IKB03N120H2
Power Semiconductors 1 Rev. 2.3 May 06
HighSpeed 2-Technology with soft, fast recovery anti-parallel EmCon HE diode
Designed for:
- SMPS
- Lamp Ballast
- ZVS-Converter
2nd generation HighSpeed-Technology
for 1200V applications offers:
- loss reduction in resonant circuits
- temperature stable behavior
- parallel switching capability
- tight parameter distribution
- Eoff optimized for IC =3A
Qualified according to JEDEC2 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE I
C Eoff Tj Marking Package
IKB03N120H2 1200V 3A 0.15mJ 150°C K03H1202 P-TO-220-3-45
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 1200 V
Triangular collector current
TC = 25°C, f = 140kHz
TC = 100°C, f = 140kHz
IC
9.6
3.9
Pulsed collector current, tp limited by Tjmax ICpuls 9.9
Turn off safe operating area
VCE 1200V, Tj 150°C
- 9.9
A
Diode forward current
TC = 25°C
TC = 100°C
IF
9.6
3.9
Gate-emitter voltage VGE ±20 V
Power dissipation
TC = 25°C
Ptot 62.5 W
Operating junction and storage temperature Tj , Tstg -40...+150
Soldering temperature (reflow soldering, MSL1) - 220
°C
2 J-STD-020 and JESD-022
G
C
E
P-TO-220-3-45
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 2 Rev. 2.3 May 06
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
RthJC 2.0
Diode thermal resistance,
junction - case
RthJCD 3.2
Thermal resistance,
junction – ambient1)
RthJA 40
K/W
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=300µA 1200 - -
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=3A
Tj=25°C
Tj=150°C
VGE = 10V, IC=3A,
Tj=25°C
-
-
-
2.2
2.5
2.4
2.8
-
-
Diode forward voltage VF VGE = 0, IF=2A
Tj=25°C
Tj=150°C
-
-
2.0
1.75
2.5
-
Gate-emitter threshold voltage VGE(th) IC=90µA,VCE=VGE 2.1 3 3.9
V
Zero gate voltage collector current
ICES VCE=1200V,VGE=0V
Tj=25°C
Tj=150°C
-
-
-
-
20
80
µA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=3A - 2 - S
Dynamic Characteristic
Input capacitance Ciss - 205 -
Output capacitance Coss - 24 -
Reverse transfer capacitance Crss
VCE=25V,
VGE=0V,
f=1MHz - 7 -
pF
Gate charge QGate VCC=960V, IC=3A
VGE=15V
- 22 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE -
7 -
nH
1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for
collector connection. PCB is vertical without blown air.
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 3 Rev. 2.3 May 06
Switching Characteristic, Inductive Load, at Tj=25 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 9.2 -
Rise time tr - 5.2 -
Turn-off delay time td(off) - 281 -
Fall time tf - 29 -
ns
Turn-on energy Eon - 0.14 -
Turn-off energy Eoff - 0.15 -
Total switching energy Ets
Tj=25°C,
VCC=800V,IC=3A,
VGE=15V/0V,
RG=82,
Lσ2)=180nH,
Cσ2)=40pF
Energy losses include
“tail” and diode 4)
reverse recovery.
- 0.29 -
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr - 42 - ns
Diode reverse recovery charge Qrr - 0.23 - µC
Diode peak reverse recovery current Irrm - 10.3 - A
Diode current slope diF/dt - 993 -
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt
Tj=25°C,
VR=800V, IF=3A,
RG=82
- 1180 -
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 9.4 -
Rise time tr - 6.7 -
Turn-off delay time td(off) - 340 -
Fall time tf - 63 -
ns
Turn-on energy Eon - 0.22 -
Turn-off energy Eoff - 0.26 -
Total switching energy Ets
Tj=150°C
VCC=800V,
IC=3A,
VGE=15V/0V,
RG=82,
Lσ2)=180nH,
Cσ2)=40pF
Energy losses include
“tail” and diode 3)
reverse recovery.
- 0.48 -
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr - 125 - ns
Diode reverse recovery charge Qrr - 0.51 - µC
Diode peak reverse recovery current Irrm - 12 - A
Diode current slope diF/dt - 829 -
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt
Tj=150°C
VR=800V, IF=3A,
RG=82
- 540 -
A/µs
2) Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E
4) Commutation diode from device IKP03N120H2
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 4 Rev. 2.3 May 06
Switching Energy ZVT, Inductive Load
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-off energy Eoff VCC=800V,
IC=3A,
VGE=15V/0V,
RG=82,
Cr
2)=4nF
Tj=25°C
Tj=150°C
-
-
0.05
0.09
-
-
mJ
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 5 Rev. 2.3 May 06
IC, COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
2A
4A
6A
8A
10A
12A
TC=110°C
TC=80°C
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
0,01A
0,1A
1A
10A
100µs
DC
500µs
10µs
5µs
50µs
tp=1µs
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 150°C, D = 0.5, VCE = 800V,
VGE = +15V/0V, RG = 82)
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj 150°C)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C
0W
10W
20W
30W
40W
50W
60W
IC, COLLECTOR CURRENT
25°C 50°C 75°C 100°C 12C 150°C
0A
2A
4A
6A
8A
10A
12A
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj 150°C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 150°C)
Ic
Ic
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 6 Rev. 2.3 May 06
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
2A
4A
6A
8A
10A
12V
10V
8V
6V
VGE=15V
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
1A
2A
3A
4A
5A
6A
7A
8A
9A
10A
12V
10V
8V
6V
VGE=15V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
Figure 6. Typical output characteristics
(Tj = 150°C)
IC, COLLECTOR CURRENT
3V 5V 7V 9V
0A
2A
4A
6A
8A
10A
12A
Tj=+150°C
Tj=+25°C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
-50°C 0°C 50°C 100°C
0V
1V
2V
3V IC=6A
IC=3A
IC=1.5A
VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(VCE = 20V)
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 7 Rev. 2.3 May 06
t, SWITCHING TIMES
0A 2A 4A
1ns
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
050100150
1ns
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 82,
dynamic test circuit in Fig.E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 3A,
dynamic test circuit in Fig.E)
t, SWITCHING TIMES
25°C 50°C 75°C 100°C 125°C 150°C
1ns
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
typ.
min.
max.
Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 3A, RG = 82,
dynamic test circuit in Fig.E)
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.09mA)
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 8 Rev. 2.3 May 06
E, SWITCHING ENERGY LOSSES
0A 2A 4A
0.0mJ
0.5mJ
1.0mJ
Eon
1
Eoff
Ets
1
E, SWITCHING ENERGY LOSSES
050100150200250
0.2mJ
0.3mJ
0.4mJ
0.5mJ
0.6mJ
0.7mJ
Eon
1
Ets
1
Eoff
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 82,
dynamic test circuit in Fig.E )
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 3A,
dynamic test circuit in Fig.E )
E, SWITCHING ENERGY LOSSES
25°C 80°C 125°C 150°C
0.1mJ
0.2mJ
0.3mJ
0.4mJ
0.5mJ
Ets
1
Eon
1
Eoff
Eoff, TURN OFF SWITCHING ENERGY LOSS
0V/us 1000V/us 2000V/us 3000V/us
0.00mJ
0.04mJ
0.08mJ
0.12mJ
0.16mJ
IC=1A, TJ=150°C
IC=1A, TJ=25°C
IC=3A, TJ=150°C
IC=3A, TJ=25°C
Tj, JUNCTION TEMPERATURE dv/dt, VOLTAGE SLOPE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 3A, RG = 82,
dynamic test circuit in Fig.E )
Figure 16. Typical turn off switching energy
loss for soft switching
(dynamic test circuit in Fig. E)
1
) Eon and Ets include losses
due to diode recovery.
1
) Eon and Ets include losses
due to diode recovery.
1
) Eon and Ets include losses
due to diode recovery.
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 9 Rev. 2.3 May 06
VGE, GATE-EMITTER VOLTAGE
1µs 10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
100K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
VGE, GATE-EMITTER VOLTAGE
0nC 10nC 20nC 30nC
0V
5V
10V
15V
20V
UCE=240V
UCE=960V
QGE, GATE CHARGE QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 3A)
Figure 17. Typical gate charge
(IC = 3A)
C, CAPACITANCE
0V 10V 20V 30V
10pF
100pF
1nF
Crss
Coss
Ciss
VCE, COLLECTOR-EMITTER VOLTAGE
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0V
200V
400V
600V
800V
1000V
0A
1A
2A
3A
ICE COLLECTOR CURRENT
VCE, COLLECTOR-EMITTER VOLTAGE tp, PULSE WIDTH
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
Figure 20. Typical turn off behavior, hard
switching
(VGE=15/0V, RG=82, Tj = 150°C,
Dynamic test circuit in Figure E)
R,(K/W)
τ
, (s)
1.082517 0.000795
0.328671 0.000179
0.588811 0.004631
C1=
τ
1/R1
R1R2
C2=
τ
2/R2
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 10 Rev. 2.3 May 06
VGE, GATE-EMITTER VOLTAGE
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
0V
200V
400V
600V
800V
0A
1A
2A
3A
ICE COLLECTOR CURRENT
ZthJC, TRANSIENT THERMAL RESISTANCE
10µs 100µs 1ms 10ms
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tp, PULSE WIDTH tP, PULSE WIDTH
Figure 21. Typical turn off behavior, soft
switching
(VGE=15/0V, RG=82, Tj = 150°C,
Dynamic test circuit in Figure E)
Figure 22. Diode transient thermal
impedance as a function of pulse width
(D=tP/T)
trr, REVERSE RECOVERY TIME
0Ohm 100Ohm 200Ohm 300Ohm
40ns
60ns
80ns
100ns
120ns
140ns
160ns
180ns
TJ=150°C
TJ=25°C
Qrr, REVERSE RECOVERY CHARGE
0Ohm 100Ohm 200Ohm 300Ohm
0.2uC
0.3uC
0.4uC
0.5uC
0.6uC
TJ=150°C
TJ=25°C
RG, GATE RESISTANCE RG, GATE RESISTANCE
Figure 23. Typical reverse recovery time
as a function of diode current slope
VR=800V, IF=3A,
Dynamic test circuit in Figure E)
Figure 24. Typical reverse recovery
charge as a function of diode current
slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
R,(K/W)
τ
, (s)
1.9222 7.04E-04
0.5852 2.02E-04
0.7168 4.39E-03
C1=
τ
1/R1
R1 R2
C2=
τ
2/R2
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 11 Rev. 2.3 May 06
Irr, REVERSE RECOVERY CURRENT
0Ohm 100Ohm 200Ohm 300Ohm
8A
10A
12A
14A
16A
TJ=150°C
TJ=25°C
d
i
rr/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
0Ohm 100Ohm 200Ohm 300Ohm
-1800A/us
-1600A/us
-1400A/us
-1200A/us
-1000A/us
-800A/us
-600A/us
TJ=150°C
TJ=25°C
RG, GATE RESISTANCE RG, GATE RESISTANCE
Figure 25. Typical reverse recovery
current as a function of diode current
slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
Figure 26. Typical diode peak rate of fall
of reverse recovery current as a
function of diode current slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
IF, FORWARD CURRENT
0V 1V 2V 3V
0A
2
A
4
ATJ=150°C
TJ=25°C
VF, FORWARD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
1.0V
1.5V
2.0V
2.5V
3.0V
IF=4A
IF=2A
IF=1A
VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATURE
Figure 27. Typical diode forward current
as a function of forward voltage
Figure 28. Typical diode forward
voltage as a function of junction
temperature
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 12 Rev. 2.3 May 06
P-TO220-3-45
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 13 Rev. 2.3 May 06
Figure A. Definition of switching times
I
rrm
90% I
rrm
10% I
rrm
di /dt
F
t
rr
I
F
i,v
t
Q
S
Q
F
t
S
t
F
V
R
di /dt
rr
Q=Q Q
rr S F
+
t=t t
rr S F
+
Figure C. Definition of diodes
switching characteristics
p(t)
12 n
T(t)
j
τ
1
1
τ
2
2
n
n
τ
T
C
rr
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ
= 180nH,
Stray capacitor Cσ = 40pF,
Relief capacitor Cr = 4nF (only for
ZVT switching)
Figure B. Definition of switching losses
öö
VDC
DUT
(Diode)
½Lσ
RGDUT
(IGBT)
L
½Lσ
CσCr
http://store.iiic.cc/
IKB03N120H2
Power Semiconductors 14 Rev. 2.3 May 06
Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 11/3/06.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
http://store.iiic.cc/