Module No
External error EXTF Module No
Channel error INTF/EXTF Module No
External auxiliary voltage missing EXTF Module No
Front connector missing EXTF Module No
No module parameters INTF Module No
Incorrect parameters INTF Module No
Channel information available INTF/EXTF Module No
Measuring range module incorrect/missing INTF Module No
Thermocouple connection error EXTF Module No
STOP mode - Module No
EPROM error INTF Module No
RAM error INTF Module No
ADC/DAC error INTF Module No
Hardware interrupt lost INTF Module No
Configuration / programming error INTF Channel No
Short-circuit to M EXTF Channel Yes
Wire break EXTF Channel Yes
Reference channel error EXTF Channel Yes
Underflow EXTF Channel Yes
Overflow EXTF Channel Yes
User connection not wired EXTF Channel No
Open conductor in + direction EXTF Channel No
Open conductor in - direction EXTF Channel No
Run time calibration error EXTF Channel No
Underrange or overrange EXTF Channel No
Open conductor in the current source EXTF Channel No
User calibration does not correspond to the param‐
eter assignment
EXTF Channel No
Note
A prerequisite for detecting the errors indicated by programmable diagnostic messages is that
you must have assigned parameters to the analog module accordingly in STEP 7.
Analog modules
5.17 Diagnostics functions of analog modules
S7-400 Automation System Module Data
224 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Causes of errors and remedies for analog input modules
Table 5-44 Diagnostic messages of the analog input modules, causes of errors and remedies
Diagnostic message Possible cause of error Remedy
Module error Any, the module has detected an error. -
Internal error Module has detected an error within the au‐
tomation system.
-
External error Module has detected an error outside of the
automation system.
-
Channel error Indicates that only certain channels are faul‐
ty
-
External auxiliary voltage
missing
Load voltage to supply the 2-wire transduc‐
er is missing on terminals L+ and M.
Connect supply L+
Front connector missing Jumper between connections 1 and 2 in the
front connector is missing.
Install jumper
No module parameters Module requires information whether it
should operate with default system param‐
eters or with your parameters.
Message present after power on, until the CPU
has completed the transfer of parameters; config‐
ure the module as required.
Incorrect parameters A parameter or combination of parameters
is incorrect; impermissible measurement
range, for example.
Reassign parameters to the module
Channel information availa‐
ble
Channel error; module can provide addi‐
tional channel information.
-
Measuring range module
incorrect/missing
One or more measuring range modules is
missing or incorrectly inserted
Insert the measuring range modules on the mod‐
ule according to the parameter assignment of the
type of measurement and the measurement
range
STOP mode No parameters have been assigned to the
module and the first module cycle has not
been completed.
If a reboot of the CPU all the digitized analog val‐
ues are in the intermediate memory, this mes‐
sage is reset
EPROM error Module is defective Replace the module
RAM error
ADC/DAC error
Hardware interrupt lost The module cannot send an interrupt, since
the previous interrupt was not acknowl‐
edged; possible configuration error.
Change the interrupt handling in the CPU
(change priority for interrupt OB; shorten interrupt
program).
Configuration / program‐
ming error
Illegal parameters transferred to module Check the measuring range module
Reassign parameters to the module
Short-circuit to M A short-circuit to the M potential has occur‐
red on the sensor supply of 2-wire trans‐
ducers.
Eliminate the short-circuit.
Wire break Resistance of transducer circuit too high Use a different type of transducer, or modify the
wiring, for example, using a larger conductor
cross-section.
Open circuit between module and sensor Connect the cable
Channel not connected (open) Disable channel ("Measuring type" parameter)
Wire the channel
Analog modules
5.17 Diagnostics functions of analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 225
Diagnostic message Possible cause of error Remedy
Reference channel error The reference junction connected at chan‐
nel 0 is faulty due to a wire break, for exam‐
ple.
Check the connections
The reference temperature value transfer‐
red is not within the value range.
Reassign the parameters for the reference tem‐
perature
Underflow Input value below undershoot range; possi‐
ble cause of error: wrong measuring range
selected
Set another measuring range
With the measuring ranges 4 to 20 mA and
1 to 5 V, if necessary by polarity reversal of
sensor connection
Check the connections
Overflow Input value exceeds overshoot range Set another measuring range
Run time calibration error A wiring fault has occurred on a channel
during the calibration cycle
Eliminate the wiring fault (fault remains until the
next calibration; in other words, a maximum 6 mi‐
nutes or until there is a STOP-RUN transition of
the CPU).
Analog modules
5.17 Diagnostics functions of analog modules
S7-400 Automation System Module Data
226 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.18 Interrupts of analog modules
Introduction
This section describes the interrupt reaction of analog modules. There are two types of
interrupt:
Diagnostic interrupt
Hardware interrupt
Note: certain analog modules do not support interrupts, or can only partially "handle" the
interrupts described below. For information on modules supporting interrupt functions, refer to
their specifications.
For detailed information on the OBs and SFCs mentioned below, refer to the
STEP 7 Online
Help
.
Enabling interrupts
The interrupts are not preset - in other words, they are inhibited without appropriate parameter
assignment. Interrupts are enabled in STEP 7.
Special feature: The module is inserted in ER-1/ER-2
Note
If you use the analog module in ER-1/ER-2, you must set the parameters for the input of all
the interrupts to "No" because the interrupt lines are not available in ER-1/ER-2.
Diagnostic interrupt
When diagnostic interrupts are enabled, incoming error events (initial occurrence) and
outgoing error events (error is cleared) are reported by means of an interrupt.
The CPU interrupts user program execution, and executes diagnostic interrupt OB82.
In the user program, you can call SFC 51 or SFC 59 in OB 82 to obtain more detailed diagnostic
information from the module.
The diagnostic information is consistent until such time as OB 82 is exited. When OB 82 is
exited, the diagnostic interrupt is acknowledged on the module.
Hardware interrupt with trigger "high and low limit exceeded"
Define a working range by setting a high and low limit. If the process signal (for example, the
temperature) leaves this working range, the module triggers a hardware interrupt, provided
the interrupt is enabled.
As a result, the CPU interrupts execution of the user program and executes hardware interrupt
OB 40.
Analog modules
5.18 Interrupts of analog modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 227
In the user program of OB 40, you can set how the programmable controller is required to
react to a limit value being surpassed or not being reached.
When OB 40 is exited, the hardware interrupt is acknowledged on the module.
Note
Note: the system does not generate a hardware interrupt if your limit setting exceeds the
overshoot or undershoot range.
Structure of the start information tag OB40_POINT_ADDR of OB 40
The limit values exceeded by the different channels are entered in the start information of OB
40 in the tag OB40_POINT_ADDR. The figure below shows the assignment of bits in DWORD
8 of local data.
1 2 3 4
1
16 Bit-Nr.
1731 30 29 28 27 26
LD 81
LB 8 LB 9
25 24
LB 11
01
1 1
.0
.1
Figure 5-21 Start Information of OB 40: Which event has violated limits and triggered a hardware
interrupt
(1) Value exceeds high limit in channel 1
(2) Value exceeds high limit in channel 0
(3) Value exceeds low limit in channel 1
(4) Value exceeds low limit in channel 0
(5) Bit No.
Hardware interrupt triggered by "Reached end of scan cycle"
A hardware interrupt programmed to be triggered at the end of scan cycles allows you to
synchronize a process with the scan cycle of the analog input module.
A scan cycle includes the conversion of the measured values of all active channels of the
analog input module. The module processes the channels in succession. When all measured
values are successfully converted, the module reports the existence of new measurement data
at its channels to the CPU by means of an interrupt.
You can always use this interrupt to load the actual, converted analog values.
See also
Features (Page 229)
General information about parameter assignment (Page 199)
Analog modules
5.18 Interrupts of analog modules
S7-400 Automation System Module Data
228 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
5.19.1 Features
Overview
The analog input module SM 431; AI 8 x 13 bit has the following features:
8 inputs for voltage/current measurement
4 inputs for resistance measurement
Various measuring ranges, adjustable in parallel
Resolution 13 bits
Analog section isolated from the CPU
Maximum permitted common mode voltage between the channels or between the reference
potentials of the connected sensors and MANA 30 V AC
Circuit diagram for SM 431; AI 8 x 13 bit
A
D
+5V
0V
CH1
CH7
CH0
+5V
-5V
0V
MV0+
MI0+
MI0+
M0-
CH1
CH7
F_CON
MANA
Front connectors
monitoring
Suppressor circuit, current jumpering
Bus control
Bus S7-400
Bus S7-400
Bus S7-400
Figure 5-22 Circuit diagram for SM 431; AI 8 x 13 bit
Analog modules
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 229
WARNING
The module can get damaged.
The shunt of an input channel can be destroyed if you inadvertently connect a voltage sensor
to the M- /MI+ terminals of a channel.
Make sure that the front connector is wired in accordance with the following connection
diagram.
Analog modules
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
S7-400 Automation System Module Data
230 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection diagram for SM 431; AI 8 x 13 bit
MANA
V
A
V
A
MV0+ MV0+
MV7+
MI7+
MI7+
M7-
MV6+
MI6+
MI6+
M6-
MV5+
MI5+
MI5+
M5-
MV4+
MI4+
MI4+
M4-
MV3 +
MI3 +
MI3 +
M3-
MV2+
MI2+
MI2+
M2-
MV1+
MI1+
MI1+
M1-
MI0+
MI0+
M0-
M0+
M0-
M1+
M1-
M2+
M2-
M3 +
M3-
IC0+
IC0-
IC1+
IC1-
IC2+
IC2-
IC3 +
IC3-
M0-
MV1+
M1-
MV2+
M2-
MV3 +
M3-
M
MV4+
M4-
MV5+
M5-
MV6+
M6-
MV7+
M7-
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH0
CH2
CH4
CH6
ANA
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Voltage
measurement
Current measurement Resistance
measurement
Word 0
Word 2
Word 0
Word 4
Word 4
Word 6
Word 8
Word 10
Word 8
Word 12
Word 12
Word 14
Figure 5-23 Connection diagram for SM 431; AI 8 x 13 bit
Analog modules
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 231
Technical specifications for SM 431; AI 8 x 13 bit
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 500 g
Module-specific data
Number of inputs 8
For resistance-based sensor 4
Cable length
shielded Maximum 200 m
Voltage, current and potential
Rated load voltage L+ Not required
Constant measured current for resistance-based sen‐
sor
Typ. 1.67 mA
Electrical isolation
Between channels and backplane bus Yes
Between channels No
Permissible potential difference
Between inputs and MANA (UCM) 30 V AC
Between the inputs (UCM) 30 V AC
Between MANA and Mintern (UISO) 60 V DC/30 V AC (SELV)
Insulation tested at
Between bus and analog section 2120 V DC
Between bus and chassis ground 500 V DC
Between analog section and chassis ground 2120 V DC
Current consumption
From backplane bus (5 V) Maximum 350 mA
Module power loss Typ. 1.8 W
Formation of analog values
Measuring principle Integrating
Integration time/conversion time/resolution (per chan‐
nel)
(Not part of the response time)
Configurable Yes
Interference voltage suppression f1 in Hz 60 / 50
Integration time in ms 16.7 / 20
Basic conversion time in ms 23 / 25
Resolution (including overrange) 13 / 13 bit
Measured value smoothing Not possible
Basic execution time of the module in ms (all channels
enabled)
184 / 200
Noise suppression, error limits
Interference voltage suppression for f = nx (f1 ±1%),
(f1 = interference frequency) n = 1, 2, ...
Common mode interference (UCM < 30 V) > 100 dB
Analog modules
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
S7-400 Automation System Module Data
232 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Series-mode interference (peak value of fault
< rated value of input range)
> 40 dB
Crosstalk between the inputs > 50 dB
Operational limit (throughout temperature range, relative to input range)
Voltage input
± 1 V
± 10 V
1 to 5 V
± 1.0%
± 0.6%
± 0.7%
Current input
± 20 mA
4 to 20 mA
± 1.0%
± 1.0%
Resistance measurement 0 to 500 Ω;
4-wire measurement (at around 600 Ω)
± 1.25%
Basic error limit (operational limit at 25°C, relative to input range)
Voltage input
± 1 V
± 10 V
1 to 5 V
± 0.7%
± 0.4%
± 0.5%
Current input
± 20 mA
4 to 20 mA
± 0.7%
± 0.7%
Resistance measurement 0 to 500 Ω; 4-wire
measurement (at around 600 Ω)
± 0.8%
Temperature error (relative to input range)
in resistance measuring range ± 0.02 % / K
In all other measuring ranges ± 0.007 % / K
Linearity error (relative to input range) ± 0.05%
Repeat accuracy (in settled state at 25°C, relative to
input range)
± 0.1%
Status, interrupts, diagnostics
Interrupts None
Diagnostic functions None
Substitute values can be connected No
Data for selecting a sensor
Input range (rated values) / input resistance
Voltage ± 1 V / 200 kΩ
± 10 V / 200 kΩ
1 to 5 V / 200 kΩ
Current ± 20 mA / 80 Ω
4 to 20 mA / 80 Ω
Resistance 0 to 600 Ω; can be used up to 500 Ω
Permissible input current for current input (destruction
limit)
Constant 40 mA
Sensor connection
Analog modules
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 233
For voltage measurement Possible
For current measurement
As 2-wire transducer
As 4-wire transducer
Possible; with external measuring transducer
supply
Possible
For resistance measurement
With 2-wire connection
With 3-wire connection
With 4-wire connection
Possible; line resistance is also measured
Possible
Analog modules
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
S7-400 Automation System Module Data
234 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.19.2 Commissioning the SM 431; AI 8 x 13 Bit
Setting the operating mode
You set the mode of operation of the SM 431; AI 8 x13 Bit in STEP 7.
Parameters
You will find a description of the general procedure for assigning parameters to analog modules
in the respective sections.
The table below provides an overview of configurable parameters, including defaults.
Table 5-45 Parameters of the SM 431; AI 8 x 13 Bit
Parameters Value range Default1Parameter
type
Scope
Measurement
Measuring
method
Disabled U
U
4DMU
2DMU
R-4L
Voltage
Current (4-wire sensor)
Current (2-wire sensor)
Resistance (4-conductor connec‐
tion)
Static Channel
Measuring
range
Refer to respective section for the measuring
ranges of the input channels that you can set.
± 10 V
Interference
frequency
suppression
60 Hz; 50 Hz 50 Hz
1 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
See also
General information about parameter assignment (Page 199)
Analog modules
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 235
5.19.3 Measuring methods and measuring ranges of SM 431; AI 8 x 13 Bit
Measuring methods
You can set the measuring method at the input channels:
Voltage measurement
Current measurement
Resistance measurement
You perform the setting with the "measuring method" parameter in STEP 7.
Circuit for resistance measurement
The following conditions apply when measuring the resistance with the SM 431; AI 8 x 13 Bit:
Table 5-46 Channels for resistance measurement of the SM 431; AI 8 x 13 Bit
Measuring type parameter Permissible
for channel n
Condition
Resistance
(4-conductor connection)
0, 2, 4 or 6 You must disable the "Measuring type" parameter for channels n+1 (1, 3,
5, 7).
Reason: The connections of channel n+1 are used to supply the resistance
that is connected to channel n.
Unused channels
Unused channels can be left open. You can improve the noise immunity of the module in a
measuring environment with serious interference by short-circuiting the channels and
connecting to MANA. For unused channels, set the "measuring method" parameter to
"deactivated". This reduces the module's cycle time.
Measuring ranges
Set the measuring ranges at the "measuring range" parameter in
STEP 7
.
Table 5-47 Measuring ranges of the SM 431; AI 8 x 13 Bit
Selected measuring method Measuring range Description
V: Voltage ±1 V
1 V to 5 V
±10 V
The digitized analog values are listed in the section "Repre‐
sentation of analog values for output channels" in the voltage
measuring range.
2DMU: Current
(2-wire transducer)
4 to 20 mA The digitized analog values are listed in the section "Repre‐
sentation of analog values for output channels in the current
measuring range".
Analog modules
5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0)
S7-400 Automation System Module Data
236 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Selected measuring method Measuring range Description
4DMU: Current
(4-wire transducer)
4 to 20 mA
± 20 mA
The digitized analog values are listed in the section "Repre‐
sentation of analog values for output channels in the current
measuring range".
R-4L: Resistance
(4-conductor connection)
600 Ω The digitized analog values are listed in the section "Repre‐
sentation of analog values for output channels in the resist‐
ance-type sensor range".
Default
The "voltage" measuring method and "± 10 V" measuring range are set by default at the
module. You can use this combination of measuring method and measuring range without
configuring the SM 431; AI 8 x 13 Bit in
STEP 7
.
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
5.20.1 Features
Overview
The analog input module SM 431; AI 8 x 14 bit has the following features:
8 inputs for current and voltage measurement
4 inputs for resistance and temperature measurement
Various measuring ranges, adjustable in parallel
Resolution 14 bits
Particularly suited to temperature measurement
Temperature sensor types configurable
Linearization of sensor characteristic curves
Supply voltage: 24 V DC only required for connection of 2-wire transducers
Analog section isolated from the CPU
Maximum permitted common mode voltage between channels or between channel and
central grounding point 120 V AC
Note
"Wire break" diagnostics
The diagnosis "wire break" can be configured for "voltage" measurement for this module,
but is not evaluated by the module in that measurement type.
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 237
Circuit diagram for SM 431; AI 8 x 14 bit
24 V
0V
0V
- 15V
+ 5V
+ 15V
ENABLE
CH0
CH1
CH6
CH7
L+
M
A
D
OPTO RELAY
Measuring
range
module 0
Bus control
Measuring
range
module 3
MULTIPLEXER
Bus S7-400
Bus S7-400
Bus S7-400
Figure 5-24 Circuit diagram for SM 431; AI 8 x 14 bit
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
238 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection diagram for SM 431; AI 8 x 14 bit
M1+
M2-
M3-
M4-
M5-
M6-
M7-
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
L+
V
V
V
M
Tr
Tr
L+
M0+
M0-
M1-
M2+
M3 +
M4+
M5+
M6+
M7+
M
M0+
M0-
IC0+
IC0-
M1+
M1-
IC1+
IC1-
M2+
M2-
IC2+
IC2-
M3 +
M3-
IC3 +
IC3-
M
CH0
CH2
CH4
CH6
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Thermocouples
Voltage measurement-
Current measurement
Resistance measurement
Resistance thermometer
Word 0
Word 0
Word 2
Word 4
Word 4
Word 6
Word 8
Word 8
Word 10
Word 12
Word 12
Word 14
Figure 5-25 Connection diagram for SM 431; AI 8 x 14 bit
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 239
Technical specifications for SM 431; AI 8 x 14 bit
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 500 g
Module-specific data
Number of inputs 8
For resistance-based sensor 4
Cable length
Shielded Maximum 200 m
In 80 mV - input range and for thermocouples Maximum 50 m
Voltage, current and potential
Rated load voltage L+ 24 V DC (only required for supply of 2-wire
transducers)
Reverse polarity protection Yes
Supply voltage of the measuring transducers
Supply current Maximum 50 mA
Short-circuit proof Yes
Constant measured current for resistance-based sen‐
sor
Typ. 1.67 mA
Electrical isolation
Between channels and backplane bus Yes
Between channels No
Between channels and load voltage L+ Yes
Permissible potential difference
Between inputs and MANA (UCM) 60 V DC/30 V AC (SELV)
Between the inputs (UCM) 60 V DC/30 V AC (SELV)
Between MANA and Mintern (UISO) 60 V DC/30 V AC (SELV)
Insulation tested at
Between bus and L+/M 2120 V DC
Between bus and analog section 2120 V DC
Between bus and chassis ground 500 V DC
Between analog section and L+/M 500 V DC
Between analog section and chassis ground 2120 V DC
Between L+/M and chassis ground 2120 V DC
Current consumption
From backplane bus (5 V) Maximum 600 mA
From load voltage L+ Maximum 200 mA (with 8 connected fully con‐
trolled 2-wire transducers)
Module power loss Typ. 3.5 W
Formation of analog values
Measuring principle Integrating
Integration time/conversion time/resolution (per chan‐
nel)
(Not part of the response time)
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
240 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Configurable Yes
Interference voltage suppression f1 in Hz 60 / 50
Integration time in ms 16.7 / 20
Basic conversion time in ms 20.1 / 23.5
Additional conversion time for resistance
measurement in ms
40.2 / 47
Additional conversion time for wire-break
monitoring in ms
4.3 / 4.3
Additional conversion time for resistance
measurement in ms
5.5 / 5.5
Resolution (including overrange) 14 / 14 bit
When smoothing is enabled 16 / 16 bit
Measured value smoothing Configurable in 4 stages
Basic execution time of the module in ms (all channels
enabled)
161 / 188
Noise suppression, error limits
Interference voltage suppression for f = nx (f1 ±1%),
(f1 = interference frequency) n = 1, 2, ...
Common mode interference (UCM < 120 Vss) > 100 dB
Series-mode interference (peak value of fault <
rated value of input range)
> 40 dB
Crosstalk between the inputs > 70 dB
Operational limit (throughout temperature range, relative to input range)
Voltage input
± 80 mV
± 250 mV
± 500 mV
± 1 V
± 2.5 V
± 5 V
1 to 5 V
± 10 V
± 0.38%
± 0.35%
± 0.35%
± 0.35%
± 0.35%
± 0.35%
± 0.35%
± 0.35%
Current input
0 to 20 mA
± 20 mA
4 to 20 mA
± 0.35%
± 0.35%
± 0.35%
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 241
Resistance measurement
0 to 48 Ω; 4-wire measurement
0 to 150 Ω; 4-wire measurement
0 to 300 Ω; 4-wire measurement
0 to 600 Ω; 4-wire measurement
0 to 5000 Ω; 4-wire measurement (around
6000 Ω)
0 to 300 Ω; 3-wire measurement
0 to 600 Ω; 3-wire measurement
0 to 5000 Ω; 3-wire measurement (around
6000 Ω)
± 0.35%
± 0.35%
± 0.35%
± 0.35%
± 0.35%
± 0.5%
± 0.5%
± 0.5%
Thermocouples
TC type B
TC type R
TC type s
TC type T
TC type E
TC type J
TC type K
TC type U
TC type L
TC type N
± 14.8 K
± 9.4 K
± 10.6 K
± 2.2 K
± 4.0 K
± 5.2 K
± 7.6 K
± 3.5 K
± 5.1 K
± 5.5 K
Resistance thermocouples 4-conductor standard
measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
Climatic measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
± 4.6 K
± 5.7 K
± 4.6 K
± 3.7 K
± 0.9 K
± 0.9 K
± 0.5 K
± 0.5 K
± 0.5 K
± 0.5 K
± 0.9 K
± 0.9 K
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
242 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Resistance thermocouples 3-conductor standard
measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
Climatic measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
± 5.2 K
± 8.2 K
± 6.5 K
± 5.2 K
± 1.3 K
± 1.3 K
± 0.7 K
± 0.7 K
± 0.7 K
± 0.7 K
± 1.3 K
± 1.3 K
Basic error limit (operational limit at 25°C, relative to input range)
Voltage input
± 80 mV
± 250 mV
± 500 mV
± 1 V
± 2.5 V
± 5 V
1 to 5 V
± 10 V
± 0.17%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
Current input
0 to 20 mA
± 20 mA
4 to 20 mA
± 0.15%
± 0.15%
± 0.15%
Resistance measurement
0 to 48 Ω; 4-wire measurement
0 to 150 Ω; 4-wire measurement
0 to 300 Ω; 4-wire measurement
0 to 600 Ω; 4-wire measurement
0 to 5000 Ω; 4-wire measurement (around
6000 Ω)
0 to 300 Ω; 3-wire measurement
0 to 600 Ω; 3-wire measurement
0 to 5000 Ω; 3-wire measurement (around
6000 Ω)
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.3%
± 0.3%
± 0.3%
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 243
Thermocouples
TC type B
TC type R
TC type s
TC type T
TC type E
TC type J
TC type K
TC type U
TC type L
TC type N
± 8.2 K
± 5.2 K
± 5.9 K
± 1.2 K
± 1.8 K
± 2.3 K
± 3.4 K
± 1.8 K
± 2.3 K
± 2.9 K
Resistance thermocouples 4-conductor standard
measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
Climatic measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
± 2.0 K
± 2.5 K
± 2.0 K
± 1.6 K
± 0.4 K
± 0.4 K
± 0.2 K
± 0.2 K
± 0.2 K
± 0.2 K
± 0.4 K
± 0.4 K
Resistance thermocouples 3-conductor standard
measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
Climatic measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
± 3.1 K
± 4.9 K
± 3.9 K
± 3.1 K
± 0.8 K
± 0.8 K
± 0.4 K
± 0.4 K
± 0.4 K
± 0.4 K
± 0.8 K
± 0.8 K
Temperature error (relative to input range) ± 0.004 % / K
Linearity error (relative to input range) ± 0.01%
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
244 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Repeat accuracy (in settled state at 25°C, relative to
input range)
± 0.1%
Status, interrupts, diagnostics
Interrupts None
Diagnostic functions None
Substitute values can be connected No
Data for selecting a sensor
Input ranges (rated values)/input resistance
Voltage ± 80 mV / 1 MΩ
± 250 mV / 1 MΩ
± 500 mV / 1 MΩ
± 1 V / 1 MΩ
± 2.5 V / 1 MΩ
± 5 V / 1 MΩ
1 to 5 V / 1 MΩ
± 10 V / 1 MΩ
Current 0 to 20 mA / 50 Ω
± 20 mA / 50 Ω
4 to 20 mA / 50 Ω
Resistance 0 to 48 Ω / 1 MΩ
0 to 150 Ω / 1 MΩ
0 to 300 Ω / 1 MΩ
0 to 600 Ω / 1 MΩ
0 to 6000 Ω / 1 MΩ
(can be used up to 5000 Ω)
Thermocouples TC type B / 1 MΩ
TC type R / 1 MΩ
TC type S / 1 MΩ
TC type T / 1 MΩ
TC type E / 1 MΩ
TC type J / 1 MΩ
TC type K / 1 MΩ
TC type U / 1 MΩ
TC type L / 1 MΩ
TC type N / 1 MΩ
Resistance thermometer Pt 100 / 1 MΩ
Pt 200 / 1 MΩ
Pt 500 / 1 MΩ
Pt 1000 / 1 MΩ
Ni 100 / 1 MΩ
Ni 1000 / 1 MΩ
Permissible input voltage for voltage input (destruction
limit)
Maximum 18 V continuous
75 V for 1 ms (cycle clock ratio 1 : 20)
Permissible input current for current input (destruction
limit)
40 mA continuous
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 245
Sensor connection
For voltage measurement Possible
For current measurement
As 2-wire transducer
As 4-wire transducer
Possible
Possible
For resistance measurement
With 2-wire connection
With 3-wire connection
With 4-wire connection
Possible; line resistance is also measured
Possible
Possible
Load of 2-wire transducer Maximum 750 Ω
Characteristic curve linearization Configurable
For thermocouples Type B, R, S, T, E, J, K, U, L, N
For resistance thermometers Pt 100, Pt 200, Pt 500, Pt 1000,
Ni 100, Ni 1000
Temperature compensation Yes, configurable
Internal temperature compensation No
External temperature compensation with
compensating box
Possible
External temperature compensation with Pt 100 Possible
Compensation for definable reference junction
temperature
Possible
Technical unit for temperature measurement Degrees Celsius
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
246 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.20.2 Commissioning the SM 431; AI 8 x 14 Bit
Setting the operating mode
You set the mode of operation of the SM 431; AI 8 x 14 Bit by means of measuring range
modules on the module and in
STEP 7
.
Measuring range modules
A measuring range module of the module matches two channels and one resistance channel
to each type of sensor. Reposition the measuring range modules to suit the measuring method
and range. The steps you have to perform to do this are described in detail in the respective
section.
For an overview of the settings of specific measuring methods and ranges, refer to the
corresponding table in the section "Measuring methods and measuring ranges of SM 431;
AI 8 x 14 Bit". The necessary settings are also shown on the label attached to the module.
Parameters
You will find a description of the general procedure for assigning parameters to analog modules
in the respective sections.
The table below provides an overview of configurable parameters, including defaults.
Table 5-48 Parameters of the SM 431; AI 8 x 14 Bit
Parameters Value range Default set‐
ting1
Parame‐
ter type
Scope
Diagnostics
Wire break Yes/no No Static Channel
Measurement
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 247
Parameters Value range Default set‐
ting1
Parame‐
ter type
Scope
Measuring method Deactiva‐
ted
U
Voltage
U Static Channel
4DMU Current (4-wire
sensor)
2DMU Current (2-wire
sensor)
R-4L Resistance (4-
conductor con‐
nection)
R-3L Resistance (3-
conductor con‐
nection)
RTD-4L Thermal resistor
(linear, 4-con‐
ductor connec‐
tion)
RTD-3L Thermal resistor
(linear, 3-con‐
ductor connec‐
tion)
TC-L Thermocouple
(linear)
Measuring range For information on configura‐
ble measuring ranges of in‐
put channels, refer to the
chapter "Measuring methods
and measuring ranges of SM
431; AI 8 x 14 Bit".
± 10 V
Reference temperature - 273.15 to 327.67 oC 0,00 oC Dynamic Module
Interference frequency
suppression
60 Hz; 50 Hz 50 Hz Static Channel
Smoothing None
Weak
Medium
Strong
None Static Channel
Reference junction None
RTD on Channel 0
Reference temperature val‐
ue dynamic
None
1 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
Measured value smoothing
You will find information that is generally applicable to the smoothing of analog values in the
respective section.
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
248 Reference Manual, Ausgabe 11/2016, A5E00850736-08
The following figure shows for the module the number of module cycles, in the case of a step
response, after which the smoothed analog value is applied to almost 100%, depending on
the smoothing setting. The figure applies to every change of signal at an analog input.
50
100
0
63
50 100 150 200
Signal variation in
percent
Step response for any analog input signal
Smoothing Low:
average:
high:
Module cycles
Figure 5-26 Step response of the SM 431; AI 8 x 14 Bit
See also
General information about parameter assignment (Page 199)
Conversion, cycle, settling and response time of analog modules (Page 196)
5.20.3 Measuring methods and measuring ranges of SM 431; AI 8 x 14 Bit
Measuring methods
You can set the measuring method at the input channels:
Voltage measurement
Current measurement
Resistance measurement
Temperature measurement
You specify the setting by means of the measuring range modules on the module and the
"Measuring type" parameter in STEP 7.
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 249
Circuit variants for the channels
Two channels are set in each case with the measuring range module. There are therefore
restrictions as regards the measuring method for the adjacent channels 0/1, 2/3, 4/5 and 6/7,
as shown in the following table:
Table 5-49 Selection of the measuring method for channel n and channel n+1 of the SM 431; AI 8 x 14 Bit
(6ES7431-1KF10-0AB0)
Measuring method,
channel n
Measuring method, channel n + 1
Deacti‐
vated
Voltage Current
4-DMU
Current
2-DMU
R-4L R-3L RTD-4L RTD-3L TC-L
Disabled x x x x x
Voltage x x x
Current 4-wire trans‐
ducer
x x
Current 2-wire trans‐
ducer
x x
4-wire
resistor
x
3-wire
resistor
x
Four-wire thermal re‐
sistor
x
3-wire thermal
resistor
x
Thermocouples x x x
Example
If you select "current (2-wire transducer)" for channel 6, you can only disable the measuring
method or set "current (2-wire transducer)" for channel 7.
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
250 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Circuit for resistance measurement
The following conditions apply when measuring the resistance and temperature with the SM
431; AI 8 x 14 Bit:
Table 5-50 Channels for resistance and temperature measurement of the SM 431; AI 8 x 14 Bit
Measuring type parameter Permissible for
channel n
Condition
Resistance
(4-conductor connection)
0, 2, 4 or 6 You must disable the "Measuring type" parameter for channels n+1
(1, 3, 5, 7).
Reason: The connections of channel n+1 are used to supply the
resistance that is connected to channel n.
Resistance
(3-conductor connection)
0, 2, 4 or 6
Thermal resistance
(linear, 4-wire connection)
0, 2, 4 or 6
Thermal resistance
(linear, 3-wire connection)
0, 2, 4 or 6
Circuit for reference junction compensation for thermocouples
If you select "RTD on Channel 0" as a reference junction for reference junction compensation
for thermocouples, the following applies:
Table 5-51 Thermocouple with reference junction compensation via RTD on channel 0
Measuring type parameter Permissible for
channel n
Condition
RTD on Channel 0 2 to 7 You must connect and configure on channel 0 a resistance thermom‐
eter with linearization, a 3 or 4-conductor connection in climatic
range. This means that channels 0 and 1 are assigned.
Reason: If channel 0 is to be used as the reference junction, a resist‐
ance-type sensor must be connected there to record absolute tem‐
peratures in the climatic range.
Unused channels
Unused channels can usually be left open. Set the measuring range modules to position "A".
In measuring environments with strong interference, you can improve the module's immunity
to interference by short-circuiting the channels.
For unused channels, set the "measuring method" parameter to "deactivated". This reduces
the module's cycle time.
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 251
Measuring ranges
Set the measuring ranges using the measuring range modules, and at the "measuring method"
parameter in
STEP 7
.
Table 5-52 Measuring ranges of the SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
Selected measuring method Measuring range
(type of sensor)
Measuring range module
settings
Description
V: Voltage ± 80 mV
± 250 mV
± 500 mV
± 1 V
± 2.5 V
± 5 V
1 to 5 V
± 10 V
A The digitized analog values are lis‐
ted in the section "Representation
of analog values for analog input
channels" in the voltage measur‐
ing range.
2DMU: Current
(2-wire transducer)
4 to 20 mA D To supply these transducers with
current you must connect 24 V to
the L+ and M front connector ter‐
minals.
The digitized analog values are lis‐
ted in the section "Representation
of analog values for analog input
channels" in the current measur‐
ing range.
4DMU: Current
(4-wire transducer)
0 mA to 20 mA
4 mA to 20 mA
± 20 mA
C The digitized analog values are lis‐
ted in the section "Representation
of analog values for analog input
channels" in the current measur‐
ing range.
R-4L: Resistance
(4-conductor connection)
48 Ω
150 Ω
300 Ω
600 Ω
6000 Ω
A The digitized analog values are lis‐
ted in the section "Representation
of analog values for analog input
channels" in the resistance meas‐
uring range.
R-3L: Resistance
(3-conductor connection)
300 Ω
600 Ω
6000 Ω
Analog modules
5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
S7-400 Automation System Module Data
252 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Selected measuring method Measuring range
(type of sensor)
Measuring range module
settings
Description
TCL: Thermocouple (linear)
(temperature measurement)
Type B
Type N
Type E
Type R
Type S
Type J
Type L
Type T
Type K
Type U
A The digitized analog values are lis‐
ted in the section "Representation
of analog values for analog input
channels" in the temperature
range.
RTD-4L: Thermal resistance
(linear, 4-wire connection)
(temperature measurement)
Pt 100 Climatic
Pt 200 Climatic
Pt 500 Climatic
Pt 1000 Climatic
Ni 100 Climatic
Ni 1000 Climatic
Pt 100 Standard
Pt 200 Standard
Pt 500 Standard
Pt 1000 Standard
Ni 100 Standard
Ni 1000 Standard
A
RTD-3L: Thermal resistance
(linear, 3-wire connection)
(temperature measurement)
Defaults
The module has the following default settings in
STEP 7
:
Channels 0 to 7: "Voltage" measuring method ; "± 10 V" measuring range
You can use these measuring methods and measuring ranges without configuring the SM 431;
AI 8 x 14 Bit in STEP 7.
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
5.21.1 Features
Overview
SM 431; AI 8 x 14 bit has the following features:
Rapid A/D change, therefore highly suited to highly dynamic processes
8 inputs for voltage/current measurement
4 inputs for resistance measurement
Various measuring ranges, adjustable in parallel
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 253
Resolution 14 bits
Supply voltage: 24 V DC only required for connection of 2-wire transducers
Analog section isolated from the CPU
Maximum permitted common mode voltage between the channels or between the reference
potentials of the connected sensors and MANA 8 V AC
Circuit diagram for SM 431; AI 8 x 14 bit
CH0
CH1
CH6
CH7
+5V
0V
0V
- 15V
+ 5V
+ 15V
L+
M
ENABLE
A
D
MANA
MANA
Measuring
range
module 0
Measuring
range
module 3
MULTIPLEXER
Bus control
Bus S7-400
Bus S7-400
Bus S7-400
Figure 5-27 Circuit diagram for SM 431; AI 8 x 14 bit
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
254 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection diagram for SM 431; AI 8 x 14 bit
M1+
M2-
M3-
M4-
M5-
M6-
M7-
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
L+
V
A
A
M
Tr
Tr
L+
M0+
M0-
M1-
M2+
M3 +
M4+
M5+
M6+
M7+
M
M0+
M0-
IC0+
IC0-
M1+
M1-
IC1+
IC1-
M2+
M2-
IC2+
IC2-
M3 +
M3-
IC3 +
IC3-
CH0
CH2
CH4
CH6
V
MANA
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Voltage measurement
Current measurement
Resistance measurement
Word 0
Word 0
Word 2
Word 4
Word 4
Word 6
Word 8
Word 8
Word 10
Word 12
Word 12
Word 14
Figure 5-28 Connection diagram for SM 431; AI 8 x 14 bit
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 255
Technical specifications for SM 431; AI 8 x 14 bit
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 500 g
Module-specific data
Number of inputs
For resistance-based sensor
8
4
Cable length
Shielded
Maximum 200 m
Voltage, current and potential
Rated load voltage L+ 24 V DC (only required for supply of 2-wire
transducers)
Reverse polarity protection Yes
Supply voltage of the measuring transducers
Supply current Maximum 50 mA
Short-circuit proof Yes
Constant measured current for resistance-based sen‐
sor
Typ. 1.67 mA
Electrical isolation
Between channels and backplane bus Yes
Between channels No
Between the channels and load voltage L+ Yes
Permissible potential difference
Between inputs and MANA (UCM)
8 V AC
Between the inputs (UCM) 8 V AC
Between MANA and Mintern (UISO) 60 V DC/30 V AC (SELV)
Insulation tested at
Between bus and analog section 2120 V DC
Between bus and chassis ground 500 V DC
Between analog section and L+/M 500 V DC
Between analog section and chassis ground 2120 V DC
Between L+/M and chassis ground 2120 V DC
Current consumption
From backplane bus (5 V)
Maximum 1000 mA
From load voltage L+ Maximum 200 mA (with 8 connected fully con‐
trolled 2-wire transducers)
Module power loss Typ. 4.9 W
Formation of analog values
Measuring principle Instantaneous value conversion
Integration time/conversion time/resolution (per chan‐
nel)
(Not part of the response time)
Configurable Yes
Interference voltage suppression f1 in Hz None / 400 / 60 / 50
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
256 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Basic conversion time 52 µs
Resolution (including overrange) 14 / 14 / 14
Measured value smoothing "None - strong" configurable
Time constant of the input filter 15 µs
Basic execution time of the module in ms (all channels
enabled)
0.420
Noise suppression, error limits
Interference voltage suppression for f = nx (f1 ±1%), (f1 = interference frequency) n = 1, 2 , ...
Filter 400 / 60 / 50 Hz configured
Common mode interference (UCM < 11 Vss) > 80 dB
Series-mode interference (peak value of fault <
rated value of input range)
> 40 dB
Crosstalk between the inputs > 70 dB
Operational limit (throughout temperature range, relative to input range)
Voltage input
± 1 V
± 10 V
1 to 5 V
± 0.7%
± 0.9%
± 0.9%
Current input
± 20 mA
4 to 20 mA
± 0.8%
± 0.8%
Resistance measurement
0 to 600 Ω;
± 1.0%
Basic error limit (operational limit at 25°C, relative to input range)
Voltage input
± 1 V
± 10 V
1 to 5 V
± 0.6%
± 0.75%
± 0.75%
Current input
± 20 mA
4 to 20 mA
± 0.7%
± 0.7%
Resistance measurement
0 to 600 Ω;
± 0.7%
Temperature error (relative to input range) ± 0.03% / K
Linearity error (relative to input range) ± 0.05%
Repeat accuracy (in settled state at 25°C, relative to
input range)
± 0.2%
Status, interrupts, diagnostics
Interrupts None
Diagnostic functions None
Substitute values can be connected No
Data for selecting a sensor
Input ranges (rated values)/input resistance
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 257
Voltage ± 1 V / 100 kΩ
± 10 V / 100 kΩ
1 to 5 V / 100 kΩ
Current ± 20 mA / 50 Ω
4 to 20 mA / 50 Ω
Resistance 0 to 600 Ω / 10 MΩ
Permissible input voltage for voltage input (destruction
limit)
Maximum 18 V continuous;
75 V for 1 ms (cycle clock ratio 1 : 20)
Permissible input current for current input (destruction
limit)
40 mA continuous
Sensor connection
For voltage measurement Possible
For current measurement
As 2-wire transducer
As 4-wire transducer
Possible
Possible
For resistance measurement
With 2-wire connection
With 3-wire connection
With 4-wire connection
Possible; line resistance is also measured
Possible
Load of 2-wire transducer Maximum 750 Ω
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
258 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.21.2 Commissioning the SM 431; AI 8 x 14 Bit
Introduction
You set the mode of operation of the SM 431; AI 8 x 14 Bit by means of measuring range
modules on the module and in
STEP 7
.
Measuring range modules
A measuring range module of the module matches two channels and one resistance channel
to each type of sensor. Reposition the measuring range modules to suit the measuring method
and range. The steps you have to perform to do this are described in detail in the respective
section.
For an overview of the settings of specific measuring methods and ranges, refer to the
corresponding table in the section "Measuring methods and measuring ranges of SM 431,
AI 8 x 14 Bit". The necessary settings are also shown on the label attached to the module.
Parameters
You will find a description of the general procedure for assigning parameters to analog modules
in the respective sections.
The table below provides an overview of configurable parameters, including defaults.
Table 5-53 Parameters of the SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
Parameters Value range Default1Parameter
type
Scope
Measurement
Measuring
method
Disabled
U
Voltage
U
Static Channel
4DMU Current (4-wire
sensor)
2DMU Current (2-wire
sensor)
R-4L Resistance (4-con‐
ductor connection)
Measuring range Refer to the respective section for
the measuring ranges of the input
channels that you can set.
± 10 V
Noise
suppression
400 Hz; 60 Hz; 50 Hz; none 50 Hz
Smoothing None
Strong
None
1 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 259
Measured value smoothing
You will find information that is generally applicable to the smoothing of analog values in the
respective section. You can only set strong smoothing for the SM 431; AI 8 x 14 Bit.
The module cycle time is a constant, irrespective of how many channels are enabled. It
therefore has no effect on the filter settling time, which is defined by the parameter assignment
of interference frequency suppression and smoothing.
Filter settling time with strong smoothing
Table 5-54 Interference frequency suppression and filter settling time with smoothing
Noise suppression Smoothing Filter settling time in ms
None Strong -
50 Hz Strong 100
60 Hz Strong 83,333
400 Hz Strong 12,5
Step response with strong smoothing
The following figure illustrates the contents of the table above. It shows the filter settling time
after which, in the case of a step response, the smoothed analog value is applied to almost
100%, depending on the interference frequency suppression that has been set. The figure
applies to every change of signal at an analog input.
50
100
0
63
60 Hz:
50 Hz:
12030 15060
12,5 83,333 100
400 Hz:
Signal variation
in percent
Step response for any analog input signal
Noise suppression Filter settling time in ms
Figure 5-29 Step response of the SM 431; AI 8 x 14 Bit (6ES7 431-1KF20-0AB0)
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
260 Reference Manual, Ausgabe 11/2016, A5E00850736-08
See also
General information about parameter assignment (Page 199)
Measuring methods and measuring ranges of SM 431; AI 8 x 14 Bit (Page 262)
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 261
5.21.3 Measuring methods and measuring ranges of SM 431; AI 8 x 14 Bit
Measuring methods
You can set the measuring method at the input channels:
Voltage measurement
Current measurement
Resistance measurement
Temperature measurement
You specify the setting by means of the measuring range modules on the module and the
"Measuring type" parameter in STEP 7.
Circuit variants for the channels
Two channels are set in each case with the measuring range module. There are therefore
restrictions as regards the measuring method for the adjacent channels 0/1, 2/3, 4/5 and 6/7,
as shown in the following table:
Table 5-55 Selection of the measuring method for channel n and channel n+1 of the SM 431; AI 8 x 14 Bit
(6ES7431-1KF10-0AB0)
Measuring method,
channel n
Measuring method, channel n + 1
Deacti‐
vated
Voltage Current
4-DMU
Current
2-DMU
R-4L R-3L RTD-4L RTD-3L TC-L
Disabled x x x x x
Voltage x x x
Current 4-wire trans‐
ducer
x x
Current 2-wire trans‐
ducer
x x
4-conductor resistor x
3-conductor resistor x
4-conductor thermal
resistor
x
3-conductor thermal
resistor
x
Thermocouples x x x
Example
If you select "current (2-wire transducer)" for channel 6, you can only disable the measuring
method or set "current (2-wire transducer)" for channel 7.
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
262 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Circuit for resistance measurement
The following conditions apply when measuring the resistance and temperature with the SM
431; AI 8 x 14 Bit:
Table 5-56 Channels for resistance measurement of the SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
Measuring type parameter Permissible for
channel n
Condition
Resistance
(4-conductor connection)
0, 2, 4 or 6 You must disable the "Measuring type" parameter for channels n+1
(1, 3, 5, 7).
Reason: The connections of channel n+1 are used to supply the
resistance that is connected to channel n.
Unused channels
Unused channels can be left open. Set the measuring range modules to position "B". You can
improve the noise immunity of the module in a measuring environment with serious
interference by interconnecting M- and MANA.
Measuring ranges
Set the measuring ranges using the measuring range modules, and at the "measuring method"
parameter in
STEP 7
.
Table 5-57 Measuring ranges of the SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0)
Selected measuring
method
Measuring range
(type of sensor)
Measuring range module set‐
tings
Description
V: Voltage ± 1 V A The digitized analog values are lis‐
ted in the section "Representation of
analog values for analog input chan‐
nels" in the voltage measuring
range.
1 to 5 V
± 10 V
B
2DMU: Current
(2-wire transducer)
4 to 20 mA D To supply these transducers with
current you must connect 24 V to the
L+ and M front connector terminals.
The digitized analog values are lis‐
ted in the section "Representation of
analog values for analog input chan‐
nels" in the current measuring range.
4DMU: Current
(4-wire transducer)
4 to 20 mA
± 20 mA
C The digitized analog values are lis‐
ted in the section "Representation of
analog values for analog input chan‐
nels" in the current measuring range.
R-4L: Resistance
(4-conductor connection)
600 Ω A The digitized analog values are lis‐
ted in the section "Representation of
analog values for analog input chan‐
nels" in the resistance measuring
range.
Analog modules
5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 263
Defaults
The module has the following default settings in
STEP 7
:
Channels 0 to 7: "Voltage" measuring method ; "± 10 V" measuring range
You can use these measuring methods and measuring ranges without configuring the SM 431;
AI 8 x 14 Bit in STEP 7.
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
5.22.1 Features
Overview
The analog input module SM 431; AI 16 x 13 bit has the following features:
16 inputs for current/voltage measurement
Various measuring ranges, adjustable in parallel
Resolution 13 bits
Non-isolated between analog section and bus
Maximum permitted common mode voltage between the channels or between the reference
potentials of the connected sensors and central grounding point 2 V DC/AC
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
264 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Circuit diagram for SM 431; AI 16 x 13 bit
*
*
*
*
*
*
*
*
*
Tr
Tr
Tr
Tr
Tr
Tr
Tr
Tr
Tr = Transducer = Measuring
transducer
*Voltage/current sensor and ground
must be connected to building ground
of the rack
Measuring range module
Multiplexer
Control and backplane bus connection
Figure 5-30 Circuit diagram for SM 431; AI 16 x 13 bit
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 265
Connection diagram for SM 431; AI 16 x 13 bit
M1+
M2-
M3-
M4-
M5-
M6-
M7-
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
L+
M0+
M0-
M1-
M2+
M3+
M4+
M5+
M6+
M7+
M
M8-
M9-
M8+
M9+
M10-
M11-
M10+
M11+
M12-
M13-
M12+
M13+
M14-
M15-
M14+
M15+
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
L+
M
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Tr
Tr
Tr
Tr
Tr
Tr
Tr
Tr
Voltage measurement
Current measurement
Word 0
Word 2
Word 4
Word 6
Word 8
Word 10
Word 12
Word 14
Word 16
Word 18
Word 20
Word 22
Word 24
Word 26
Word 28
Word 30
Figure 5-31 Connection diagram for SM 431; AI 16 x 13 bit
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
266 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Technical specifications for SM 431; AI 16 x 13 bit
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 500 g
Module-specific data
Number of inputs
Shielded
16
Maximum 200 m
Voltage, current and potential
Rated load voltage L+ 24 V DC (only required for supply of 2-wire
transducers)
Reverse polarity protection Yes
Supply voltage of the measuring transducers
Supply current Maximum 50 mA
Short-circuit proof Yes
Constant measured current for resistance-based
sensor
Typ. 1.67 mA
Electrical isolation
Between channels and backplane bus No
Between channels No
Between channels and load voltage L+ No
Permissible potential difference
Between inputs and MANA (UCM) 2 V DC / 2 V ACSS
Between the inputs (UCM) 2 V DC / 2 V ACSS
Insulation tested at
Between bus and chassis ground 500 Vac or 707 Vdc (type test)
Current consumption
From backplane bus (5 V) Maximum 100 mA
From load voltage L+ (with 16 connected fully
controlled 2-wire transducers)
Maximum 400 mA
Module power loss Typ. 2 W
Formation of analog values
Measuring principle Integrating
Integration time/conversion time/resolution (per chan‐
nel)
(Not part of the response time)
Configurable Yes
Interference voltage suppression f1 in Hz 60 / 50
Integration time in ms 50 / 60
Basic conversion time in ms 55 / 65
Resolution (including overrange) 13 bits
Measured value smoothing Not possible
Basic execution time of the module in ms (all channels
enabled)
880 / 1040
Noise suppression, error limits
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 267
Interference voltage suppression for f = nx (f1 ±1%), (f1 = interference frequency) n = 1, 2 , ...
Common mode interference (UCM < 2 V) > 86 dB
Series-mode interference (peak value of fault <
rated value of input range)
> 60 dB
Crosstalk between the inputs > 50 dB
Operational limit (throughout temperature range, relative to input range)
Voltage input
± 1 V
± 10 V
1 to 5 V
± 0.65%
± 0.65%
± 1%
Current input
± 20 mA
4 to 20 mA
± 0.65%
± 0.65%
Basic error limit (operational limit at 25°C, relative to input range)
Voltage input
± 1 V
± 10 V
1 to 5 V
± 0.25%
± 0.25%
± 0.5%
Current input
± 20 mA
4 to 20 mA
± 0.25%
± 0.25%
Temperature error (relative to input range) ± 0.01 % / K
Linearity error (relative to input range) ± 0.05%
Repeat accuracy (in settled state at 25°C, relative to
input range)
± 0.01%
Status, interrupts, diagnostics
Interrupts None
Diagnostic functions None
Substitute values can be connected No
Data for selecting a sensor
Input ranges (rated values)/input resistance
Voltage ± 1 V / 10 MΩ
± 10 V / 100 MΩ
1 to 5 V / 100 MΩ
Current ± 20 mA / 50 Ω
4 to 20 mA / 50 Ω
Permissible input voltage for voltage input (destruction
limit)
20 V continuous;
75 V for 1 ms (cycle clock ratio 1 : 20)
Permissible input current for current input (destruction
limit)
40 mA
Sensor connection
For voltage measurement Possible
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
268 Reference Manual, Ausgabe 11/2016, A5E00850736-08
For current measurement
As 2-wire transducer
As 4-wire transducer
Possible
Possible
Load of 2-wire transducer Maximum 750 Ω
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 269
5.22.2 Commissioning the SM 431; AI 16 x 13 Bit
Introduction
You set the mode of operation of the SM 431; AI 16 x 13 Bit by means of measuring range
modules on the module and in STEP 7.
Measuring range modules
A measuring range module of the module matches two consecutive channels to each type of
sensor. Reposition the measuring range modules to suit the measuring method and range.
The steps you have to perform to do this are described in detail in the respective section.
For an overview of the settings of specific measuring methods and ranges, refer to the
corresponding table in the section "Measuring methods and measuring ranges of SM 431;
AI 16 x 13 Bit". The necessary settings are also shown on the label attached to the module.
Parameters
You will find a description of the general procedure for assigning parameters to analog modules
in the respective sections.
The table below provides an overview of configurable parameters, including defaults.
Table 5-58 Parameters of the SM 431; AI 16 x 13 Bit
Parameters Value range Default1Parameter
type
Scope
Measurement
Measuring
method
Disabled U Static Channel
U Voltage
4DMU Current (4-wire
sensor)
2DMU Current (2-wire
sensor)
Measuring range For information on configurable
measuring ranges of input chan‐
nels, refer to the chapter "Meas‐
uring methods and measuring
ranges of SM 431; AI 16 x 13 Bit".
±10 V
Noise
suppression
60 Hz; 50 Hz 50 Hz
1 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
See also
General information about parameter assignment (Page 199)
Measuring methods and measuring ranges of SM 431; AI 16 x 16 Bit (Page 288)
General information about diagnostic messages (Page 88)
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
270 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.22.3 Measuring methods and measuring ranges of SM 431; AI 16 x 13 Bit
Measuring methods
You can set the measuring method at the input channels:
Voltage measurement
Current measurement
You specify the setting by means of the measuring range modules on the module and the
"Measuring type" parameter in STEP 7.
Circuit variants for the channels
Two channels are set in each case with the measuring range module. There are therefore
restrictions as regards the measuring method for the adjacent channels 0/1, 2/3, 4/5, 6/7, 8/9,
10/11, 12/13 and 14/15, as shown in the following table:
Table 5-59 Selection of the measuring method for channel n and channel n+1 of the SM 431; AI 16 x 13 Bit
Measuring method, chan‐
nel n
Measuring method, channel n + 1
Disabled Voltage
±1 V
Voltage 1 to 5
V
Voltage ±10 V Current 4-
DMU
Current 2-
DMU
Disabled x x x x x x
Voltage ±1 V x x
Voltage 1 to 5 V x x x
Voltage ±10 V x x x
Current 4-wire transducer x x
Current 2-wire transducer x x
Example
If you select "current (2-wire transducer)" for channel 6, you can only disable the measuring
method or set "current (2-wire transducer)" for channel 7.
Unused channels
Unused channels can be left open. Set the measuring range modules to position "B". You can
improve the noise immunity of the module in a measuring environment with serious
interference by interconnecting M- and MANA.
For unused channels, set the "measuring method" parameter to "deactivated". This reduces
the module's cycle time.
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 271
Measuring ranges
You set the measuring ranges by means of the measuring range modules on the module and
the "Measuring type" parameter in STEP 7.
Table 5-60 Measuring ranges of the SM 431; AI 16 x 13 Bit
Selected measuring meth‐
od
Measuring range
(type of sensor)
Measuring range module
settings
Description
V: Voltage ±1 V A The digitized analog values are listed in
the section "Representation of analog
values for analog input channels" in the
voltage measuring range.
1 to 5 V
± 10 V
B
2DMU: Current (2-wire sen‐
sor)
4 to 20 mA D To supply these transducers with current
you must connect 24 V to the L+ and M
front connector terminals.
The digitized analog values are listed in
the section "Representation of analog
values for analog input channels" in the
current measuring range.
4DMU: Current (4-wire sen‐
sor)
4 to 20 mA
± 20 mA
C The digitized analog values are listed in
the section "Representation of analog
values for analog input channels" in the
current measuring range.
Default
The module has the following default settings in
STEP 7
:
Measuring method "voltage"
Measuring range "± 10 V".
You can use this combination of measuring method and measuring range without configuring
the SM 431; AI 16 x 13 Bit in
STEP 7
.
See also
Representation of analog values of analog input channels (Page 169)
Analog modules
5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0)
S7-400 Automation System Module Data
272 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
5.23.1 Features
Overview
The analog input module SM 431; AI 16 x 16 bit has the following features:
16 inputs for voltage measurement, current measurement and temperature measurement
with thermocouples (TC)
8 inputs for resistance and temperature measurement with resistance thermometers (RTD)
Various measuring ranges, adjustable in parallel
Resolution 16 bits
Configurable diagnostics
Configurable diagnostic interrupt
Configurable limit alarm
Configurable end-of-cycle interrupt
Analog section isolated from the CPU
Maximum permitted common mode voltage between channels or between channel and
central grounding point 120 V AC
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 273
Circuit diagram for SM 431; AI 16 x 16 bit
A
D
CH0
CH1
+ 15 V
+ 5 V
0 V
-15 V
+ 5 V
0 V
I
L+
M
PGA
CH14
CH15
Meas. range
module 0
Meas. range
module 7
Diagnostics
in
L+ loop
Multiplexer
Opto relay
Signal
jumper-
ing
const
Bus control
Bus S7-400
Bus S7-400
Figure 5-32 Circuit diagram for SM 431; AI 16 x 16 bit
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
274 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection diagram for SM 431; AI 16 x 16 bit
M1+
M2-
M3-
M4-
M5-
M6-
M7-
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
L+
V
A
A
M
Tr
Tr
L+
M0+
M0-
M1-
M2+
M3 +
M4+
M5+
M6+
M7+
M
M0+
M0-
IC0+
IC0-
M1+
M1-
IC1+
IC1-
M2+
M2-
IC2+
IC2-
M3 +
M3-
IC3 +
IC3-
CH0
CH2
CH4
CH6
V
M8-
M9-
M8+
M9+
M10-
M11-
M10+
M11+
M12-
M13-
M12+
M13+
M14-
M15-
M14+
M15+
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
M4+
M4-
IC4+
IC4-
M5+
M5-
IC5+
IC5-
M6+
M6-
IC6+
IC6-
M7+
M7-
IC7+
IC7-
CH8
CH10
CH12
CH14
A
A
Tr
Tr
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
INTF
EXTF
Word 0
Thermocouples
Voltage measurement
Current measurement
Resistance measurement
Resistance thermometer
Word 2
Word 0
Word 4
Word 4
Word 6
Word 8
Word 8
Word 10
Word 12
Word 12
Word 14
Word 16
Word 16
Word 18
Word 20
Word 20
Word 22
Word 24
Word 24
Word 26
Word 28
Word 30
Word 28
Figure 5-33 Connection diagram for SM 431; AI 16 x 16 bit
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 275
Technical specifications for SM 431; AI 16 x 16 bit
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 500 g
Module-specific data
Number of inputs
For resistance-based sensor
16
8
Cable length
Shielded with input range ≦ 80 mV and with thermo‐
couples
Maximum 200 m Maximum 50 m
Voltage, current and potential
Rated load voltage L+ 24 V DC (only required for supply of 2-wire
transducers)
Reverse polarity protection Yes
Supply voltage of the measuring transducers
Supply current Maximum 50 mA
Short-circuit proof Yes
Constant measured current for resistance-based sen‐
sor
Typ. 1.67 mA
Electrical isolation
Between channels and backplane bus
Between channels
Between channels and load voltage L+
Yes
No
Yes
Permissible potential difference
Between inputs and MANA (UCM)
60 V DC/30 V AC (SELV)
Between the inputs (UCM) 60 V DC/30 V AC (SELV)
Between MANA and Mintern (UISO) 60 V DC/30 V AC (SELV)
Insulation tested at
Between bus and L+/M 2120 V DC
Between bus and analog section 2120 V DC
Between bus and chassis ground 500 V DC
Between analog section and L+/M 500 V DC
Between analog section and chassis ground 2120 V DC
Between L+/M and chassis ground 2120 V DC
Current consumption
From backplane bus (5 V) Maximum 700 mA
From load voltage L+ (with 16 connected fully
controlled 2-wire transducers)
Maximum 400 mA
Module power loss Typ. 4.5 W
Formation of analog values
Measuring principle Integrating
Integration time/conversion time/resolution (per chan‐
nel)
(Not part of the response time)
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
276 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Configurable Yes
Interference voltage suppression f1 in Hz 400 / 60 / 50
Integration time in ms 2.5 / 16.7 / 20
Basic conversion time in ms 6 / 20.1 / 23.5
Additional conversion time for resistance
measurement with 3-wire connection in ms
12 / 40.2 / 47
Additional conversion time for wire-break
monitoring in ms
4.3 / 4.3 / 4.3
Additional conversion time for resistance
measurement in ms
5.5 / 5.5 / 5.5
Resolution (including overrange) 16 / 16 / 16 bits
Measured value smoothing Configurable in 4 stages
Basic execution time of the module in ms (all channels
enabled)
96 / 322 / 376
Noise suppression, error limits
Interference voltage suppression for f = nx (f1 ±1%), (f1 = interference frequency) n = 1, 2 , ...
Common mode interference (UCM < 120 Vss) > 100 dB
Series-mode interference (peak value of fault <
rated value of input range)
> 40 dB
Crosstalk between the inputs > 70 dB
Operational limit (throughout temperature range, relative to input range)
Voltage input
± 25 mV
± 50 mV
± 80 mV
± 250 mV
± 500 mV
± 1 V
± 2.5 V
± 5 V
1 to 5 V
± 10 V
± 0.35%
± 0.32%
± 0.31%
± 0.3%
± 0.3%
± 0.3%
± 0.3%
± 0.3%
± 0.3%
± 0.3%
Current input
0 to 20 mA
± 5 mA
± 10 mA
± 20 mA
4 to 20 mA
± 0.3%
± 0.3%
± 0.3%
± 0.3%
± 0.3%
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 277
Resistance measurement
0 to 48 Ω; 4-wire measurement
0 to 150 Ω; 4-wire measurement
0 to 300 Ω; 4-wire measurement
0 to 600 Ω; 4-wire measurement
0 to 5000 Ω; 4-wire measurement (around
6000 Ω)
0 to 300 Ω; 3-wire measurement
0 to 600 Ω; 3-wire measurement
0 to 5000 Ω; 3-wire measurement (around
6000 Ω)
± 0.3%
± 0.3%
± 0.3%
± 0.3%
± 0.3%
± 0.4%
± 0.4%
± 0.4%
Thermocouples
TC type B
TC type R
TC type s
TC type T
TC type E
TC type J
TC type K
TC type U
TC type L
TC type N
± 11.5 K
± 7.3 K
± 8.3 K
± 1.7 K
± 3.2 K
± 4.3 K
± 6.2 K
± 2.8 K
± 4.2 K
± 4.4 K
Resistance thermocouples 4-conductor standard
measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
Climatic measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
± 3.1 K
± 4.9 K
± 3.9 K
± 3.1 K
± 0.8 K
± 0.8 K
± 0.4 K
± 0.4 K
± 0.4 K
± 0.4 K
± 0.8 K
± 0.8 K
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
278 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Resistance thermocouples 3-conductor standard
measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
Climatic measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
± 4.2 K
± 6.5 K
± 5.2 K
± 4.2 K
± 1.0 K
± 1.0 K
± 0.5 K
± 0.5 K
± 0.5 K
± 0.5 K
± 1.0 K
± 1.0 K
Basic error limit (operational limit at 25°C, relative to input range)
Voltage input
± 25 mV
± 50 mV
± 80 mV
± 250 mV
± 500 mV
± 1 V
± 2.5 V
± 5 V
1 to 5 V
± 10 V
± 0.23%
± 0.19%
± 0.17%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
Current input
0 to 20 mA
± 5 mA
± 10 mA
± 20 mA
4 to 20 mA
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 279
Resistance measurement
0 to 48 Ω; 4-wire measurement
0 to 150 Ω; 4-wire measurement
0 to 300 Ω; 4-wire measurement
0 to 600 Ω; 4-wire measurement
0 to 5000 Ω; 4-wire measurement (around
6000 Ω)
0 to 300 Ω; 3-wire measurement
0 to 600 Ω; 3-wire measurement
0 to 5000 Ω; 3-wire measurement (around
6000 Ω)
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.15%
± 0.3%
± 0.3%
± 0.3%
Thermocouples
TC type B
TC type R
TC type s
TC type T
TC type E
TC type J
TC type K
TC type U
TC type L
TC type N
± 7.6 K
± 4.8 K
± 5.4 K
± 1.1 K
± 1.8 K
± 2.3 K
± 3.4 K
± 1.7 K
± 2.3 K
± 2.6 K
Resistance thermocouples 4-conductor standard
measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
Climatic measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
± 1.6 K
± 2.5 K
± 2.0 K
± 1.6 K
± 0.4 K
± 0.4 K
± 0.2 K
± 0.2 K
± 0.2 K
± 0.2 K
± 0.4 K
± 0.4 K
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
280 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Resistance thermocouples 3-conductor standard
measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000´
Climatic measuring range
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
± 3.1 K
± 4.9 K
± 3.9 K
± 3.1 K
± 0.8 K
± 0.8 K
± 0.4 K
± 0.4 K
± 0.4 K
± 0.4 K
± 0.8 K
± 0.8 K
Temperature error (relative to input range) ± 0.004 % / K
Linearity error (relative to input range) ± 0.01%
Repeat accuracy (in settled state at 25°C, relative to
input range)
± 0.1%
Status, interrupts, diagnostics
Interrupts
Hardware interrupt Configurable
Limit alarm Configurable
Diagnostic interrupt Configurable
Diagnostic functions
Group fault display
For internal fault
For external fault
Red LED (INTF)
Red LED (EXTF)
Diagnostic information can be read out Yes
Substitute values can be connected No
Data for selecting a sensor
Input ranges (rated values)/input resistance
Voltage ± 25 mV / 1 MΩ
± 50 mV / 1 MΩ
± 80 mV / 1 MΩ
± 250 mV / 1 MΩ
± 500 mV / 1 MΩ
± 1 V / 1 MΩ
± 2.5 V / 1 MΩ
± 5 V / 1 MΩ
1 to 5 V / 1 MΩ
± 10 V / 1 MΩ
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 281
Current 0 to 20 mA / 50 Ω
± 5 mA / 50 Ω
± 10 mA / 50 Ω
± 20 mA / 50 Ω
4 to 20 mA / 50 Ω
Resistance 0 to 48 Ω / 1 MΩ
0 to 150 Ω / 1 MΩ
0 to 300 Ω / 1 MΩ
0 to 600 Ω / 1 MΩ
0 to 6000 Ω / 1 MΩ (can be used up to 5000
Ω)
Thermocouples TC type B / 1 MΩ
TC type R / 1 MΩ
TC type S / 1 MΩ
TC type T / 1 MΩ
TC type E / 1 MΩ
TC type J / 1 MΩ
TC type K / 1 MΩ
TC type U / 1 MΩ
TC type L / 1 MΩ
TC type N / 1 MΩ
Resistance thermometer Pt 100 / 1 MΩ
Pt 200 / 1 MΩ
Pt 500 / 1 MΩ
Pt 1000 / 1 MΩ
Ni 100 / 1 MΩ
Ni 1000 / 1 MΩ
Permissible input voltage for voltage input (destruction
limit)
Maximum 18 V continuous;
75 V for 1 ms (cycle clock ratio 1 : 20)
Permissible input current for current input (destruction
limit)
40 mA
Sensor connection
For voltage measurement Possible
For current measurement
As 2-wire transducer
As 4-wire transducer
Possible
Possible
For resistance measurement
With 2-wire connection
With 3-wire connection
With 4-wire connection
Possible;
line resistance is also measured
Possible
Possible
Load of 2-wire transducer Maximum 750 Ω
Characteristic curve linearization Configurable
For thermocouples Type B, R, S, T, E, J, K, U, L, N
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
282 Reference Manual, Ausgabe 11/2016, A5E00850736-08
For resistance thermometers Pt 100, Pt 200, Pt 500, Pt 1000, Ni 100, Ni
1000
Temperature compensation Yes, configurable
Internal temperature compensation No
External temperature compensation with
compensating box
Possible
External temperature compensation with Pt 100 Possible
Compensation for definable reference junction
temperature
Possible
Technical unit for temperature measurement Degrees Celsius
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 283
5.23.2 Commissioning the SM 431; AI 16 x 16 Bit
Setting the operating mode
You set the mode of operation of the SM 431; AI 16 x 16 Bit by means of measuring range
modules on the module and in STEP 7.
Measuring range modules
A measuring range module of the module matches two channels and one resistance channel
to each type of sensor. Reposition the measuring range modules to suit the measuring method
and range. The steps you have to perform to do this are described in detail in the respective
section.
For an overview of the settings of specific measuring methods and ranges, refer to the
corresponding table in the section "Measuring methods and measuring ranges of SM 431;
AI 16 x 16 Bit". The necessary settings are also shown on the label attached to the module.
Parameters
You will find a description of the general procedure for assigning parameters to analog modules
in the respective sections.
The table below provides an overview of configurable parameters, including defaults.
Table 5-61 Parameters of the SM 431; AI 16 x 16 Bit
Parameters Value range Default2Parameter
type
Scope
Enable
Diagnostic interrupt1
Hardware interrupt1
Yes/no
Yes/no
No
No
Dynamic Module
Destination CPU for interrupt 1 to 4 - Static Module
Hardware interrupt trigger
End of scan cycle reached at input Yes/no No Static Channel
High limit
Low limit
32511 to - 32512
-32512 to 32511
- Dynamic Channel
Diagnostics
Wire break
Reference channel error
Underflow
Overflow
Short-circuit to M
Yes/no
Yes/no
Yes/no
Yes/no
Yes/no
No
No
No
No
No
Static Channel
Measurement
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
284 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Parameters Value range Default2Parameter
type
Scope
Measuring method Disabled U Static Channel
U Voltage
4DMU Current
(4-wire transducer)
2DMU Current
(2-wire transducer)
R-4L Resistance
(4-conductor connec‐
tion)
R-3L Resistance
(3-conductor connec‐
tion)
RTD-4L Thermal resistance
(linear, 4-wire connec‐
tion)
RTD-3L Thermal resistance (lin‐
ear,
3-conductor connection)
TC-L Thermocouple (linear)
Measuring range For information on configurable meas‐
uring ranges of input channels, refer to
the section "Measuring methods and
measuring ranges of SM 431; Ai 16x16
Bit".
±10 V
Reference temperature - 273.15 to 327.67 oC 0,00 oC Dynamic Module
Noise suppression 400 Hz; 60 Hz; 50 Hz 50 Hz
Smoothing None
Weak
Medium
Strong
None
Reference junction None
RTD on Channel 0
Reference temperature value
None
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
A point to note about channels for hardware interrupts with the end of scan cycle trigger
You can configure hardware interrupts for the end of scan cycle for one of the 16 channels
because the module can only trigger these interrupts on one channel.
Measured value smoothing
You will find information that is generally applicable to the smoothing of analog values in the
respective section.
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 285
The following figure shows for the module the number of module cycles, in the case of a step
response, after which the smoothed analog value is applied to almost 100%, depending on
the smoothing setting. The figure applies to every change of signal at an analog input.
50
100
0
63
60 8020 10040
Signal variation in
percent
Step response for any analog input signal
Smoothing Low:
average:
high:
Module cycles
Figure 5-34 Step response of the SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
Displaying parameter assignment errors
The SM 431; AI 16 x 16 Bit has diagnostics capability. Below you will find an overview of the
displays that are possible for modules with parameter assignment errors.
Table 5-62 Diagnostic information of the SM 431; AI 16 x 16 Bit
Incorrect parameter assign‐
ment
Possible display Explanation
Of the module Module error
Internal error
Incorrect parameters
You will find explanations of the di‐
agnostics information in the re‐
spective tables.
Affecting certain channels Module error
Internal error
Channel error
Incorrect parameters
Channel information available
Channel error vector
Channel parameter
assignment error
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
286 Reference Manual, Ausgabe 11/2016, A5E00850736-08
See also
Parameters of analog input modules (Page 201)
General information about diagnostic messages (Page 88)
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 287
5.23.3 Measuring methods and measuring ranges of SM 431; AI 16 x 16 Bit
Measuring methods
You can set the measuring method at the input channels:
Voltage measurement
Current measurement
Resistance measurement
Temperature measurement
You specify the setting by means of the measuring range modules on the module and the
"Measuring type" parameter in STEP 7.
Circuit variants for the channels
Two channels are set in each case with the measuring range module. There are therefore
restrictions as regards to the measuring method for the adjacent channels 0/1, 2/3, 4/5, 6/7,
8/9, 10/11, 12/13 and 14/15, as shown in the following table:
Table 5-63 Selection of the measuring method for channel n and channel n+1 of the SM 431; AI 16 x 16 Bit
Measuring method, channel
n
Measuring method channel n+1
deacti‐
vated
Voltage Current
4-DMU
Current
2-DMU
R-4L R-3L RTD-4L RTD-3L TC-L
Disabled x x x x x
Voltage x x x
Current 4-wire transducer x x
Current 2-wire transducer x x
4-conductor resistor x
3-conductor resistor x
Four-wire thermal resistor x
3-wire thermal
resistor
x
Thermocouples x x x
Example
If you select "current (2-wire transducer)" for channel 6, you can only disable the measuring
method or set "current (2-wire transducer)" for channel 7.
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
288 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Circuit for resistance and temperature measurement
The following conditions apply when measuring the resistance and temperature with the SM
431; AI 16 x 16 Bit:
Table 5-64 Channels for resistance and temperature measurement of the SM 431; AI 16 x 16 Bit
Measuring type parameter Permissible for
channel n
Condition
Resistance
(4-conductor connection)
0, 2, 4, 6, 8, 10, 12
or 14
You must disable the "Measuring type" parameter for channels
n+1 (1, 3, 5, 7, 9, 11, 13, 15).
Reason: The connections of channel n+1 are used to supply the
resistance that is connected to channel n.
Resistance
(3-conductor connection)
0, 2, 4, 6, 8, 10, 12
or 14
Thermal resistance
(linear, 4-wire connection)
0, 2, 4, 6, 8, 10, 12
or 14
Thermal resistance
(linear, 3-wire connection)
0, 2, 4, 6, 8, 10, 12
or 14
Thermocouple (linear) 0 to 15 You can select the reference junction. It is only advisable to
specify a reference junction with thermocouples.
Circuit for reference junction compensation for thermocouples
If you select "RTD on Channel 0" as a reference junction for reference junction compensation
for thermocouples, the following applies:
Table 5-65 Reference junction compensation via RTD on channel 0 of the SM 431; AI 16 x 16 Bit
Reference junction parameters Permissible for channel n Condition
RTD on Channel 0 2 to 15 You must connect and configure on channel 0 a
resistance thermometer with linearization, a 3- or
4-conductor connection in climatic range. This
means that channels 0 and 1 are assigned.
Reason: If channel 0 is to be used as the refer‐
ence junction, a resistance-type sensor must be
connected there to record absolute temperatures
in the climatic range.
Unused channels
Unused channels can be left open. Set the measuring range modules to position "A". You can
improve the noise immunity of the module in a measuring environment with serious
interference by short-circuiting the channels.
For unused channels, set the "measuring method" parameter to "deactivated". This reduces
the module's cycle time.
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 289
Measuring ranges
You set the measuring ranges by means of the measuring range modules on the module and
the "Measuring type" parameter in STEP 7.
Table 5-66 Measuring ranges of the SM 431; AI 16 x 16 Bit
Selected measuring method Measuring range
(type of sensor)
Measuring range module set‐
tings
Description
V: Voltage ± 25 mV
± 50 mV
± 80 mV
± 250 mV
± 500 mV
± 1 V
± 2.5 V
± 5 V
1 to 5 V
± 10 V
A The digitized analog values
are listed in the section "Rep‐
resentation of analog values
for analog input channels" in
the voltage measuring range.
2DMU: Current (2-wire sen‐
sor)
4 to 20 mA D To supply these transducers
with current you must con‐
nect 24 V to the L+ and M
front connector terminals.
The digitized analog values
are listed in the section "Rep‐
resentation of analog values
for analog input channels" in
the current measuring range.
4DMU: Current (4-wire sen‐
sor)
± 5 mA
± 10 mA
0 to 20 mA
4 to 20 mA
± 20 mA
C The digitized analog values
are listed in the section "Rep‐
resentation of analog values
for analog input channels" in
the current measuring range.
R-3L: Resistance
(3-conductor connection)
300 Ω
600 Ω
6000 Ω
(maximum 5000 Ω)
A The digitized analog values
are listed in the section "Rep‐
resentation of analog values
for analog input channels" in
the resistance measuring
range.
R-4L: Resistance
(4-conductor connection)
48 Ω
150 Ω
300 Ω
600 Ω
6000 Ω
(maximum 5000 Ω)
TC-L: Thermocouple (linear)
(Temperature measurement)
Type B
Type N
Type E
Type R
Type S
Type J
Type L
Type T
Type K
Type U
A The digitized analog values
are listed in the section "Rep‐
resentation of analog values
for analog input channels" in
the temperature range.
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
290 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Selected measuring method Measuring range
(type of sensor)
Measuring range module set‐
tings
Description
RTD-3L: Thermal resistance
(linear, 3-conductor connec‐
tion) (temperature measure‐
ment)
Pt 100 Climatic
Pt 200 Climatic
Pt 500 Climatic
Pt 1000 Climatic
Ni 100 Climatic
Ni 1000 Climatic
Pt 100 Standard
Pt 200 Standard
Pt 500 Standard
Pt 1000 Standard
Ni 100 Standard
Ni 1000 Standard
A The digitized analog values
are listed in the section "Rep‐
resentation of analog values
for analog input channels" in
the temperature range.
RTD-4L: Thermal resistance
(linear, 4-conductor connec‐
tion) (temperature measure‐
ment)
Default
The "voltage" measuring method and 10 V" measuring range are set by default in STEP 7.
You can use this combination of measuring method and measuring range without configuring
the SM 431; AI 16 x 16 Bit in STEP 7.
Wire break monitoring
The wire break check is intended primarily for temperature measurements (TC, RTD) or
resistance measurements. Always configure the wire break check in these cases as this
ensures that in the event of a wire break the measured value provided by the module accepts
the data for overrun 7FFFH.
Special characteristics of the wire break check for the voltage measurement methods
In some transducers, incorrect measured values may occur due to the fact that the wire break
check is enabled. If so, disable the wire break check.
Reason: Some transducers try to correct the test current and in doing so corrupt the setpoint
value they provide.
Points to note about the wire break check when current sensors are connected
A wire break check of current sensors is not possible for the SM 431; AI 16 x 16 Bit except in
life-zero areas. You can therefore only configure the wire break check for the "Current (4-wire
transducer)" measuring method and the "4 to 20 mA" measuring range.
Checking for reference channel errors when connecting thermocouples
If you have connected a thermocouple, you can then enable the "Reference channel error"
diagnostics if you have configured an "RTD on Channel 0" or "Reference Temperature Value"
reference junction.
Analog modules
5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 291
Points to note about checking for "Underflow" with some measuring methods and measuring ranges
There is now underflow in life-zero areas. A value that is too low or is negative is interpreted
as a wire break. You can therefore not configure the underflow check for the SM 431; AI 16 x
16 Bit for the following measuring methods and ranges:
Table 5-67 Points to note when checking for "Underflow"
Measuring method Measuring range
Voltage 1 to 5 V
Current (4-wire sensor) 4 to 20 mA
Current (2-wire sensor) 4 to 20 mA
Points to note about the "Short-circuit to M" diagnostics
You can only configure the check for "Short-circuit to M" for the SM 431; AI 16 x 16 Bit for the
"Current (2-wire transducer)" measuring method.
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit
(6ES7431-7KF10-0AB0)
5.24.1 Features
Overview
The analog input module SM 431; AI 8 x RTD x 16 bit has the following features:
8 differential inputs for resistance thermometer
Resistance thermometer configurable
Linearization of characteristic curves of the resistance thermometer
Resolution 16 bits
Update rate 25 ms for 8 channels
Configurable diagnostics
Configurable diagnostic interrupt
Configurable limit alarm
Analog section isolated from CPU
The maximum permitted common mode voltage between channels and central grounding
point is 120 V AC
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
292 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Calibration software
The calibration software is only available over the Internet. You will find the latest version of
the calibration software under entry ID 12443337.
Following the installation of this software, you can specify user-specific calibration values for
each channel and each input range. Further information can be found under ID 12436891 on
the Customer Support FAQ page.
Circuit diagram for SM 431; AI 8 x RTD x 16 bit
SO+0
SE+0
SE-0
AGND
SO+7
SE+7
SE-7
AGND
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
Electrical
isolation
A/Dconverter
Backplane
bus
interface
Internal
power supply
Bus S7-400
Figure 5-35 Circuit diagram for SM 431; AI 8 x RTD x 16 bit
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 293
Note
An external protective network is required for the signal lines in accordance with IEC 61000-4-5
(12 V Blitzductor, model CT919-506, connected in series with all inputs as recommended by
the manufacturer).
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
294 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection diagram for SM 431; AI 8 x RTD x 16 bit
SO0 CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
SE+0
SE-0
AGND
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
INTF
EXTF
SO1
SE+1
SE-1
AGND
SO2
SE+2
SE-2
AGND
SO3
SE+3
SE-3
AGND
SO4
SE+4
SE-4
AGND
SO5
SE+5
SE-5
AGND
SO6
SE+6
SE-6
AGND
SO7
SE+7
SE-7
AGND
Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Figure 5-36 Connection diagram for SM 431; AI 8 x RTD x 16 bit
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 295
Technical specifications for SM 431; AI 8 x RTD x 16 bit
Dimensions and weight
Dimensions W x H x D (in mm) 25 x 290 x 210
Weight ca. 650 g
Module-specific data
Number of inputs 8
Cable length
Shielded
Maximum 200 m
Voltage, current and potential
Constant current for resistance-based sensor Typ. 1 mA
Electrical isolation
Between channels and backplane bus
Between channels
Yes
No
Permissible potential difference
Between MANA and Mintern (UISO) 60 V DC/30 V AC (SELV)
Insulation tested at 1500 V DC
Current consumption
From backplane bus (5 V) Maximum 650 mA
Module power loss Typ. 3.3 W
Formation of analog values
Measuring principle Integrating
Integration time/conversion time/resolution
Configurable Yes
Basic conversion time
(all channels enabled)
8 ms/23 ms/25 ms
Additional conversion time / repeat rate
Wire-break monitoring 110 ms/4 s
3-wire compensation 110 ms/390 s
Internal self-calibration
No interference frequency suppression
50/60 Hz
50 ms/110 s
Resolution, including sign 210 ms/390 s
16 bits
Interference voltage suppression for interference
frequency f1 in Hz
None/50/60
Measured value smoothing Parameters can be assigned in 4 stages
Basic response time of the module (all channels ena‐
bled)
8 ms/23 ms/25 ms
Noise suppression, error limits
Noise suppression for f = n (fl ± 1%), (f1 = interf. freq.) n = 1, 2, ...
Common mode interference (Ucm < 120 V) > 100 dB
Series-mode interference (peak value of
interference < rated value of input range)
> 50 dB
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
296 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Crosstalk between the inputs > 70 dB
Operational limit (throughout temperature range, relative to input range)
RTD input
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
RTD-4L RTD-3L
±1.8 °C ± 3.4 °C
± 0.8 °C ± 1.7 °C
± 0.4 °C ± 0.7 °C
± 0.3 °C ± 0.4 °C
± 1.5 °C ± 2.1 °C
± 0.2 °C ± 0.3 °C
Basic error limit (operational limit at 25°C, relative to input range)
RTD input
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
RTD-4L RTD-3L
± 0.5 °C ± 1.0 °C
± 0.3 °C ± 0.5 °C
± 0.3 °C ± 0.4 °C
± 0.2 °C ± 0.2 °C
± 0.3 °C ± 0.6 °C
± 0.2 °C ± 0.2 °C
Linearity error (relative to input range)
Additional fault
RTD input
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
RTD-4L RTD-3L
± 0.2 °C ± 0.3 °C
± 0.2 °C ± 0.2 °C
± 0.1 °C ± 0.1 °C
± 0.1 °C ± 0.1 °C
± 0.1 °C ± 0.2 °C
± 0.1 °C ± 0.1 °C
Repeat accuracy (in settled state at 25°C, relative to
input range)
Additional fault
RTD input
Pt 100
Pt 200
Pt 500
Pt 1000
Ni 100
Ni 1000
RTD-4L RTD-3L
± 0.2 °C ± 0.3 °C
± 0.2 °C ± 0.2 °C
± 0.1 °C ± 0.1 °C
± 0.1 °C ± 0.1 °C
± 0.1 °C ± 0.2 °C
± 0.1 °C ± 0.1 °C
Status, interrupts, diagnostics
Interrupts
Hardware interrupt Configurable
Hardware interrupt when limit value exceeded Configurable
Diagnostic interrupt Configurable
Diagnostic functions Configurable
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 297
Group fault display
For internal fault
For external fault
Diagnostic information can be read out
Red LED (INTF)
Red LED (EXTF)
Possible
Data for selecting a sensor
Input range (rated values) / input resistance
Resistance thermometer Pt 100/> 10M
Pt 200/> 10M
Pt 500/> 10M
Pt 1000/> 10M
Ni 100/> 10M
Ni 1000/> 10M
Maximum input voltage for voltage input
(destruction limit)
35 V continuous;
75 V for max. 1 s
(duty factor 1:20)
Connection of encoder
For resistance measurement with 3-wire connection Possible
(max. permissible line resistance 10 Ohm)
With 4-wire connection Possible
Characteristic curve linearization Configurable
For RTD resistance temperature detection Pt100...1000,
0.00385 Alpha to
DIN IEC 751
Ni 100...1000,
0.00618 Alpha to
DIN 43760
1 Measuring range
PT100, PT200 -200 °C to +850 °C
PT 500 -200 °C to +800 °C
PT 1000 -200 °C to +240 °C
Ni 100 -60 °C to +250 °C
Ni 1000 -60 °C to +130 °C
User data in engineering format Degrees C/
Degrees F
1 7KF10 does not support all measuring ranges for S7.
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
298 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.24.2 Commissioning the SM 431; AI 8 x RTD x 16 Bit
Setting the operating mode
You set the operating mode of the SM 431; AI 8 x RTD x 16 Bit in STEP 7.
Parameters
You will find a description of the general procedure for assigning parameters to analog modules
in the respective sections.
The table below provides an overview of configurable parameters, including defaults.
Table 5-68 Parameters of the SM 431; AI 8 x RTD x 16 Bit
Parameters Value range Default2Parameter
type
Scope
Enable
Diagnostic interrupt1
Hardware interrupt1
Yes/no
Yes/no
No
No
Dynamic Module
Destination CPU for interrupt 1 to 4 - Static Module
Trigger for hardware interrupt3) - Dynamic Channel
High limit
Low limit
32767 to - 32768
- 32768 to 32767
Diagnostics
Wire break
Underflow
Overflow
Yes/no
Yes/no
Yes/no
No
No
No
Static Channel
Measurement
Measuring method Disabled RTD-3L
RTD-4L Thermal resistance
(linear, 4-conductor con‐
nection)
RTD-3L Thermal resistance
(linear, 3-conductor con‐
nection)
Measuring range Refer to the respective section for the
measuring ranges of the input channels
that you can set.
Pt 100
Standard
Temperature unit Degrees Celsius; degrees Fahrenheit Degrees
Celsius
Static Module
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 299
Parameters Value range Default2Parameter
type
Scope
Temperature coefficient for
temperature measurement
with thermal resistance (RTD)
For platinum (Pt)
0.00385 Ω/Ω/ °C
0.003916 Ω/Ω/ °C
0.003902 Ω/Ω/ °C
0.003920 Ω/Ω/ °C
For nickel (Ni)
0.00618 Ω/Ω/ °C
0.00672 Ω/Ω/ °C
0,00385 Static Channel
Noise suppression 60 Hz; 50 Hz; none 60 Hz
Smoothing None
Weak
Medium
Strong
None Static Channel
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
3 The limit values must be within the temperature range of the connected sensor.
Measured value smoothing
You will find information that is generally applicable to the smoothing of analog values in the
respective section.
The following figure shows for the module the number of module cycles, in the case of a step
response, after which the smoothed analog value is applied to almost 100%, depending on
the smoothing setting. The figure applies to every change of signal at an analog input.
50
100
0
63
60 8020 10040
Signal variation in
percent
Step response for any analog input signal
Smoothing Low:
average:
high:
Module cycles
Figure 5-37 Step response of the SM 431; AI 8 x RTD x 16 Bit
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
300 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Displaying parameter assignment errors
The SM 431; AI 8 x RTD x 16 Bit is capable of diagnostics. Below you will find an overview of
the displays that are possible for modules with parameter assignment errors.
Table 5-69 Diagnostic information of the SM 431; AI 8 x RTD x 16 Bit
Incorrect parameter as‐
signment
Possible display Explanation
Of the module Module error
Internal error
Incorrect parameters
No module parameters
You will find explanations of
the diagnostics information in
the respective tables.
Affecting certain channels Module error
Internal error
Channel error
Incorrect parameters
Channel information available
Channel error vector
Channel parameter assignment error
User calibration does not correspond
to the parameter assignment
See also
Parameters of analog input modules (Page 201)
Conversion, cycle, settling and response time of analog modules (Page 196)
General information about diagnostic messages (Page 88)
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 301
5.24.3 Measuring methods and measuring ranges of the SM 431; AI 8 x RTD x 16 Bit
Measuring methods
You can set the temperature measurement as the measuring method for the input channels.
Unused channels
For unused channels, set the "measuring method" parameter to "deactivated". This reduces
the module's cycle time.
Measuring ranges
Set the measuring ranges by means of the "Measuring range" parameter in STEP 7.
Table 5-70 Measuring ranges of the SM 431; AI 8 x RTD x 16 Bit
Selected measuring method Measuring range Description
RTD-3L: Thermal resistance
(linear, 3-conductor connec‐
tion)
(temperature measurement)
Pt 100 Standard
Pt 200 Standard
Pt 500 Standard
Pt 1000 Standard
Ni 100 Standard
Ni 1000 Standard
The digitized analog values are listed in the
section "Analog Values of the Analog Input
Channels" in the temperature range.
RTD-4L: Thermal resistance
(linear, 4-conductor connec‐
tion)
(temperature measurement)
Default
The default settings of the module in STEP 7 are "Thermal resistor (linear, 3-conductor
connection)" for the measuring method and "Pt 100 Standard" for the measuring range. You
can use this measuring method with this measuring range without configuring the SM 431; AI
8 x RTD x 16 Bit with STEP 7.
See also
Representation of analog values of analog input channels (Page 169)
Analog modules
5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0)
S7-400 Automation System Module Data
302 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
5.25.1 Features
Overview
The analog input module SM 431; AI 8 x 16 bit has the following features:
8 isolated differential inputs for voltage/current/ temperature measurement
26 measuring range settings
Linearization of characteristic curves of the thermocouple
Resolution 16 bits
Configurable diagnostics
Configurable diagnostic interrupt
Configurable limit alarm
Analog section isolated from CPU
Maximum permitted common mode voltage between channels or between channel and
central grounding point 120 V AC
Field connection (6ES7431-7K00-6AA0) with internal reference temperature (included in
scope of delivery)
Calibration software
The calibration software is only available over the Internet. You will find the latest version of
the calibration software under entry ID 12443337.
Following the installation of this software, you can specify user-specific calibration values for
each channel and each input range. Further information can be found under ID 12436891 on
the Customer Support FAQ page.
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 303
Circuit diagram for SM 431; AI 8 x 16 bit
M0+
M0+
R0
M0-
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH0
A/Dconverter
Internal
supply
Backplane
bus interface Bus S7-400
Figure 5-38 Circuit diagram for SM 431; AI 8 x 16 bit
Note
An external protective network for the signal lines is required in accordance with IEC 61000-4-5
(12 V Blitzductor, model CT919-506, connected in series with all inputs as recommended by
the manufacturer).
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
304 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Circuit diagram for SM 431; AI 8 x 16 bit
R0 CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
M0+
M0+
M0-
INTF
EXTF
V
A
V
A
Tr
Tr
R1
M1+
M1+
M1-
R2
M2+
M2+
M2-
R3
M3 +
M3 +
M3-
R4
M4+
M4+
M4-
R5
M5+
M5+
M5-
R6
M6+
M6+
M6-
R7
M7+
M7+
M7-
0
1
2
3
4
5
6
7
R0
M0+
M0+
M0-
A
A
V
V
Tr
Tr
R1
M1+
M1+
M1-
R2
M2+
M2+
M2-
R3
M3 +
M3 +
M3-
R4
M4+
M4+
M4-
R5
M5+
M5+
M5-
R6
M6+
M6+
M6-
R7
M7+
M7+
M7-
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
6ES7431-7KF00-6AA06ES7492-1AL00-0AA0
Optional connector
(screw-type)
Connector with
temperature reference
Thermocouples
Voltage measurement
Current measurement
Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Figure 5-39 Circuit diagram for SM 431; AI 8 x 16 bit
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 305
Technical specifications for SM 431; AI 8 x 16 bit
Dimensions and weight
Dimensions W x H x D (in mm) 25 x 290 x 210
Weight ca. 650 g
Module-specific data
Number of inputs 8
Cable length
Shielded
200 m
Voltage, current and potential
Electrical isolation
Between channels and backplane bus Yes
Between channels Yes
In groups of 1
Permissible potential difference
between the inputs (UCM)60 V DC/30 V AC (SELV)
Between MANA and Mintern (UISO)60 V DC/30 V AC (SELV)
Insulation tested at 1500 V DC
Current consumption
From backplane bus (5 V)
max. 1200 mA
Module power loss typical 4.6 W
Formation of analog values
Measuring principle Integrating
Integration time/conversion time/resolution (per chan‐
nel)
Configurable Yes
Integration time in ms 2.5 16.7 20 100
Basic conversion time in ms 10 16.7 20 100
Resolution, including sign 16 bits
Interference voltage suppression
for interfering frequency f1 in Hz
400 60 50 10
Measured value smoothing Parameters can be assigned in 4 stages
Basic response time of the module (all channels
enabled)
40 67 80 400
Noise suppression, error limits
Noise suppression for f = nx(fl ± 1%), (f1 = interfering frequency) n = 1, 2, ...
Common mode interference (Ucm < 120 V)
Current, thermocouple and voltage ranges < 2.5 V > 120 dB
Voltage ranges ≥2.5 V > 95 dB
Crosstalk between inputs (Ucm < 120 V)
Current, thermocouple and voltage ranges ≥ 2.5 V > 120 dB
Voltage range ≥ 2.5 V > 95 dB
Series-mode interference (peak value of
interference < rated value of input range)
> 80 dB
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
306 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Operational limit (throughout temperature range, relative to input range)
Voltage input ± 0.30 %
Current input ± 0.50 %
Temperature error (relative to input range)2
Over the temperature range of:
Type U
-100 °C to 600 °C
± 3.6 °C
Type L
0 °C to 900 °C
± 2.9 °C
Type T
-100 °C to 400 °C
± 2.1 °C
Type J
-100 °C to 1200 °C
± 5.0 °C
Type E
-100 °C to 1000 °C
± 4.6 °C
Type K
0 °C to 1372 °C
± 3.8 °C
Type N
0 °C to 1300 °C
± 5.7 °C
Type S
200 °C to 1769 °C
± 5.3 °C
Type R
200 °C to 1769 °C
± 6.7 °C
Type B
400 °C to 1820 °C
± 7.3 °C
Noise suppression, error limits (continuation)
Basic error limit (operational limit at 25°C, relative to input range)
Input voltage ± 0.10 %
Input current ± 0.17%
Temperature error (relative to input range)2 Over temperature range of:
Type U
-100 °C to 600 °C
± 1.2 °C
Type L
0 °C to 900 °C
± 1.0 °C
Type T
-100 °C to 400 °C
± 0.7 °C
Type J
-100 °C to 1200 °C
± 1.7 °C
Type E
-100 °C to 1000 °C
± 1.5 °C
Type K
0 °C to 1372 °C
± 1.3 °C
Type N
0 °C to 1300 °C
± 1.9 °C
Type S
200 °C to 1769 °C
± 1.8 °C
Type R
200 °C to 1769 °C
± 2.2 °C
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 307
Type B
400 °C to 1820 °C
± 2.2 °C
Linearity error (relative to input range) Additional error
± 0.05%
Repeat accuracy (in settled state at 25°C, relative to
input range)
Additional error
± 0.05%
Connection for compensation of cold connection point 6ES7431-7KF00-
6AA0
Operational limit
Internal temperature compensation error Additional error
± 2.0%
Status, interrupts, diagnostics
Interrupts
Hardware interrupt Configurable
Hardware interrupt when limit value exceeded Configurable
Diagnostic interrupt Configurable
Diagnostic functions Configurable
Group fault display Configurable
For internal fault Red LED (INTF)
For external fault Red LED (EXTF)
Diagnostic information can be read out Possible
Monitoring for
wire break
Data for selecting a sensor
Input range (rated values) / input resistance
Voltage ± 25 mV > 2 MΩ
± 50 mV > 2 MΩ
± 80 mV > 2 MΩ
± 100 mV > 2 MΩ
± 250 mV > 2 MΩ
± 500 mV > 2 MΩ
± 1 V > 2 MΩ
± 2.5 V > 2 MΩ
± 5 V > 2 MΩ
+ 1 to 5 V > 2 MΩ
± 10 V > 2 MΩ
Current ± 20 mA 50 Ω
+ 4 to 20 mA 50 Ω
± 10 mA 50 Ω
± 5 mA 50 Ω
± 3,2 mA 50 Ω
Thermocouple Types B, N, > 2 MΩ
E, R, S, J, L,
T, K, U
Maximum input voltage
for voltage input (destruction limit)
35 V continuous;
75 V for max. 1 s
(duty factor 1:20)
Maximum input current for current input (destruction
limit)
32 mA
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
308 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Connection of encoder
at measuring voltage Possible
for current measurement as 4-wire transducer Possible
Characteristic curve linearization
For thermocouples Types B, N, E, R, S, J, L, T, K, U
Temperature compensation Yes, configurable
Internal temperature compensation Possible
User data in engineering format Degrees C/ degrees F
1 The 6ES7431-7KFOO-0AB0 does not support the values defined for S7 for the overreaches and sub-
ranges of thermocouples. Depending on the situation, underflow (32768) or overflow (327767) is dis‐
played when the module reaches the end of the thermocouple operating range defined for S7.
2 Operation of thermocouples above the specified temperatures is possible.
The specified accuracy is at the lower end of the range and is better at higher temperatures.
The accuracy of the thermocouple module at temperatures other than those specified can be calculated
using the limit values for the accuracy of input voltage and emf/°C of the thermocouple at the required
temperature.
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 309
5.25.2 Commissioning the SM 431; AI 8 x 16 Bit
Setting the operating mode
You set the operating mode of the SM 431; AI 8 x16 Bit in STEP 7.
Parameters
You will find a description of the general procedure for assigning parameters to analog modules
in the respective sections.
The table below provides an overview of configurable parameters, including defaults.
Table 5-71 Parameters of the SM 431; AI 8 x 16 Bit
Parameters Value range Default2Parameter
type
Scope
Enable
Diagnostic interrupt1Yes/no No Dynamic Module
Hardware interrupt1Yes/no No Dynamic
Destination CPU for interrupt 1 to 4 - Static
Trigger for hardware interrupt3)
High limit 32767 to - 32768 - Dynamic Channel
Low limit - 32768 to 32767 -
Diagnostics
Wire break Yes/no No Static Channel
Reference channel error Yes/no No
Underflow Yes/no No
Overflow Yes/no No
Measurement
Measuring method Disabled TC-L Static Channel
U Voltage
4DMU Current
(4-wire transduc‐
er)
TC-L Thermocouple
(linear)
Measuring range For information on configurable
measuring ranges of input chan‐
nels, refer to the section "Measur‐
ing methods and measuring rang‐
es of SM 431, AI 8 x 16 Bit".
Type J
Reference temperature - 273.15 to 327.67 oC
-327.68 to 327.67 oC
100 oC Dynamic Module
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
310 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Parameters Value range Default2Parameter
type
Scope
Temperature unit4Degrees Celsius; degrees Fahren‐
heit
Degrees Celsius Static Module
Noise suppression 400 Hz; 60 Hz; 50 Hz; 10 Hz 60 Hz
Smoothing None, weak, medium, strong None
Reference junction (reference
to the cold junction)
None
Internal
Reference temperature value dy‐
namic
Internal Static Module
1 If you use the module in ER-1/ER-2, you must set this parameter to "No" because the interrupt lines are not available in
ER-1/ER-2.
2 Only in the CR (central rack) is it possible to start up the analog modules with the default settings.
3 The limit values must be within the temperature range of the connected sensor.
4 Valid for the format of the output temperature and the dynamic reference temperature
Measured value smoothing
For generally valid information on analog value smoothing, refer to the section "Conversion
and cycle and response times of analog modules".
The cycle time of the module is a constant in the SM 431; AI 8 x 16 Bit that is not dependent
on the number of channels that are enabled. It therefore has no effect on the step response,
which is defined by the parameter assignment of interference frequency suppression and
smoothing.
Step response
Table 5-72 How response times depend on the configured interference frequency suppression and smoothing of the SM
431; AI 8 x 16 Bit
Interference frequency sup‐
pression in Hz
Response time in ms with configured smoothing:
None Weak Medium Strong
10 100 200 1600 3200
50 20 40 320 640
60 16,7 33,3 267 533
400 10 20 160 320
The following figures illustrate the contents of table above. They show the response time
required for a step response before the smoothed analog value is almost applied to 100%.
The figures apply to every change of signal at an analog input.
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 311
Step response at an interference frequency suppression of 10 Hz
100
0
800
100
200
1600 3200
2400
Signal variation in
percent
Step response for any analog input signal
Smoothing
None:
Low:
average:
high:
Response time in ms
Figure 5-40 Step response at 10 Hz interference frequency suppression of the SM 431; AI 8 x 16 Bit
Step response at an interference frequency suppression of 50 Hz
100
016080 240 320 400 480 560 64040
20
Signal variation in
percent
Step response for any analog input signal
Smoothing
None:
Low:
average:
high:
Response time in ms
Figure 5-41 Step response at 50 Hz interference frequency suppression of the SM 431; AI 8 x 16 Bit
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
312 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Step response at an interference frequency suppression of 60 Hz
100
016080 240 320 400 480 560 640
16,7 267 533
33,3
Signal variation in
percent
Step response for any analog input signal
Smoothing
None:
Low:
average:
high:
Response time in ms
Figure 5-42 Step response at 60 Hz interference frequency suppression of the SM 431; AI 8 x 16 Bit
Step response at an interference frequency suppression of 400 Hz
100
016080 240 320 400 480 560 640
10
20
Signal variation in
percent
Step response for any analog input signal
Smoothing
None:
Low:
average:
high:
Response time in ms
Figure 5-43 Step response at 400 Hz interference frequency suppression of the SM 431; AI 8 x 16 Bit
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 313
Displaying parameter assignment errors
The SM 431; AI 8 x 16 Bit has diagnostics capability. Below you will find an overview of the
displays that are possible for modules with parameter assignment errors.
Table 5-73 Diagnostic information of the SM 431; AI 8 x 16 Bit
Incorrect parameter as‐
signment
Possible display Explanation
Of the module Module error
Internal error
Incorrect parameters
No module parameters
You will find explanations of
the diagnostics information in
the respective tables.
Affecting certain channels Module error
Internal error
Channel error
Incorrect parameters
Channel information available
Channel error vector
Channel parameter assignment error
User calibration does not correspond
to the parameter assignment
See also
General information about parameter assignment (Page 199)
Conversion, cycle, settling and response time of analog modules (Page 196)
General information about diagnostic messages (Page 88)
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
314 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.25.3 Measuring methods and measuring ranges of SM 431; AI 8 x 16 Bit
Measuring methods
You can set the measuring method at the input channels:
Voltage measurement
Current measurement
Temperature measurement
You perform the setting with the "measuring method" parameter in STEP 7.
Unused channels
For unused channels, set the "measuring method" parameter to "deactivated". This reduces
the module's cycle time.
Measuring ranges
Set the measuring ranges by means of the "Measuring range" parameter in STEP 7.
Table 5-74 Measuring ranges of the SM 431; AI 8 x 16 Bit
Selected measuring method Measuring range Description
V: Voltage ±25 mV
±50 mV
±80 mV
±100 mV
±250 mV
±500 mV
±1 V
±2.5 V
±5 V
±10 V
from 1 to 5 V
The digitized analog values are listed in the sec‐
tion "Representation of analog values for analog
input channels" in the voltage measuring range.
4DMU: Current (4-wire sensor) ±3.2 mA
±5 mA
±10 mA
±20 mA
from 0 to 20 mA
from 4 to 20 mA
The digitized analog values are listed in the sec‐
tion "Representation of analog values for analog
input channels" in the current measuring range.
TC-L: Thermocouple (linear)
(Temperature measurement)
Type B
Type N
Type E
Type R
Type S
Type J
Type L
Type T
Type K
Type U
The digitized analog values are listed in the sec‐
tion "Representation of analog values for analog
input channels" in the temperature range.
Analog modules
5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 315
Default
The default settings of the module in STEP 7 are "Thermocouple (linear)" for the measuring
method and "Type J" for the measuring range. You can use this combination of measuring
method and measuring range without configuring the SM 431; AI 8 x 16 Bit in STEP 7.
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
5.26.1 Features
Overview
SM 432; AO 8 x 13 bit has the following properties:
8 outputs
the output can be selected for each channel as
Voltage output
current output
Resolution 13 bits
Analog section potential-free relative to CPU and load voltage
Maximum permissible common mode voltage between the channels or between channels
and MANA 3 V DC
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
316 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Block diagram of SM 432; AO 8 x 13 bit
D
A
24 V
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH0
L+/M
Bus control
Bus S7-400
Analog supply
Figure 5-44 Block diagram of SM 432; AO 8 x 13 bit
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 317
Connection diagram of SM 432; AO 8 x 13 bit
S0-
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
L+
M
L+
QV0
S0+
M
QI0
QI1
QI2
QI3
CH0
CH2
CH3
QI4
QI5
QI6
QI7
CH4
CH5
CH6
CH7
L+
MANA
S1-
QV1
S1 +
S2-
QV2
S2+
S3-
QV3
S3 +
S4-
QV4
S4+
S5-
QV5
S5+
S6-
QV6
S6+
S7-
QV7
S7+
CH1
MANA
MANA
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
M
Voltage output Current output
Word 0
Word 2
Word 4
Word 6
Word 8
Word 10
Word 12
Word 14
Word 0
Word 2
Word 4
Word 6
Word 8
Word 10
Word 12
Word 14
Figure 5-45 Connection diagram of SM 432; AO 8 x 13 bit
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
318 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Technical specifications of the SM 432; AO 8 x 13 bit
Dimensions and weight
Dimensions W x H x D (mm) 25 x 290 x 210
Weight ca. 650 g
Module-specific data
Number of outputs 8
Cable length
Shielded
Maximum 200 m
Voltage, current and potential
Supply voltage of electronics L+ 24 V DC
Rated load voltage L+ 24 V DC
Reverse polarity protection Yes
Electrical isolation
Between channels and backplane bus Yes
Between channels No
Between channels and load voltage L+ Yes
Permissible potential difference
between the outputs (UCM) 3 V DC
between S- and MANA (UCM) 3 V DC
Between MANA and Mintern (UISO) 60 V DC/30 V AC (SELV)
Insulation tested at
Between bus and L+/M 2120 V DC
Between bus and analog section 2120 V DC
Between bus and chassis ground 500 V DC
Between analog section and L+/M 500 V DC
Between analog section and chassis ground 2120 V DC
Between L+/M and chassis ground 2120 V DC
Current consumption
From backplane bus (5 V) Maximum 150 mA
Supply and load voltage L+ (at rated load) Maximum 400 mA
Supply and load voltage L + (no load) Maximum 200 mA
Module power loss typ. 9 W
Formation of analog values
Resolution (including overrange) 13 bits
Conversion time (per channel)
in the ranges 1 to 5 V and 4 to 20 mA 420 µs
in all ranges 300 µs
Basic execution time of the module (all channels enabled)
in the ranges 1 to 5 V and 4 to 20 mA 3.36 ms
in all other ranges 2.4 ms
Settling time
for resistive load 0.1 ms
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 319
for capacitive load 3.5 ms
for inductive load 0.5 ms
Noise suppression, error limits
Noise suppression for f = n (f1 ± 1%), (f1 = interfering frequency) n= 1.2 ...
Common mode interference (UCM < AC 3 Vss / 50
Hz)
> 60 dB
Crosstalk between the outputs > 40 dB
Operational limit (in the entire temperature range, relative to output range)
Voltage output
± 10 V
0 to 10 V
1 to 5 V
± 0.5%
± 0.5%
± 0.5%
current output
± 20 mA
4 to 20 mV
± 1%
± 1%
Basic error limit (operational limit at 25°C, relative to output range)
Voltage output
± 10 V
0 to 10 V
1 to 5 V
± 0.5%
± 0.5%
± 0.5%
current output
± 20 mA
0 to 20 mA
± 0.5%
± 0.5%
Temperature error (relative to output range) ± 0.02 % / K
Linearity error (relative to output range) ± 0.05%
Repeat accuracy (in settled state at 25 °C, relating to
output range)
± 0.05%
Output ripple; bandwidth 0 to 50 kHz (relative to output
range)
± 0.05%
Status, interrupts, diagnostics
Interrupts None
Diagnostic functions None
Substitute values can be connected No
Data for selecting an actuator
Output range (nominal values)
Voltage ± 10 V0 to 10 V1 to 5 V
Current ± 20 mA
0 to 20 mA
4 to 20 mA
Load impedance (in rated range of output)
at voltage outputs
capacitive load
min. 1 kΩ
max. 1 µF
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
320 Reference Manual, Ausgabe 11/2016, A5E00850736-08
at current outputs
inductive load
max. 500 Ω
600 Ω at reduced UCM to < 1 V
max. 1 mH
Voltage output
Short-circuit protection Yes
Short-circuit-current Maximum 30 mA
current output
No-load voltage max. 19 V
Destruction limit against externally applied voltages / currents
Voltage at the outputs against MANA max. 20 V continuous
75 V for1 ms (duty cycle 1:20
Current max. 40 mA continuous
Connection of actuators
for voltage output
2-wire connection
4-wire connection (measurement cable)
possible, without compensation of line resis‐
tances
Possible
for current output
2-wire connection
Possible
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 321
5.26.2 Commissioning the SM 432; AO 8 x 13 Bit
Parameters
You will find a description of the general procedure for assigning parameters to analog modules
in the respective sections.
For an overview of configurable parameters and defaults, refer to the "Parameters of analog
output modules" table.
Assigning parameters to channels
The parameters can be set separately at each output channel of SM 432; AO 8 x 13 Bit. You
can thus assign individual parameters to each output channel.
See also
General information about parameter assignment (Page 199)
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
322 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5.26.3 Output ranges of the SM 432; AO 8 x 13 Bit
Configuration of analog output circuits
You can configure the outputs for operation as voltage or current outputs, or disable these.
You configure the output circuits at the "output type" parameter in
STEP 7
.
Unused channels
To make sure that unused output channels of SM 432; AO 8 x 13 Bit are de-energized, set the
"Output type" parameter to "deactivated" and leave the terminal open.
Output ranges
You program the output ranges for voltage and current outputs in
STEP 7
.
Table 5-75 Output ranges of the SM 432; AO 8 x 13 Bit
Selected type of output Output range Description
Voltage 1 V to 5 V
0 V to 10 V
± 10 V
The digitized analog values are listed in
the section "Representation of analog
values for analog output channels" in
the voltage or current output range.
Current 0 to 20 mA
4 to 20 mA
± 20 mA
Default
The output type "Voltage" and output range 10 V" are set by default at the module. You can
always use this combination of output type and range without having to program the SM 432;
AO 8 x 13 Bit in
STEP 7
.
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 323
Analog modules
5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0)
S7-400 Automation System Module Data
324 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Interface modules 6
6.1 Common features of the interface modules
Function
Interface modules (a send IM and a receive IM) are required if one or more expansion racks
(ER) are to be connected to a central rack (CR). This configuration is described in the
Installation manual
.
Configuration
Interface modules must always be used together. The send modules (send IMs) are inserted
in the CR, whilst the corresponding receive modules (receive IMs) are plugged into the series-
connected ER.
Table 6-1 Interface modules of the S7-400
Partner Areas of application
IM 460-0
IM 461-0
Send IM for local link without PS transfer; with communication bus
Receive IM for local link without PS transfer; with communication bus
IM 460-1
IM 461-1
Send IM for local link with PS transfer; without communication bus
Receive IM for local link with PS transfer; without communication bus
IM 460-3
IM 461-3
Send IM for remote link up to 102.25 m; with communication bus
Receive IM for remote link up to 102.25 m; with communication bus
IM 460-4
IM 461-4
Send IM for remote link up to 605 m; without communication bus
Receive IM for remote link up to 605 m; without communication bus
Overview of the connections
Note the rules for connections in the section after next.
Table 6-2 Overview of the connections
Local connection Remote connection
Send IM 460-0 460-1 460-3 460-4
Receive IM 461-0 461-1 461-3 461-4
Max. number of connectable EMs per line 4 1 4 4
Max. distance 5 m 1.5 m 102.25 m 605 m
V transfer No Yes No No
Max. current transfer per interface - 5 A - -
Communication bus transmission Yes No Yes No
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 325
Connection possibilities for central racks and expansion racks
IM 460-0
IM 460-1
IM 460-3
IM 461-0 IM 461-0
IM 461-1
IM 461-3 IM 461-3
IM 460-4
IM 461-4 IM 461-4
Central controller
Expansion without 5-V transmission at local range
Expansion device EC 1 Expansion device EC 4
Expansion with 5-V transmission in local range
Expansion device EC 1
Line length max. 5 m
Line length max. 1.5 m
Expansion device EC 1 Expansion device EC 4
Expansion in plant-wide field environment
Line length max. 102.25 m
Expansion device EC 1 Expansion device EC 4
Line length max. 605 m
Interface modules
6.1 Common features of the interface modules
S7-400 Automation System Module Data
326 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Rules for connection
When you connect a central rack to expansion racks, you must observe the following rules:
You can connect up to 21 ERs of the S7-400 to one CR.
The ERs are assigned numbers to identify them. The rack number must be set on the coding
switch of the receive IM. Any rack number between 1 and 21 may be assigned. Numbers
must not be duplicated.
You may insert up to six send IMs in one CR. However, only two send IMs with 5 V transfer
are allowed in one CR.
Each line connected to the interface of a send IM can comprise up to four ERs (without 5
V transfer) or one ER (with 5 V transfer).
The exchange of data via the communication bus is limited to 7 racks, meaning the CR and
ER numbers 1 to 6.
The maximum (total) cable lengths specified for the type of connection must not be
exceeded.
Table 6-3 Cable for different connections
Connection type Maximum (total) line
length
Local connection with 5 V transfer via IM 460-1 and IM 461-1 1.5 m
Local connection without 5 V transfer via IM 460-0 and IM 461-0 5 m
Remote connection via IM 460-3 and IM 461-3 102.25 m
Remote connection via IM 460-4 and IM 461-4 605 m
Terminator
The bus must be terminated in the last EU of a line. To do this, plug in the appropriate terminator
in the lower front connector of the receive IM in the last EU of the line. Unused front connectors
in a send IM do not have to be terminated. The IM 461-1 does not require a terminator.
Table 6-4 Terminators for the Receive IMs
Receive IM Terminator
IM 461-0 6ES7461-0AA00-7AA0
IM 461-3 6ES7461-3AA00-7AA0
IM 461-4 6ES7461-4AA00-7AA0
The following figure shows you a typical configuration with send IMs, receive IMs and
terminators.
Interface modules
6.1 Common features of the interface modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 327
1
2
3
4
5
Figure 6-1 Example: Configuration with send IMs, receive IMs and terminators
(1) Receive IM
(2) Terminator
(3) Receive IM
(4) Send IM
(5) CR
Interface modules
6.1 Common features of the interface modules
S7-400 Automation System Module Data
328 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Cables
Precut cables are available in different fixed lengths for connecting the individual interface
modules. (See Appendix "Accessories and spare parts").
Table 6-5 Cables for interface modules
Interface modules Cables
IM 460-0 and IM 461-0
IM 460-3 and IM 461-3
6ES7468-1... (P bus and communication bus are transferred)
IM 460-1 and IM 461-1 6ES7468-3... (P bus is transferred; mounting rack is supplied with
current via the IM)
IM 460-4 and IM 461-4 6ES7468-1...
Installation and removal of the modules during operation
Please read the following warning on the insertion and removal of the interface modules and
associated cables.
CAUTION
Data may be lost or corrupted.
Removing or inserting the interface modules and/or their associated cables under voltage
can result in the loss or corruption of data.
Switch off the power supply modules to the CR and ERs you are working on before you carry
out any changes.
Interface modules
6.1 Common features of the interface modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 329
6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0
(6ES7 461-0AA01-0AA0)
Function
The interface module pair IM 460-0 (send IM) and IM 461-0 (receive IM) are used for a local
link.
Position of the operator controls and indicators of the IM 460-0 and IM 461-0
X1
X2
X1
X2
EXTF
C1
C2
IM 460-0
INTF
EXTF
INTF
EXTF
IM 461-0
IN
OUT
EXTF
X
460-XXXXX-XXXX 461-XXXXX-XXXX
IM 461-0
IM 460-0
X
/('V',3VZLWFK8QGHUFRYHU3RUW&&RQQHFWRU;3RUW&'RQRWSOXJWHUPLQDWLQJUHVLVWRUFRQQHFWRU&RQQHFWRU;
Figure 6-2 Position of the operator controls and indicators of the IM 460-0 and IM 461-0
Interface modules
6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0 (6ES7 461-0AA01-0AA0)
S7-400 Automation System Module Data
330 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Operator controls and indicators on the send IM
Table 6-6 Operator controls and indicators on the send IM
LEDs Meaning
EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 is faulty (terminator missing
or broken cable)
C1 LED (green) Line 1 (via front connector X1, connection 1) is correct.
C1 LED (flashing
green)
An EU in the line is not ready for operation because:
The power supply module is not switched on
A module has not yet completed the initialization process
C2 LED (green) Line 2 (via front connector X2, connection 2) is correct.
C2 LED (flashing
green)
An EU in the line is not ready for operation because:
The power supply module is not switched on
A module has not yet completed the initialization process
Front connectors
X1 and X2
Connector (output) for line 1 and line 2
X1 = upper front connector; X2 = lower front connector
The LEDs EXTF, C1 and C2 do not light up if the terminator is not inserted or the line is
interrupted when in POWER ON mode. In this case the IM 460 identifies an unoccupied
interface.
Operator controls and indicators of the receive IM
Table 6-7 Operator controls and indicators of the receive IM
LEDs Meaning
INTF LED (red) Lights up if a rack number > 21 or = 0 was set.
Lights up if you have changed the rack number under voltage.
EXTF LED (red) Lights up in the event of an external fault (line fault, for example, if the terminator
is not inserted or if a module has not yet completed the initialization process).
DIP switch DIP switch to set the number of the mounting rack.
Front connector
X1
Upper connector (input) for the cable from the previous interface module.
Front connector X2 Lower connector (output) for the cable to the next interface module or for the
terminator.
Parameter assignment for the mounting rack number
Using the DIP switch on the front panel of the module, you must set the number of the mounting
rack in which the receive IM is installed. The permitted range is 1 to 21.
Interface modules
6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0 (6ES7 461-0AA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 331
Setting/changing the number
Proceed as follows:
1. Set the switch of the power supply module in the EU in which you want to make the change
to the position (Output voltage 0 V).
2. Enter the number using the DIP switch.
3. Switch the power supply module on again.
Specifications of the IM 460-0 and IM 461-0
Maximum line length (total) 5 m
Abmessungen B x H x T (mm) 25 x 290 x 280
Weight
IM 460-0
IM 461-0
600 g
610 g
Current consumption from the
S7-400 bus 5 VDC
IM 460-0 Typ. 130 mA
Max. 140 mA
IM 461-0 Typ. 260 mA
Max. 290 mA
Power loss
IM 460-0 Typ. 650 mW
Max. 700 mW
IM 461-0 Typ. 1300 mW
Max. 1450 mW
Terminator 6ES7461-0AA00-7AA0
Backup current None
Interface modules
6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0 (6ES7 461-0AA01-0AA0)
S7-400 Automation System Module Data
332 Reference Manual, Ausgabe 11/2016, A5E00850736-08
6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1
(6ES7461-1BA01-0AA0)
Function
The interface module pair IM 460-1 (send IM) and IM 461-1 (receive IM) are used for a local
link (up to a maximum 1.5 m in total). A 5 V supply voltage is also transferred with these
interface modules. Please particularly remember the following points:
The current requirements of the module plugged into the ER must not exceed 5 V/5 A.
You can only connect one ER per line.
The modules in this mounting rack are not supplied with 24 V and are not backed up.
The communication bus is not transferred with the interface module pair IM 460-1 and IM
461-1.
You must not use a power supply module in the ER.
Note
If you connect an ER via a local link with 5 V transmission, ungrounded operation is
prescribed for the ER (see Installation Manual).
Interface modules
6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1 (6ES7461-1BA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 333
Position of the operator controls and indicators of the IM 460-1 and IM 461-1
IM 461-1
EXTF
C1
C2
IM 460-1
INTF
EXTF
INTF
EXTF
IN
EXTF
X
DC 5 V DC 5 V
X1
X1
X2
X
IM 460-1
460-XXXXX-XXXX 461-XXXXX-XXXX
LEDs ',3VZLWFK8QGHUFRYHU3RUW&&RQQHFWRU;3RUW&'RQRWSOXJWHUPLQDWLQJUHVLVWRUFRQQHFWRU&RQQHFWRU;
Figure 6-3 Position of the operator controls and indicators of the IM 460-1 and IM 461-1
Operator controls and indicators on the send IM
Table 6-8 Operator controls and indicators on the send IM
LEDs Meaning
EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 is faulty (broken cable)
C1 LED (green) Line 1 (via front connector X1, connection 1) is correct.
C1 LED (flashing
green)
A module has not yet completed the initialization process.
Interface modules
6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1 (6ES7461-1BA01-0AA0)
S7-400 Automation System Module Data
334 Reference Manual, Ausgabe 11/2016, A5E00850736-08
LEDs Meaning
C2 LED (green) Line 2 (via front connector X2, connection 2) is correct.
C2 LED (flashing
green)
A module has not yet completed the initialization process.
Front connectors
X1 and X2
Connector (output) for line 1 and line 2
X1 = upper front connector; X2 = lower front connector
The LEDs EXTF, C1 and C2 do not light up if the line is interrupted when in POWER ON mode.
In this case the IM 460 identifies an unoccupied interface.
Operator controls and indicators of the receive IM
Table 6-9 Operator controls and indicators of the receive IM
LEDs Meaning
INTF LED (red) Lights up if a rack number > 21 or = 0 was set.
Lights up if you have changed the rack number under voltage.
EXTF LED (red) Lights up in the event of an external fault (line fault, for example, if a module has
not yet completed the initialization process but not when the CC is switched off)
5 VDC (green) Power supply in the ER is correct.
DIP switch DIP switch to set the number of the mounting rack.
Front connector
X1
Upper connector (input) for the cable from the previous interface module.
CAUTION
Modules can be damaged.
If you want to connect an ER via the IM 461-1 interface module and use a power supply
module in this ER, you might damage the modules.
Do not use a power supply module in an ER that you want to connect to the CR via the IM
461-1 interface module.
Parameter assignment for the mounting rack number
Using the DIP switch on the front panel of the module, you must set the number of the mounting
rack in which the receive IM is installed. The permitted range is 1 to 21.
Setting/changing the number
Proceed as follows:
1. Set the power supply module in the CR to the position (Output voltage 0 V).
2. Enter the number using the DIP switch.
3. Switch the power supply module on again.
Interface modules
6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1 (6ES7461-1BA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 335
Specifications of the IM 460-1 and IM 461-1
Maximum line length (total) 1.5 m
Dimensions W x H x D (mm) 25 x 290 x 280
Weight
IM 460-1
IM 461-1
600 g
610 g
Current consumption from the S7-400
bus 5 VDC
IM 460-1
IM 461-1
Typ. 50 mA, max. 85 mA
Typ. 100 mA, max. 120 mA
Power loss
IM 460-1
IM 461-1
Typ. 250 mW, max. 425 mW
Typ. 500 mW, max. 600 mW
Power supply for ER V/5 A per line
Backup current None
Interface modules
6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1 (6ES7461-1BA01-0AA0)
S7-400 Automation System Module Data
336 Reference Manual, Ausgabe 11/2016, A5E00850736-08
6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3
(6ES7461-3AA01-0AA0)
Function
The interface module pair IM 460-3 (send IM) and IM 461-3 (receive IM) are used for a remote
link of up to a maximum 102.25 m (exactly: 100 m plus inputs/outputs of 0.75 m in the line).
Position of operator control and display elements
EXTF
C1
C2
IM 460-3
INTF
EXTF
INTF
EXTF
IN
EXTF
X
X1
X1
X2
X
IM 461-3
X2
OUT
IM 460-3 IM 461-3
461-XXXXX-XXXX460-XXXXX-XXXX
LEDs
DIP switch
Under cover
Interface C1
Connector X1:
Interface C2
Connector X2:
Figure 6-4 Position of the operator controls and indicators of the IM 460-3 and IM 461-3
Interface modules
6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3 (6ES7461-3AA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 337
Operator controls and indicators on the send IM
Table 6-10 Operator controls and indicators on the send IM
LEDs Meaning
EXTF LED (red) Lights up in the event of an external fault. Strand 1 or strand 2 fault (cable break)
C1 LED (green) Line 1 (via front connector X1, connection 1) is correct.
C1 LED (flashing
green)
An EU in the line is not ready for operation because:
The power supply module is not switched on
A module has not yet completed the initialization process
C2 LED (green) Line 2 (via front connector X2, connection 2) is correct.
C2 LED (flashing
green)
An EU in the line is not ready for operation because:
The power supply module is not switched on
A module has not yet completed the initialization process
The LEDs EXTF, C1 and C2 do not light up if the terminator is not inserted or the line is
interrupted when in POWER ON mode. In this case the IM 460 identifies an unoccupied
interface.
Operator controls and indicators of the receive IM
Table 6-11 Operator controls and indicators of the receive IM
LEDs Meaning
INTF LED (red) Lights up if a rack number > 21 or = 0 was set.
Lights up if you have changed the rack number under voltage.
EXTF LED (red) Lights up in the event of an external fault (line fault, for example, if the terminator
is not inserted or if a module has not yet completed the initialization process,
or if the CC is switched off)
DIP switch DIP switch to set the number of the mounting rack.
Front connector X1 Upper connector (input) for the cable from the previous interface module.
Front connector X2 Lower connector (output) for the cable to the next interface module or for the
terminator.
Parameter assignment
Using the DIP switch on the front panel of the module, you must set the number of the mounting
rack in which the receive IM is installed. The permitted range is 1 to 21.
If required, you can change the distance setting for the line on the programming device using
STEP 7.
The default setting for the distance is 100 m.
Interface modules
6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3 (6ES7461-3AA01-0AA0)
S7-400 Automation System Module Data
338 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Ensure that the distance corresponds as closely as possible to the current length (the sum of
all the cables per line) as this will accelerate data transmission.
Note
The distance set must always be longer than the actual length of cable per line.
Setting/changing the number
Proceed as follows:
1. Set the switch of the power supply module in the EU in which you want to make the change
to the position (Output voltage 0 V).
2. Enter the number using the DIP switch.
3. Switch the power supply module on again.
Specifications of the IM 460-3 and IM 461-3
Maximum line length (total) 102.25 m
Abmessungen B x H x T (mm) 25 x 290 x 280
Weight
IM 460-3 630 g
IM 461-3 620 g
Current consumption from the S7-400 bus 5 VDC
IM 460-3 Typ. 1350 mA
Max. 1550 mA
IM 461-3 Typ. 590 mA
Max. 620 mA
Power loss
IM 460-3 Typ. 6750 mW
Max. 7750 mW
IM 461-3 Typ. 2950 mW
Max. 3100 mW
Terminator 6ES7461-3AA00-7AA0
Backup current None
Interface modules
6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3 (6ES7461-3AA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 339
6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4;
(6ES7461-4AA01-0AA0)
Function
The interface module pair IM 460-4 (send IM) and IM 461-4 (receive IM) are used for a remote
link of up to a maximum 605 m (exactly: 600 m plus inputs/outputs of 1.5 m in the line).
Position of the operator controls and indicators of the IM 460-4 and IM 461-4
EXTF
C1
C2
IM 460-4
INTF
EXTF
INTF
EXTF
IN
EXTF
X
X1
X1
X2
X
IM 461-4
X2
OUT
IM 460-4
460-XXXXX-XXXX 461-XXXXX-XXXX
IM 461-4
LEDs
DIP switch
Under cover
Interface C1
Connector X1:
Interface C2
Connector X2:
Figure 6-5 Position of the operator controls and indicators of the IM 460-4 and IM 461-4
Interface modules
6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0)
S7-400 Automation System Module Data
340 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Operator controls and indicators on the send IM
Table 6-12 Operator controls and indicators on the send IM
LEDs Meaning
EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 is faulty (terminator missing
or broken cable)
C1 LED (green) Line 1 (via front connector X1, connection 1) is correct.
C1 LED (flashing
green)
An EU in the line is not ready for operation because:
The power supply module is not switched on
A module has not yet completed the initialization process
C2 LED (green) Line 2 (via front connector X2, connection 2) is correct.
C2 LED (flashing
green)
An EU in the line is not ready for operation because:
The power supply module is not switched on
A module has not yet completed the initialization process
The LEDs EXTF, C1 and C2 do not light up if the terminator is not inserted or the line is
interrupted when in POWER ON mode. In this case the IM 460 identifies an unoccupied
interface.
Operator controls and indicators of the receive IM
Table 6-13 Operator controls and indicators of the receive IM
LEDs Meaning
INTF LED (red) Lights up if a rack number > 21 or = 0 was set.
Lights up if you have changed the rack number under voltage.
EXTF LED (red) Lights up in the event of an external fault (line fault, for example, if the terminator
is not inserted or if a module has not yet completed the initialization process,
or if the CC is switched off)
DIP switch DIP switch to set the number of the mounting rack.
Front connector X1 Upper connector (input) for the cable from the previous interface module.
Front connector X2 Lower connector (output) for the cable to the next interface module or for the
terminator.
Parameter assignment
Using the DIP switch on the front panel of the module, you must set the number of the mounting
rack in which the receive IM is installed. The permitted range is 1 to 21.
If required, you can change the distance setting for the line on the programming device using
STEP 7.
The default setting for the distance is 600 m.
Interface modules
6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 341
Ensure that the distance corresponds as closely as possible to the current length (the sum of
all the cables per line) as this will accelerate data transmission.
Note
The distance set must always be longer than the actual length of cable per line.
Setting/changing the number
Proceed as follows:
1. Set the switch of the power supply module in the EU in which you want to make the change
to the position (Output voltage 0 V).
2. Enter the number using the DIP switch.
3. Switch the power supply module on again.
Specifications of the IM 460-4 and IM 461-4
Maximum line length (total) 605 m
Dimensions W x H x D (mm) 25 x 290 x 280
Weight
IM 460-4 630 g
IM 461-4 620 g
Current consumption from the S7-400 bus 5 VDC
IM 460-4 Typ. 1350 mA
Max. 1550 mA
IM 461-4 Typ. 590 mA
Max. 620 mA
Power loss
IM 460-4 Typ. 6750 mW
Max. 7750 mW
IM 461-4 Typ. 2950 mW
Max. 3100 mW
Terminator 6ES7461-4AA00-7AA0
Backup current None
Compatibility
You cannot use the IM 460-4 and IM 461-4 interface modules with CPUs that have the following
order numbers:
6ES7412-1XF00-0AB0
6ES7413-1XG00-0AB0
6ES7413-2XG00-0AB0
6ES7414-1XG00-0AB0
Interface modules
6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0)
S7-400 Automation System Module Data
342 Reference Manual, Ausgabe 11/2016, A5E00850736-08
6ES7414-2XG00-0AB0
6ES7416-1XJ00-0AB0
Interface modules
6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 343
Interface modules
6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0)
S7-400 Automation System Module Data
344 Reference Manual, Ausgabe 11/2016, A5E00850736-08
S5 interface IM 463-2 7
7.1 Using SIMATIC S5 expansion units in an S7-400
Order number
6ES7463-2AA00-0AA0
Area of application
The IM 463-2 interface module is used for distributed connection of S5 expansion units to an
S7-400. You can use the IM 463-2 in the CR of the S7-400. You can use an IM 314 in the S5
expansion unit.
This allows you to connect the following S5 expansion units to an S7-400:
EG 183U with IM 314 in slot 3
EG 185U with IM 314 in slot 3
EG 186U with IM 314 in slot 3
ER 701-2 with IM 314 in slot 7
ER 701-3 with IM 314 in slot 7
Accordingly, you can use all digital and analog I/O modules suitable for these EUs or ERs.
Basic requirement
If you connect an S5 expansion unit to a CR of the S7-400 via an IM 463-2, the SIMATIC S5
basic requirements concerning EMC, ambient conditions, etc., apply for the overall system.
Note
In environments contaminated by radiated noise, you must apply the type 721 cable shield
(see
Installation manual
).
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 345
Mounting and removing the FM 463-2
Please read the following warning on the mounting and removal of the IM 463-2 and associated
cables.
CAUTION
Data may be lost or corrupted.
Removing or inserting the IM 463-2 and/or their associated cables under voltage can result
in the loss or corruption of data.
Switch off the power supply modules to the central rack you are working on before you carry
out any changes.
Expanding the distributed connection
You can also centrally expand the EUs connected in a distributed configuration via an IM 463-2.
The following table lists the S5 interface modules that you can use for this purpose.
Table 7-1 S5 interface modules
Module Order number
IM 300 6ES5 300-5CA11
6ES5 300-3AB11
6ES5 300-5LB11
IM 306 6ES5306-7LA11
S5 interface IM 463-2
7.1 Using SIMATIC S5 expansion units in an S7-400
S7-400 Automation System Module Data
346 Reference Manual, Ausgabe 11/2016, A5E00850736-08
7.2 Rules for connecting S5 expansion units
Introduction
When you connect S5 expansion units to an S7-400 via the IM 463-2, there are rules to observe
with regard to cable length, maximum expansion, use of a terminating connector and
permissible potential differences.
Cable length
The maximum cable length per IM 463-2 from the CR of the S7-400 to the last S5 expansion
unit is 600 m. You set the actual cable length at the IM 463-2.
Maximum configuration
You can use up to four IM 463-2s in one S7-400 CR.
At each IM 463-2 interface (C1 and C2), you can connect up to four S5 expansion units in a
distributed configuration.
You can connect further EUs centrally to the EUs connected in the distributed configuration.
Addressing of the S5 modules
All S5 address areas are available (P, Q, IM3, IM4)
Note
Note that every S5 address can only be used once, even across different lines.
Terminator
You must terminate the IM 314 of the last EU in each line with the 6ES5760-1AA11 terminating
connector.
Permissible potential differences
For the safe functioning of the distributed configuration, you must ensure that the potential
difference between two devices is not more than 7 V. Use an equipotential bonding conductor.
See also
Operator controls and indicators (Page 348)
S5 interface IM 463-2
7.2 Rules for connecting S5 expansion units
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 347
7.3 Operator controls and indicators
Introduction
All controls and indicators on the IM 463-2 are arranged on the front plate. The following figure
shows the arrangement of the controls and indicators.
IM 463-2
EXTF
OFF
463-2AA..-....
X
LEDs EXTF, C1, C 2
Interface Selector Switch Interface selector switch
Cable Length Selector Selector Cable length selector switch
X1 connector
Interface C1
X2 connector
Interface C2
Figure 7-1 Layout of the controls and indicators of the IM 463-2
S5 interface IM 463-2
7.3 Operator controls and indicators
S7-400 Automation System Module Data
348 Reference Manual, Ausgabe 11/2016, A5E00850736-08
LEDs
Table 7-2 LEDs of the IM 463-2
LED Meaning
EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 has a fault
(power supply failed in the EU; terminating connector missing; wire break, or inter‐
face selector switch wrongly set).
C1 LED (green) Line 1 (via front connector X1, connection 1) is correct.
C2 LED (green) Line 2 (via front connector X2, connection 2) is correct.
Front connectors
X1 and X2
Connector (output) for line 1 and line 2
X1 = upper front connector; X2 = lower front connector
Interface selector switch
Table 7-3 Switch position: Interface selector of the IM 463-2
Switch setting Meaning
C1 ON You use only interface C1.
C2 ON You use only interface C2.
C1, C2 ON You use both interfaces.
C1, C2 OFF You use neither of the two interfaces.
You do not want to operate an S5 EU at present.
Cable length selector switch
Table 7-4 Switch position: Cable length selector of the IM 463-2
Switch setting Meaning
100 Cable length 1 to 100 m
250 Cable length 100 to 250 m
450 Cable length 250 to 450 m
600 Cable length 450 to 600 m
WARNING
Danger of data loss.
Changing the setting of the interface selector switch and the cable length selector switch in
RUN mode can result in loss of data.
Change the settings of these switches only in STOP mode of the CPU.
S5 interface IM 463-2
7.3 Operator controls and indicators
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 349
7.4 Installing and connecting the IM 463-2
Overview
To install an IM 463-2 in a CR of the S7-400, proceed in the same way as when installing other
S7-400 modules (see
Installation manual
).
To connect an IM 463-2, follow the steps outlined below:
1. Prepare the cable
2. Plug in the cable
3. Select the interface
4. Select the cable length
Prepare the cable
You can use the cable 721. However, you must change the connector housing on the
connection side of the IM 463-2.
Two connector housings are enclosed with every IM 463-2. You can prepare a cable for an
IM 463-2 using one of these connector housings and a 721 cable (see
Catalog ST 54.1
).
Proceed as follows:
1. Remove one connector housing on the 721 cable.
2. Open one of the connector housings enclosed with the IM 463-2.
3. Attach this connector housing to the 721 cable.
4. Close the connector housing.
Plug in the cable
To plug in the cable, follow the steps outlined below:
1. Open the cover of the IM 463-2.
2. Plug the new connector of the cable into one of the connectors of the IM 463-2.
Interface C1 corresponds to the upper connector;
Interface C2 corresponds to the lower connector.
3. Screw the connector of the cable onto the connector of the IM 463-2.
4. Close the cover.
Select the interface
You select the interface with the selector switch on the front plate. Set the interface(s) here
that you want to use. Make the settings on the IM 463-2 only when the CPU is in STOP mode.
S5 interface IM 463-2
7.4 Installing and connecting the IM 463-2
S7-400 Automation System Module Data
350 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Select the cable length
You select the cable length with the selector switch on the front plate. Set the range
corresponding to the line length. Make the settings on the IM 463-2 only when the CPU is in
STOP mode.
S5 interface IM 463-2
7.4 Installing and connecting the IM 463-2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 351
7.5 Setting the operating modes of the IM 314
Introduction
To operate the IM 463-2, you must set on the IM 314 the S5 expansion unit used and the
address area of the S5 I/O modules.
S5 interface IM 463-2
7.5 Setting the operating modes of the IM 314
S7-400 Automation System Module Data
352 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Setting the S5 expansion unit
You set the S5 expansion unit in which you want to use the IM 314 using jumpers BR1, BR2,
and BR3 on the IM 314. The following figure shows where these jumpers are located on the
IM 314 and which setting corresponds to which expansion unit.
Table 7-5 Settings of the IM 314 using expansion units
BR 1
X3
X4
X1
X2
4 3 2 1 S1 off
on
BR 2
4 3 2 1
BR 3
4 3 2 1
Used in EU 185U, EU 186U
BR 1
X3
X4
X1
X2
S1 off
on
BR 3
BR 2
4 3 2 1
4 3 2 1
4 3 2 1
Used in EU 183 U
S5 interface IM 463-2
7.5 Setting the operating modes of the IM 314
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 353
BR 1
X3
X4
X1
X2
BR 2
S1 off
on
BR 3
4 3 2 1
4 3 2 1
4 3 2 1
Used in ER 701-2, ER 701-3
Setting the address area
The address area of the S5 I/O modules is set on the IM 314. This setting applies only for the
digital and analog I/O modules.
The address areas P, Q, IM3, and IM4 are available. Set the switch to the relevant position to
address the digital and analog I/O modules in these areas.
Table 7-6 Settings address areas on the IM 314
I/O area address Switch position
O = OFF, 1 = ON The first two switches on the left are
not relevant.
OFF
ON
P area: F000 - F0FF S1: 0000 *
Q area: F100 - F1FF 0001
IM3 area: FC00 - FCFF 1100
IM4 area: FD00 - FDFF 1101
* Factory state
S5 interface IM 463-2
7.5 Setting the operating modes of the IM 314
S7-400 Automation System Module Data
354 Reference Manual, Ausgabe 11/2016, A5E00850736-08
7.6 Configuring S5 modules for operation in the S7-400
Example
You program S5 modules in
STEP 7
. Refer to the description in the
STEP 7
manual or the
online help
to learn how this is done.
The following figure shows a possible connection of CRs and EUs via the IM 463-2 and IM
314.
S5 interface IM 463-2
7.6 Configuring S5 modules for operation in the S7-400
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 355
IM 312-3
IM 300-3
IM 314
IM 312-3
IM 300-3
IM 314
IM 312-5
IM 314
IM 312-3
IM 300-3
IM 314
IM 312-5
IM 300-5
IM 314
}
S7-400
IM 300-5
IM 463-2
S5- S5- S5-
S5- S5- S5-
S5-
S5-
S5-
S5-
Expansion
rack
Expansion
rack
Expansion
rack
Expansion
rack
Expansion
rack
Expansion
rack
Expansion
rack
Expansion
rack
Expansion
rack
Expansion
rack
Further EU 184U,
EU 187U (central)
Terminating connector 760-1AA11
All 721 connecting cables
Central
mounting rack
Terminating connector 760-1AA11
All 721 connecting cables
To further S5 expansion units (distributed)
(max. 4 per IM 463-2)
max. 600 m
Figure 7-2 Connection variant for CCs and EUs via the IM 463-2 and IM 314
S5 interface IM 463-2
7.6 Configuring S5 modules for operation in the S7-400
S7-400 Automation System Module Data
356 Reference Manual, Ausgabe 11/2016, A5E00850736-08
7.7 Pin assignments of the 721 cable
Pin assignments of the 721 cable
Table 7-7 Pin assignments of the 721 cable
34
50
17 1
34 50
171
Connector Bundle ID sheath Identification foil Core color Connector
50-pin Contact 50-pin Contact
20
1
No. 16
Red
white 20
21 brown 21
4 green 4
5 yellow 5
18 gray 18
19 pink 19
2 blue 2
3 red 3
24
2
No. 17
green
white 24
25 brown 25
8 green 8
9 yellow 9
22 gray 22
23 pink 23
6 blue 6
7 red 7
26
3
No. 18
yellow
white 26
27 brown 27
10 green 10
11 yellow 11
42 gray 42
43 pink 43
44 blue 44
45 red 45
28
4
No. 19
brown
white 28
29 brown 29
12 green 12
13 yellow 13
46 gray 46
47 pink 47
30 blue 30
31 red 31
S5 interface IM 463-2
7.7 Pin assignments of the 721 cable
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 357
34
5
No. 20
black
white 34
35 brown 35
36 green 36
37 yellow 37
38 gray 38
39 pink 39
40 blue 40
41 red 41
48
6
No. 21
blue
white 48
49 brown 49
14 green 14
15 yellow 15
32 gray 32
33 pink 33
- Shield -
S5 interface IM 463-2
7.7 Pin assignments of the 721 cable
S7-400 Automation System Module Data
358 Reference Manual, Ausgabe 11/2016, A5E00850736-08
7.8 Terminating connector for IM 314
Introduction
The IM 314 of the last expansion unit of each line is terminated with the 6ES5 760-1AA11
terminating connector.
Table 7-8 Assignment of the terminator 760-1AA11
Assignment of the terminator 760-1AA11
34 50
171
Plug connection 180-Ohm resistance or jumper Plug connection
28 8
29 9
26 6
27 7
46 4
47 5
44 2
45 3
42 24
43 25
38 1 22
39 23
34 1 20
35 21
36 1 18
37 19
S5 interface IM 463-2
7.8 Terminating connector for IM 314
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 359
Assignment of the terminator 760-1AA11
40 1 12
41 13
48 2 10
49 11
15 30
16 31
14
50
1 100 Ω
2 200Ω
S5 interface IM 463-2
7.8 Terminating connector for IM 314
S7-400 Automation System Module Data
360 Reference Manual, Ausgabe 11/2016, A5E00850736-08
7.9 Specifications IM463-2 (6ES7463-2AA00-0AA0)
Specifications
Programming package
Associated programming package As of STEP 7 V 2.1
Dimensions and weight
Dimensions W x H x D (mm) 25x290x280
Weight 360 g
Module-specific data
Number and type of interfaces 2 parallel, 2 symmetrical interfaces
Cable length:
from IM 463-2 to the last IM 314 (per interface)
Max. 600 m
Transmission speed 2 Mbps to 100 Kbps
Parameter sets of the signal modules Differential signal in accordance with RS 485
Front connectors 2 connectors, 50-pin male
Voltages, currents, electrical potentials
Supply voltage from S7-400 bus +5 V
Current consumption Typ. 1.2 A
Max. 1.32 A
Power loss Typ. 6 W
Max. 6.6 W
Backup current No
S5 interface IM 463-2
7.9 Specifications IM463-2 (6ES7463-2AA00-0AA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 361
S5 interface IM 463-2
7.9 Specifications IM463-2 (6ES7463-2AA00-0AA0)
S7-400 Automation System Module Data
362 Reference Manual, Ausgabe 11/2016, A5E00850736-08
PROFIBUS DP master interface IM 467/IM 467 FO 8
8.1 PROFIBUS DP master interface IM 467/IM 467 FO
8.1.1 Overview
Order numbers
IM 467 6ES7467-5GJ02-0AB0 (RS 485)
IM 467 FO 6ES7467-5FJ00-0AB0 (F0)
Application
PROFIBUS DP, standardized in accordance with IEC 61784-1:2002 Ed1 CP 3/1, enables rapid
communication in the field between programmable controllers, PCs and field devices. Field
devices are devices such as: ET 200 distributed I/O devices, drives, valve terminals,
switchgear and many others.
The IM 467/IM 467 FO interface module is meant to be used in an S7-400 programmable
controller. It permits the S7-400 to be connected to PROFIBUS DP.
Note
The PROFIBUS DP master interface IM 467 and IM 467 FO is not a DP master in accordance
with DVP 1.
Design
Designed for S7-400
Can be operated without a fan
A maximum of 4 IM 467/IM 467 FO can be used in the central rack. There are no slot rules.
The IM 467/IM 467 FO and the CP 443-5 Extended cannot be used together.
The transmission rate of 9.6 Kbps to 12 Mbps can be set in steps using software
Configuration and programming are possible via PROFIBUS DP. You should not, however,
change the PROFIBUS DP parameters.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 363
IM 467 with 9-pin sub D socket for connection to PROFIBUS DP (6ES7467-5GJ02-0AB0)
IM 467 FO with fiber-optic cable for connection to PROFIBUS DP (6ES7467-5FJ00-0AB0)
1
2
3
Figure 8-1 Configuration of the IM 467/467 FO
(1) LED
(2) Mode selector
(3) PROFIBUS-DP interface
9-pin sub D
PROFIBUS DP master interface IM 467/IM 467 FO
8.1 PROFIBUS DP master interface IM 467/IM 467 FO
S7-400 Automation System Module Data
364 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Communication services
The IM 467/IM 467 FO offers two communication services:
PROFIBUS DP
The IM 467/IM 467 FO is a PROFIBUS DP master in accordance with EN 50 170. It is
configured entirely with STEP 7. It behaves in basically the same way as the integrated
PROFIBUS DP interfaces on the CPU modules (see the specifications of the IM 467/IM
467 FO for the differences).
DP communication does not require any function calls in the STEP 7 user program.
S7 functions
The S7 functions guarantee optimal and easy communication in a SIMATIC S7/M7/C7
automation solution. The following S7 functions are enabled for the IM 467/IM 467 FO:
Programming device functions via PROFIBUS DP
Operator control and monitoring functions via PROFIBUS DP
Communication takes place without any additional configuration on the IM 467/IM 467 FO.
S7 functions can be used on their own or in parallel with the PROFIBUS DP protocol. If
they are used in parallel with DP communication, this affects the PROFIBUS DP bus cycle
time.
PROFIBUS DP master interface IM 467/IM 467 FO
8.1 PROFIBUS DP master interface IM 467/IM 467 FO
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 365
8.1.2 Indicators and the mode selector
LED
The LED strip on the front panel of the IM 467/IM 467 FO has the following four indicators:
INTF
EXTF
RUN
STOP
Figure 8-2 LEDs of the IM 467/467 FO
IM operating mode
The LEDs indicate the operating mode of the IM in accordance with the following table:
Table 8-1 Operating modes of the IM 467/467 FO
STOP LED (yel‐
low)
RUN LED
(green)
EXTF LED
(red)
INTF LED
(red)
CP Operating Mode
On Flashing Off Off Startup
Off On Off Off RUN
Flashing On Off Off STOPPING
On Off Off Off STOP
On Off Off On STOP with internal error (IM not configured,
for example)
Flashing Off Off Off Waiting for FW update (takes 10 sec. after
power up)
Flashing Off On On Waiting for FW update (IM currently contains
an incomplete FW version).
Off On On Off RUN and PROFIBUS DP bus fault
Off On Flashing Off RUN; but there are faults on the DP line (the
DP slave is not taking part in data transfer, or
the module in the DP slave is faulty, for exam‐
ple)
Flashing Flashing Flashing Flashing Module error / system error
Controlling the operating status
There are two ways to control the operating status of the IM 467/IM 467 FO:
Mode selector
By using the programming device/PC
PROFIBUS DP master interface IM 467/IM 467 FO
8.1 PROFIBUS DP master interface IM 467/IM 467 FO
S7-400 Automation System Module Data
366 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Mode selector
You can switch operating modes as follows using the mode selector:
From STOP to RUN
All the configured communication services and S7 communication services are available
in RUN.
The IM operating mode can only be controlled from the programming device/PC when the
switch is in the RUN position.
From RUN to STOP
The IM goes into STOP mode. Any existing S7 connections are cleared down, and the DP
slaves are no longer supplied.
Loadable firmware
The IM 467/IM 467 FO supports the updating of firmware (FW) by means of the FW loader.
The FW loader is a component of the NCM S7 configuration software for PROFIBUS DP.
Authorization is not required for this. After a FW update, the central rack must be switched off
and on again before normal operation can be resumed.
Note
You can find additional information on loading firmware in the
NCM S7 for PROFIBUS-DP
manual and in the readme file of the
NCM S7 for PROFIBUS-DP
configuration software.
An optical bus terminal (OBT) is required to load FW in the IM 467 FO.
PROFIBUS DP master interface IM 467/IM 467 FO
8.1 PROFIBUS DP master interface IM 467/IM 467 FO
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 367
8.2 Configuration
Introduction
The IM 467/IM 467 FO is configured with STEP 7. The configuration data are retained even
in the event of a power failure; a memory module is not required. Using the S7 functions it is
possible to program and configure remotely all the IM 467/IM 467 FO connected to the network
and all the CPUs connected via the SIMATIC S7-400 backplane bus.
SIMATIC STEP 7, version 5.00 or higher is required.
Module replacement without a programming device
The configuration data are stored in the load memory of the CPU. The non-volatile storage of
configuration data in the CPU is ensured by battery backup or EPROM module cards.
The IM 467/IM 467 FO can be replaced without the need to explicitly reload the configuration
data.
It is only possible to remove and insert the IM 467/IM 467 FO in a de-energized state.
Multiprocessor operation
The connected DP slaves can only be assigned to and processed by one CPU.
Configuration and diagnostics cannot be carried out simultaneously
When configuration is in progress, the IM 467/IM 467 FO cannot be diagnosed at the same
time via MPI.
Note
The transmission rates 3 Mbit/s and 6 Mbit/s are not approved for IM467-FO.
8.3 Connection to PROFIBUS DP
8.3.1 Connection options
Overview
There are two ways of connecting to PROFIBUS DP:
Electrical connection via a bus connector
Optical connection using a fiber-optic cable
PROFIBUS DP master interface IM 467/IM 467 FO
8.3 Connection to PROFIBUS DP
S7-400 Automation System Module Data
368 Reference Manual, Ausgabe 11/2016, A5E00850736-08
8.3.2 Bus connector
Wiring
Only with 6ES7467-5GJ02-0AB0.
The bus cable is connected to the IM 467 by means of this connector. (See the detailed
description in the section on networking in the
S7-400, Hardware and Installation manual
.)
1
2
3
Figure 8-3 Connecting the bus connector to the IM 467
(1) Switch for bus terminator resistor
(2) PROFIBUS_DP bus line
(3) Bus connector
Maximum cable lengths for PROFIBUS DP
Transmission speed
in Kbps
9,6 19,2 93,75 187,5 500 1500 3000 6000 12000
Max. length of a bus
segment in m
1.000 1.000 1.000 1.000 400 200 100 100 100
Max. number of bus
segments 1
10 10 10 10 10 10 10 10 10
Max. length in m 10.000 10.000 10.000 10.000 4.000 2.000 1.000 1.000 1.000
1 Bus segments are interconnected with RS 485 repeaters
PROFIBUS DP master interface IM 467/IM 467 FO
8.3 Connection to PROFIBUS DP
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 369
Connector pin assignment
The electrical interface used to connect to PROFIBUS DP (9-pin sub D socket) is specified in
the following table.
RUN
RUN
STOP
STOP
INTF
EXTF
Pin no. Signal name Profibus designation Assigned to
RS 485
1
2
3
4
5
6
7
8
9
PE
RxD/TxD-P
RTS (AG)
M5V2
P5V2
BATT
RxDT/TxD-N
-
Protective earth
-
Data transfer line B
Control A
Data reference potential
Supply plus
-
Data transfer line A
-
Yes
-
Yes
-
Yes
Yes
-
Yes
-
PROFIBUS DP master interface IM 467/IM 467 FO
8.3 Connection to PROFIBUS DP
S7-400 Automation System Module Data
370 Reference Manual, Ausgabe 11/2016, A5E00850736-08
8.3.3 Optical connection to PROFIBUS DP
Wiring
Only in the case of 6ES7467-5FJ00-0AB0.
The IM 467 F0 with an integrated fiber-optic cable interface is available for connecting to the
optical version of PROFIBUS DP.
CP443-5
443-5FX00-0XE0
STOP
RUN
INTF
EXTF
RUN
STOP
AUI/TP
X2
34
1
Figure 8-4 Optical connection to PROFIBUS DP
(1) PROFIBUS DP bus cable
PROFIBUS DP master interface IM 467/IM 467 FO
8.3 Connection to PROFIBUS DP
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 371
8.3.4 Connecting a fiber-optic cable to the IM 467 FO
Required accessories
Package with simplex connectors and polishing sets (6GK1901-0FB00-0AA0)
Pack of plug-in adapters (6ES7195-1BE00-0XA0)
Installing connectors
1. Remove approximately 30 cm of the sheath of the fiber-optic duplex cable.
2. Install the fiber-optic duplex cable with the associated simplex connectors. You can find a
detailed description of simplex connectors in the
SIMATIC NET PROFIBUS Networks
manual.
TIP: Close the two simplex connectors together rather than separately to obtain a duplex
connector. In this manner you will achieve a better hold in the plug adapter.
IMPORTANT: The polished surface of the plastic fibers must be absolutely smooth and
even. Likewise, the plastic jacket must not protrude or be cut unevenly. Every irregularity
causes strong attenuation of the light signal over the fiber-optic cable!
3. Place the simplex connectors in the plug-in adapter for the IM 467 FO and the fiber-optic
cable in the cable guides provided. Insert the plug-in adapter until you hear the sides clearly
latch into position.
Make sure when you insert the plugs in the plug-in adapter that the transmitter is always
at the top and the receiver is underneath.
1
2
3
4
5
Figure 8-5 Installing the connector
PROFIBUS DP master interface IM 467/IM 467 FO
8.3 Connection to PROFIBUS DP
S7-400 Automation System Module Data
372 Reference Manual, Ausgabe 11/2016, A5E00850736-08
(1) Plug-in adapter for the IM 467 FO
(2) Snap the two simplex connectors closed together such that you get a "duplex connector".
(3) Tip: Cut the lower cable approx. 10 mm shorter than the upper one to achieve better cable
routing in the cable duct of the IM 467 FO.
(4) Max. 30 mm bending radius
(5) Fiber-optic duplex cable
Reusing fiber-optic cable
Note
If you insert previously used fiber-optic cable into the plug adapter, you must shorten both fiber-
optic cores by the amount of the curved lengths and reinstall the simplex connectors.
This will prevent any attenuation losses caused by repeatedly bent, heavily stressed portions
of the fiber-optic duplex core.
Inserting the fiber-optic cables into the IM 467 FO
Insert the fiber-optic cable with the mounted plug adapters into the IM 467 FO. Fold the
protruding plug grip upward.
Make sure that it is correctly positioned: The transmitter fiber-optic cable is plugged into the
receiver socket, and the receiver fiber-optic cable is inserted into the transmitter socket of the
fiber-optic interface of the IM 467 FO.
If the IM 467 FO is the last node in the fiber-optic network, you must close the unoccupied
fiber-optic cable interface with blanking plugs (the plugs are already in place when the IM 467
FO is delivered).
CAUTION
Do not look directly into the opening of the optical sender diodes.
The emitted light beam could damage your eyes.
PROFIBUS DP master interface IM 467/IM 467 FO
8.3 Connection to PROFIBUS DP
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 373
R
T
R
T
PROFIBUS DP
Transmitter
Transmitter
Transmitter
Receiver
Receiver
Receiver
Grip
Figure 8-6 Inserting the fiber-optic cables into the IM 467 FO
Bending radius for the fiber-optic cable
When placing the fiber-optic duplex core into the plug adapter and routing the cable, be sure
not to exceed the permissible bending radius of 30 mm. See also the installation guidelines
on fiber-optic cables in the SIMATIC NET PROFIBUS Networks manual.
8.4 Specifications
8.4.1 Specifications of the IM 467 (6ES7467-5GJ02-0AB0))
Dimensions and weight
Dimensions W x H x D (mm)
Weight
25 x 290 x 210
700 g
PROFIBUS DP
Standard PROFIBUS DP, EN 50 170
Transmission rate 9.6 Kbps to 12 Mbps, configurable in
steps
Transmission technology RS 485 via 9-pin sub D socket
Current consumption
Current consumption from the S7-400 bus (24 VDC)
The IM does not consume any current at 24 V, and it only makes
this voltage available at the MPI/DP interface.
Total current consumption of the com‐
ponents connected to the DP interfa‐
ces, with a maximum of 150 mA
PROFIBUS DP
Operating conditions
Can be used in SIMATIC S7-400, max. 4 IM 467 in
the central rack
PROFIBUS DP master interface IM 467/IM 467 FO
8.4 Specifications
S7-400 Automation System Module Data
374 Reference Manual, Ausgabe 11/2016, A5E00850736-08
IM 467 cannot be used with the CP 443-5
Supply voltage 5 VDC via the backplane bus
Current consumption
From 5 VDC 1.3 A
Addressing range Max. 4 KB for inputs and 4 KB for out‐
puts
DP master Yes
DPV 1 No
Enable/disable No
Number of connectable I/O devices (slaves) 96
Number of connections for S7 functions for the programming
device and operator control and monitoring
32 + 1 diagnostic connection
Data volume per slave Max. 244 bytes
Consistency Max. 128 bytes
Configuration software STEP 7
DP slave No
Deviations from the DP interface integrated
in the CPU
Different SSL IDs for system diagnostics
Possibly extended SFC run times
Additional return codes for SFC 14 and SFC 15
PROFIBUS DP master interface IM 467/IM 467 FO
8.4 Specifications
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 375
8.4.2 Specifications of the IM 467 FO (6ES7467-5FJ00-0AB0)
Dimensions and weight
Dimensions W x H x D (mm)
Weight
25 x 290 x 210
700 g
PROFIBUS DP
Standard PROFIBUS DP, EN 50 170
Transmission rate 9.6 Kbps to 12 Mbps, configurable in
steps (3 Mbps and 6 Mbps not possi‐
ble)
Transmission technology FOC;
Wave length l = 660 nm 2 x duplex
sockets
Current consumption
Current consumption from the S7-400 bus (24 VDC)
The IM does not consume any current at 24 V, and it only makes
this voltage available at the MPI/DP interface.
Total current consumption of the com‐
ponents connected to the DP interfa‐
ces, with a maximum of 150 mA
PROFIBUS DP
Operating conditions
Can be used in SIMATIC S7-400, max. 4 IM 467 in
the central rack
IM 467 cannot be used with the CP 443-5
Supply voltage 5 VDC via the backplane bus
Current consumption 1.3 A
From 5 VDC
Addressing range Max. 4 KB for inputs and 4 KB for out‐
puts
DP master Yes
DPV 1 No
Enable/disable No
Number of connectable I/O devices (slaves) 96
Number of connections for S7 functions for the programming
device and operator control and monitoring
32 + 1 diagnostic connection
Data volume per slave Max. 244 bytes
Consistency Max. 128 bytes
Configuration software STEP 7
DP slave No
Deviations from the DP interface integrated in the CPU
Different SSL IDs for system diagnostics
Possibly extended SFC run times
Additional return codes for SFC 14 and SFC 15
PROFIBUS DP master interface IM 467/IM 467 FO
8.4 Specifications
S7-400 Automation System Module Data
376 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Cable duct and fan subassemblies 9
9.1 Features
Overview
The cable duct and the fan subassembly have the following characteristics
The air inflow area is variable.
Shield and cable clamping are possible.
In addition, the fan subassembly has the following characteristics:
Fans and filter frames can be replaced from the front during operation.
The fan function is controlled by means of speed monitoring.
Operation with filter frames is optional.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 377
9.2 Fan monitoring in the fan subassemblies
LEDs
The three red LEDs of the fan subassembly are assigned to the individual fans. From left to
right, these are:
F1 - for fan 1
F2 - for fan 2
F3 - for fan 3
Fans
The fans have a redundant design. The fan subassembly continues to function even if one fan
fails.
Fan monitoring
The function of the fans is controlled by means of speed monitoring. If the speed of a fan drops
below the limit speed of 1750 rpm, the LED assigned to it lights up. In addition, the relay K1
drops out.
If the speed of a second fan drops below the limit speed, the LED assigned to it lights up; in
addition, the relay K2 drops out.
The following table is the function table for the fan monitoring.
Table 9-1 Function of fan monitoring
Fan1 Fan2 Fan3 LED F1 LED F2 LED F3 Relay K1 Relay K2
- - - H H H - -
- - + H H D - -
- + - H D H - -
+ - - D H H - -
- + + H D D - +
+ - + D H D - +
+ + - D D H - +
+ + + D D D + +
-* -* -* D* D* D* -* -*
+
-
D
H
*
Fan in operation or relay picked up
Fan failed or relay dropped out
LED is dark
LED lights up
At power off
Example of a message concept
You can check the fault-free functioning of the fan subassembly using digital inputs.
Cable duct and fan subassemblies
9.2 Fan monitoring in the fan subassemblies
S7-400 Automation System Module Data
378 Reference Manual, Ausgabe 11/2016, A5E00850736-08
You can cause the power supply to be cut off after the failure of at least two fans by using the
relay K2. For example, you can use an intermediate contactor to interrupt the mains.
The relay contacts are labeled as follows:
Relay K1: No. 1 to 3
Relay K2: No. 4 to 6
The following diagram explains the circuit in the fan subassembly when all fans are functioning.
6
5
4
3
2
1
L+
24 V
K1
K2
... to the digital input module
Evaluation
(digital input module)
Evaluation
(digital input module)
to the power supply module
Status: All fans operating
to the mains
in the fan assembly
... to the monitor
... to the monitor
Figure 9-1 Example of a message concept
Cable duct and fan subassemblies
9.2 Fan monitoring in the fan subassemblies
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 379
9.3 Cable duct (6ES7408-0TA00-0AA0)
Function
The cable duct is used when installing outside a cabinet for
clamping cables and/or for
shielding or for
air inlet without fan support
Front view of the cable duct
Eye for
clamping cable
Shield clamp
(Side elevation
Scale 1:1)
Figure 9-2 Front view of the cable duct
Shielding clamps
If you do not require the shielding clamps supplied, do not install them in the cable duct.
Specifications
Dimensions W x H x D (mm) 482.5 x 109.5 x 235
Weight Approx. 1200 g
Cable duct and fan subassemblies
9.3 Cable duct (6ES7408-0TA00-0AA0)
S7-400 Automation System Module Data
380 Reference Manual, Ausgabe 11/2016, A5E00850736-08
9.4 The 120/230 VAC fan subassembly (6ES7408-1TB00-0XA0)
Operator controls and indicators on the 120/230 VAC fan subassembly
230
120
V1, 2, 3
4, 5, 6
230
AC 120/230V
120
120V=250mAT
230V=160mAT
L1
N
N
AC 120/230V
L1
N
Quick-release lock LEDs F1, F2, F3
Relay contact
Relay contact
Voltage
selector
switch
Fuse
case
Voltage
connection
Figure 9-3 Controls and indicators of the fan subassembly 120/230 VAC (6ES7408-1TB00-0XA0)
Fuse
Included in this fan subassembly are standard cartridge fuse links, 5 x 20 mm, conforming to
DIN
250 mAT for 120 V
160 mAT for 230 V.
The fuse for the 230 V range is already installed on shipping from the factory.
Note
If you change the voltage range, you must also insert the fuse for this voltage range in the fan
subassembly. You will find a description of how to change the fuse in the
Installation manual
.
Shielding clamps
If you do not require the shielding clamps supplied, do not install them in the fan subassembly.
Cable duct and fan subassemblies
9.4 The 120/230 VAC fan subassembly (6ES7408-1TB00-0XA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 381
Installation
Follow to the general installation guidelines when mounting the 24 V DC fan subassembly,
see
Installation
manual.
Specifications
Dimensions, weights
Dimensions W x H x D (mm)
Weight
482.5 x 109.5 x 235
Approx. 2000 g
Cable cross-section 0.5 to 2.5 mm² (litz with connector sleeve)
Electrical parameters
Lifespan of the fans at 40 °C Typ. 70 000 h
Max. contact load of relay contacts 1 to 6
Switching voltage 24 VDC
Permitted range Static: 20.4 to 28.8 VDC
Dynamic: 18.5 to 30.2 V
Switching current 200 mA
Voltages, currents, electrical potentials
At nominal voltage of 230 VAC 120 VAC
Voltage range 170 VAC to 264 VAC 85 VAC to 132 VAC
Frequency 47 to 63 Hz 47 to 63 Hz
Power consumption
With fan 17 W 18 W
Without fan 5 W 4 W
Rated current 90 mA 175 mA
Starting current 0.6 A 1.15 A
Fuses Wickmann Series 195 250 V / 160 mA 250 V / 250 mA
WARNING
Contact with electrical current can lead to personal injury.
If you remove the left cover when installing or removing the fan subassembly, the terminals
on the transformer are accessible briefly.
Remove the voltage from the fan subassembly before you install or remove it. Disconnect
the supply cable before you remove the fan subassembly.
Cable duct and fan subassemblies
9.4 The 120/230 VAC fan subassembly (6ES7408-1TB00-0XA0)
S7-400 Automation System Module Data
382 Reference Manual, Ausgabe 11/2016, A5E00850736-08
CAUTION
Danger of damage to equipment.
If you mix up the power supply PCB and the monitoring PCB in the fan subassembly, the fan
subassembly may be damaged.
During maintenance of the unit, make sure you do not mix up the power supply PCB and the
monitoring PCB.
Monitoring function
In the case of a fault (defective fans) the fans are not switched off. Once you have replaced
the defective fan(s), the fault is acknowledged automatically as soon as the fans have reached
the required speed. Any faults that occur are not stored. When you switch on the fan
subassembly, the fans start running. After approximately 10 s the current status of the fans is
indicated via LEDs and relays.
Cable duct and fan subassemblies
9.4 The 120/230 VAC fan subassembly (6ES7408-1TB00-0XA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 383
9.5 The 24 V DC fan subassembly (6ES7408-1TA01-0XA0)
Operator controls and indicators on the 24 VDC fan subassembly
1 AT
1, 2, 3
4, 5, 6
1 AT
Quick-release lock LEDs F1, F2, F3
Relay contact
Relay contact
Fuse
case
Figure 9-4 Controls and indicators of the fan subassembly 24 VDC (6ES7408-1TA00-0XA0)
Features
The 24 VDC fan subassembly has the same construction and functional characteristics as the
120/230 VAC fan subassembly.
Wiring
You connect the 24 VDC fan subassembly to the 24 VDC supply in the same manner as for
the 120/230 VAC fan subassembly. You should note the polarity of the spring connections L+
and L-.
Signaling concept
The signaling concept of the 24 VDC fan subassembly is identical to the signaling concept of
the 120/230 VAC fan subassembly.
Cable duct and fan subassemblies
9.5 The 24 V DC fan subassembly (6ES7408-1TA01-0XA0)
S7-400 Automation System Module Data
384 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Fuse
Included in this fan subassembly are standard cartridge fuse links, 5 x 20 mm, conforming to
DIN
1.0 AT for 24 V
The fuse is already installed on shipping from the factory.
Shielding clamps
If you do not require the shielding clamps supplied, do not install them in the fan subassembly.
Installation
Follow to the general installation guidelines when mounting the 24 V DC fan subassembly,
see
Installation
manual.
Technical specifications
Dimensions, weights
Dimensions W x H x D (mm)
Weight
482.5x 109.5 x 235
Approx. 1600 g
Cable cross-section 0.5 to 2.5 mm² (litz with connector sleeve)
Electrical parameters
Lifespan of the fans at 40 °C Typ. 70 000 h
Maximum contact load of relay contacts 1 to 6
Switching voltage 24 VDC
Permitted range Static 20.4 to 28.8 VDC
Dynamic: 18.5 to 30.2 VDC
Switching current 200 mA
Voltages, currents, electrical potentials
Input voltage
Nominal value 24 VDC
Permissible range Static: 19.2 to 28 V
Rated current 450 mA
Starting current 0.9 A at 24 V
Fuses Wickmann Series 195 250 V / 1.0 AT
Power consumption
With fan 12 W
Without fan 1.4 W
Cable duct and fan subassemblies
9.5 The 24 V DC fan subassembly (6ES7408-1TA01-0XA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 385
CAUTION
Danger of damage to equipment.
If you insert the monitoring PCB in the wrong position in the fan subassembly, the fan
subassembly may be damaged.
During maintenance of the unit, make sure you do not insert the replacement monitoring PCB
in the wrong position.
Monitoring function
In the case of a fault (defective fans) the fans are not switched off. Once you have replaced
the defective fan(s), the fault is acknowledged automatically as soon as the fans have reached
the required speed. Any faults that occur are not stored.
When you switch on the fan subassembly, the fans start running. After approximately 10 s the
current status of the fans is indicated via LEDs and relays.
Cable duct and fan subassemblies
9.5 The 24 V DC fan subassembly (6ES7408-1TA01-0XA0)
S7-400 Automation System Module Data
386 Reference Manual, Ausgabe 11/2016, A5E00850736-08
RS 485 repeater 10
10.1 Introduction
Overview
This section describes the RS 485 repeater in detail.
This includes:
The purpose of the RS 485 repeater
The maximum cable lengths between two RS 485 repeaters
Functions of the various operating elements and terminals
Information about grounded and ungrounded operation
Specifications and the block diagram
Further information
You will find further information on the RS 485 repeater in the section "Configuring of an MPI
or PROFIBUS-DP Network" of the manual
Hardware and Installation
.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 387
10.2 Applications and features (6ES7972-0AA01-0XA0)
Application of the RS 485 repeater
The RS 485 repeater amplifies data signals on bus lines and couples bus segments. You need
an RS 485 repeater for the following situations:
There are more than 32 nodes connected to the bus.
Bus segments should be operated ungrounded on the bus.
The maximum cable length of a segment is exceeded.
Table 10-1 Maximum cable length of a segment
Baud rate Max. cable length of a segment (in m)
9.6 to 187.5 Kbps 1000
500 Kbps 400
1.5 Mbps 200
3 to 12 Mbps 100
Rules
The following applies if you configure the bus with RS 485 repeaters:
No more than 9 RS 485 repeaters can be connected in series.
The maximum cable length between two nodes with RS 485 repeater may not exceed the
values listed in the table below.
Table 10-2 Maximum cable length between two RS 485 repeaters
Baud rate Max. cable length between 2 nodes (in m)
with the RS 485 repeater (6ES7 972-0AA01-0XA0)
9.6 to 187.5 Kbps 10000
500 Kbps 4000
1.5 Mbps 2000
3 to 12 Mbps 1000
RS 485 repeater
10.2 Applications and features (6ES7972-0AA01-0XA0)
S7-400 Automation System Module Data
388 Reference Manual, Ausgabe 11/2016, A5E00850736-08
10.3 Design of the RS 485 repeater (6ES7972-0AA01-0XA0)
Design
The table below shows the design and functions of the RS 485 repeater.
Description and functions of the RS 485 repeater
1
2
3
45
67
8
9
2
10
11
12
DC
24 V L+ M PEM 5.2
SIEMENS
RS 485-REPEATER
ON
A1B1 A1 B1
A2 B2A2 B2
PG
OP
DP2
ON
DP1
(1) Connection for the RS 485 repeater power supply (pin "M5.2" is the ground reference, if you
want to measure the voltage difference between terminals "A2" and "B2").
(2) Shielding clamp for the strain relief and grounding of the bus cable of bus segments 1 or 2
(3) Terminals for the bus cable of bus segment 1
(4) Terminating resistance for bus segment 1
(5) LED for bus segment 1
(6) OFF switch
(= isolate bus segments from each other, for example, for commissioning)
(7) LED for bus segment 2
(8) Terminating resistance for bus segment 2
(9) Terminals for the bus cable of bus segment 2
(10) Slide for mounting and removing the RS 485 repeater on the DIN rail
(11) Interface for PG/OP on bus segment 1
(12) LED 24 V supply voltage
RS 485 repeater
10.3 Design of the RS 485 repeater (6ES7972-0AA01-0XA0)
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 389
10.4 RS 485 repeater in ungrounded and grounded operation
Grounded or ungrounded
The following applies to the RS 485 repeater:
It is grounded, if all other nodes on the segment are also operated on ground potential
It is ungrounded, if all other nodes in the segment are operated with an ungrounded potential
Note
Bus segment 1 is grounded if you connect a programming device with a pure MPI interface
to the PG/OP socket of the RS 485 repeater. The segment is grounded, because the MPI
in the PG is grounded, and the PG/OP socket of the RS 485 repeater is connected internally
with bus segment 1. This does not apply when the programming device has a combination
MPI/DP interface.
Grounded operation of the RS 485 repeater
For grounded operation of the RS 485 repeater, you must jump terminals "M" and "PE" on the
top of the RS 485 repeater.
Ungrounded operation of the RS 485 repeater
For ungrounded operation of the RS 485 repeater, "M" and "PE" on the top of the RS 485
repeater must not be interconnected. In addition, the supply voltage to the RS 485 repeater
must be ungrounded.
Connection scheme
In a repeater configuration with ungrounded reference potential (ungrounded operation), any
interference currents and static charges are discharged to the protective conductor by means
of an RC network integrated in the repeater (refer to the figure below).
1
DC
24 V
L+ M PE M 5.2
A1 B1 A1 B1
M
22 nF 10 MΩ
PE
Figure 10-1 RC network with 10 M Ohm for configuration with ungrounded reference potential
RS 485 repeater
10.4 RS 485 repeater in ungrounded and grounded operation
S7-400 Automation System Module Data
390 Reference Manual, Ausgabe 11/2016, A5E00850736-08
(1) Ground busbar
Electrical isolation between bus segments
Bus segments 1 and 2 are electrically isolated. The PG/OP interface is connected internally
to the port for bus segment 1. The figure below shows the front panel of the RS 485 repeater.
1
2
3
4
DC
24 V L+ M PE M 5.2
SIEMENS
RS 485-REPEATER
ON
A1 B1 A1 B1
A2 B2 A2 B2
PG
OP DP2
OFF
ON
DP1
Figure 10-2 Electrical isolation between the bus segments
(1) Terminals for bus segment 1
(2) Terminals for bus segment 2
(3) Isolation
(4) PG/OP interface
Amplification of bus signals
The amplification of the bus signals takes place between the port for bus segment 1 or the PG/
OP interface and the port for bus segment 2.
RS 485 repeater
10.4 RS 485 repeater in ungrounded and grounded operation
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 391
10.5 Specifications
Specifications of the RS 485 repeater
Specifications
Dimensions W x H x D (mm) 45 x 128 x 67
Power supply
Nominal voltage
Ripple
24 VDC
20.4 to 28.8 VDC
Current consumption at nominal voltage
Without load on PG/OP socket 200 mA
Load on PG/OP socket (5 V/90 mA) 230 mA
Load on PG/OP socket (24 V/100 mA) 200 mA
Isolation Yes, 500 VAC
Connection of fiber-optic conductors Yes, via repeater adapters
Redundancy mode No
Transmission rate (automatically detected by the
repeater)
9.6 Kbps, 19.2 Kbps, 45.45 Kbps, 93.75 Kbps,
187.5 Kbps, 500 Kbps, 1.5 Mbps, 3 Mbps,
6 Mbps, 12 Mbps
Degree of protection IP 20
Weight (including packaging) 350 g
Pin assignment of the sub-D connector (PG/OP socket)
View Pin No. Signal name Designation
9
5
4
3
2
1
8
7
6
1 - -
2 M24V Ground 24 V
3 RxD/TxD-P Data line B
4 RTS Request to send
5 M5V2 Data reference potential (from station)
6 P5V2 Supply plus (from station)
7 P24V 24 V
8 RxD/TxD-N Data line A
9 - -
Block diagram of the RS 485 repeater
Bus segments 1 and 2 are electrically isolated.
Bus segment 2 and the PG/OP socket are electrically isolated from each other.
Signals are amplified
Between bus segments 1 and 2
Between PG/OP socket and bus segment 2
RS 485 repeater
10.5 Specifications
S7-400 Automation System Module Data
392 Reference Manual, Ausgabe 11/2016, A5E00850736-08
5V
24 V
A2
B2
A2'
B2'
A1
B1
A1'
B1'
L+ (24 V)
M
A1
B1
5 V
M5 V
L+ (24 V)
M
PE
M 5.2
Logic
5V
24 V
1M
1M
-+ + - -
OFF
ON
OFF
+
ON
Segment 1 Segment 2
PG/OP-
socket
Figure 10-3 Block diagram of the RS 485 repeater
RS 485 repeater
10.5 Specifications
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 393
RS 485 repeater
10.5 Specifications
S7-400 Automation System Module Data
394 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Parameter sets of signal modules A
A.1 How to assign the parameters for signal modules in the user program
Parameter assignment in the user program
You have already assigned parameters to the modules in STEP 7.
In the user program, you can use an SFC:
To assign new parameters to the module
To transfer the parameters from the CPU to the addressed signal module
Parameters stored in data records
The signal module parameters are stored in data records 0 and 1.
Modifiable parameters
You can edit the parameters of data record 1, and then transfer these to the signal module
using SFC55. The CPU parameters are not changed by this action!
You cannot modify any parameters of data record 0 in the user program.
SFCs for parameter assignment
SFCs available for programming signal modules in the user program:
Table A-1 SFCs for assigning parameters to signal modules
SFC No. Identifier Application
55 WR_PARM Transfer modifiable parameters (data record 1) to the addressed
signal module.
56 WR_DPARM Transfer parameters (data record 0 or 1) from the CPU to the
addressed signal module.
57 PARM_MOD Transfer all parameters (data record 0 and 1) from the CPU to the
addressed signal module.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 395
Description of the parameters
The next chapters describe all modifiable parameters of the various module classes. The
parameters of the signal modules are described:
In the online help of STEP 7
In this reference manual
The sections dealing with the various signal modules also show you the corresponding
configurable parameters.
Further references
An in-depth description of the principle of assigning parameters to signal modules in the user
program and a description of the SFCs that can be used for that purpose will be found in the
STEP 7 manuals.
Parameter sets of signal modules
A.1 How to assign the parameters for signal modules in the user program
S7-400 Automation System Module Data
396 Reference Manual, Ausgabe 11/2016, A5E00850736-08
A.2 Parameters of digital input modules
Parameters
The table below lists the parameters you can set for digital input modules.
The comparison illustrates the parameters you can edit:
In STEP 7
Using SFC 55 "WR_PARM"
The parameters set with STEP 7 can also be transferred with SFCs 56 and 57 to the module
(refer to the STEP 7 manuals).
Table A-2 Parameters of digital input modules
Parameters Data record
number
Parameter assign‐
ment with SFC 55
Parameter assign‐
ment with STEP 7
Destination CPU for interrupt
0
No Yes
Input delay No Yes
Diagnostics No Yes
Hardware interrupt enable
1
Yes Yes
Diagnostics interrupt enable Yes Yes
Reaction to error* Yes Yes
Hardware interrupt at positive edge Yes Yes
Hardware interrupt at negative edge Yes Yes
Enable substitute value "1"* Yes Yes
* Only for 6ES7 421-7BH0x-0AB0
Note
If you want to enable the diagnostic interrupt in the user program in data record 1, you must
enable the diagnostics in data record 0 beforehand using STEP 7.
Structure of data record 1
A data record consists of several bytes, the bits of which can be active or inactive:
7 6 5 4 3 2 1 0
Figure A-1 For example, byte 1 with the bits 0 - 7
The figure below shows the structure of data record 1 (bytes 0, 1, 2 and 3) for the parameters
of digital input modules.
Parameter sets of signal modules
A.2 Parameters of digital input modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 397
You enable a parameter by setting a logical "1" at the corresponding bit.
Table A-3 Data record 1 for parameters of digital input modules
Byte Bit Meaning
Byte 0 7 Hardware interrupt enable
6 Diagnostics interrupt enable
0 Reaction to error1
Byte 1
Hardware interrupt
7 On rising edge at channel 7
6 On rising edge at channel 6
5 On rising edge at channel 5
4 On rising edge at channel 4
3 On rising edge at channel 3
2 On rising edge at channel 2
1 On rising edge at channel 1
0 On rising edge at channel 0
Byte 2
Hardware interrupt
7 On rising edge at channel 15
6 On rising edge at channel 14
5 On rising edge at channel 13
4 On rising edge at channel 12
3 On rising edge at channel 11
2 On rising edge at channel 10
1 On rising edge at channel 9
0 On rising edge at channel 8
Byte 3
Hardware interrupt
7 On falling edge at channel 7
6 On falling edge at channel 6
5 On falling edge at channel 5
4 On falling edge at channel 4
3 On falling edge at channel 3
2 On falling edge at channel 2
1 On falling edge at channel 1
0 On falling edge at channel 0
1 Only for 6ES7 421-7BH0x-0AB0
The following table shows the structure of data record 1 (bytes 4, 5, and 6) for the parameters
of digital input modules.
Parameter sets of signal modules
A.2 Parameters of digital input modules
S7-400 Automation System Module Data
398 Reference Manual, Ausgabe 11/2016, A5E00850736-08
You enable a parameter by setting a logical "1" at the corresponding bit.
Table A-4 Data record 1 for parameters of digital input modules
Byte Bit Meaning
Byte 4 7 On falling edge at channel 15
6 On falling edge at channel 14
5 On falling edge at channel 13
4 On falling edge at channel 12
3 On falling edge at channel 11
2 On falling edge at channel 10
1 On falling edge at channel 9
0 On falling edge at channel 8
Byte 5
Substitute value1
7 Enable substitute value 1 on channel 7
6 Enable substitute value 1 on channel 6
5 Enable substitute value 1 on channel 5
4 Enable substitute value 1 on channel 4
3 Enable substitute value 1 on channel 3
2 Enable substitute value 1 on channel 2
1 Enable substitute value 1 on channel 1
0 Enable substitute value 1 on channel 0
Byte 6
Substitute value1
7 Enable substitute value 1 on channel 15
6 Enable substitute value 1 on channel 14
5 Enable substitute value 1 on channel 13
4 Enable substitute value 1 on channel 12
3 Enable substitute value 1 on channel 11
2 Enable substitute value 1 on channel 10
1 Enable substitute value 1 on channel 9
0 Enable substitute value 1 on channel 8
1 Only for 6ES7 421-7BH0x-0AB0
Parameter sets of signal modules
A.2 Parameters of digital input modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 399
A.3 Parameters of digital output modules
Parameters
The table below contains all parameters you can set for digital output modules. The comparison
shows:
Which parameters you can change with STEP 7 and
Which parameters you can change using SFC 55 "WR_PARM".
The parameters set with STEP 7 can also be transferred with SFCs 56 and 57 to the module
(refer to the STEP 7 manuals).
Table A-5 Parameters of the digital output modules
Parameters Data record
no.
Parameter assignment
with SFC 55
Parameter assignment
with STEP 7
Destination CPU for interrupt 0 No Yes
Diagnostics No Yes
Diagnostics interrupt enable
1
Yes Yes
Reaction to CPU STOP Yes Yes
Enable substitute value "1"* Yes Yes
Note
If you want to enable the diagnostic interrupt in the user program in data record 1, you must
enable the diagnostics in data record 0 beforehand using STEP 7.
Structure of data record 1
The figure below shows the structure of data record 1 (bytes 0, 1 and 2) for the parameters of
digital output modules.
Parameter sets of signal modules
A.3 Parameters of digital output modules
S7-400 Automation System Module Data
400 Reference Manual, Ausgabe 11/2016, A5E00850736-08
You enable a parameter by setting a logical "1" at the corresponding bit.
Table A-6 Data record 1 for parameters of digital output modules
Byte Bit Meaning
Byte 0 7
6 Diagnostics interrupt enable
5
4
3
2
1
0 Reaction to CPU STOP
Byte 1
Substitute
value
7 Enable substitute value 1 on channel 7
6 Enable substitute value 1 on channel 6
5 Enable substitute value 1 on channel 5
4 Enable substitute value 1 on channel 4
3 Enable substitute value 1 on channel 3
2 Enable substitute value 1 on channel 2
1 Enable substitute value 1 on channel 1
0 Enable substitute value 1 on channel 0
Byte 2
Substitute
value
7 Enable substitute value 1 on channel 15
6 Enable substitute value 1 on channel 14
5 Enable substitute value 1 on channel 13
4 Enable substitute value 1 on channel 12
3 Enable substitute value 1 on channel 11
2 Enable substitute value 1 on channel 10
1 Enable substitute value 1 on channel 9
0 Enable substitute value 1 on channel 8
The following table shows the structure of data record 1 (bytes 3, and 4) for the parameters of
digital output modules.
You enable a parameter by setting a logical "1" at the corresponding bit.
Table A-7 Data record 1 for parameters of digital output modules
Byte Bit Meaning
Byte 3*
Substitute
value
7 Enable substitute value 1 on channel 23
6 Enable substitute value 1 on channel 22
5 Enable substitute value 1 on channel 21
4 Enable substitute value 1 on channel 20
3 Enable substitute value 1 on channel 19
2 Enable substitute value 1 on channel 18
1 Enable substitute value 1 on channel 17
0 Enable substitute value 1 on channel 16
Parameter sets of signal modules
A.3 Parameters of digital output modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 401
Byte Bit Meaning
Byte 4*
Substitute
value
7 Enable substitute value 1 on channel 31
6 Enable substitute value 1 on channel 30
5 Enable substitute value 1 on channel 29
4 Enable substitute value 1 on channel 28
3 Enable substitute value 1 on channel 27
2 Enable substitute value 1 on channel 26
1 Enable substitute value 1 on channel 25
0 Enable substitute value 1 on channel 26
* Bytes 3 and 4 are not relevant for SM 421;DO 16 x DC 20-125 V/1.5A
Parameter sets of signal modules
A.3 Parameters of digital output modules
S7-400 Automation System Module Data
402 Reference Manual, Ausgabe 11/2016, A5E00850736-08
A.4 Parameters of analog input modules
Parameters
The table below lists all parameters you can set for analog input modules.
The comparison illustrates the parameters you can edit:
In STEP 7
Using SFC 55 "WR_PARM"
The parameters set with STEP 7 can also be transferred with SFCs 56 and 57 to the module
(refer to the STEP 7 manuals).
Table A-8 Parameters of analog input modules
Parameters Data record
no.
Parameter assignment
with SFC 55
Parameter assignment
with STEP 7
Destination CPU for interrupt
0
No Yes
Measuring method No Yes
Measuring range No Yes
Diagnostics No Yes
Temperature unit No Yes
Temperature coefficient No Yes
Noise suppression No Yes
Smoothing No Yes
Reference junction No Yes
End of cycle interrupt No Yes
Diagnostics interrupt enable 1 Yes Yes
Hardware interrupt enable Yes Yes
Reference temperature 1 Yes Yes
High limit 1 Yes Yes
Low limit 1 Yes Yes
Note
If you want to enable the diagnostic interrupt in the user program in data record 1, you must
enable the diagnostics in data record 0 beforehand using STEP 7.
Structure of data record 1
The figure below shows the structure of data record 1 for the parameters of analog input
modules.
You enable a parameter by setting a logical "1" at the corresponding bit.
Parameter sets of signal modules
A.4 Parameters of analog input modules
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 403
Byte 0
7 6 0
low byte
low byte
high byte
high byte
Byte 63
Byte 64
Byte 65
Byte 66
low byte
low byte
low byte
low byte
high byte
high byte
high byte
high byte
Byte 3
Byte 4
Byte 5
Byte 6
Byte 31
Byte 32
Byte 33
Byte 34
Byte 1
Byte 2 low byte
high byte
Diagnostics interrupt enable
Hardware interrupt enable
Reference Temperature
in 0,01 °C
High limit
Channel 0
Low limit
Channel 0
High limit
Channel 7
Low limit
Channel 7
High limit
Channel 15
Low limit
Channel 15
Figure A-2 Data record 1 for the parameters of analog input modules
Note
The representation of limits and the reference temperature corresponds to the analog value
representation. Observe range limits when setting the limit values.
Parameter sets of signal modules
A.4 Parameters of analog input modules
S7-400 Automation System Module Data
404 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Diagnostic data of signal modules B
B.1 Evaluating diagnostic data of signal modules in the user program
This section
This section describes the diagnostic data structure in system data. You must be familiar with
this configuration if you want to evaluate the diagnostic data of the signal module in the STEP
7 user program.
Diagnostic data stored in data records
Module diagnostic data may have a length of max. 43 bytes, and are contained in data records
0 and 1:
Data record 0 contains 4 bytes of diagnostic data describing the current state of an
automation system.
Data record 1 contains the 4 bytes of diagnostic data that are also contained in data record
0 and as many as 39 bytes of module specific diagnostic data.
Further references
An in-depth description of the principle of evaluating the diagnostic data of signal modules in
the user program and a description of the SFCs that can be used for that purpose will be found
in the STEP 7 manuals.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 405
B.2 Structure and contents of diagnostic data bytes 0 and 1
Overview
The section below describes the structure and content of the various bytes in diagnostic data.
General rule: When an error occurs, the bit concerned is set to "1".
Bytes 0 and 1
Table B-1 Bytes 0 and 1 of diagnostic data
Byte Bit Meaning
Byte 0 7 Incorrect parameter in the module
6 No module parameters
5 Front connector missing
4 External auxiliary voltage missing
3 Channel error
2 External error
1 Internal error
0 Module error
Byte 1 7 0
6 0
5 0
4 Channel information available
3
Module type (see table "Codes of the module types")
2
1
0
Module types
The table below lists the module type IDs (bits 0 to 3 in byte 1).
Table B-2 Codes of the module types
ID Module type
0101 Analog module
0110 CPU
1000 Function module
1100 CP
1111 Digital module
Diagnostic data of signal modules
B.2 Structure and contents of diagnostic data bytes 0 and 1
S7-400 Automation System Module Data
406 Reference Manual, Ausgabe 11/2016, A5E00850736-08
B.3 Diagnostic data of the digital input modules as of byte 2
Overview
The structure and contents of the different bytes of the diagnostic data for special digital input
modules are described below. General rule: When an error occurs, the bit concerned is set to
"1".
You will find a description of possible error causes and appropriate remedies in the section
"Diagnostics of the modules".
Bytes 2 and 3 of the SM 421; DI 16 x DC 24 V
Table B-3 Bytes 2 and 3 of the diagnostic data of the SM 421; DI 16 x DC 24 V
Byte Bit Meaning
Byte 2 7 0
6 0
5 0
4 Module-internal supply voltage failure
3 0
2 Operating mode 0: RUN; 1: STOP
1 0
0 0
Byte 3 7 0
6 Hardware interrupt lost
5 0
4 0
3 0
2 EPROM error
1 0
0 0
Diagnostic data of signal modules
B.3 Diagnostic data of the digital input modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 407
Bytes 4 to 8 of the SM 421; DI 16 x DC 24 V
Table B-4 Bytes 4 to 8 of the diagnostic data of the SM 421; DI 16 x DC 24 V
Byte Bit Meaning
Byte 4 7 0
6 Channel type B#16#70: Digital input
5
4
3
2
1
0
Byte 5 7 Number of diagnostics bits that the module outputs per channel: 8 bits long
0
Byte 6 7 Number of channels of the same type in one module: 16 channels
0
Byte 7 5 Channel error 7
6 Channel error 6
5...
4...
3...
2...
1 Channel error 1
0 Channel error 0
Diagnostic data of signal modules
B.3 Diagnostic data of the digital input modules as of byte 2
S7-400 Automation System Module Data
408 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Byte Bit Meaning
Byte 8 7 Channel error 15
6 Channel error 14
5...
4...
3...
2...
1 Channel error 9
0 Channel error 8
Bytes 9 to 24 of the SM 421; DI 16 x DC 24 V
Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure
below shows the assignment of the diagnostic byte for a channel of the module.
Table B-5 Diagnostic byte for a channel of the SM 421; DI 16 x DC 24 V
Byte Bit Meaning
Bytes 9 - 24 7 0
6 0
5 Sensor supply missing
4 Wire break
3 0
2 0
1 0
0 Configuring/parameter assignment error
Bytes 2 and 3 of the SM 421; DI 16 x UC 24/60 V
Table B-6 Bytes 2 and 3 of the diagnostic data of the SM 421; DI 16 x UC 24/60 V
Byte Bit Meaning
Byte 2 7 0
6 0
5 0
4 0
3 0
2 Operating mode 0: RUN; 1: STOP
1 0
0 0
Diagnostic data of signal modules
B.3 Diagnostic data of the digital input modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 409
Byte Bit Meaning
Byte 3 7 0
6 Hardware interrupt lost
5 0
4 0
3 0
2 EPROM error
1 0
0 0
Bytes 4 to 8 of the SM 421; DI 16 x UC 24/60 V
Table B-7 Bytes 4 to 8 of the diagnostic data of the SM 421; DI 16 x UC 24/60 V
Byte Bit Meaning
Byte 4 7 0
6 Channel type B#16#70: Digital input
5
4
3
2
1
0
Byte 5 7 Number of diagnostics bits that the module outputs per channel: 8 bits long
0
Byte 6 7 Number of channels of the same type in one module: 16 channels
0
Diagnostic data of signal modules
B.3 Diagnostic data of the digital input modules as of byte 2
S7-400 Automation System Module Data
410 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Byte Bit Meaning
Byte 7 7 Channel error 7
6 Channel error 6
5...
4...
3...
2...
1 Channel error 1
0 Channel error 0
Byte 8 7 Channel error 15
6 Channel error 14
5...
4...
3...
2...
1 Channel error 9
0 Channel error 8
Bytes 9 to 24 of the SM 421; DI 16 x UC 24/60 V
Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure
below shows the assignment of the diagnostic byte for a channel of the module.
Table B-8 Diagnostic byte for a channel of the SM 421; DI 16 x DC 24 V
Byte Bit Meaning
Byte 9-24 7 0
6 0
5 0
4 Wire break
3 0
2 0
1 0
0 Configuring/parameter assignment error
Diagnostic data of signal modules
B.3 Diagnostic data of the digital input modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 411
B.4 Diagnostic data of the digital output modules as of byte 2
Overview
The structure and contents of the different bytes of the diagnostic data for special digital output
modules are described below. General rule: When an error occurs, the bit concerned is set to
"1".
You will find a description of possible error causes and appropriate remedies in the section on
the special module.
Bytes 2 and 3 of the SM 422; DO 16 x DC 20-125 V/1.5 A
Table B-9 Bytes 2 and 3 of the diagnostic data of the SM 422; DO 16 x DC 20-125 V/1.5 A
Byte Bit Meaning
Byte 2 7 0
6 0
5 0
4 0
3 0
2 Operating mode 0: RUN; 1: STOP
1 0
0 0
Byte 3 7 0
6 0
5 0
4 0
3 0
2 EPROM error
1 0
0 0
Diagnostic data of signal modules
B.4 Diagnostic data of the digital output modules as of byte 2
S7-400 Automation System Module Data
412 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Bytes 4 and 8 of the SM 422; DO 16 x DC 20-125 V/1.5 A
Table B-10 Bytes 4 to 8 of the diagnostic data of the SM 422; DO 16 x DC 20-125 V/1.5 A
Byte Bit Meaning
Byte 4 7 0
6 Channel type B#16#72: digital output
5
4
3
2
1
0
Byte 5 7 Number of diagnostics bits that the module outputs per channel: 8 bits long
0
Byte 6 7 Number of channels of the same type in one module: 16 channels
0
Byte 7 7 Channel error 7
6 Channel error 6
5...
4...
3...
2...
1 Channel error 1
0 Channel error 0
Diagnostic data of signal modules
B.4 Diagnostic data of the digital output modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 413
Byte Bit Meaning
Byte 8 7 Channel error 15
6 Channel error 14
5...
4...
3...
2...
1 Channel error 9
0 Channel error 8
Bytes 9 and 24 of the SM 421; DO 16 x DC 20-125 V/1.5 A
Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure
below shows the assignment of the diagnostic byte for a channel of the module.
Table B-11 Diagnostic byte for a channel of the SM 422; DO 16 x DC 20-125 V/1.5 A
Byte Bit Meaning
Bytes 9 - 24 7 0
6 External load voltage missing
5 0
4 0
3 Short-circuit to M
2 0
1 0
0 Configuring/parameter assignment error
Bytes 2 and 3 of the SM 422; DO 32 x DC 24 V/0.5 A
Table B-12 Bytes 2 and 3 of the diagnostic data of the SM 422; DO 32 x DC 24 V/0.5 A
Byte Bit Meaning
Byte 2 7 0
6 0
5 0
4 Module-internal supply voltage failure
3 0
2 Operating mode 0: RUN; 1: STOP
1 0
0 0
Diagnostic data of signal modules
B.4 Diagnostic data of the digital output modules as of byte 2
S7-400 Automation System Module Data
414 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Byte Bit Meaning
Byte 3 7 0
6 0
5 0
4 0
3 0
2 EPROM error
1 0
0 0
Bytes 4 to 10 of the SM 422; DO 32 x DC 24 V/0.5 A
Table B-13 Bytes 4 to 10 of the diagnostic data of the SM 422; DO 32 x DC 24 V/0.5 A
Byte Bit Meaning
Byte 4 7 0
6 Channel type B#16#72: digital output
5
4
3
2
1
0
Byte 5 7 Number of diagnostics bits that the module outputs per channel: 8 bits long
0
Byte 6 7 Number of channels of the same type in one module: 32 channels
0
Diagnostic data of signal modules
B.4 Diagnostic data of the digital output modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 415
Byte Bit Meaning
Byte 7 7 Channel error 7
6 Channel error 6
5...
4...
3...
2...
1 Channel error 1
0 Channel error 0
Byte 8 7 Channel error 15
6 Channel error 14
5...
4...
3...
2...
1 Channel error 9
0 Channel error 8
Byte 9 7 Channel error 23
6 Channel error 22
5...
4...
3...
2...
1 Channel error 17
0 Channel error 16
Byte 10 7 Channel error 31
6 Channel error 30
5...
4...
3...
2...
1 Channel error 25
0 Channel error 24
Diagnostic data of signal modules
B.4 Diagnostic data of the digital output modules as of byte 2
S7-400 Automation System Module Data
416 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Bytes 11 to 42 of the SM 422; DO 32 x DC 24 V/0.5 A
Data record 1 contains the channel-specific diagnostic data, starting at bytes 11 to 42. The
figure below shows the assignment of the diagnostic byte for a channel of the module.
Table B-14 Diagnostic byte for a channel of the SM 422; DO 32 x DC 24 V/0.5 A
Byte Bit Meaning
Bytes 11 - 42 7 0
6 External load voltage missing
5 0
4 Wire break
3 Short-circuit to M
2 Short-circuit to L+
1 0
0 Configuring/parameter assignment error
Bytes 2 and 3 of the SM 422; DO 16 x AC 20-120 V/2 A
Table B-15 Bytes 2 and 3 of the diagnostic data of the SM 422; DO 16 x AC 20-120 V/2 A
Byte Bit Meaning
Byte 2 7 0
6 0
5 0
4 0
3 0
2 Operating mode 0: RUN; 1: STOP
1 0
0 0
Byte 3 7 0
6 0
5 0
4 0
3 0
2 EPROM error
1 0
0 0
Diagnostic data of signal modules
B.4 Diagnostic data of the digital output modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 417
Bytes 4 to 8 of the SM 422; DO 16 x AC 20-120 V/2 A
Table B-16 Bytes 4 to 8 of the diagnostic data of the SM 422; DO 16 x AC 20-120 V/2 A
Byte Bit Meaning
Byte 4 7 0
6 Channel type B#16#72: digital output
5
4
3
2
1
0
Byte 5 7 Number of diagnostics bits that the module outputs per channel: 8 bits long
0
Byte 6 7 Number of channels of the same type in one module: 16 channels
0
Byte 7 7 Channel error 7
6 Channel error 6
5...
4...
3...
2...
1 Channel error 1
0 Channel error 0
Diagnostic data of signal modules
B.4 Diagnostic data of the digital output modules as of byte 2
S7-400 Automation System Module Data
418 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Byte Bit Meaning
Byte 8 7 Channel error 15
6 Channel error 14
5...
4...
3...
2...
1 Channel error 9
0 Channel error 8
Bytes 9 to 24 of the SM 422; DO 16 x AC 20-120 V/2 A
Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure
below shows the assignment of the diagnostic byte for a channel of the module.
Table B-17 Diagnostic byte for a channel of the SM 422; DO 16 x AC 20-120 V/2 A
Byte Bit Meaning
Bytes 9 - 24 7 0
6 0
5 Fuse blown
4 0
3 0
2 0
1 0
0 Configuring/parameter assignment error
Diagnostic data of signal modules
B.4 Diagnostic data of the digital output modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 419
B.5 Diagnostic data of the analog input modules as of byte 2
Overview
The structure and contents of the different bytes of the diagnostic data for the special analog
input modules are described below. General rule: When an error occurs, the bit concerned is
set to "1".
You will find a description of possible error causes and appropriate remedies in the section on
the special module.
Bytes 2 and 3 of the SM 431; AI 16 x 16 bit
Table B-18 Bytes 2 and 3 of the diagnostic data of the SM 431; AI 16 x 16 bit
Byte Bit Meaning
Byte 2 7 0
6 0
5 0
4 0
3 0
2 Operating mode 0: RUN; 1: STOP
1 0
0 Measuring range module incorrect or missing
Byte 3 7 0
6 Hardware interrupt lost
5 0
4 ADC/DAC error
3 RAM error
2 EPROM error
1 0
0 0
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
420 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Bytes 4 to 8 of the SM 431; AI 16 x 16 bit
Table B-19 Bytes 4 to 8 of the diagnostic data of the SM 431; AI 16 x 16 bit
Byte Bit Meaning
Byte 4 7 0
6 Channel type B#16#71: Analog input
5
4
3
2
1
0
Byte 5 7 Number of diagnostics bits that the module outputs per channel: 8 bits long
0
Byte 6 7 Number of channels of the same type in one module: 16 channels
0
Byte 7 7 Channel error 7
6 Channel error 6
5...
4...
3...
2...
1 Channel error 1
0 Channel error 0
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 421
Byte Bit Meaning
Byte 8 7 Channel error 15
6 Channel error 14
5...
4...
3...
2...
1 Channel error 9
0 Channel error 8
Bytes 9 to 24 of the SM 431; AI 16 x 16 bit
Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure
below shows the assignment of the diagnostic byte for a channel of the module.
Table B-20 Diagnostic byte for a channel of the SM 431; AI 16 x 16 bit
Byte Bit Meaning
Byte 9-24 7 Overflow
6 Underflow
5 Reference channel error
4 Wire break
3 Short-circuit to M
2 0
1 0
0 Configuring/parameter assignment error
Bytes 2 and 3 of the SM 431; AI 8 x RTD x 16 bit
Table B-21 Bytes 2 and 3 of the diagnostic data of the SM 431; AI 8 x RTD x 16 bit
Byte Bit Meaning
Byte 2 7 0
6 0
5 0
4 0
3 0
2 Operating mode 0: RUN; 1: STOP
1 0
0 0
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
422 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Byte Bit Meaning
Byte 3 7 0
6 Hardware interrupt lost
5 0
4 ADC/DAC error
3 0
2 EPROM error
1 0
0 0
Bytes 4 and 7 of the SM 431; AI 8 x RTD x 16 bit
Table B-22 Bytes 4 to 7 of the diagnostic data of the SM 431; AI 8 x RTD x 16 bit
Byte Bit Meaning
Byte 4 7 0
6 Channel type B#16#71: Analog input
5
4
3
2
1
0
Byte 5 7 Number of diagnostics bits that the module outputs per channel: 16 bits long
0
Byte 6 7 Number of channels of the same type in one module: 8 channels
0
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 423
Byte Bit Meaning
Byte 7 7 Channel error 7
6 Channel error 6
5...
4...
3...
2...
1 Channel error 1
0 Channel error 0
Bytes 8 and 23 of the SM 431; AI 8 x RTD x 16 bit
Data record 1 contains the channel-specific diagnostic data, starting at bytes 8 to 23. The
following table shows the assignment of the even diagnostic bytes (bytes 8, 10, to 22) for a
channel of the module.
Table B-23 Even diagnostic byte for a channel of the SM 431; AI 8 x RTD x 16 bit
Byte Bit Meaning
Byte 8-23
even
7 Overflow
6 Underflow
5 0
4 Wire break
3 0
2 0
1 0
0 Configuring/parameter assignment error
The following table shows the assignment of the odd diagnostic bytes (bytes 9, 11, to 23) for
a channel of the module.
Table B-24 Odd diagnostic byte for a channel of the SM 431; AI 8 x RTD x 16 bit
Byte Bit Meaning
Byte 8-23
odd
7 User calibration does not correspond to the parameter assignment
6 Open conductor in the current source
5 0
4 Underrange or overrange
3 Run time calibration error
2 Open conductor in - direction
1 Open conductor in + direction
0 User connection not wired
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
424 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Bytes 2 and 3 of the SM 431; AI 8 x 16 bit
Table B-25 Bytes 2 and 3 of the diagnostic data of the SM 431; AI 8 x 16 bit
Byte Bit Meaning
Byte 2 7 0
6 0
5 0
4 0
3 0
2 Operating mode 0: RUN; 1: STOP
1 0
0 Thermocouple connection error
Byte 3 7 0
6 Hardware interrupt lost
5 0
4 ADC/DAC error
3 RAM error
2 EPROM error
1 0
0 0
Bytes 4 to 7 of the SM 431; AI 8 x 16 bit
Table B-26 Bytes 4 to 7 of the diagnostic data of the SM 431; AI 8 x 16 bit
Byte Bit Meaning
Byte 4 7 0
6 Channel type B#16#71: Analog input
5
4
3
2
1
0
Byte 5 7 Number of diagnostics bits that the module outputs per channel: 16 bits long
0
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 425
Byte Bit Meaning
Byte 6 7 Number of channels of the same type in one module: 8 channels
0
Byte 7 7 Channel error 7
6 Channel error 6
5 ......
4 ......
3 ......
2 ......
1 Channel error 1
0 Channel error 0
Bytes 8 to 23 of the SM 431; AI 8 x 16 bit
Data record 1 contains the channel-specific diagnostic data, starting at bytes 8 to 23. The
following table shows the assignment of the even diagnostic bytes (bytes 8, 10, to 22) for a
channel of the module.
Table B-27 Even diagnostic byte for a channel of the SM 431; AI 8 x 16 bit
Byte Bit Meaning
Bytes 8-23
even
7 Overflow
6 Underflow
5 Reference channel error
4 Wire break
3 0
2 0
1 0
0 Configuring/parameter assignment error
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
426 Reference Manual, Ausgabe 11/2016, A5E00850736-08
The following table shows the assignment of the odd diagnostic bytes (bytes 9, 11, to 23) for
a channel of the module.
Table B-28 Odd diagnostic byte for a channel of the SM 431; AI 8 x 16 bit
Byte Bit Meaning
Byte 8-23
odd
7 User calibration does not correspond to the parameter assignment
6 0
5 0
4 0
3 Runtime calibration error
2 0
1 0
0 0
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 427
Diagnostic data of signal modules
B.5 Diagnostic data of the analog input modules as of byte 2
S7-400 Automation System Module Data
428 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Accessories and spare parts C
C.1 Accessories and spare parts
Accessories and spare parts
Accessories - spare parts Order number
For racks
Number wheel for slot labeling C79165-Z1523-A22
Spare slot covers (qty 10) 6ES7490-1AA00-0AA0
For power supplies
Spare connector for PS 405 (DC) 6ES7490-0A00-0AA0
Spare connector for PS 407 (AC) 6ES7490-0AB00-0AA0
Backup battery 6ES7971-0BA00
For digital modules/analog modules
Cover foil (10 x) for labeling strips of the SMs 6ES7492-2XX00-0AA0
Cover flap for fuse receptacle on the AC modules 6ES7422-0XX00-7AA0
Measuring range module for analog modules 6ES7974-0AA00-0AA0
Front connector screw-type connection 6ES7492-1AL00-0AA0
Front connector spring connection 6ES7492-1BL00-0AA0
Front connector crimp connection 6ES7492-1CL00-0AA0
Panel for front connector, 5 pieces 6ES7492-2XL00-0AA0
Crimping tool for crimp contacts 6XX3 071
Crimp contacts (package of 250) 6XX3 070
Extraction tool for crimp contacts 6ES5 497-8MA11
Fuses, 8 A, quick blow
Wickmann 194-1800-0
Schurter SP001.1013
Littelfuse 217.008
Labeling sheet for the front connector, petrol blue 6ES7492-2AX00-0AA0
Labeling sheet for the front connector, light 6ES7492-2BX00-0AA0
Labeling sheet for the front connector, yellow 6ES7492-2CX00-0AA0
Labeling sheet for the front connector, red 6ES7492-2DX00-0AA0
For IMs
Terminator for IM 461–0 6ES7461-0AA00-7AA0
Terminator for IM 461–3 6ES7461-3AA0-7AA0
Terminator for IM 461–4 6ES7461-4AA00-7AA0
IM 463-, send IM, 600 m to IM 314 of the S5 6ES7463-2AA00-0AA0
IM cable with communication bus, 0,75 m 6ES7468-1AH50-0AA0
IM cable with communication bus, 1.5 m 6ES7468-1BB50-0AA0
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 429
Accessories - spare parts Order number
IM cable with communication bus, 5 m 6ES7468-1BF00-0AA0
IM cable with communication bus, 10 m 6ES7468-1CB00-0AA0
IM cable with communication bus, 25 m 6ES7468-1CC50-0AA0
IM cable with communication bus, 50 m 6ES7468-1CF00-0AA0
IM cable with communication bus, 100 m 6ES7468-1DB00-0AA0
IM cable with current transmission, 0,75 m 6ES7468-3AH50-0AA0
IM cable with current transmission, 1.5 m 6ES7468-3BB50-0AA0
Package with plug adapters for IM 467 FO 6ES7195-1BE00-0XA0
Package with simplex plugs and polishing set for IM 467 FO 6GK1901-0FB00-0AA0
For interfacing / networking
Standard mounting rail 35 mm 6ES5710-8MA...
PROFIBUS 6XV1830-0BH10
6XV1830-3BH10
PROFIBUS 6XV1830-0BH10
PROFIBUS 6XV1830-3BH10
PROFIBUS bus connector without PG socket 6ES7972-0BA00-0XA0
PROFIBUS bus connector with PG socket 6ES7972-0BB10-0XA0
PROFIBUS bus connector without PG socket, with angled cable out‐
let
6ES7972-0BA40-0X40
PROFIBUS bus connector with PG socket, with angled cable outlet 6ES7972-0BB40-0X40
PROFIBUS RS 485 bus terminal 6GK1500-0AA00
6GK1500-0AB00
6GK1500-0DA00
PC/MPI cable (5 m) 6ES7901-2BF00-0AA0
For fan subassembly
Spare fan for fan subassembly 6ES7408-1TA00-6AA0
Filters (qty 10) for fan subassembly 6ES7408-1TA00-7AA0
Monitoring PCB for fan subassembly 6ES7408-1TX00-6XA0
Power supply PCB for fan subassembly 6ES7408-1XX00-6XA0
Cabinets
Cabinet 2200 x 800 x 400 with extension set for SIMATIC S7- 8MC 2281-7FC11-8DA1
Extension set for SIMATIC S7- 8MC 1605–BS70–AA0
Cables for printers with
Cable for interface module
1 m 6ES7368-3BB00-0AA0
2.5 m 6ES7368-3BC00-0AA0
5 m 6ES7368-3BF00-0AA0
10 m 6ES7368-3CB00-0AA0
Connector housing, gray
9-pin V42254-A6000-G109
15-pin V42254-A6000-G115
25-pin V42254-A6000-G125
Connector housing, black
Accessories and spare parts
C.1 Accessories and spare parts
S7-400 Automation System Module Data
430 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Accessories - spare parts Order number
9-pin V42254-A6001-G309
15-pin V42254-A6001-G315
25-pin V42254-A6001-G325
Accessories and spare parts
C.1 Accessories and spare parts
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 431
Accessories and spare parts
C.1 Accessories and spare parts
S7-400 Automation System Module Data
432 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Directive on handling electrostatic sensitive devices
(ESD) D
D.1 ESD: What are the directives for handling electrostatic sensitive
devices?
Definition
All electronic modules are equipped with large-scale integrated ICs or components. Due to
their design, these electronic components are highly sensitive to overvoltage, and thus to any
electrostatic discharge.
These Electrostatic Sensitive Devices/Modules are commonly abbreviated ESD.
Electrostatic sensitive devices are labeled with the following symbol:
CAUTION
Electrostatic sensitive devices can be destroyed by voltages far below the level perceived by
human beings. These voltages are generated when you touch a component or electrical
connections of a module without having discharged your body. In most cases, the damage
caused by overvoltage is not evident immediately, and results in damage only after a
prolonged period of operation.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 433
D.2 Electrostatic charging of persons
Electrostatic charging
Any person with a non-conductive connection to the electrical potential of its surroundings may
be exposed to electrostatic charge.
The figure shows the maximum electrostatic voltage which may build up on a person coming
into contact with the materials indicated. These values are in conformity with the specifications
of IEC 61000-4-2.
1
2
3
4
5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(kV)
5 10 20 30 40 50 60 70 80 90 100
Figure D-1 Electrostatic voltages which can build up on a person
(1) Voltage in kV
(2) Synthetic material
(3) Wool
(4) Antistatic materials, such as wood or concrete
(5) Relative air humidity in %
Directive on handling electrostatic sensitive devices (ESD)
D.2 Electrostatic charging of persons
S7-400 Automation System Module Data
434 Reference Manual, Ausgabe 11/2016, A5E00850736-08
D.3 Basic protective measures against electrostatic discharge
Ensure sufficient grounding
Make sure all persons, workplaces and packaging are sufficiently grounded when ESD
components are being handled. This prevents electrostatic charging.
Avoid direct contact
You should only touch ESD components if this is unavoidable (for example, during
maintenance work). Handle the modules without touching any chip pins or PCB traces. In this
way, the discharged energy can not affect the sensitive devices.
Discharge your body before you start taking any measurements on a module. Do so by
touching grounded metallic parts. Always use grounded measuring instruments.
Directive on handling electrostatic sensitive devices (ESD)
D.3 Basic protective measures against electrostatic discharge
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 435
Directive on handling electrostatic sensitive devices (ESD)
D.3 Basic protective measures against electrostatic discharge
S7-400 Automation System Module Data
436 Reference Manual, Ausgabe 11/2016, A5E00850736-08
List of abbreviations E
E.1 List of abbreviations
List of abbreviations
Abbreviations Explanations
AC Alternating current
ADC Analog-to-digital converter
AI Analog input
AO Analog output
AS Automation system
STL Statement list (type of representation in STEP 7)
BAF Battery failure
BUS1F; BUS2F LED bus failure on the MPI/PROFIBUS DP interface 1 or 2
CH Channel
COMP Compensation circuit
CP Communications processor
CPU Central processing unit of the PLC
CR Central rack
DAC Digital-to-analog converter
DB Data block
DC Direct current
DI Digital input
DO Digital output
ESD Electrostatic sensitive device
EMC Electromagnetic compatibility
EEPROM Electrically erasable programmable read-only memory
EPROM Erasable programmable read-only memory
ER Expansion rack
ID Input delay
SV Set substitution value
EXM Extension module
EXTF Error LED "external fault"
FB Function block
FC Function
FEPROM Flash erasable programmable read-only memory
FM Function module
FRCE Fiber-optic cable
FC Function block diagram
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 437
Abbreviations Explanations
GD Global data communication
ES Sensor supply
IC Constant-current line
IFM1F; IFM2F LED error at interface module 1/2
IM Interface module
INTF Error LED "internal fault"
IP Intelligent I/O
L+ Terminal for 24 VDC supply voltage
HLV KLV
FOC Fiber-optic cable
LAD Ladder logic diagram
M Chassis ground
M+ Measuring line (positive)
M- Measuring line (negative)
MANA Reference potential of the analog measuring circuit
MPI Multipoint interface
MRES Master reset position of the toggle switch for general reset of the CPU
MSTR Master
OB Organization block
OP Operator panel
OS Operator system
PIO Process image of outputs
PII Process image of inputs
PG Programming device
PS Power supply
QI: Analog output current
QV: Analog output voltage
RAM Random access memory
REDF Redundancy fault
RL: Load impedance
S + Sensing line (positive)
S- Sensing line (negative)
SCL Structured control language
SFB System function block
SFC System function
SM Signal module
PLC Programmable logic controller
SSL Signal module
TD HMI (text display)
SSL Transducer
UC Universal current
TD Universal rack
UCM Common mode voltage
List of abbreviations
E.1 List of abbreviations
S7-400 Automation System Module Data
438 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Abbreviations Explanations
UH: Auxiliary voltage
Uiso Potential difference between MANA and local ground
USR User
Vs Sensor voltage
Sign Sign
CR Central rack
List of abbreviations
E.1 List of abbreviations
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 439
List of abbreviations
E.1 List of abbreviations
S7-400 Automation System Module Data
440 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Glossary
2-conductor/3-conductor/4-conductor connection
Method of connecting to the module, for example, connecting resistance thermometers or
resistors to the front connector of the analog module or loads to the voltage output of an analog
output module.
2-wire transducer/4-wire transducer
Type of transducer (2-wire transducer: Power supply via terminals of the
analog input module; 4-wire transducer: power supply via separate connectors of the
transducer)
Address
An address identifies a specific operand or range of operands, examples: input I 12.1; memory
word MW25; data block DB3.
Automation system
An automation system is a programmable controller comprising a central rack, a CPU and
various input/output modules.
Backplane bus
The backplane bus is a serial data bus over which modules communicate with each other and
over which they are supplied with the necessary voltage. The connection between modules is
established by bus connectors.
Backup battery
The backup battery ensures that the → user program on the → CPU is not lost in the event of
a power failure and that defined data areas, bit memory, timers, and counters are also retained.
Backup voltage, external
The same backup can be achieved as with a backup battery if a backup voltage (direct voltage
between 5 V and 15 V) is applied to the "EXT.-BATT." socket of the CPU.
The external backup voltage is required to replace a power supply module if the user program
and data stored in a RAM (for example, bit memory, timers, counters, system data, integrated
clock) needs to be backed up while the module is exchanged.
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 441
Basic error limit
The basic error limit represents the operational limit at 25° C relative to the nominal range of
the analog module.
Baud rate
Speed of the data transmission (bps)
Central rack
An S7-400 consists of a central rack (CR) to which expansion racks (ER) can be assigned.
The central rack is the rack containing the → CPU.
Cold restart
→ Hot restart of the automation system and its user program after all dynamic data (variables
of the input/output image, internal registers, timers, counters etc. and their program sections)
have been reset to a predefined value.
A cold start can be triggered automatically (for example following power outage, loss of
information in the dynamic memory areas etc.).
Common mode voltage
Voltage common to all terminals of a group and that is measured between this group and any
reference point (usually ground).
Communication load
Load on cyclic program execution of a CPU caused by communication activities (PROFIBUS-
DP).
To prevent communication activities putting too much load on program execution, it is possible
to set the maximum permitted cycle load caused by communication in the parameter
assignment in STEP 7.
Communications processor
Programmable module for communication tasks, for example, point-to-point links.
Compensating box
Compensating boxes can be used when measuring temperatures with thermoelements
connected to analog input modules. The compensating box is a circuit for compensating
temperature fluctuations at the → reference junction.
Glossary
S7-400 Automation System Module Data
442 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Constant bus cycle time
Constant bus cycle time means a DP bus cycle accurate to a few microseconds that can be
configured in STEP 7.
CP
→ Communications processor
Data block
Data blocks (DBs) are data areas in the user program that contain user data. There are shared
data blocks that can be accessed by all logic blocks and there are instance data blocks
assigned to a specific FB call.
Declaration
Definition of variables (for example parameters or local data of a block) with name, data type,
comment etc.
Default (setting)
The default is a practical basic setting that is always used when no other value is specified.
Destruction limit
Limit of the permitted input voltage/current. If this limit is exceeded, the measurement accuracy
can deteriorate. If the destruction limit is exceeded considerably, the internal measuring
circuitry can be destroyed.
Diagnostic buffer
The diagnostic buffer is a buffered memory area on the CPU in which the diagnostic events
are entered in the order in which they occur.
The user can read the precise cause of the problem from the diagnostic buffer with STEP 7
(PLC -> Module Information menu command) and start troubleshooting measures.
Diagnostic data
All diagnostic events that occur are collected on the CPU and entered in the → diagnostic
buffer. If an error OB exists, this is started.
Diagnostic interrupt
Diagnostics-compliant modules signal detected system errors to the → CPU using diagnostic
interrupts. If a diagnostic interrupt occurs, the CPU calls OB82.
Glossary
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 443
Diagnostics
Generic term for system diagnostics, process fault diagnostics and user-defined diagnostics.
Direct data exchange
Direct data exchange is sometimes also known as direct communication. In direct data
exchange, local input address areas of an intelligent DP slave (for example, CPU 315-2 with
PROFIBUS DP attachment) or a DP master are assigned to a PROFIBUS DP partner. The
intelligent DP slave or the DP master receives the input data that the PROFIBUS DP partner
sends to its DP master via these assigned input address areas.
DP master
A node with master functionality in PROFIBUS DP. A master that conforms to IEC
61784-1:2002 Ed1 CP 3/1 with the DP protocol is known as a DP master. The token allowing
access to the bus is always passed on among the masters. The slaves, in this case DP slaves,
can only react when requested to by a master. The following distinction must be made:
DP master (class 1): handles user data exchange with the DP slaves assigned to it.
DP master (class 2): Provides services such as: reading input/output data, diagnostics, global
control.
DP slave
A → slave operated on PROFIBUS with the PROFIBUS DP protocol is known as a DP slave.
Equipotential bonding
An electrical connection (equipotential bonding conductor) that ties parts of electrical
equipment and extraneous conductive parts to the same or approximately the same potential
to prevent disturbing or dangerous voltages between these parts.
FB
→ Function block
FC
→ Function
Fiber-optic cable
The "force" function overwrites a variable (for example, memory bit, output) with a value defined
by the user.
At the same time, the variable is write-protected so that the value cannot be modified from any
other location (it cannot, for example, be overwritten by the user program). After removing the
programming device, this value is retained.
Glossary
S7-400 Automation System Module Data
444 Reference Manual, Ausgabe 11/2016, A5E00850736-08
The write-protection is canceled only after invoking the "unforce" function, following which the
variable can once again be written with the value set by the user program.
The "force" function can, for example, be used during commissioning to set specific outputs
to the "ON" state for any length of time even if the logic operation in the user program is not
true (due to missing wiring at inputs).
A fiber-optic cable is a transmission medium made of glass or plastic fiber. Fiber-optic cables
are insensitive to electromagnetic interference and allow high data transmission rates.
Fiber-optic cable
The "force" function overwrites a variable (for example, memory bit, output) with a value defined
by the user.
At the same time, the variable is write-protected so that the value cannot be modified from any
other location (it cannot, for example, be overwritten by the user program). After removing the
programming device, this value is retained.
The write-protection is canceled only after invoking the "unforce" function, following which the
variable can once again be written with the value set by the user program.
The "force" function can, for example, be used during commissioning to set specific outputs
to the "ON" state for any length of time even if the logic operation in the user program is not
true (due to missing wiring at inputs).
A fiber-optic cable is a transmission medium made of glass or plastic fiber. Fiber-optic cables
are insensitive to electromagnetic interference and allow high data transmission rates.
Floating
In the case of floating I/O modules, the reference potentials of the control and load circuits are
electrically isolated from each other, for example, by optocouplers, relay contacts, or
transformers. The I/O circuits can be connected to a common potential.
FREEZE
Control command, inputs of the → DP slaves are frozen at their current values.
Function
According to IEC 1131-3, a function (FC) is a → logic block without → static data. A function
allows parameter passing in the user program. This makes them suitable for programming
commonly recurring complex functions such as calculations.
Function block
According to IEC 1131-3, a function block (FB) is a → logic block with → static data. An FB has
"memory" so that it is possible to access its parameters (for example outputs) from any part
of the user program.
Glossary
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 445
Functional grounding
Grounding with the sole purpose of ensuring the intended function of the electrical equipment.
Functional grounding, short-circuits interfering voltages that would otherwise have an
unacceptable influence on the equipment.
Fuse blown
Parameter in STEP 7 for digital output modules. When the parameter is enabled, the blowing
of one or more fuses is detected by the module. With suitable parameter assignment, a →
diagnostic interrupt is triggered.
Grounding
Grounding means connecting an electrically conductive part to the ground electrode (one or
more conductive parts that make good contact with ground) via a grounding system.
Hardware interrupt
A hardware interrupt is triggered by interrupt-triggering modules due to a particular event in
the process (violation of a limit value, module has completed the cyclic conversion of its
channels).
The hardware interrupt is signaled to the CPU. In keeping with the priority of this interrupt, the
corresponding → organization block is then executed.
Hold last value (HLV)
The module retains the last value output prior to changing to STOP mode.
Hot restart
When a CPU starts up (for example as a result of activating the mode selector or turning on
the power), cyclic program execution (OB1) initially processes either OB101 (hot restart),
OB100 (cold restart: hot restart) or OB102 (cold restart). Backup of the CPU is absolutely
necessary for a hot restart.
The following applies: all data areas (timers, counters, memory bits, data blocks) and their
content are retained. The → process image of the inputs is read in and the execution of the
STEP 7 user program is continued from the point at which it was last stopped (STOP, power
down).
The other startup modes available are → cold restart and → warm restart.
I/O bus
Part of the → backplane bus in the automation system optimized for fast exchange of signals
between the CPU or CPUs and the signal modules.
Useful data (for example, digital input signals of a signal module) and system data (for example
default parameter data records of a signal module) is transferred over the I/O bus.
Glossary
S7-400 Automation System Module Data
446 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Input delay
Parameter in STEP 7 for digital input modules. The input delay is used to suppress coupled
interference. Spurious pulses of 0 ms up to the selected input delay are suppressed.
The selected input delay is subject to a tolerance that can be found in the technical
specifications of the module. A high input delay suppresses longer spurious pulses, a lower
delay suppresses shorter spurious pulses.
The permitted input delay depends on the length of the cable between sensor and module. If,
for example, there are long unshielded cables to the sensor (over 100 m), a high input delay
must be set.
Integration time
The integration time is the reciprocal of the → interference frequency suppression in ms.
Interrupt
SIMATIC S7 recognizes 28 different priority classes that control the execution of the
user program. These priority classes include interrupts, such as hardware interrupts. When an
interrupt occurs, the operating system automatically calls an assigned organization block in
which the user can program the required reaction (for example, in an FB).
Interrupt reaction time
The interrupt reaction time is the time from the first occurrence of an interrupt signal to
executing the first statement in the interrupt OB. General rule: Higher priority interrupts are
serviced first. This means that the interrupt reaction time is extended by the program execution
time of the higher priority interrupts and interrupts with the same priority that were called earlier
(queue).
Linearity error
The linearity error indicates the maximum deviation of the measured/output value from the
ideal linear relationship between measured/output signal and digital value. This is specified as
a percentage related to the nominal range of the analog module.
Load memory
The load memory is part of a programmable module (CPU, CP). It contains the objects
generated by the programming device (local objects). It is implemented either as a plug-in
memory card or as integrated memory.
Local data
Local data is the data assigned to a → logic block that is declared in its → declaration section
or in its variable declaration. It includes the following (block-specific): Formal parameters,
→ static data, → temporary data.
Glossary
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 447
Measuring principle, instantaneous value encoding
A module with instantaneous value encoding is always used for extremely fast measurement
methods or for values that change very quickly. With this technique, the module accesses the
variable to be measured as quickly as possible and returns an instantaneous recording of the
signal at a specific time. It should be remembered that due to this measurement method, the
modules are more "sensitive" than the modules using the integrating method. As a result,
interference affecting the measured value can lead to falsification. When using these modules,
you should make sure that the measurement signal is "clean", for example by adhering to the
installation instructions.
Measuring principle, integrating
A module with an integrating measurement technique is always used for measurements that
are not time-critical. The integration time is inversely proportional to the network frequency.
You set the network frequency in STEP 7 and this results in the integration time. At a network
frequency of 50 Hz, the integration time is 20 ms or even multiples of 20 ms. Since the
measured value is integrated over exactly this period, at least one or more entire periods of
the network frequency that may be superimposed on the measurement signal are also
recorded. The mean value of the interference is therefore integrated to zero (positive
component of the first half period = negative component of the second half period) and, as a
result of the principle, only the useful signal is detected.
Measuring range module
Measuring range submodules are plugged onto analog input modules to adapt them to various
measuring ranges.
Memory reset
During a memory reset, the following memory areas of the CPU are erased: Work memory,
write/read area of the load memory, system memory.
The MPI parameters and the diagnostic buffer are retained.
Mode
Mode means the following:
1. The mode in which the CPU operates as set by the mode selector or using a PG
2. The type of program execution on the CPU
Mode selector
Using the mode selector, the user can set the current mode of the CPU (RUN, STOP) or reset
the memory of the CPU (MRES).
Glossary
S7-400 Automation System Module Data
448 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Noise suppression
Parameter in STEP 7 for analog input modules. The frequency of the alternating voltage power
supply can interfere with the measured value, in particular when measuring small voltage
ranges and with thermoelements. With this parameter, the user specifies the predominant
power supply frequency in the system.
Non-isolated
With non-floating input/output modules, the reference potentials of the control and load circuits
are electrically interconnected.
Operating state
The automation systems of SIMATIC S7 recognize the following operating modes or simply
modes: STOP, → STARTUP, RUN and HOLD.
Operational limit
The operational limit is the measurement or output error of the analog module throughout the
entire temperature range related to the nominal range of the analog module.
Parameters
1. Variables of a → logic block
2. Variable for setting the properties of a module (one or more per module). When shipped,
every module has practical basic parameter settings that the user can modify in STEP 7.
Point-to-point link
On a point-to-point link, only two nodes are physically linked to each other. This type of
communications link is used when the use of a communication network is not practical or when
different types of nodes need to be connected (for example, PLC with process computer).
Priority class
The S7 CPU operating system provides up to 28 priority classes (= program execution levels"),
for example for cyclic program execution, hardware interrupt-controlled program execution.
Each priority class is assigned to → organization blocks in which the user can program a
reaction. The OBs have different default priorities and if the OBs are called at the same time,
the priority decides which executes first and which can interrupt another. The default priorities
can be modified by the user.
Process image
The signal states of the digital input and output modules are entered in a process image on
the CPU.
Glossary
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 449
A distinction is made between the process image of the inputs and the outputs. The process
image of the inputs (PII) is read from the input modules by the operating system prior to
execution of the user program. The process image of the outputs (PIQ) is transferred to the
output modules by the operating system on completion of program execution.
Product version
The product version distinguishes products with the same order number. The product version
is incremented when upwards-compatible functional enhancements are made, when there are
modifications relating solely to production (use of new components) and when bugs are fixed.
PROFIBUS DP
Digital, analog and intelligent modules, along with a wide range of field devices complying with
IEC 61784-1:2002 Ed1 CP 3/1, such as drives or valve clusters are moved away from the
automation system to the local process over distances of up to 23 km.
The modules and field devices are interconnected with the automation system over the
PROFIBUS DP Fieldbus and are addressed in the same way as centralized I/O.
Programming device
A programming device (PG) is a personal computer with a special compact design, suitable
for industrial conditions. A programming device is completely equipped for programming the
SIMATIC automation systems.
RC element
Connection of ohmic resistor and capacitor in series. When a consumer is turned off, an
overvoltage occurs in circuits with an inductive load that can cause an electric arc and can
reduce the life of the contacts. To extinguish this electric arc, the contact can be bridged by
an RC element.
Reaction time
The reaction time is the time from detecting an input signal to changing the output signal
associated with it.
The actual reaction time is between a longest and a shortest reaction time. When configuring
a plant, the longest reaction time must always be assumed.
Reference channel error
Parameter in STEP 7 for analog input modules. This parameter enables the error group
message of the reference junction when using thermoelements. A reference channel error
occurs when using thermoelements:
When a fault occurs (for example broken wire) in a reference channel to which a
thermoresistor (RTD) is connected (channel 0) to compensate temperature drift.
When the → reference temperature is outside the permitted range of values.
Glossary
S7-400 Automation System Module Data
450 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Each input channel to which the reference junction "RTD on channel 0" is assigned has the
reference channel error in the situation described above - the measured temperature is no
longer compensated.
Reference junction
Parameter in STEP 7 for analog input modules. This parameter specifies the reference point
(point with known temperature) when using the thermoelements. Reference points can be:
Thermoresistor on channel 0 of the module; → compensating box, → reference temperature.
Reference potential
Potential on the basis of which the voltages of the circuits involved are measured.
Reference temperature
Parameter in STEP 7 for analog input modules. The reference temperature is the temperature
of the reference junction of thermoelements. The reference temperature allows correct
temperature measurement with thermoelements. The temperature of the reference junction
must be known because a thermoelement always detects the temperature difference between
the measuring point and the reference junction.
Repeater
Device for amplifying bus signals and for linking → bus segments over long distances.
Repetition accuracy
The repetition accuracy is the maximum deviation of the measured/output values when the
same input signal is applied or the same output value is specified repeatedly. The repetition
accuracy relates to the nominal range of the module and applies to the settled state (in terms
of temperature).
Resolution
With analog modules, this is the number of bits that represent the digitalized analog value in
binary format. The resolution depends on the module and, with analog input modules, on the
→ integration time. The longer the integration time, the more precise the resolution of the
measured value. The resolution including sign can be up to 16 bits.
Retentive memory
Data areas in data blocks along with timers, counters and bit memory are retentive when their
content is retained through a warm restart or power cycle.
Glossary
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 451
S7 basic communication
Communication functions integrated in the CPU of SIMATIC S7/C7 that can be called up by
the user. These functions are called in the user program with → system functions. The user
data length is up to 76 bytes (small amounts of data). S7 basic communication is implemented
over → MPI.
S7 communication
Communication functions integrated in the CPU of SIMATIC S7/C7 that can be called up by
the user. These functions are called in the user program with → system function blocks. The
user data length is up to 64 Kbytes (large amounts of data). S7 communication provides a
network-independent interface between devices of the types SIMATIC S7/C7 and PG/PC.
Segment
→ Bus segment
Shunt
Conductor connected in parallel in electric circuits.
Signal module
Signal modules (SMs) form the interface between the process and the automation system.
There are input modules, output modules, input/output modules (in each case, digital and
analog)
Smoothing
Parameter in STEP 7 for analog input modules. The measured values are smoothed by digital
filtering. It is possible to select between no, weak, medium and strong filtering for each
individual module. The stronger the smoothing, the higher the time constant of the digital filter.
Standard communication
Communication over standardized protocols such as PROFIBUS-DP, PROFIBUS-FMS.
Static data
Static data is data that is used only within a function block. This data is stored in an instance
data block belonging to the function block. Data stored in this way is retained until the next
function block call.
Substitute value
Substitute values are values that are output to the process or are used in the user program
instead of a process value if a signal output module is defective.
Glossary
S7-400 Automation System Module Data
452 Reference Manual, Ausgabe 11/2016, A5E00850736-08
The substitute values can be selected by the user in the parameter settings in STEP 7 (retain
old value, substitute value 0 or 1). Are the values to be output at an output or outputs in the
CPU changes to STOP.
SYNC
Control command from the → master to the → slave: freezes the outputs at their current value.
System diagnostics
System diagnostics is the detection, evaluation and signaling of faults/errors occurring within
the automation system. Examples of such faults and errors include: Program errors or failures
on modules. System errors can be indicated by LEDs or in STEP 7.
Temperature coefficient
Parameter in STEP 7 for analog input modules during when measuring temperature with
thermoresistors (RTD). The temperature coefficient is selected to suit the thermoresistor used
(according to DIN standard).
Temperature error
The temperature error is the drift of the measured/output values caused by changes in the
ambient temperature of the analog module. It is specified as a percentage per degree Kelvin
and relates to the nominal range of the analog module.
Temperature error of the internal compensation
The temperature error of the internal compensation occurs only when measuring with
thermoelements. It indicates the error that must be added to the actual temperature error when
the "internal reference" mode is selected. The error is specified either as a percentage of the
physical nominal range of the analog module or as an absolute value in °C.
Temporary data
Temporary data is → local data of a block that is entered in the L stack during execution of the
block and that is no longer available on completion of execution.
Total current
Total of all the currents of all output channels of a digital output module.
Unforce
→ Force
Glossary
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 453
Ungrounded
Without electrical connection to ground.
Warm restart
Warm restart following a power down with a set of dynamic data programmed by the user und
a user program component specified in the system.
A warm restart is characterized by the setting of a status bit or other suitable means that can
be read by the user program and indicate that the stoppage of the automation system caused
by a power down was detected in RUN mode.
Wire break
Parameter in STEP 7. A line continuity or wire break check is used to monitor the connection
from the input to the sensor or from the output to the actuator. If a broken wire is detected, the
module senses a current flow at the input/output set in the parameter assignment.
Work memory
The work memory is a → RAM area on the → CPU that is accessed by the processor during
execution of the user program.
Glossary
S7-400 Automation System Module Data
454 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Index
2
24 VDC fan subassembly
Features, 384
Installation, 385
Specifications, 385
wiring, 384
2-conductor connection, 213
2-wire transducer, 208
3
3-conductor connection, 213
4
4-conductor connection, 212
4-wire transducer, 210
A
Abbreviations, 437
AC
Meaning, 437
Accessories
Order numbers, 429
S7-400, 429
ADC
Meaning, 437
ADC-DAC error
Analog input module, 225
Additional support, 4
Address area
Setting, 354
Addressing
S5 modules, 347
AI
Meaning, 437
Ambient conditions, 24
Climatic, 25
IM 463-2, 345
Mechanical, 24
Analog functions
STEP 7 blocks, 163
Analog input channels
Basic execution time, 196
Conversion time, 196
Cycle time, 196
Measuring method, 189
Measuring range, 189
Representation of analog values, 169
Analog input module
ADC-DAC error, 225
Auxiliary voltage missing, 225
Causes of error and remedies, 225
Channel error, 225
Channel information available, 225
Configuration error, 225
Connecting resistance thermometers, 212
Connecting resistors, 212
Connecting sensors, 204
Connecting thermocouples, 215
Diagnostic data, 420
Diagnostic interrupt, 201
diagnostic message in measured value, 223
Diagnostic messages, 223
Diagnostics, 201
EPROM error, 225
External error, 225
Front connector missing, 225
Hardware interrupt lost, 225
Incorrect parameters, 225
Internal error, 225
isolated, 204
Limit, 201
Measurement, 201
Measuring method, 201
Measuring range, 202
Measuring range module incorrect/missing, 225
Module error, 225
No parameters, 225
Noise suppression, 202
non-isolated, 204
Overflow, 226
Parameter assignment error, 225
Parameters, 201, 403
potential difference, 204
RAM error, 225
Reference channel error, 226
Reference junction, 202
Reference temperature, 202
Run time calibration error, 226
Short-circuit to M, 225
SM 431, AI 16 x 13 bit, 264
SM 431, AI 8 x 13 bit, 229
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 455
SM 431, AI 8 x 14 bit, 237, 253
SM 431, AI 8 x 16 bit, 303
SM 431, AI 8 x RTD x 16 bit, 292
SM 431; AI 16 x 16 bit, 273
Smoothing of analog input values, 196, 202
STOP mode, 225
Structure of data record 1, 403
Temperature coefficient, 202
temperature unit, 202
Underflow, 226
Wire break, 225
Wire break monitoring, 201
Analog module
Behavior, 192
Commissioning steps, 167
Determination of the measuring error/output
error, 195
Diagnostics, 223
EXTF LED, 223
Interrupt, 227
INTF LED, 223
Load voltage failure, 193
Parameter assignment, 199
Analog modules, 163
Diagnostic interrupt, 227
Analog output channel
Conversion time, 198
Response time, 199
Analog output channels
Basic execution time, 198
Cycle time, 198
Analog output module
Connecting loads to a voltage output, 220
Connecting loads to current outputs, 222
Connecting loads/actuators, 219
electrically isolated, 219
Output, 203
Output range, 203
Output type, 203
Parameters, 203
Response time, 198
Settling time, 198
SM 432, AO 8 x 13 bit, 316
Analog output modules
Properties, 165
Analog signals
Cables, 219
Analog value
Converting, 167
Sign, 168
Analog-to-digital conversion, 196
AO
Meaning, 437
Application
IM 467/ IM 467 FO, 363
RS 485 repeater, 388
Area of application
IM 463-2, 345
AS
Meaning, 437
ATEX Directive, 15
Australia
Marking, 15
Auxiliary voltage missing
Analog input module, 225
Digital module, 91
B
Backplane bus, 46
Backup battery, 43
Function, 43
Shipping and storage conditions, 23
Specifications, 44
Storage, 23
Backup time, 44
Calculating, 44
BAF
Meaning, 437
Basic error limit, 195
Basic execution time
Analog input channels, 196
Analog output channels, 198
Basic knowledge required, 3
Battery, 23, 43
Battery type, 43
Battery voltage, 46
Bending radius
For FOC, 374
Block diagram
SM 431, AI 8 x 14 bit, 238, 254
SM 431, AI 8 x 16 bit, 317
SM 431, AI 16 x 13 bit, 265
SM 431, AI 8 x 16 bit, 304
SM 431, AI 8 x RTD x 16 bit, 293
SM 431; AI 16 x 16 bit, 274
Bus connector, 369
BUS1F; BUS2F
Meaning, 437
Bytes 0 and 1
of diagnostic data, 406
Index
S7-400 Automation System Module Data
456 Reference Manual, Ausgabe 11/2016, A5E00850736-08
C
Cable
Plug in, 350
Prepare, 350
Cable 721
Pin assignments, 357
Cable duct and fan subassemblies
Features, 377
Cable length
IM 463-2, 347
Segment, 388
Selecting, 351
Cable length selector switch, 349
Cable Lengths
For PROFIBUS DP, 369
Cables, 329
for analog signals, 204, 219
Calculating
Backup time, 44
Calibration software, 293, 303
Causes of error and remedies
Analog input module, 225
Digital module, 91
CE marking, 13
Certifications, 13
CH
Meaning, 437
Change
Fuse, 148, 152
Changing
Configuration in RUN (CiR), 199
Fuse, 156
Parameter assignment in the user program, 199
Rack number, 332
Changing the fuse, 152
Channel cable, 380
Function, 380
Specifications, 380
Channel error
Analog input module, 225
Digital module, 91
Channel information available
Analog input module, 225
Digital module, 91
CiR, 86
Circuit diagram for SM 431; AI 8 x 13 bit, 229
Climatic ambient conditions, 25
Commissioning analog modules
Steps, 167
Commissioning digital modules
Steps, 85
Communication bus, 29
Communication services
IM 467, 365
IM 467 FO, 365
COMP
Meaning, 437
Compatibility
IM 460-4 and IM 461-4, 342
Compensating
Reference junction temperature for
thermocouples, 216
Compensating box, 217
Connecting, 217
compensation
external, 217
Internal, 216, 217
Configurable diagnostic messages, 88
Configuration
IM 467, 368
IM 467 FO, 368
Interface modules, 325
S5 modules, 355
Configuration error
Analog input module, 225
Configuration in RUN, 86
Configuration in RUN (CiR)
Changing, 199
Configuration of analog output circuits
SM 432, AO 8 x 13 Bit, 323
Connecting actuators
to analog output module, 219
Connecting loads
to analog output module, 219
Connecting loads to a voltage output
to analog output module, 220
Connecting loads to current outputs
to analog output module, 222
Connecting resistance thermometers
to analog input module, 212
Connecting resistors
to analog input module, 212
Connecting sensors
to analog input module, 204
Connection
Compensating box, 217
Connecting loads to current outputs, 222
Electrically isolated sensors, 204
IM 463-2, 350
IM 467 FO with fiber-optic cable, 372
Non-isolated sensors, 206
Index
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 457
Resistance thermometers and resistors, 212
rules, 327
Thermocouples to resistance thermometers, 218
Voltage sensors, 207
Connection and circuit diagram
SM 421, DI 32 x 24 V DC, 98
SM 422, DO 32 x DC 24 V/0.5 A, 138, 141
SM 421, DI 16 x 24 V DC, 101
SM 421, DI 16 x UC 24/60 V, 113
SM 421, DI 16 x UC 120/230 V, 123
SM 421, DI 32 x UC 120 V, 127
SM 422, DO 16 x DC 24 V/2 A, 130
SM 422, DO 16 x AC 120/230 V/2 A, 150
SM 422, DO 8 x AC 120/230 V/5 A, 146
Connection diagram
SM 431, AI 8 x 13 bit, 231
SM 431, AI 8 x 14 bit, 239, 255
SM 431, AI 8 x 16 bit, 318
SM 431, AI 16 x 13 bit, 266
SM 431, AI 8 x RTD x 16 bit, 295
SM 431, AI 8 x 16 bit, 305
SM 431; AI 16 x 16 bit, 275
Connection scheme
RS 485 repeater, 390
Connector
Mounting, 372
Connector pin assignment, 370
Contact, direct, 435
Controlling
Operating state, 366
Conversion time
Analog input channels, 196
Analog output channel, 198
Converting
Analog values, 167
Courses, 5
Cover, 47
CP
Meaning, 437
CPU
Meaning, 437
CR
Meaning, 437, 439
CR2
Design, 33
Specifications, 33
CR3
Design, 35
Specifications, 35
cULus approval, 15
Relay modules, 16
Cycle time
Analog input channels, 196
Analog output channels, 198
D
DAC
Meaning, 437
Data record
for diagnostic data, 405
for parameters, 395
Data record 1
Analog input module design, 403
Digital input module configuration, 397
Digital output module design, 400
DB
Meaning, 437
DC
Meaning, 437
Definition
Electrostatic sensitive devices, 433
Degree of protection, 26
IP20, 26
Dependencies
Input values, 107
Output values, 145
Design
CR2, 33
CR3, 35
ER1, ER2, 37
IM 467/ IM 467 FO, 363
Power supply, redundant, 41
Rack, 27
UR1, 29
UR2-H, 31
Destination CPU for interrupt
Digital output module, 88
DI
Meaning, 437
Diagnostic data
Analog input modules:, 420
Bytes 0 and 1, 406
Data record, 405
Digital input modules, 407
Evaluating, 405
of the digital output modules, 412
of the SM 421, DI 16 x DC 24 V, 407
Signal modules, 405
SM 421, DI 16 x UC 24/60 V, 409
SM 422, DO 16 x AC 20-120 V/2 A, 417
SM 422, DO 16 x DC 20-125 V/1.5 A, 412
SM 422, DO 32 x DC 24 V/0.5 A, 414
Index
S7-400 Automation System Module Data
458 Reference Manual, Ausgabe 11/2016, A5E00850736-08
SM 431, AI 8 x RTD x 16 bit, 422
SM 431, AI 16 x 16 Bit, 420
SM 431, AI 8 x 16 Bit, 425
Diagnostic data entry, 194
Diagnostic interrupt
Analog input module, 201
Analog modules, 227
Digital modules, 93
Diagnostic message, 90
Channel error, 90
Channel information available, 90
EPROM error, 90
External auxiliary voltage missing, 90
External error, 90
Front connector missing, 90
Fuse blown, 90
Hardware interrupt lost, 90
Incorrect parameters, 90
Internal error, 90
Internal voltage failure, 90
Load voltage L+ missing, 90
Module error, 90
No module parameters, 90
Parameter assignment error, 90
Sensor supply missing, 90
Short-circuit to L+, 90
Short-circuit to M, 90
Wire break, 90
Diagnostic messages, 89, 223
Analog input modules:, 223
Digital modules, 90
Reading, 89, 223
Diagnostics
Analog input module, 201
Analog modules, 223
Digital input module, 87
Digital output module, 88
for digital modules, 88
Diagnostics interrupt enable
Digital input module, 87
Digital output module, 88
Digital input module
Diagnostic data, 407
Diagnostics, 87
Diagnostics interrupt enable, 87
Hardware interrupt enable, 87
Input delay, 87
Keep last value, 87
Load voltage L+ missing, 87
Parameters, 87, 397
Sensor supply missing, 87
SM 421, DI 16 x 24 V DC, 100
SM 421, DI 16 x AC 120 V, 109
SM 421, DI 16 x UC 120/230 V, 119, 122
SM 421, DI 16 x UC 24/60 V, 112
SM 421, DI 32 x 24 V DC, 97
SM 421, DI 32 x UC 120 V, 126
Structure of data record 1, 397
Substitute a value, 87
Substitute a value "1", 87
Wire break monitoring, 87
Digital input modules
Features, 83
Digital module
Auxiliary voltage missing, 91
Causes of error and remedies, 91
Channel error, 91
Channel information available, 91
Commissioning steps, 85
Diagnostic messages, 90
Diagnostics, 88
EPROM error, 91
External error, 91
EXTF LED, 89
Front connector missing, 91
Fuse blown, 92
Hardware interrupt, 93
Hardware interrupt lost, 91, 94
Incorrect parameters, 91
Internal error, 91
Internal voltage failure, 91
Interrupt, 93
interrupt-triggering channels, 94
INTF LED, 89
Load voltage L+ missing, 92
Module error, 91
No parameters, 91
Parameter assignment, 85
Parameter assignment error, 91
Sensor supply missing, 92
Short-circuit to L+, 91
Short-circuit to M, 91
STOP mode, 91
Wire break, 92
Digital output module
Destination CPU for interrupt, 88
Diagnostic data, 412
Diagnostics, 88
Diagnostics interrupt enable, 88
Fuse blown, 88
Keep last value, 88
Load voltage L+ missing, 88
Parameters, 88, 400
Short-circuit to L+, 88
Index
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 459
Short-circuit to M, 88
SM 422, DO 16 x AC 120/230 V/2 A, 149
SM 422, DO 16 x DC 24 V/2 A, 129
SM 422, DO 32 x DC 24 V/0.5 A, 137, 140
SM 422, DO 8 x AC 120/230 V/5 A, 145
SM 422, DO 16 x AC 20-120 V/2 A, 153
SM 422, DO 16 x DC 20-125 V/1.5 A, 132
Structure of data record 1, 400
Substitute a value, 88
Substitute a value "1", 88
Wire break monitoring, 88
Digital output modules
Features, 84
Discharge of static electricity
Protective measures, 435
Discharge, electrostatic
Persons, 434
Displaying parameter assignment errors
SM 431, AI 8 x RTD x 16 bit, 301
DO
Meaning, 437
Documentation package, 4
Dynamic parameters, 85
E
Edge, 87
EEPROM
Meaning, 437
Electrical isolation, 391
Electrically isolated sensors, 204
Connecting, 204
Electromagnetic compatibility, 20
Electrostatic sensitive devices
Definition, 433
EMC
Definition, 20
Meaning, 437
EMC definition, 20
EMC directive, 14
Emission of radio frequency interference, 21
Enabling
Interrupt, 93, 227
Ensuring
Wire break monitoring, 106, 116
EPROM, 437
EPROM error
Analog input module, 225
Digital module, 91
ER
Meaning, 437
ER1 and ER2
Specifications, 37
ER1, ER2
Design, 37
Error
of an analog module, 195
Error messages
Power supply modules, 48
ES
Meaning, 438
ESD
Meaning, 437
Evaluating
Diagnostic data, 405
EXM
Meaning, 437
External error
Analog input module, 225
Digital module, 91
EXTF
Meaning, 437
EXTF LED
Analog module, 223
Digital module, 89
F
Failure
Supply voltage, 107
Fan monitoring, 378
Fan subassemblies
120/230 VAC, 381
24 VDC, 384
Fans, 378
FB
Meaning, 437
FC
Meaning, 437
Features
24 VDC fan subassembly, 384
Cable duct and fan subassemblies, 377
Digital input modules, 83
Digital output modules, 84
Power supply modules, 39
Power supply, redundant, 41
Relay output module, 84
SM 421, DI 16 x AC 120 V, 109
SM 421, DI 16 x UC 120/230 V, 119
SM 422, DO 16 x AC 20-120 V/2 A, 153
SM 422, DO 16 x DC 20-125 V/1.5 A, 132
FEPROM
Meaning, 437
Index
S7-400 Automation System Module Data
460 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Firmware, 367
FM
Approval, 18
Meaning, 437
FOC
Meaning, 438
Reusing, 373
FRCE
Meaning, 437
Front connector missing
Analog input module, 225
Digital module, 91
Function
Backup battery, 43
Channel cable, 380
IM 460-0 and IM 461-0, 330
IM 460-1 and IM 461-1, 333
IM 460-3 and IM 461-3, 337
IM 460-4 and IM 461-4, 340
Interface modules, 325
Operator controls, 47
Functions
Power supply modules, 39
Rack, 27
Fuse, 385
change, 148
Changing, 156
The 120/230 VAC fan subassembly, 381
Fuse blown
Digital module, 92
Digital output module, 88
G
GD
Meaning, 438
Grounded operation
RS 485 repeater, 390
Grounding, 435
H
Hardware interrupt
Digital modules, 93
End of scan cycle, 228
when limit is exceeded, 227
Hardware interrupt enable
Digital input module, 87
Hardware interrupt lost
Analog input module, 225
Digital module, 91, 94
HLV
Meaning, 438
Hotline, 5
I
I/O bus, 29
IC
Meaning, 438
ID
Meaning, 437
Module types, 406
IEC 61131-2, 13
IFM1F; IFM2F
Meaning, 438
IM
Meaning, 438
IM 460-0 and IM 461-0
Function, 330
Operator controls and display elements, 330
Parameter assignment, 331
Technical specifications, 332
IM 460-1 and 461-1
Specifications, 336
IM 460-1 and IM 461-1
Function, 333
Operator controls and indicators, 334
Parameter assignment, 335
IM 460-3 and 461-3
Technical specifications, 339
IM 460-3 and IM 461-3
Function, 337
Operator controls and display elements, 337
Parameter assignment, 338
IM 460-4 and 461-4
Specifications, 342
IM 460-4 and IM 461-4
Compatibility, 342
Function, 340
Parameter assignment, 341
Position of operator control and display
elements, 340
IM 463-2
Ambient conditions, 345
Area of application, 345
Cable 721, 357
Cable length, 347
Connecting, 350
EMC resistance, 345
Indicators, 348
LEDs, 349
Operator controls, 348
Index
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 461
Order number, 345
Rules for connecting, 347
Specifications, 361
Terminator, 359
IM 467, 363
Communication services, 365
Configuration, 368
Connection to PROFIBUS DP, 368
Specifications, 374, 376
IM 467 FO, 363
Communication services, 365
Configuration, 368
Connection to PROFIBUS DP, 368
Fiber-optic cable, connecting, 372
IM operating mode, 366
IM 467/ IM 467 FO
Application, 363
Design, 363
Incorrect parameters
Analog input module, 225
Digital module, 91
Indicators, 45
IM 463-2, 348
Input characteristic curve to IEC 61131
for digital inputs, 95
Input delay, 108
Digital input module, 87
Input values
Dependencies, 107
Installation
24 VDC fan subassembly, 385
RS 485 repeater, 388
Safety requirements, 19
The 120/230 V DC fan subassembly, 382
Insulation resistance, 26
Insulation test, 26
Interface
Selecting, 350
Interface module
IM 460-1 and IM 461-1, 334
IM 460-3 and IM 461-3, 337
IM 460-4, 340
IM 460-4 and IM 461-4, 340
IM 461-4, 340
Interface modules
Configuration, 325
Function, 325
IM 460-0, 330
IM 460-1, 334
IM 460-3, 337
IM 461-0, 330
IM 461-1, 334
IM 461-3, 337
Interface selector switch, 349
Interference
pulse-shaped, 20
sinusoidal, 21
Interference frequency suppression 10 Hz
Step response, 312
Interference frequency suppression 400 Hz
Step response, 313
Interference frequency suppression 50 Hz
Step response, 312
Interference frequency suppression 60 Hz
Step response, 313
Internal error
Analog input module, 225
Digital module, 91
Internal voltage failure
Digital module, 91
Interrupt
Analog modules, 227
Digital modules, 93
Enabling, 93, 227
Interrupt-triggering channels
of the digital module, 94
INTF
Meaning, 438
INTF LED
Analog module, 223
Digital module, 89
IP
Meaning, 438
IP20, 26
K
Keep last value
Digital input module, 87
Digital output module, 88
L
L+
Meaning, 438
LAD
Meaning, 438
LED, 366
BAF, BATT1F, BATT2F, 46
BAF, BATTF, 46
Parameter assignment error, 286
Index
S7-400 Automation System Module Data
462 Reference Manual, Ausgabe 11/2016, A5E00850736-08
LEDs, 45, 378
BAF, BATT1F, BATT2F, BATT INDIC on
1BATT, 52
BAF, BATT1F, BATT2F, BATT.INDIC on
2BATT, 52
BAF, BATTF; BATT INDIC on BATT, 51
IM 463-2, 349
INTF, 5 VDC, 24 VDC, 49
LEDs INTF, 5 VDC, 24 VDC, 46
Limit
Analog input module, 201
Line harmonics, 21
Load voltage failure
of the analog module, 193
Load voltage L+ missing
Digital input module, 87
Digital module, 92
Digital output module, 88
Low voltage directive, 14
M
M
Meaning, 438
M-
Meaning, 438
M+
Meaning, 438
MANA
Meaning, 438
Manual
purpose, 3
Manual package, 4
Marine approvals, 19
Marking
Australia, 15
New Zeeland, 15
Meaning
Abbreviations, 437, 438
AC:, 437
ADC:, 437
AI:, 437
AO:, 437
AS:, 437
BAF:, 437
BUS1F; BUS2F:, 437
CH:, 437
COMP:, 437
CP:, 437
CPU:, 437
CR, 439
CR:, 437
DAC:, 437
DB:, 437
DC:, 437
DI:, 437
DO:, 437
EEPROM:, 437
EMC:, 437
EPROM:, 437
ER:, 437
ES, 438
ESD:, 437
EXM:, 437
EXTF:, 437
FB:, 437
FC, 437
FC:, 437
FEPROM:, 437
FM:, 437
FOC, 438
FRCE:, 437
GD, 438
HLV, 438
IC, 438
ID:, 437
IFM1F; IFM2F, 438
IM, 438
INTF, 438
IP, 438
L+, 438
LAD, 438
M, 438
M-, 438
M+, 438
MANA, 438
MPI, 438
MRES, 438
MSTR, 438
OB, 438
OP, 438
OS, 438
PG, 438
PII, 438
PIO, 438
PLC, 438
PS, 438
QI, 438
QV, 438
RAM, 438
REDF, 438
RL, 438
S +, 438
SCL, 438
Index
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 463
SFB, 438
SFC, 438
Sign, 439
SM, 438
SSL, 438
SSV:, 437
STL:, 437
TD, 438
UC, 438
UCM, 438
UH, 439
Uiso, 439
USR, 439
Vs, 439
Measured value resolution, 169
Measurement
Analog input module, 201
Measuring method
Analog input channels, 189
Analog input module, 201
Measuring methods
SM 431, AI 8 x RTD x 16 bit, 302
SM 431, AI 16 x 13 Bit, 271
SM 431, AI 16 x 16 Bit, 288
SM 431, AI 8 x 13 Bit, 236
SM 431, AI 8 x 14 Bit, 249, 262
SM 431, AI 8 x 16 Bit, 315
Measuring range
Analog input channels, 189
Analog input module, 202
Measuring range module, 189
Replugging, 190
Setting, 189
Measuring range module incorrect/missing
Analog input module, 225
Measuring range modules
SM 431, AI 16 x 13 Bit, 270
SM 431, AI 16 x 16 Bit, 284
SM 431, AI 8 x 14 Bit, 247, 259
Measuring ranges
SM 431, AI 8 x RTD x 16 bit, 302
SM 431, AI 16 x 13 Bit, 272
SM 431, AI 16 x 16 Bit, 290
SM 431, AI 8 x 13 Bit, 236
SM 431, AI 8 x 14 Bit, 252, 263
SM 431, AI 8 x 16 Bit, 315
Mechanical ambient conditions, 24
Testing, 25
Mode selector, 367
Module error
Analog input module, 225
Digital module, 91
Module overview, 164
Digital modules, 83
Module rack
UR1, 29
UR2, 29
Module replacement, 368
Module types
ID, 406
Modules
Shipping and storage conditions, 23
Storage, 23
Mounting
Connector, 372
MPI
Meaning, 438
MRES
Meaning, 438
MSTR
Meaning, 438
Multiprocessor operation, 368
N
New Zeeland
Marking, 15
No parameters
Analog input module, 225
Digital module, 91
Noise suppression
Analog input module, 202
Non-configurable diagnostic messages, 88
Non-isolated sensors, 205
Connecting, 206
O
OB
Meaning, 438
OB 40, 93, 227
Start information, 228
OB 82, 93, 227
OP
Meaning, 438
Operating conditions, 24
Operating state
Controlling, 366
the CPU, 193
Operational limit, 195
Operator controls, 45
Function, 47
IM 463-2, 348
Index
S7-400 Automation System Module Data
464 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Operator controls and display elements
IM 460-0 and IM 461-0, 330
IM 460-3 and IM 461-3, 337
PS 405 10A and PS 405 10A R, 74, 76
PS 405 20A, 78, 80
PS 405 4A, 72
PS 407 10A and PS 407 10A R, 60, 63
PS 407 20A, 66, 68
PS 407 4A, 54, 57
Receive IM, 331, 338
Send IM, 331
Operator controls and indicators
IM 460-1 and IM 461-1, 334
PS 405 4A, 70
Receive IM, 335, 341
Send IM, 334, 338, 341
The 120/230 VAC fan subassembly, 381
Optimum
Signal propagation delays, 106
Order number
6ES7 400-1JA01-0AA0, 29
6ES7 400-1JA11-0AA0, 29
6ES7 400-1TA01-0AA0, 29
6ES7 400-1TA11-0AA0, 29
6ES7 400-2JA00-0AA0, 31
6ES7 400-2JA10-0AA0, 31
6ES7 401-1DA01-0AA0, 35
6ES7 401-2TA01-0AA0, 33
6ES7 403-1JA01-0AA0, 36
6ES7 403-1JA11-0AA0, 36
6ES7 403-1TA01-0AA0, 36
6ES7 405-0KA01-0AA0, 74
6ES7 405-0KA02-0AA0, 76
6ES7 405-0KR00-0AA0, 74
6ES7 405-0KR02-0AA0, 76
6ES7 405-0RA01-0AA0, 78
6ES7 405-0RA02-0AA0, 80
6ES7 407-0DA01-0AA0, 54
6ES7 407-0DA02-0AA0, 57
6ES7 407-0KA01-0AA0, 60
6ES7 407-0KA02-0AA0, 63
6ES7 407-0KR00-0AA0, 60
6ES7 407-0KR02-0AA0, 63
6ES7 407-0RA01-0AA0, 66
6ES7 407-0RA02-0AA0, 68
6ES7 408-0TA00-0AA0, 380
6ES7 408-1TA01-0XA0, 384
6ES7 421-1BL01-0AA0, 97
6ES7 421-1EL00-0AA0, 126
6ES7 421-1FH00-0AA0, 119
6ES7 421-1FH20-0AA0, 122
6ES7 421-5EH00-0AA0, 109
6ES7 421-7BH01-0AB0, 100
6ES7 421-7DH00-0AB0, 112
6ES7 422-1BH11-0AA0, 129
6ES7 422-1BL00-0AA0, 137
6ES7 422-1FF00-0AA0, 145
6ES7 422-1FH00-0AA0, 149
6ES7 422-1HH00-0AA0, 158
6ES7 422-5EH00-0AB0, 153
6ES7 422-5EH10-0AB0, 132
6ES7 422-7BL00-0AB0, 140
6ES7 431-0HH00-0AB0, 264
6ES7 431-1KF00-0AB0, 229
6ES7 431-1KF10-0AB0, 237
6ES7 431-1KF20-0AB0, 253
6ES7 431-7KF00-0AB0, 303
6ES7 431-7KF10-0AB0, 292
6ES7 431-7QH00-0AB0, 273
6ES7 432-1HF00-0AB0, 316
6ES7 460-0AA01-0AB0, 330
6ES7 460-1BA00-0AB0, 334
6ES7 460-1BA01-0AB0, 334
6ES7 460-3AA01-0AB0, 337
6ES7 460-4AA01-0AB0, 340
6ES7 461-0AA01-0AA0, 330
6ES7 461-1BA00-0AA0, 334
6ES7 461-1BA01-0AA0, 334
6ES7 461-3AA01-0AA0, 337
6ES7 461-4AA01-0AA0, 340
6ES7 467-5FJ00-0AB0, 363
6ES7 467-5GJ00-0AB0, 363
6ES7 467-5GJ01-0AB0, 363
6ES7 467-5GJ02-0AB0, 363
6ES7 408-1TB00-0XA0, 381
IM 463-2, 345
Power supply modules, redundant, 41
Order numbers
Spare parts, 429
OS
Meaning, 438
Output
Analog output module, 203
Output of analog values
STEP 7 blocks, 163
Output range
Analog output module, 203
Output ranges
SM 432, AO 8 x 13 Bit, 323
Output type
Analog output module, 203
Output values
Dependencies, 145
Index
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 465
Overflow
Analog input module, 226
Overload
On 24 V, 51
On 5 V, 51
P
Parameter assignment
Analog modules, 199
IM 460-0 and IM 461-0, 331
IM 460-1 and IM 461-1, 335
IM 460-3 and IM 461-3, 338
IM 460-4 and IM 461-4, 341
to digital modules, 85
User program, 395
Parameter assignment error
Analog input module, 225
Digital module, 91
LED, 286
SM 431, AI 16 x 16 Bit, 286
SM 431, AI 8 x 16 Bit, 314
Parameters
Analog input module, 201, 403
Analog output module, 203
Data record, 395
Digital input module, 87, 397
Digital output module, 88, 400
Dynamic, 85, 199
Editing in the user program, 85, 199
SM 421, DI 16 x DC 24 V, 105
SM 421, DI 16 x UC 24/60 V, 116
SM 421, DO 16 x DC 20-125 V/1.5 A, 136
SM 422, DO 16 x AC 20-120 V/2 A, 157
SM 422, DO 32 x DC 24 V/0.5 A, 144
SM 431, AI 8 x RTD x 16 bit, 299
SM 431, AI 16 x 13 Bit, 270
SM 431, AI 16 x 16 Bit, 284
SM 431, AI 8 x 13 Bit, 235
SM 431, AI 8 x 14 Bit, 247, 259
SM 431, AI 8 x 16 Bit, 310
SM 432, AO 8 x 13 Bit, 322
Static, 85, 199
Parameters, modifiable, 395
PARM_MOD
SFC 57, 395
PG
Meaning, 438
PII
Meaning, 438
Pin assignment
RS 485 repeater, 392
Pin assignments
Cable 721, 357
PIO
Meaning, 438
Plant changes in runtime, 86
PLC
Meaning, 438
Plug in
Cable, 350
Position of operator control and display elements
IM 460-4 and IM 461-4, 340
Potential difference, 347
with analog input modules,
Power module
PS 405 10A, 74, 76
PS 405 10A R, 74, 76
PS 405 20A, 78, 80
PS 405 4A, 72
PS 407 10A, 60, 63
PS 407 10A R, 60, 63
PS 407 20A, 66, 68
PS 407 4A, 54, 57
Power supply module
Invalid slot, 40
PS 405 4A, 70
Power supply modules
Error messages, 48
Features, 39
Functions, 39
Power supply, redundant
Design, 41
Features, 41
Prepare
Cable, 350
PROFIBUS DP, 365
Cable Lengths, 369
PROFIBUS DP master interface, 363
Properties
Analog output modules, 165
SM 421, DI 16 x 24 V DC, 100
SM 421, DI 16 x UC 120/230 V, 122
SM 421, DI 16 x UC 24/60 V, 112
SM 421, DI 32 x UC 120 V, 126
SM 422, DO 16 x DC 24 V/2 A, 129
SM 422, DO 32 x DC 24 V/0.5 A, 137, 140
SM 422, DO 8 x AC 120/230 V/5 A, 145
SM 431, AI 8 x 13 bit, 229
SM 431, AI 8 x 14 bit, 237, 253
SM 431, AI 8 x 16 bit, 303
SM 432, AO 8 x 13 bit, 316
SM 422, DO 16 x AC 120/230 V/2 A, 149
SM 422, DO 16 x UC 30/230 V/Rel. 5 A, 158
Index
S7-400 Automation System Module Data
466 Reference Manual, Ausgabe 11/2016, A5E00850736-08
SM 431, AI 16 x 13 bit, 264
SM 431, AI 8 x RTD x 16 bit, 292
SM 431; AI 16 x 16 bit, 273
Protection class, 26
Protective measures
Avoiding contact, 435
Discharge of static electricity, 435
Grounding, 435
PS
Meaning, 438
PS 405 4A
Operator controls and indicators, 70
Specifications, 70
Technical specifications, 72
PS 407
Technical specifications 10A, 61, 64
PS 407 10A R
Technical specifications, 61, 64
PS 407 20A
Technical specifications, 67, 69
PS 407 4A
Technical specifications, 55, 58
PS 405 10A
Technical specifications, 74, 76
PS 405 10A and PS 405 10A R
Operator controls and display elements, 74, 76
PS 405 10A R
Technical specifications, 74, 76
PS 405 20A
Operator controls and display elements, 78, 80
PS 405 20A technical specifications, 78, 80
PS 405 4A
Operator controls and display elements, 72
PS 407 10A and PS 407 10A R
Operator controls and display elements, 60, 63
PS 407 20A
Operator controls and display elements, 66, 68
PS 407 4A
Operator controls and display elements, 54, 57
Pulse-shaped interference, 20
Q
QI
Meaning, 438
QV
Meaning, 438
R
Rack
CR2, 33
CR3, 35
Design, 27
ER1, 36
ER2, 36
Functions, 27
UR2, 29
UR2-H, 31
Rack number
Changing, 332
Radio frequency interference
Emission of, 21
RAM
Meaning, 438
RAM error
Analog input module, 225
Rating plate, 13
RC network, 390
Reading
Diagnostic messages, 89, 223
Reading analog values
STEP 7 blocks, 163
Receive IM
Operator controls and display elements, 331, 338
Operator controls and indicators, 335, 341
REDF
Meaning, 438
Reducing
Vibrations, 24
Redundant operation, 41
Redundant power supply modules, 41
Reference channel error
Analog input module, 226
Testing, 291
Reference junction
Analog input module, 202
Reference junction temperature for thermocouples
Compensating, 216
Reference temperature
Analog input module, 202
Relay modules
cULus approval, 16
Relay output module
Features, 84
SM 422, DO 16 x UC 30/230 V/Rel.5 A, 158
Repeater see RS 485 repeater, 387
Replugging
Measuring range module, 190
Index
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 467
Representation of analog value
for resistance thermometer Cu 10 Climatic, 179
Representation of analog values, 167
Binary representation of input ranges, 170
binary representation of output ranges, 185
for ±1 V to ±10 V voltage measuring range, 172
for ±25 to ±500 V voltage measuring range, 172
For analog input channels, 169
for analog output channels, 185
for resistance thermometer Cu 10 Climatic, 179
for resistance thermometer Cu 10 standard, 179
for resistance thermometer Ni x00 Standard, 178
for resistance thermometer Pt x00 Climatic, 177,
178
for resistance thermometers Pt 100, 200, 500,
1000, 177
for resistance-type sensors from 48 Ω to 6
kΩ, 176
for thermocouple type E, 180
for thermocouple type L, 182
for thermocouple type N, 182
for thermocouple type T, 183
for thermocouple type U, 184
for thermocouple types R, S, 183
for thermocouples type B, 180
for thermocouples type J, 181
for thermocouples type K, 181
for voltage measuring ranges, 172
for voltage output ranges, 187
for voltage output ranges ± 10 V, 187
in current measuring ranges 0 to 20 mA, 174
in current measuring ranges 4 to 20 mA, 175
in the 0 to 20 mA and 4 to 20 mA current output
ranges, 188
in the 0 V to 10 V and 1 V to 5 V voltage measuring
ranges, 187
in the 1 V to 5 V and 0 V to 10 V voltage measuring
ranges, 173
in the current output range ±20 mA, 188
in the current output ranges, 188
Representation of analog values in the ±3.2 mA to
±20 mA current measuring ranges, 174
Resistance measurement
SM 431, AI 8 x 14 Bit, 251, 263
Resistance thermometers and resistors
Connecting, 212
Resolution, 168
Response time, 198, 199
Reusing
FOC, 373
RL
Meaning, 438
RS 485 repeater, 387
Application, 388
Connection scheme, 390
Design, 389
grounded, 390
grounded operation, 390
Installation rules, 388
Pin assignment, 392
Specifications, 392
Ungrounded, 390
ungrounded operation, 390
Rules
Connection, 327
Run time calibration error
Analog input module, 226
S
S-
Meaning, 438
S +
Meaning, 438
S5 expansion unit
Setting, 353
S5 interface modules, 346
S5 modules
Addressing, 347
Configuration, 355
S7 functions, 365
S7-400
Accessories, 429
Spare parts, 429
Safety requirements
Installation, 19
SCL
Meaning, 438
Scope
of the manual, 3
Segment
Cable length, 388
Selecting
Cable length, 351
Interface, 350
Send IM
Operator controls and display elements, 331
Operator controls and indicators, 334, 338, 341
Sensor
Supply voltage, 208
Sensor supply missing
Digital input module, 87
Digital module, 92
Index
S7-400 Automation System Module Data
468 Reference Manual, Ausgabe 11/2016, A5E00850736-08
Sensors
electrically isolated, 204
Non-isolated, 205
Setting
Address area, 354
Measuring range module, 189
S5 expansion unit, 353
Settling time, 198
SFB
Meaning, 438
SFC
Meaning, 438
SFC 51, 93, 227
SFC 55 WR_PARM, 395
SFC 56 WR_DPARM, 395
SFC 57 PARM_MOD, 395
SFC 59, 93, 227
Shielding clamps, 385
Shipping, 23
Short-circuit
Vs Sensor supply, 107
Short-circuit to L+
Digital module, 91
Digital output module, 88
Short-circuit to M
Analog input module, 225
Digital module, 91
Digital output module, 88
Sign
Analog value, 168
Meaning, 439
Signal modules
Diagnostic data, 405
Signal propagation delays
Optimum, 106, 117
Signaling concept, 384
Sinusoidal interference, 21
SM
Meaning, 438
SM 421, DI 16 x 24 V DC
Properties, 100
Technical specifications, 102
SM 421, DI 16 x AC 120 V
Features, 109
Specifications, 110
Wiring, 110
SM 421, DI 16 x DC 24 V
Diagnostic data, 407
Parameters, 105
SM 421, DI 16 x UC 120/230 V
Features, 119
Properties, 122
SM 421, DI 16 x UC 24/60 V
Diagnostic data, 409
Properties, 112
SM 421, DI 32 x 24 V DC
Connection and circuit diagram, 98
Technical specifications, 98
SM 421, DI 32 x UC 120 V
Properties, 126
SM 421, DI 16 x UC 24/60 V
Parameters, 116
SM 421, DO 16 x DC 20-125 V/1.5 A
Parameters, 136
SM 422, DO 16 x AC 20-120 V/2 A
Diagnostic data, 417
SM 422, DO 16 x DC 20-125 V/1.5 A
Diagnostic data, 412
SM 422, DO 16 x DC 24 V/2 A
Properties, 129
SM 422, DO 32 x DC 24 V/0.5 A
Connection and circuit diagram, 138, 141
Diagnostic data, 414
Properties, 137, 140
Technical specifications, 138, 141
SM 422, DO 8 x AC 120/230 V/5 A
Properties, 145
SM 422, DO 16 x AC 20-120 V/2 A
Features, 153
Parameters, 157
Specifications, 154
Wiring diagram, 154
SM 422, DO 16 x DC 20-125 V/1.5 A
Features, 132
Specifications, 133
Wiring diagram, 133
SM 422, DO 32 x DC 24 V/0.5 A
Parameters, 144
SM 431, AI 8 x 13 bit
Block diagram, 229
Connection diagram, 231
Properties, 229
Technical specifications, 232
SM 431, AI 8 x 14 bit
Block diagram, 238, 254
Connection diagram, 239, 255
Properties, 237, 253
Technical specifications, 240, 256
SM 431, AI 8 x 16 bit
Properties, 303
SM 431, AI 8 x RTD x 16 bit
Diagnostic data, 422
Displaying parameter assignment errors, 301
Measuring methods, 302
Index
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 469
Measuring ranges, 302
Parameters, 299
SM 431, AI 16 x 13 Bit
Measuring methods, 271
Measuring range modules, 270
Measuring ranges, 272
Parameters, 270
SM 431, AI 16 x 16 Bit
Diagnostic data, 420
Measuring methods, 288
Measuring range modules, 284
Measuring ranges, 290
Parameter assignment error, 286
Parameters, 284
Wire break monitoring, 291
SM 431, AI 8 x 13 Bit
Measuring methods, 236
Measuring ranges, 236
Parameters, 235
SM 431, AI 8 x 14 Bit
Measuring methods, 249, 262
Measuring range modules, 247, 259
Measuring ranges, 252, 263
Parameters, 247, 259
Resistance measurement, 251, 263
SM 431, AI 8 x 16 Bit
Diagnostic data, 425
Measuring methods, 315
Measuring ranges, 315
Parameter assignment error, 314
Parameters, 310
SM 432, AO 8 x 13 bit
Configuration of analog output circuits,
Output ranges,
Parameters,
Properties, 316
SM 421, DI 16 x 24 V DC
Connection and circuit diagram, 101
SM 421, DI 16 x UC 120/230 V
Specifications, 120
Wiring and block diagrams, 120
SM 421, DI 16 x UC 120/230 V
Connection and circuit diagram, 123
SM 421, DI 16 x UC 24/60 V
Connection and circuit diagram, 113
Technical specifications, 113
SM 421, DI 16 x UC 120/230 V
Technical specifications, 123
SM 421, DI 32 x UC 120
Connection and circuit diagram, 127
SM 421, DI 32 x UC 120 V
Technical specifications, 127
SM 422, DO 16 x AC 120/230 V/2 A
Properties, 149
SM 422, DO 16 x DC 24 V/2 A
Connection and circuit diagram, 130
Technical specifications, 130
SM 422, DO 16 x UC 30/230 V/Rel. 5 A
Technical specifications, 159
SM 422, DO 16 x UC 30/230 V/Rel. 5 A
Properties, 158
SM 422, DO 16 x AC 120/230 V/2 A
Connection and circuit diagram, 150
Technical specifications, 150
SM 422, DO 8 x AC 120/230 V/5 A
Connection and circuit diagram, 146
Technical specifications, 146
SM 431, AI 8 x 16 bit
Block diagram, 317
Connection diagram, 318
Technical specifications, 319
SM 431, AI 16 x 13 bit
Block diagram, 265
Connection diagram, 266
Properties, 264
Technical specifications, 267
SM 431, AI 8 x 16 bit
Block diagram, 304
Connection diagram, 305
Technical specifications, 306
SM 431, AI 8 x RTD x 16 bit
Block diagram, 293
Connection diagram, 295
Properties, 292
Technical specifications, 296
SM 431; AI 16 x 16 bit
Block diagram, 274
Connection diagram, 275
Properties, 273
Technical specifications, 276
Smoothing of analog input values, 196
Analog input module, 202
Spare parts
Order numbers, 429
S7-400, 429
Specifications
24 VDC fan subassembly, 385
Backup battery, 44
Channel cable, 380
CR2, 33
CR3, 35
ER1 and ER2, 37
IM 460-1 and 461-1, 336
IM 460-4 and 461-4, 342
Index
S7-400 Automation System Module Data
470 Reference Manual, Ausgabe 11/2016, A5E00850736-08
IM 463-2, 361
IM 467, 374, 376
PS 405 4A, 70
RS 485 repeater, 392
SM 421, DI 16 x AC 120 V, 110
SM 422, DO 16 x AC 20-120 V/2 A, 154
SM 422, DO 16 x DC 20-125 V/1.5 A, 133
SM 421, DI 16 x UC 120/230 V, 120
The 120/230 VAC fan subassembly, 382
UR1, 30
UR2, 30
UR2-H, 32
SSL
Meaning, 438
Standards, 13
Start information
OB 40, 228
Static parameters, 85
STEP 7 blocks
for analog functions, 163
Step response
Interference frequency suppression 10 Hz, 312
Interference frequency suppression 400 Hz, 313
Interference frequency suppression 50 Hz, 312
Interference frequency suppression 60 Hz, 313
STL
Meaning, 437
STOP mode
Analog input module, 225
Digital module, 91
Storage, 23
Backup battery, 23
Modules, 23
Substitute a value
Digital input module, 87
Digital output module, 88
Substitute a value "1"
Digital input module, 87
Digital output module, 88
Supply voltage
Failure, 107
Sensor, 208
support
Additional, 4
SV
Meaning, 437
T
TD
Meaning, 438
Technical specifications
IM 460-0 and 461-0, 332
IM 460-3 and 461-3, 339
PS 405 10A, 74, 76
PS 405 10A R, 74, 76
PS 405 20A, 78, 80
PS 405 4A, 72
PS 407 10A, 61, 64
PS 407 10A R, 61, 64
PS 407 20A, 67, 69
PS 407 4A, 55, 58
SM 421, DI 16 x 24 V DC, 102
SM 421, DI 32 x 24 V DC, 98
SM 422, DO 32 x DC 24 V/0.5 A, 138, 141
SM 431, AI 8 x 13 bit, 232
SM 431, AI 8 x 14 bit, 240, 256
SM 421, DI 16 x UC 24/60 V, 113
SM 421, DI 16 x UC 120/230 V, 123
SM 421, DI 32 x UC 120 V, 127
SM 422, DO 16 x DC 24 V/2 A, 130
SM 422, DO 16 x UC 30/230 V/Rel. 5 A, 159
SM 422, DO 16 x AC 120/230 V/2 A, 150
SM 422, DO 8 x AC 120/230 V/5 A, 146
SM 431, AI 8 x 16 bit, 319
SM 431, AI 16 x 13 bit, 267
SM 431, AI 8 x 16 bit, 306
SM 431, AI 8 x RTD x 16 bit, 296
SM 431; AI 16 x 16 bit, 276
Technical support, 5
Temperature coefficient
Analog input module, 202
temperature unit
Analog input module, 202
Terminator, 327
IM 463-2, 359
Test voltages, 26
Testing
Mechanical ambient conditions, 25
Reference channel error, 291
Underflow, 292
The 120/230 V DC fan subassembly
Installation, 382
The 120/230 VAC fan subassembly
Fuse, 381
Operator controls and indicators, 381
Specifications, 382
Thermal voltage, 215
Thermocouple
Connecting to an analog input module, 215
Design, 215
Operating principle, 215
Index
S7-400 Automation System Module Data
Reference Manual, Ausgabe 11/2016, A5E00850736-08 471
Thermocouples to resistance thermometers
Connecting, 218
Training center, 5
U
UC
Meaning, 438
UCM
Meaning, 438
UH
Meaning, 439
Uiso
Meaning, 439
Underflow
Analog input module, 226
Testing, 292
Ungrounded operation
RS 485 repeater, 390
UR1
Design, 29
Specifications, 30
UR2
Specifications, 30
UR2-H
Design, 31
Specifications, 32
User program
Parameter assignment, 395
USR
Meaning, 439
V
Vibrations, 24
Reducing, 24
Voltage sensors
Connecting, 207
Vs
Meaning, 439
Vs Sensor supply
Short-circuit, 107
W
Wire break
Analog input module, 225
Digital module, 92
Wire break monitoring
Analog input module, 201
Digital input module, 87
Digital output module, 88
Ensuring, 106, 116
SM 431, AI 16 x 16 Bit, 291
Wiring
24 VDC fan subassembly, 384
SM 421, DI 16 x AC 120 V, 110
Wiring and block diagrams
SM 421, DI 16 x UC 120/230 V, 120
Wiring diagram
SM 422, DO 16 x AC 20-120 V/2 A, 154
SM 422, DO 16 x DC 20-125 V/1.5 A, 133
WR_DPARM
SFC 56, 395
WR_PARM
SFC 55, 395
Index
S7-400 Automation System Module Data
472 Reference Manual, Ausgabe 11/2016, A5E00850736-08