IRFP250NPbF
HEXFET® Power MOSFET
08/18/10
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 30
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 21 A
IDM Pulsed Drain Current 120
PD @TC = 25°C Power Dissipation 214 W
Linear Derating Factor 1.4 W/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche Energy315 mJ
IAR Avalanche Current30 A
EAR Repetitive Avalanche Energy21 mJ
dv/dt Peak Diode Recovery dv/dt 8.6 V/ns
TJOperating Junction and -55 to +175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)
Absolute Maximum Ratings
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.7
RθCS Case-to-Sink, Flat, Greased Surface 0.24 ––– °C/W
RθJA Junction-to-Ambient ––– 40
Thermal Resistance
www.irf.com 1
Fifth Generation HEXFETs from International Rectifier utilize advanced processing
techniques to achieve extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized device design that
HEXFET Power MOSFETs are well known for, provides the designer with an
extremely efficient and reliable device for use in a wide variety of applications.
The TO-247 package is preferred for commercial-industrial applications where
higher power levels preclude the use of TO-220 devices. The TO-247 is similar
but superior to the earlier TO-218 package because of its isolated mounting hole.
Description
VDSS = 200V
RDS(on) = 0.075
ID = 30A
S
D
G
lAdvanced Process Technology
lDynamic dv/dt Rating
l175°C Operating Temperature
lFast Switching
lFully Avalanche Rated
lEase of Paralleling
lSimple Drive Requirements
TO-247AC
lLead-Free
PD - 95007A
IRFP250NPbF
2www.irf.com
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode)––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 18A, VGS = 0V
trr Reverse Recovery Time ––– 186 279 ns TJ = 25°C, IF = 18A
Qrr Reverse Recovery Charge ––– 1.3 2.0 µC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
30
120
A
Starting TJ = 25°C, L = 1.9mH
RG = 25, IAS = 18A. (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. (See Fig. 11)
Notes:
ISD 18A, di/dt 374A/µs, VDD V(BR)DSS,
TJ 175°C
Pulse width 300µs; duty cycle 2%.
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 200 ––– –– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.26 V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.075 VGS = 10V, ID = 18A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 17 ––– ––– S VDS = 50V, ID = 18A
––– ––– 25 µA VDS = 200V, VGS = 0V
––– ––– 250 VDS = 160V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -20V
QgTotal Gate Charge –– –– 123 ID = 18A
Qgs Gate-to-Source Charge ––– ––– 21 nC VDS = 160V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 57 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 14 ––– VDD = 100V
trRise Time ––– 43 ––– ID = 18A
td(off) Turn-Off Delay Time –– 41 –– RG = 3.9
tfFall Time ––– 33 ––– RD = 5.5, See Fig. 10
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 2159 ––– VGS = 0V
Coss Output Capacitance –– 315 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 83 –– ƒ = 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
IRFP250NPbF
www.irf.com 3
0.01
0.1
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
1000
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V = 50V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 175 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
30A
Fig 4. Normalized On-Resistance
Vs. Temperature
IRFP250NPbF
4www.irf.com
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1
10
100
1000
1 10 100 1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Single Pulse
T
T
= 175 C
= 25 C
°
°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
110 100 1000
VDS
, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
5000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = C
gs + C
gd, Cds SHORTED
Crss = C
gd
Coss
= C
ds + C
gd
020 40 60 80 100
0
4
8
12
16
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D18A
V = 40V
DS
V = 100V
DS
V = 160V
DS
0.1
1
10
100
1000
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 175 C
J°
IRFP250NPbF
www.irf.com 5
RD
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
VGS
RG
D.U.T.
10V
+
-
25 50 75 100 125 150 175
0
5
10
15
20
25
30
35
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
VGS
RG
D.U.T.
10V
VDD
25 50 75 100 125 150 175
0
5
10
15
20
25
30
35
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRFP250NPbF
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
200
400
600
800
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
7.3A
13A
18A
IRFP250NPbF
www.irf.com 7
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFETS
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RG
VDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRFP250NPbF
8www.irf.com
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
LEAD ASSIGNMENTS
NOTES:
- D - 5.30 (.209)
4.70 (.185)
2.50 (.089)
1.50 (.059)
4
3X 0.80 (.031)
0.40 (.016)
2.60 (.102)
2.20 (.087)
3.40 (.133)
3.00 (.118)
3X
0.25 (.010) MCAS
4.30 (.170)
3.70 (.145)
- C -
2X 5.50 (.217)
4.50 (.177)
5.50 (.217)
0.25 (.010)
1.40 (.056)
1.00 (.039)
3.65 (.143)
3.55 (.140)
D
MM
B
- A -
15.90 (.626)
15.30 (.602)
- B -
123
20.30 (.800)
19.70 (.775)
14.80 (.583)
14.20 (.559)
2.40 (.094)
2.00 (.079)
2X
2X
5.45 (.215)
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE
TO-247-AC.
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
LEAD ASSIGNMENTS
Hexfet
1 - Gate
2 - Drain
3 - Source
4 - Drain
IGBT
1 - Gate
2 - Collector
3 - Emitter
4 - Collector
TO-247AC Part Marking Information
EXAMPLE:
AS S E MB L ED ON WW 35, 2000
LOT CODE 5657
WI T H AS S E MB L Y
THIS IS AN IRFPE30
IN THE ASSEMBLY LINE "H" 035H
LOGO
INTERNATIONAL
RECTIFIER IRF PE30
LOT CODE
ASSEMBLY
56 57
PART NUMBER
DAT E CODE
YE AR 0 = 2000
WE E K 35
LINE H
Note: "P" in assembly line
position indicates "Lead-Free"
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2010
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/