SN54HCT14, SN74HCT14
HEX SCHMITT-TRIGGER INVERTERS
SCLS225F JULY 1995 REVISED OCTOBER 2010
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DOperating Voltage Range of 4.5 V to 5.5 V
DOutputs Can Drive Up To 10 LSTTL Loads
DLow Power Consumption, 20-μA Max ICC
DTypical tpd = 18 ns
D±4-mA Output Drive at 5 V
DLow Input Current of 1 μA Max
DInputs Are TTL-Voltage Compatible
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1A
1Y
2A
2Y
3A
3Y
GND
VCC
6A
6Y
5A
5Y
4A
4Y
SN54HCT14 ...J OR W PACKAGE
SN74HCT14 . . . D, DB, DGV, N, OR PW PACKAGE
(TOP VIEW)
3212019
910111213
4
5
6
7
8
18
17
16
15
14
6Y
NC
5A
NC
5Y
2A
NC
2Y
NC
3A
1Y
1A
NC
4Y
4A
V
6A
3Y
GND
NC
SN54HCT14 . . . FK PACKAGE
(TOP VIEW)
CC
NC No internal connection
description/ordering information
The ’HCT14 devices contain six independent inverters. The devices perform the Boolean function Y = A in
positive logic.
ORDERING INFORMATION
TAPACKAGEORDERABLE
PART NUMBER
TOP-SIDE
MARKING
PDIP N Tube of 25 SN74HCT14N SN74HCT14N
Tube of 50 SN74HCT14D
SOIC D Reel of 2500 SN74HCT14DRG3 HCT14
40°C to 85°C
SOIC D
Reel of 250 SN74HCT14DT
HCT14
40°C to 85°CSSOP DB Reel of 2000 SN74HCT14DBR HT14
TSSOP PW
Reel of 2000 SN74HCT14PWR
HT14
TSSOP PW Reel of 250 SN74HCT14PWT HT14
TVSOP DGV Reel of 2000 SN74HCT14DGVR HT14
CDIP J Tube of 25 SNJ54HCT14J SNJ54HCT14J
55°C to 125°CCFP W Tube of 150 SNJ54HCT14W SNJ54HCT14W
LCCC FK Tube of 55 SNJ54HCT14FK SNJ54HCT14FK
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
FUNCTION TABLE
(each inverter)
INPUT
A
OUTPUT
Y
H L
L H
Copyright © 20032010, Texas Instruments Incorporated
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
SN54HCT14, SN74HCT14
HEX SCHMITT-TRIGGER INVERTERS
SCLS225F JULY 1995 REVISED OCTOBER 2010
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
logic diagram (positive logic)
AY
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC 0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (see Note 1) 0.5 V to VCC + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output voltage range, VO (see Note 1) 0.5 V to VCC + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, IIK (VI < 0 or VI > VCC) ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, IOK (VO < 0 or VO > VCC) ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous output current, IO (VO = 0 to VCC) ±25 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous current through VCC or GND ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Note 2): D package 86°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DB package 96°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DGV package 127°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N package 80°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PW package 113°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
SN54HCT14 SN74HCT14
UNIT
MIN MAX MIN MAX UNIT
VCC Supply voltage 4.5 5.5 4.5 5.5 V
VIInput voltage 0 VCC 0 VCC V
VOOutput voltage 0 VCC 0 VCC V
TAOperating free-air temperature 55 125 40 85 °C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
SN54HCT14, SN74HCT14
HEX SCHMITT-TRIGGER INVERTERS
SCLS225F JULY 1995 REVISED OCTOBER 2010
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
V
TA = 25°C SN54HCT14 SN74HCT14
UNIT
PARAMETER TEST CONDITIONS VCC MIN TYP MAX MIN MAX MIN MAX UNIT
VT+
Positive going
4.5 V 1.2 1.5 1.9 1.2 1.9 1.2 1.9
V
Positive-going
threshold 5.5 V 1.4 1.7 2.1 1.4 2.1 1.4 2.1
V
VT
Negative going
4.5 V 0.5 0.9 1.2 0.5 1.2 0.5 1.2
V
Negative-going
threshold 5.5 V 0.6 1 1.4 0.6 1.4 0.6 1.4
V
ΔVT
Hysteresis
4.5 V 0.4 0.6 1.4 0.4 1.4 0.4 1.4
V
Hysteresis
(VT+ VT)5.5 V 0.4 0.65 1.5 0.4 1.5 0.4 1.5
V
V
IOH = 20 μA4.5 V 4.4 4.49 4.4 4.4
V
VOH IOH = 4 mA 4.5 V 3.98 4.3 3.7 3.84 V
V
IOL = 20 μA4.5 V 0.001 0.1 0.1 0.1
V
VOL IOL = 4 mA 4.5 V 0.17 0.26 0.4 0.33 V
IIVI = VCC or GND 5.5 V ±0.1 ±1±1μA
ICC VI = VCC or GND, IO = 0 5.5 V 2 40 20 μA
ΔICCOne input at 0.5 V or 2.4 V,
Other inputs at GND or VCC 5.5 V 0.2 2.4 3 2.9 mA
CiVI = VCC or GND 5 V 3 10 10 10 pF
This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or VCC.
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
FROM TO
V
TA = 25°C SN54HCT14 SN74HCT14
UNIT
PARAMETER
FROM
(INPUT)
TO
(OUTPUT) VCC MIN TYP MAX MIN MAX MIN MAX UNIT
t
A
Y
4.5 V 20 32 48 40
ns
tpd A Y 5.5 V 18 30 45 38 ns
t
Y
4.5 V 7 15 22 19
ns
ttY5.5 V 6 14 20 17 ns
operating characteristics, TA = 25°C
PARAMETER TEST CONDITIONS TYP UNIT
Cpd Power dissipation capacitance No load 10 pF
SN54HCT14, SN74HCT14
HEX SCHMITT-TRIGGER INVERTERS
SCLS225F JULY 1995 REVISED OCTOBER 2010
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
VOLTAGE WAVEFORM
INPUT RISE AND FALL TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES
1.3 V
1.3 V1.3 V 10%10%
90% 90%
3 V
VOH
VOL
0 V
trtf
Input
In-Phase
Output
1.3 V
tPLH tPHL
1.3 V 1.3 V
10% 10%
90%90% VOH
VOL
tr
tf
tPHL tPLH
Out-of-Phase
Output
Test
Point
From Output
Under Test
LOAD CIRCUIT
NOTES: A. CL includes probe and test-fixture capacitance.
B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
characteristics: PRR 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns.
C. The outputs are measured one at a time with one input transition per measurement.
D. tPLH and tPHL are the same as t
p
d.
CL = 50 pF
(see Note A)
1.3 V1.3 V 10%10%
90% 90% VCC
0 V
trtf
Input
Figure 1. Load Circuit and Voltage Waveforms
SN54HCT14, SN74HCT14
HEX SCHMITT-TRIGGER INVERTERS
SCLS225F JULY 1995 REVISED OCTOBER 2010
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
0.25
0.2
0.1
0.05
0
0.45
0.15
0 0.45 0.9 1.35 1.8 2.26 2.7
Supply Current mA
0.35
0.3
0.4
SUPPLY CURRENT
vs
INPUT VOLTAGE
0.5
3.16 3.61 4
VI Input Voltage V
ÁÁ
ÁÁ
ICC
VI = 0 to VCC
VI = VCC to 0
VCC = 4.5 V
0.25
0.2
0.1
0.05
0
0.45
0.15
0 0.55 1.1 1.66 2.2 2.76 3.3
Supply Current mA
0.35
0.3
0.4
SUPPLY CURRENT
vs
INPUT VOLTAGE
0.5
3.86 4.4 4.97
VI Input Voltage V
ÁÁ
ÁÁ
ICC
VI = 0 to VCC
VI = VCC to 0
VCC = 5.5 V
0 0.75 1.5 2.27
Output Voltage V
OUTPUT VOLTAGE
vs
INPUT VOLTAGE
3 3.77
6
5
4
3
2
1
0
1
VO
VI Input Voltage V
VI = Down
VI = Up
VCC = 4.5 V
0 0.92 1.84 2.76
Output Voltage V
OUTPUT VOLTAGE
vs
INPUT VOLTAGE
3.68 4.6
6
5
4
3
2
1
0
1
VO
VI Input Voltage V
VI = Down
VI = Up
VCC = 5.5 V
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-86890012A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-8689001CA ACTIVE CDIP J 14 1 TBD Call TI Call TI
5962-8689001DA ACTIVE CFP W 14 1 TBD Call TI Call TI
SN74HCT14D ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DBLE OBSOLETE SSOP DB 14 TBD Call TI Call TI
SN74HCT14DBR ACTIVE SSOP DB 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DBRE4 ACTIVE SSOP DB 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DBRG4 ACTIVE SSOP DB 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DGVR ACTIVE TVSOP DGV 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DGVRE4 ACTIVE TVSOP DGV 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DGVRG4 ACTIVE TVSOP DGV 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DRG3 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM
SN74HCT14DRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DT ACTIVE SOIC D 14 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
SN74HCT14DTE4 ACTIVE SOIC D 14 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14DTG4 ACTIVE SOIC D 14 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14N ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
SN74HCT14NE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
SN74HCT14PWLE OBSOLETE TSSOP PW 14 TBD Call TI Call TI
SN74HCT14PWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14PWRE4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14PWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14PWT ACTIVE TSSOP PW 14 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14PWTE4 ACTIVE TSSOP PW 14 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SN74HCT14PWTG4 ACTIVE TSSOP PW 14 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
SNJ54HCT14FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
SNJ54HCT14J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
SNJ54HCT14W ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
PACKAGE OPTION ADDENDUM
www.ti.com 5-Sep-2011
Addendum-Page 3
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN54HCT14, SN74HCT14 :
Catalog: SN74HCT14
Automotive: SN74HCT14-Q1, SN74HCT14-Q1
Military: SN54HCT14
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
SN74HCT14DBR SSOP DB 14 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
SN74HCT14DGVR TVSOP DGV 14 2000 330.0 12.4 6.8 4.0 1.6 8.0 12.0 Q1
SN74HCT14DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
SN74HCT14DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
SN74HCT14DT SOIC D 14 250 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
SN74HCT14PWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
SN74HCT14PWT TSSOP PW 14 250 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
SN74HCT14DBR SSOP DB 14 2000 367.0 367.0 38.0
SN74HCT14DGVR TVSOP DGV 14 2000 367.0 367.0 35.0
SN74HCT14DR SOIC D 14 2500 367.0 367.0 38.0
SN74HCT14DR SOIC D 14 2500 333.2 345.9 28.6
SN74HCT14DT SOIC D 14 250 367.0 367.0 38.0
SN74HCT14PWR TSSOP PW 14 2000 367.0 367.0 35.0
SN74HCT14PWT TSSOP PW 14 250 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
MECHANICAL DATA
MPDS006C – FEBRUAR Y 1996 – REVISED AUGUST 2000
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DGV (R-PDSO-G**) PLASTIC SMALL-OUTLINE
24 PINS SHOWN
14
3,70
3,50 4,90
5,10
20
DIM
PINS **
4073251/E 08/00
1,20 MAX
Seating Plane
0,05
0,15
0,25
0,50
0,75
0,23
0,13
112
24 13
4,30
4,50
0,16 NOM
Gage Plane
A
7,90
7,70
382416
4,90
5,103,70
3,50
A MAX
A MIN
6,60
6,20
11,20
11,40
56
9,60
9,80
48
0,08
M
0,07
0,40
0°8°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE
4040065 /E 12/01
28 PINS SHOWN
Gage Plane
8,20
7,40
0,55
0,95
0,25
38
12,90
12,30
28
10,50
24
8,50
Seating Plane
9,907,90
30
10,50
9,90
0,38
5,60
5,00
15
0,22
14
A
28
1
2016
6,50
6,50
14
0,05 MIN
5,905,90
DIM
A MAX
A MIN
PINS **
2,00 MAX
6,90
7,50
0,65 M
0,15
0°ā8°
0,10
0,09
0,25
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated