PD -95691A IRG4BC20SD-SPbF Standard Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C * Extremely low voltage drop 1.4Vtyp. @ 10A * S-Series: Minimizes power dissipation at up to 3 KHz PWM frequency in inverter drives, up to 4 KHz in brushless DC drives. * Very Tight Vce(on) distribution * IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations * Industry standard D2Pak package VCES = 600V VCE(on) typ. = 1.4V G @VGE = 15V, IC = 10A E n-channel * Lead-Free Benefits * Generation 4 IGBT's offer highest efficiencies available * IGBT's optimized for specific application conditions * HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing * Lower losses than MOSFET's conduction and Diode losses D2Pak Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Max. Units 600 19 10 38 38 7.0 38 20 60 24 -55 to +150 V A V W C Thermal Resistance Parameter RJC RJC RJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient ( PCB Mounted,steady-state)* Weight Typ. Max. --- --- --- 1.44 2.1 3.5 80 --- Units C/W g (oz) * When mounted on 1" square PCB (FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. www.irf.com 1 01/21/10 IRG4BC20SD-SPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 -- V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage -- 0.75 VCE(on) Collector-to-Emitter Saturation Voltage -- 1.40 -- 1.85 -- 1.44 Gate Threshold Voltage 3.0 -- VGE(th) VGE(th)/TJ Temperature Coeff. of Threshold Voltage -- -11 gfe Forward Transconductance 2.0 5.8 Zero Gate Voltage Collector Current -- -- ICES -- -- VFM Diode Forward Voltage Drop -- 1.4 -- 1.3 IGES Gate-to-Emitter Leakage Current -- -- V(BR)CES Max. Units Conditions -- V VGE = 0V, IC = 250A -- V/C VGE = 0V, I C = 1.0mA 1.6 IC = 10A VGE = 15V -- V IC = 19A See Fig. 2, 5 -- IC = 10A, TJ = 150C 6.0 VCE = VGE, IC = 250A -- mV/C VCE = VGE, IC = 250A -- S VCE = 100V, IC = 10A 250 A VGE = 0V, VCE = 600V 1700 VGE = 0V, VCE = 600V, TJ = 150C 1.7 V IC = 8.0A See Fig. 13 1.6 IC = 8.0A, TJ = 150C 100 nA VGE = 20V Switching Characteristics @ TJ = 25C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr I rr Q rr di (rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Diode Peak Reverse Recovery Current -- -- Diode Reverse Recovery Charge -- -- Diode Peak Rate of Fall of Recovery -- During tb -- Typ. 27 4.3 10 62 32 690 480 0.32 2.58 2.90 64 35 980 800 4.33 7.5 550 39 7.1 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 40 IC = 10A 6.5 nC VCC = 400V See Fig. 8 15 VGE = 15V -- TJ = 25C -- ns IC = 10A, VCC = 480V 1040 VGE = 15V, RG = 50 730 Energy losses include "tail" and -- diode reverse recovery. -- mJ See Fig. 9, 10, 11,18 4.5 -- TJ = 150C, See Fig. 10,11, 18 -- ns IC = 10A, VCC = 480V -- VGE = 15V, RG = 50 -- Energy losses include "tail" and -- mJ diode reverse recovery. -- nH Measured 5mm from package -- VGE = 0V -- pF VCC = 30V See Fig. 7 -- = 1.0MHz 55 ns TJ = 25C See Fig. 90 TJ = 125C 14 IF = 8.0A 5.0 A TJ = 25C See Fig. 8.0 TJ = 125C 15 VR = 200V 138 nC TJ = 25C See Fig. 360 TJ = 125C 16 di/dt = 200As -- A/s TJ = 25C See Fig. -- TJ = 125C 17 www.irf.com IRG4BC20SD-SPbF 3.0 LOAD CURRENT (A) For both: Duty cycle: 50% TJ = 125C Tsink = 90C Gate drive as specified Power Dissipation = 1.7W 2.0 Square wave: 60% of rated voltage 1.0 I Ideal diodes 0.0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 10 TJ = 150 C TJ = 25 C VGE = 15V 20s PULSE WIDTH 1 0.0 1.0 2.0 3.0 4.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector Current (A) 100 TJ = 150 o C 10 TJ = 25 oC 1 V CC = 50V 5s PULSE WIDTH 5 6 7 8 9 10 11 12 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC20SD-SPbF 3.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 20 15 10 5 0 25 50 75 100 125 150 TC , Case Temperature ( C) VGE = 15V 80 us PULSE WIDTH IC = 20 A 2.0 IC = 10 A IC = 5.0 5 AA 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 0.50 0.20 0.10 PDM 0.05 0.1 0.02 0.01 0.01 0.00001 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20SD-SPbF 1000 VGE , Gate-to-Emitter Voltage (V) 800 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 600 400 Coes 200 Cres 0 1 10 16 12 8 4 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 100 VCC = 480V VGE = 15V TJ = 25 C I C = 10A 2.8 0 10 20 30 40 RGR, Gate Resistance G, Gate Resistance () Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 5 10 15 20 25 30 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 2.9 2.7 0 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 3.0 VCC = 400V I C = 10A 50 RG = 50 VGE = 15V VCC = 480V IC = 20 A 10 IC = 10 A IC = 5A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC20SD-SPbF Total Switching Losses (mJ) RG TJ 12 VCC VGE 100 = 50 = 150 C = 480V = 15V I C , Collector-to-Emitter Current (A) 14 10 8 6 4 2 0 0 4 8 12 16 10 1 20 VGE = 20V T J = 125 oC SAFE OPERATING AREA 1 I C , Collector Current (A) 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Instantaneous Forward Current - I F (A) 100 10 TJ = 150C TJ = 125C TJ = 25C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4BC20SD-SPbF 100 100 VR = 200V TJ = 125C TJ = 25C VR = 200V TJ = 125C TJ = 25C 80 60 I F = 8.0A 40 I IRRM - (A) t rr - (ns) IF = 16A I F = 16A 10 IF = 8.0A I F = 4.0A I F = 4.0A 20 0 100 1 100 1000 di f /dt - (A/s) Fig. 14 - Typical Reverse Recovery vs. dif/dt di f /dt - (A/s) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt 500 10000 VR = 200V TJ = 125C TJ = 25C VR = 200V TJ = 125C TJ = 25C di(rec)M/dt - (A/s) Q RR - (nC) 400 300 I F = 16A 200 I F = 8.0A 1000 IF = 4.0A IF = 8.0A I F = 16A 100 IF = 4.0A 0 100 di f /dt - (A/s) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 di f /dt - (A/s) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4BC20SD-SPbF Same type device as D.U.T. 430F 80% of Vce 90% D.U.T. 10% Vge VC 90% td(off) 10% IC 5% Fig. 18a - Test Circuit for Measurement of tf tr ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t d(on) t=5s Eon Eoff Ets= (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 +Vg 10% Vcc Vcc trr id Ic dtdt tx t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC20SD-SPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit RL = VCC ICM D.U.T. L 1000V Vc* 0 - VCC 50V 480F 6000F 100V Pulsed Collector Current Test Circuit Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC20SD-SPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information 7+,6,6$1,5)6:,7+ 3$57180%(5 /27&2'( ,17(51$7,21$/ 5(&7,),(5 $66(0%/('21:: )6 /2*2 ,17+($66(0%/