PLASTIC MEDIUM-POWER
SILICON TRANSISTORS
. . . designed for general-purpose amplifier and low-speed switching
applications.
IRating ISymbol I2N6386 ]2N6387 “$~dfi638E IUnit I
Collector-Emitter Voltage VCEO 40 ,J$ 6@$i’ 80
Collector-Base Voltage VCB 40 ~i:‘%:%60 80
Emitter-Base Voltage VEB ...
~5.0
,,, .,~>...‘,~<,,,..h
Collector Current Continuous ,, .$~,p 3. 10
Ic 10
Peak $~e“Y~f* 15 15
Base Current la ,%>’,. Q] **.
~,,,*...,:, 250
t,,,.I.:::+,.z
Total Device Dissipation @Tc =25°C ‘&Q’’~k$,’~- 65
Derate above 25°C *>$:Y.s~.?t\ ,:
,. *....”.,,,~—0.52—
Total Device Dissipation @TA =25°~ $??e..e~ 2.0
Derate above 25°C -P’- *,$.;‘~’
ii ~i.$ 0.016—
,,, ... 1
Operating and Storage Juncti~~,~’:3{ “TJ, T~tg
Temperature Range —45 to +150
.3.,,\!~-
4
Vdc
Vdc
Vdc
Adc
mAdc
i
Watts
Wloc
Watts
Wfoc
o~ I
THERMAL CHAR~’&~,~lSTICS
,..,,..
,M’ttiristics Symbol Max unit
Thermal Resi$t~~&$hnction ‘to Case ReJC 1.92 Ocfw
Thermal ~~tis~~ce, Junction to Ambient ~oJA 62.5 Ocm
FIGURE 1 POWER DERATING
z
*
z3.060 \.
~
2
0
F
a
~2.0 40 \\
~
n
,m \
%TA
:1.0 20 \
La
0020 40 60 80 100 120 140 160
T,TEMPERATURE(°C)
‘Indicates JEDEC Registered Data.
I‘-m
STYLE 1: NOTE:
PIN 1, BASE 1. OIM. L& HAPPLIES
2, COLLECTOR TO ALL LEADS,
3. EMITTER
4. COLLECTOR
MILLIMETERS INCHES
OIM MIN MAX MIN MAX
A15.11 15.75 0.595 0.620
B9,65 10.29 0.380 0.405-
C4,08 4.82 0.180 0.190
D0,84 0.89 0.025 0.035.
F3,61 3.73 0.142 0.147
G2,41 2.87 0.095 0,105
H2.79 3.30 0.110 0.130
J0.36 0.58 0.014 0.022
K12.70 14.27 0.500 0.562
L1.14 1.27 0.045 0.050
N4.83 5.33 0.190 0.210
a2.54 3.04 0.100 0,120
R2.04 2.79 0.080 0:110 -
s1.14 1.39 0.045 0,055
T5.97 6.48 0.235 0.255
_u 0.76 1.27 0.030 0.050-
CASE 221A-02
TO-220AB
MOTOROLA INC., 1977 “, :DS332~
-:.
I
!,
,,
*E LECTRICaL CHARACTERISTICS (Tc=25°C unless otherwise noted)
1Characteristic Symbol Min Max IUnit I
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1) vCEO(~u$) Vdc
(1c =200mAdc, IB =0) 2N6386 40
2N6387 60
2N6388 80
@hector Cutoff Current ICEO
(VCE =40 Vdc, IB =O) mAdc
2N6386 -. 1.0
(VCE =60 Vdc, lB =0) 2N6387 ,*!.
1.0 ,$.~:,
(VCE =80 Vdc, IB =0) 2N6388 ~$L-it,.
.*t\$~.,1
1.0 ,..,s:,.?,>
Collector Cutoff Currant ~
ICEX <,,~gt:?
(VCE =40 Vdc, vE8(off] =1.5’Vdc) 2N6386 300 .,.yth$#>,,$+.”>
(VCE =60 Vdc, vEB(off) =1.5 Vdc) 2N6387 .$,.
300 >r,.f,”:!$};:$
(VCE =BO Vdc, vEB(Off) =1.5 Vdc)
*> >.,,.
2N638B 300 .$;? ,~b
(VCE =40 Vdc, vEB(off) =1.5 Vdc, TC =125°C) 2N6386 3.~+,,$ii~i~..$$ mAd~
(VCE =60 Vdc, vEB(~ff) =1.5 Vdc, TC =125°C) 2N6387 ~g :
(VCE =80 Vdc, vEB(off) =1.5 Vdc, TC =125°C) 2N6388 ,$%~:Q’sT1<p*-
Emitter Cutoff Current ,. .’,
iEBO
(VBE =5.0 Vdc, Ic =O) ,,:,,,Zti@ mAdc
~,,,)$,,, ‘J,<:?,.
ON CHARACTERISTICS(1) ..., ~J<,::,i.,~~’,~’:,++
....... ..;4,,#
.,. , .,.,.,,
r
,.,:,...,,.......f
“DC Current Gain hFE ‘.\\Jt
(IC =3.0 Adc, VCE ‘3.0 Vdc) 2N6386 ‘.g;f~qg 20000
(1C =5.0 AdC, VCE ‘3.0 Vdc) ““ 2N6387, 2N6388 ,. d’::t;yQQo 20000
([c =8.0 Adc, VCE =3.0 Vdc) 2N6386
(1C =10 Adc, VCE =3.0 Vdc) 2N6387, 2N63BB .,$’ q,, ,,? 100
~~:\,R.* ““‘ 100
Collector-Emitter Saturation Voltage .,,,\
vG&f$at) ‘.$
(1C =3.0 Adc, iB =0.006 Adc) Vdc
2N6386 .. .,*,,
.$- ~+:~.. 2.0
(IC =5.OAdc, iB =0.01 Adc) iy>
2N6387; 2N6388 #“*”$% ““ 2.0
(1C =8.0 Adc, iB =0.08 Adc) &
‘:L:*\~
2N6386 +:~.,$?\~*.3~~ 3.0
:(ic =10 Adc, iB =0.1 Adc) 2N6387, 2N638W ~:.<g~. 3.0
Base-Emitter On Voltage ‘! VBE(on)
(ic =3.0 Adc, vCE =3.0 Vdc) 2N6386 ,::~ 4{]” Vdc
2.8
(IC =5.0 Adc, VCE =3.0 Vdc) 2N638~$m388 2.8
(1C =8.0 Adc, VCE =3.0 Vdc) 2N6q&:*w, ‘+ 4.5
([C =10 Adc, VCE =3.0 Vdc) .$,$.,*sti3,\,,.’y,$
2,@3&$bY,~N6388 4.5
.,;.,.,<~,.
OYNAMIC CHARACTERISTICS ,,,,. .,.:t.~,.t.,f
:$:~, \,x&.-
,Small-Signal Current Gain ... .-)
,$>J*:’$:$tt.~$t i~. Ihfe !
(IC =1.0 Adc, VCE =5:0 Vdc, fte$t =1.0~,H$3,’:? 20
Output Capacitance ,,,~$, .~l.,;,,. Cob
(VCB =10 Vdc, iE =O, f=1.0 M~&.+*$Y ,<;$’ 200 PF
‘Small-Signal Current Gain ~:,,). ,,~.$
,$i \. h<. ~non
RR &’k&***D TO OBTAIN OESIREO CURRENT LEVEI S?* ~n I I I IJII III 1--1-T
‘$O61OO USEO BELOWl~= 100 mA TUT ~
approx
+12 v-----__-m,;_,-_ ~ J II G ‘.”=
‘V L—&25fis I/iB =ZOU
for td and t,, 01 istisonnected ‘.2 Ff:, =10, t
1t I I
iI
,,1
Iiii II1111
,IfI I Iff
,, fIand V2 =Op;l:~~
. .. . ..-.
IC,,COLLECTORCURRENT(AMPS)
.F;
.,!.,,
FIGURE 4 THERMAL RESPONSE
.+\ :.\:.,}& ,;,:t
1III I ~.;,j.,.
IIII ,,& ~~.t*t~:
.!1,,.,,,,,..$,
\x*<&
.‘~>:.:.,.,
,}:$ ~,,
.:”,’,‘t\:t
.$!$+,. ~Wre are two limitations on the power handling abilitv of a
h
~$:,, t~nslstor: average Iu nction temperature and second breakdown.
-{l~~~fe operating area curves indicate Ic VCE limits of the trarr-
sister that must be obseNed for reliable operation; i.e., the transistor,,
b
y0.2
b
TJ~150~C “’’”
A---BONOING WIRE LIMITEO
g0.1 ---THERMALLY LIMITEO
G@Tr =1000C
E
—SECOND BREAKOOWN LIMITED I2N63
CURVES APPLY BELOW RATEO Vr~n -‘~-”
f, FREQUENCY (kHz)
must not be subjactad to greater dissipation than the cuwes indicate.
The data of Figure 5is based on TJ(pk] =150°C; TC invariable
depending on conditions. Second breakdown pulsa limits are val id
for dutv cycles 10 10% provided TJ(p~} <150°C. TJ(Pk) mav be
calculated from tha data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed bv swond breakdown
(see AN415A).
FIGURE 7 CAPACITANCE
VR, REVERSE VOLTAGE (VOLTS)
,.,.,,, ,.,: .,:,
;.>,;,?
.:, ,., ,,1 ;.’ .,, ,. --, ,.~ .,
.,.,, ,.,, ~,,, ,’ ,,
,.,
.:~.
~’, ,,,!.
,:~: ,
.,i,
, ,,,
.
,:, ,, :
-, .,.
:... ,,,
i,: :“, i-
.J
.,
,Yr,,,,
,.r :,,
il
A.,
., ”,. :
.:,.
.,,
., .
,,
,,.
,.,,
,, ..,.,,,.
. . ,,
r..
--.,-< FIGURE 8- DC CURRENT GAIN FIGURE 9- COLLECTOR SATURATION REGION
,,,.,.
/[/ vI!1
II
vA/ I II
.-,.,,, II
, ,, ,5, ,:~ *: ,A/1/
1 # I1
COLLECTOR
41
~——-_._—_ __q
1,
,::,,’ ,, :.
.,-.2 ,~.
“, ...
;,f ‘/ ~’.
,. ,.,,
,“f;,~, 101
,*,
..
,1. 1I1~l’=8.Ok 1=120 I I !
,1 ~I1 1 1I I r1r--
I/II
{II I I
i 1
III
., : ,.-l
.,. -0.6 -0.4 -0,2 0 +0.2 +0.4 +0.6 +0.r “.” ‘“- ‘.” ‘--J EMITTER