IRF140 Data Sheet March 1999 28A, 100V, 0.077 Ohm, N-Channel Power MOSFET * 28A, 100V Formerly developmental type TA17421. * rDS(ON) = 0.077 * Single Pulse Avalanche Energy Rated * SOA is Power-Dissipation Limited * Nanosecond Switching Speeds * Linear Transfer Characteristics * High Input Impedance * Majority Carrier Device Symbol Ordering Information IRF140 D PACKAGE TO-204AE 2306.3 Features This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. PART NUMBER File Number BRAND IRF140 G NOTE: When ordering, use the entire part number. S Packaging JEDEC TO-204AE DRAIN (FLANGE) SOURCE (PIN 2) GATE (PIN 1) 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright (c) Intersil Corporation 1999 IRF140 Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Gate To Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg IRF140 100 100 28 20 110 20 150 1.0 100 -55 to 175 UNITS V V A A A V W W/oC mJ oC 300 260 oC oC CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250A, VGS = 0V (Figure 10) 100 - - V Gate Threshold Voltage VGS(TH) VDS = VGS, ID = 250A 2.0 - 4.0 V VDS = Rated BVDSS , VGS = 0V - - 25 A VDS = 0.8 x Rated BVDSS , VGS = 0V, TJ = 150oC - - 250 A 28 - - A - - 100 nA Zero Gate Voltage Drain Current IDSS On-State Drain Current (Note 2) ID(ON) Gate to Source Leakage Current IGSS Drain to Source On Resistance (Note 2) Forward Transconductance (Note 2) Turn-On Delay Time Rise Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) - 0.07 0.077 VDS > ID(ON) x rDS(ON)MAX, ID = 17A (Figure 12) 8.7 13 - S tD(ON) VDD = 50V, ID 28A, RG = 9.1, RL = 1.7 (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature - 16 23 ns - 27 110 ns tD(OFF) - 38 60 ns tf - 14 75 ns - 38 59 nC Qg(TOT) Gate to Source Charge Qgs Gate to Drain "Miller" Charge Qgd Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Internal Drain Inductance LD Internal Source Inductance VGS = 20V gfs rDS(ON) tr Turn-Off Delay Time VDS > ID(ON) x rDS(ON)MAX , VGS = 10V LS ID = 17A, VGS = 10V (Figures 8, 9) VGS = 10V, ID = 28A, VDS = 0.8 x Rated BVDSS Ig(REF) = 1.5mA (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) Measured between the Contact Screw on the Flange that is Closer to Source and Gate Pins and the Center of Die Measured from the Source Lead, 6mm (0.25in) from the Flange and the Source Bonding Pad Modified MOSFET Symbol Showing the Internal Device Inductances - 9 - nC - 21 - nC - 1275 - pF - 550 - pF - 160 - pF - 5.0 - nH - 12.5 - nH - - 1.0 oC/W - - 30 oC/W D LD G LS S Thermal Resistance, Junction to Case RJC Thermal Resistance, Junction to Ambient RJA 2 Free Air Operation IRF140 SourceTo Drain Diode Specifications PARAMETER SYMBOL Continuous Source to Drain Current Pulse Source to Drain Current (Note 3) ISD ISDM TEST CONDITIONS Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Rectifier D MIN TYP MAX UNITS - - 28 A - - 110 A - - 2.5 V 70 150 300 ns 0.44 0.9 1.9 C G S Drain to Source Diode Voltage (Note 2) Reverse Recovery Time VSD trr Reverse Recovery Charge QRR TJ = 25oC, ISD = 28A, VGS = 0V (Figure 13) TJ = 25oC, ISD = 28A, dISD/dt = 100A/s TJ = 25oC, ISD = 28A, dISD/dt = 100A/s NOTES: 2. Pulse Test: Pulse Width 300s, Duty Cycle 2%. 3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance Curve (Figure 3). 4. VDD = 25V, starting TJ = 25oC, L = 190H, RG = 25, peak IAS = 28A (Figures 15, 16). Typical Performance Curves 30 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 0.2 24 18 12 6 0 0 125 50 75 100 TC , CASE TEMPERATURE (oC) 25 0 150 175 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 1 0.5 IMPEDANCE (oC/W) ZJC , TRANSIENT THERMAL POWER DISSIPATION MULTIPLIER 1.2 0.2 0.1 0.1 0.05 PDM 0.02 0.01 t1 10-2 t2 SINGLE PULSE 10-3 10-5 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC + TC 10-4 0.1 10-3 10-2 t1, RECTANGULAR PULSE DURATION (S) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 3 1 10 IRF140 Typical Performance Curves (Continued) 1000 50 VGS = 7V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) OPERATION IN THIS AREA LIMITED BY rDS(ON) 10s 100 100s 1ms 10 TC = 25oC 10ms TJ = MAX RATED DC 40 VGS = 6V 20 VGS = 5V 10 0 1000 0 102 ISD, SOURCE TO DRAIN CURRENT (A) VGS = 8V ID, DRAIN CURRENT (A) VGS = 10V 40 VGS = 7V 30 VGS = 6V 20 VGS = 5V 10 VGS = 4V 1.0 2.0 3.0 50 1 TJ = 175oC 4.0 5.0 0 FIGURE 6. SATURATION CHARACTERISTICS TJ = 25oC 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 FIGURE 7. TRANSFER CHARACTERISTICS 1.0 3.0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE 80s PULSE TEST 0.8 ON RESISTANCE 40 VDS 50V 80s PULSE TEST VDS, DRAIN TO SOURCE VOLTAGE (V) rDS(ON), DRAIN TO SOURCE 30 10 0.1 0 20 FIGURE 5. OUTPUT CHARACTERISTICS 50 0 10 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA PULSE DURATION = 80s 80s PULSE TEST VGS = 4V 100 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 1 VGS = 10V 30 SINGLE PULSE 1 VGS = 8V 0.6 VGS = 10V 0.4 0.2 VGS = 20V 0 0 25 50 75 100 125 ID, DRAIN CURRENT (A) FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 4 ID = 17A VGS = 10V 2.4 1.8 1.2 0.6 0 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE IRF140 Typical Performance Curves (Continued) 3000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS CDS + CGD ID = 250A 1.15 2400 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.25 1.05 0.95 1800 CISS 1200 COSS 0.85 600 0.75 0 CRSS -40 0 40 80 120 160 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 1 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 103 VDS 50V 80s PULSE TEST 16 TJ = 175oC 12 TJ = 25oC 8 4 0 0 10 FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE ISD, SOURCE TO DRAIN CURRENT (A) gfs, TRANSCONDUCTANCE (S) 20 102 20 30 ID, DRAIN CURRENT (A) 40 50 FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT 102 TJ = 175oC 10 TJ = 25oC 1 0 0.6 1.2 1.8 2.4 VSD, SOURCE TO DRAIN VOLTAGE (V) FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE VGS, GATE TO SOURCE VOLTAGE (V) 20 ID = 28A VDS = 80V VDS = 50V VDS = 20V 16 12 8 4 0 0 12 24 36 48 Qg(TOT), TOTAL GATE CHARGE (nC) 60 FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE 5 3.0 IRF140 Test Circuits and Waveforms VDS BVDSS tP L VDS IAS VARY tP TO OBTAIN VDD + RG REQUIRED PEAK IAS - VGS VDD DUT tP 0V 0 IAS 0.01 tAV FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(ON) td(OFF) tf tr VDS RL 90% + RG - 10% 10% 0 VDD 90% 90% DUT VGS 0 50% 50% PULSE WIDTH 10% VGS FIGURE 18. RESISTIVE SWITCHING WAVEFORMS FIGURE 17. SWITCHING TIME TEST CIRCUIT VDS (ISOLATED SUPPLY) CURRENT REGULATOR VDD Qg(TOT) 12V BATTERY 0.2F SAME TYPE AS DUT 50k Qgd Qgs 0.3F D Ig(REF) VDS DUT G 0 S 0 IG CURRENT SAMPLING RESISTOR VDS ID CURRENT SAMPLING RESISTOR FIGURE 19. GATE CHARGE TEST CIRCUIT 6 VGS Ig(REF) 0 FIGURE 20. GATE CHARGE WAVEFORMS IRF140 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 7 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029