1
Zarlink Semiconductor Inc.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2004-2006, Zarlink Semiconductor Inc. All Rights Reserved.
Features
Complies with POP4 MSA specification
4 Transmit channels and 4 Receive channels
Data rate up to 2.7 Gbps per channel
850 nm VCSEL array
Data I/O is CML compatible with DC blocking
capacitors
Link reach 300 m with 50/125 µm 500 MHz.km
fiber at 2.5 Gbps
Channel BER better than 10-12
Industry standard MPO/MTP ribbon fiber
connector interface
Pluggable MegArray® ball grid array connector
Optionally available with EMI shield and external
heat sink
Laser class 1M IEC 60825-1:2001 compliant
Low power consumption, max 1 W
Power supply 3.3 V
February 2006
Ordering Information
ZL60301/MJD Parallel Fiber Transceiver
Heat sink and EMI shield options
are available upon request
0°C to +80°C
ZL60301
Parallel Fiber Optic Transceiver
(4 + 4) x 2.7 Gbps
Data Sheet
Figure 1 - Transceiver Block Diagram
PIN Array
V
CC
Tx V
EE
TX
Trans-
Impedance
and
Limiting
Amplifier
0
1
2
3
DOUT0+
DOUT0-
DOUT3+
DOUT3-
VCSEL
Array
0
1
2
3
DIN0+
DIN0-
DIN3+
DIN3-
SQ_ENRx_EN Rx_SD V
CCA
Rx V
EE
RxV
CCB
Rx
VCSEL
Driver
RESETTx_EN Tx_DIS
VCSEL Driver Controller
FAULT
RX0
RX1
RX2
RX3
TX3
TX2
TX1
TX0
ZL60301 Data Sheet
2
Zarlink Semiconductor Inc.
Applications
High-speed interconnects within and between switches, routers and transport equipment
Proprietary backplanes
Interconnects rack-to-rack, shelf-to-shelf, board-to-board, board-to-optical backplane
Description
The ZL60301 is a very high-speed transceiver for parallel fiber applications. This transceiver performs E/O and O/E
conversions for data transmission over multimode fiber ribbon.
The transmit section converts parallel electrical input signals via a laser driver and a VCSEL array into parallel
optical output signals at a wavelength of 850 nm.
The receive section converts parallel optical input signals via a PIN photodiode array and a transimpedance and
limiting amplifier, into electrical output signals.
The module is fitted with a pluggable industry-standard MegArray® BGA connector. This provides ease of assembly
on the host board and enables provisioning of bandwidth on demand.
ZL60301 Data Sheet
Table of Contents
3
Zarlink Semiconductor Inc.
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Transmitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Transmitter Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Transmitter Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Receiver Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Receiver Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Transceiver Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Transceiver Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Eye safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrostatic discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrostatic discharge immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electromagnetic Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Handling instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Cleaning the Optical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ESD handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Link Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Link Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Interface - Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ZL60301 Data Sheet
4
Zarlink Semiconductor Inc.
Absolute Maximum Ratings
Not necessarily applied together. Exceeding these values may cause permanent damage. Functional operation
under these conditions is not implied.
Recommended Operating Conditions
Figure 2 - Recommended Power Supply Filter
Parameter Symbol Min. Max. Unit
Supply voltage VCC -0.3 4.0 V
Differential input voltage amplitude1
1. Differential input voltage amplitude is defined as V = DIN+ DIN-.
V1.2V
Voltage on any pin VPIN -0.3 VCC + 0.3 V
Relative humidity (non-condensing) MOS 595%
Storage temperature TSTG -40 100 °C
ESD resistance VESD ±1 kV
Parameter Symbol Min. Max. Unit
Power supply voltage VCC 3.135 3.465 V
Operating case temperature TCASE 080°C
Signalling rate (per channel)1
1. Data patterns are to have maximum run lengths and DC balance shifts no worse than that of a Pseudo Random Bit Sequence of
length 223-1 (PRBS-23). Information on lower bit rates and longer run lengths are available on request.
fD1.0 2.7 Gbps
Link distance2
2. For maximum distance, see Table 4.
LD 2 m
Data I/O DC blocking capacitors3
3. For AC-coupling, DC blocking capacitors external to the module with a minimum value of 100 nF is recommended.
CBLK 100 nF
Power supply noise4
4. Power supply noise is defined at the supply side of the recommended filter for all VCC supplies over the frequency range of 500 Hz
to 2700 MHz with the recommended power supply filter in place.
VNPS 200 mVp-p
Host
Vcc
R1 100
C1
10
µ
F
C2
10
µ
F
L1 1
µ
H
R2 1.0 k
C3
0.1
µ
F
C4
0.1
µ
F
L2 6.8 nH
Module
Vcc
ZL60301 Data Sheet
5
Zarlink Semiconductor Inc.
Transmitter Specifications
All parameters below require operating conditions according to “Recommended Operating Conditions” on page 4.
Parameter Symbol Min. Max. Unit
Optical Parameters
Launch power (50/125 µm MMF)1
1. The output optical power is compliant with IEC 60825-1 Amendment 2, Class 1M Accessible Emission Limits.
POUT -8 -2 dBm
Extinguished output power POFF -30 dBm
Extinction ratio2
2. The extinction ratio is measured at 622 Mbps.
ER 6 dB
Optical modulation amplitude3
3. Informative. Corresponds to POUT = -8 dBm and ER = 6 dBm.
OMA 0.30 mW
Center wavelength λC830 860 nm
Spectral width4
4. Spectral width is measured as defined in EIA/TIA-455-127 Spectral Characterization of Multimode Laser Diodes.
∆λ 0.85 nmrms
Relative intensity noise OMA5
5. Corresponds to a Relative Intensity Noise (RIN) of -120 dB/Hz.
RIN12OMA -116 dB/Hz
Optical output rise time (20 - 80%) tRO 150 ps
Optical output fall time (20 - 80%) tFO 150 ps
Total jitter contributed (peak to peak)6
6. Total jitter equals TP1 to TP2 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).
TJ 120 ps
Deterministic jitter contributed (peak to peak) DJ 50 ps
Channel to channel skew7
7. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the transmitter inputs.
tSK 100 ps
Electrical Parameters
Power dissipation PD500 mW
Supply current ICC 150 mA
Differential input voltage amplitude (peak to peak)8
8. Differential input voltage is defined as the peak to peak value of the differential voltage between DIN+ and DIN-. Data inputs are CML
compatible.
VIN 200 800 mVp-p
Differential input impedance9
9. Differential input impedance is measured between DIN+ and DIN-.
ZIN 80 120
Electrical input rise time (20 - 80%) tRE 160 ps
Electrical input fall time (20 - 80%) tFE 160 ps
ZL60301 Data Sheet
6
Zarlink Semiconductor Inc.
Classified in accordance with IEC 60825-1/A2:2001, IEC 60825-2: 2000
Class 1M Laser Product
Emitted wavelength: 840 nm
Figure 3 - Differential CML Input Equivalent Circuit
50Ω
50Ω
13k
11k
V
EE
V
CC
DIN+
DIN-
ZL60301 Data Sheet
7
Zarlink Semiconductor Inc.
Transmitter Control and Status Signal Requirements
The following table shows the timing relationships of the status and control signals of the transmit section.
Parameter Symbol Min. Typ. Max. Unit
Control input voltage high1
1. Applies to control signals RESET, Tx_DIS and Tx_EN.
VIH 2.1 V
Control input voltage low VIL 0.62 V
Control pull-up resistor2
2. Applies to control signals RESET and Tx_EN. Internal pull-up resistor.
RPU 10 k
Control pull-down resistor3
3. Applies to control signal Tx_DIS. Internal pull-down resistor.
RPD1 10 k
Status output voltage low4, 5
4. Applies to status signal FAULT. Internal pull-down to VEE.
5. With status output sink current max. 2 mA.
VOL 0.4 V
Status pull-down resistor4RPD2 10 k
FAULT assert time TFA 100 µs
FAULT lasers off TFD 100 µs
RESET duration TTDD 10 µs
RESET assert time TOFF 510 µs
RESET de-assert time TON 100 ms
Tx_EN assert time TTEN 1ms
Tx_EN de-assert time TTD 510 µs
Tx_DIS assert time TTD 510 µs
Tx_DIS de-assert time TTEN 1ms
ZL60301 Data Sheet
8
Zarlink Semiconductor Inc.
Transmitter Control and Status Timing Diagrams
The following figures show the timing relationships of the status and control signals of the transmit section.
Figure 4 - Transmitter Power-up Sequence
Figure 5 - Transmitter Fault Signal Timing Diagram
RESET: floating or high
Transmitter Not Ready Normal operation
V
CC
T
TEN
Tx Output [0:3]
Data [0:3]
No Fault Fault
FAULT T
FA
T
FD
Tx Output [0:3]
Data [0:3]
ZL60301 Data Sheet
9
Zarlink Semiconductor Inc.
Figure 6 - Transmitter Reset Signal Timing Diagram
Figure 7 - Transmitter Enable and Disable Timing Diagram
Tx_DIS High Tx_DIS Low
Tx_EN High Transmitter disabled Normal operation
Tx_EN Low Transmitter disabled Transmitter disabled
Table 1 - TruthTable for Transmitter Operation (Pre-condition: RESET floating or HIGH)
Transmitter Not Ready Normal operation
FAULT
T
ON
Tx Output [0:3]
Data [0:3]
RESET
T
TDD
Tx_EN
Data [0:3]
Lasers
off
T
TD
Normal operation Tx Off
Tx_DIS
Lasers
off
Data [0:3]
T
TD
Normal operation Tx Off
Data [0:3]
Tx_EN
T
TEN
Normal operationTransmitter Not Ready
ZL60301 Data Sheet
10
Zarlink Semiconductor Inc.
Receiver Specifications
All parameters below require operating conditions according to “Recommended Operating Conditions” on page 4
and a termination load of 100 differential at the electrical output.
Parameter Symbol Min. Max. Unit
Optical Parameters
Input optical power1
1. Receive power for a channel is measured for a BER of 10-12 and worst case extinction ratio. PIN (Min) is measured using a fast
rise/fall time source with low RIN and adjacent channel(s) operating with incident power of 6 dB above PIN (Min).
PIN -16 -2 dBm
Center wavelength λC830 860 nm
Return loss2
2. Return loss is measured as defined in TIA/EIA-455-107A Determination of Component Reflectance or Link/System Return Loss Us-
ing a Loss Test Set.
RL 12 dB
Stressed receiver sensitivity3
3. The stressed receiver sensitivity is measured using PRBS 223-1 pattern, 2.6 dB inter-symbol interference, ISI (Min), 30 ps duty cycle
dependent deterministic jitter, DCD DJ (Min), and 6 dB extinction ratio, ER (Min) (ER penalty = 2.2 dB). All channels not under test
are receiving signals with an average input power of 6 dB above PIN (Min).
PSS -11.7 dBm
Channel to channel skew4
4. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the receiver inputs.
tSK 100 ps
Signal detect assert PSA -17 dBm
Signal detect de-assert PSD -31 dBm
Electrical Parameters
Power dissipation PD500 mW
Supply current ICC 150 mA
Differential output voltage amplitude (peak to peak)5
5. Differential output voltage is defined as the peak to peak value of the differential voltage between DOUT+ and DOUT- and measured
with a 100 differential load connected between DOUT+ and DOUT-. Data outputs are CML compatible.
VOUT 500 800 mVp-p
Output differential load impedance6
6. See Figure 13.
ZL80 120
Stressed receiver eye opening7
7. The stressed receiver eye opening represents the eye at TP4 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).
The stressed receiver eye opening is measured using PRBS 223-1 pattern, 2.6 dB ISI min, 30 ps DCD DJ min, 6 dB ER min and an
average input power of -11.2 dBm (0.5 dB above minimum stressed receiver sensitivity as defined in IEEE 802.3 clause 38.6). All
channels not under test are receiving signals with an average input power of 6 dB above PIN (Min).
PSE 0.3 UI
Electrical output rise time (20 - 80%) tRE 160 ps
Electrical output fall time (20 - 80%) tFE 160 ps
ZL60301 Data Sheet
11
Zarlink Semiconductor Inc.
Receiver Control and Status Signal Requirements
The following table shows the timing relationships of the status and control signals of the receive section.
Receiver Control and Status Timing Diagrams
The following figures show the timing relationships of the status and control signals of the receive section.
Figure 8 - Receiver Enable Signal Timing Diagram
Parameter Symbol Min. Typ. Max. Unit
Control input voltage high1
1. Applies to control signals Rx_EN, SQ_EN.
VIH 2.0 V
Control input voltage low1VIL 0.9 V
Control input pull-up current1IIN10 100 µA
Status output voltage low2, 3
2. Applies to status signal Rx_SD. Internal pull-up to VCC.
3. With status output sink current max 2 mA.
VOL 0.4 V
Status output pull-up resistor2RPU 3.25 k
Receiver signal detect assert time TSD 50 200 µs
Receiver signal detect de-assert time TLOS 50 200 µs
Receiver enable assert time TRXEN 33 ms
Receiver enable de-assert time TRXD 5µs
Normal Operation Rx Off
Rx_EN
T
RXD
I
CC
ZL60301 Data Sheet
12
Zarlink Semiconductor Inc.
Figure 9 - Receiver Signal Detect Timing Diagram
Transceiver Module Signals
The pluggable parallel optical transceiver uses a 100 position FCI MegArray electrical connector
(FCI PN: 84513-101), and an industry standard MTP(MPO) optical receptacle compliant with
IEC 61754-7.
KJHGFEDCBA
1DOUT00- VEE Rx DOUT03+ VEE Rx VEE Rx VEE Tx VEE Tx DIN03- VEE Tx DIN00+
2DOUT00+ VEE Rx DOUT03- VEE Rx VEE Rx VEE Tx VEE Tx DIN03+ VEE Tx DIN00-
3VEE Rx VEE Rx VEE Rx VEE Rx VEE Rx VEE Tx VEE Tx VEE Tx VEE Tx VEE Tx
4DOUT01+ VEE Rx DOUT02- NIC NIC NIC NIC DIN02+ VEE Tx DIN01-
5DOUT01- VEE Rx DOUT02+ NIC NIC NIC NIC DIN02- VEE Tx DIN01+
6VEE Rx VEE Rx VEE Rx NIC NIC NIC NIC VEE Tx VEE Tx VEE Tx
7VCCB Rx VCCB Rx VCCB Rx NIC NIC NIC NIC VCC Tx VCC Tx VCC Tx
8NIC DNC DNC DNC RX_EN TX_DIS TX_EN DNC DNC DNC
9NIC DNC DNC SD SQ_EN RESET FAULT DNC DNC DNC
10 VCCA Rx VCCA Rx VEE Rx NIC NIC NIC NIC VEE Tx VCC Tx VCC Tx
Table 2 - Transceiver Pinout Assignments (Top view, toward MPO/MTP connector end)
(10x10 array, 1.27 mm pitch)
Module front view - MTP key up
Tx0 Tx1 Tx2 Tx3 −−−−Rx3 Rx2 Rx1 Rx0
Host printed circuit board
Table 3 - Transceiver Optical Channel Assignment
Signal No Signal
Rx_SD
T
LOS
ZL60301 Data Sheet
13
Zarlink Semiconductor Inc.
Transceiver Pin Description
The transceiver module case is electrically isolated from Transmitter signal common and Receiver signal common.
Connection through mounting screw holes or frontplate whichever is applicable. Make the appropriate electrical
connection for EMI shield integrity.
Signal Name Type Description Comments
DIN[0:3] +/- Data input Transmitter data in, channel 0 to 3 Internal differential
termination at 100 Ω.
VCC Tx Transmitter power supply rail
VEE Tx Transmitter signal common. All transmitter
voltages are referenced to this potential unless
otherwise stated.
Directly connect these pads
to the PC board transmitter
signal ground plane.
TX_EN Control
input
Transmitter enable.
HIGH: normal operation
LOW: disable transmitter
Active high, internal pull-up.
See Table 1.
TX_DIS Control
input
Transmitter disable.
HIGH: disable transmitter
LOW: normal operation
Active high, internal pull-
down. See Table 1.
FAULT Status
output
Transmitter fault.
HIGH: normal operation
LOW: laser fault detected on at least one channel
When active, all channels
are disabled. Clear by reset
signal. Internal pull-up.
RESET Control
input
Transmitter reset.
HIGH: normal operation
LOW:reset to clear fault signal
Internal pull-up.
DOUT[0:3] +/- Data
output
Receiver data out, channel 0 to 3.
VCCA Rx PIN preamplifier power supply rail.
VCCB Rx Receiver quantizer power supply rail.
VEE Rx Receiver signal common. All receiver voltages
are referenced to this potential unless otherwise
stated.
Directly connect these pads
to the PC board receiver
signal ground plane.
RX_EN Control
input
Receiver enable.
HIGH: normal operation
LOW: disable receiver
Internal pull-up.
RX_SD Status
output
Receiver signal detect.
HIGH: valid optical input on all channels
LOW: loss of signal on at least one channel
Internal pull-up.
SQ_EN Control
input
Squelch enable.
HIGH: squelch function enabled. Data OUT is
squelched on any channels that have loss of
signal
LOW: squelch function disabled
Internal pull-up.
DNC Do not connect to any potential, including ground.
NIC No internal connection.
ZL60301 Data Sheet
14
Zarlink Semiconductor Inc.
VCCA and VCCB Rx can be connected to the same power supply. However, to insure maximum receiver sensitivity
and minimize the impact of noise from the power supply, it is recommended to keep the power supplies separate
and to use the recommended power supply filtering network on VCCA Rx, see Figure 2.
Thermal Characteristics
There are three options for heat sinks depending on the cooling needs. They are:
1. Direct application without any attached external heat sink
2. Use a generic external heat sink specified by Zarlink
3. Use a customer designed external heat sink
In Figure 10 and Figure 11, the temperature rise and thermal resistance as a function of air velocity (free air velocity
at the top of the module) is shown for option 1 and 2. The thermal resistance is defined as the temperature
difference between the case temperature and ambient flowing air divided by the total heat dissipation of the
module.
Improved thermal properties can be achieved by using a larger heat sink especially if more height is available
(option 3). For this option, a more detailed discussion with Zarlink is recommended regarding heat sink design
attachment materials.
Figure 10 - Temperature Difference Between Ambient Flowing Air and Case at a Heat Dissipation
of 1.0 W
Tem perature rise at 1.0W
(Free stream air velocity)
0
4
8
12
16
0123 45
Air velocity (m /s)
Temperature rise (K)
Option ZL60301/MLD
Option ZL60301/MJD
ZL60301 Data Sheet
15
Zarlink Semiconductor Inc.
Figure 11 - Thermal Resistance, as a Function of Air Velocity (the airflow is along the shortest
side of the module)
For any other orientation, the thermal resistance is 75-100% of the values shown above.
Therm al resis tance to air
(Free stream air velocity)
0
5
10
15
012345
Air velocity (m /s)
Thermal resistance (K/W)
Option ZL60301/MLD
Option ZL60301/MJD
ZL60301 Data Sheet
16
Zarlink Semiconductor Inc.
Regulatory Compliance
Eye safety
The maximum optical output power is specified to comply with Class 1M in accordance with IEC 608251:2001. In
addition the transmitter complies with FDA performance standards for laser products except for deviations pursuant
to Laser Notice No.50, dated July 26, 2001. No maintenance or service of the product may be performed.
Electrostatic discharge
The module is classified as Class 1 (> 1000 Volts) according to MILSTD883, test method 3015.7, with regards to
the electrical pads.
Electrostatic discharge immunity
The part withstand a 15 kV (air discharge) and 8 kV (contact discharge) either indirect or directly to receptacle;
tested according to IEC 6100042, while in operation without addition of bit errors.
Electromagnetic Interference
Emission
The electromagnetic emission is tested in front of the module (module fitted with EMI shield), with the module
mounted in a frontplate cutout. The part is tested with FCC Part 15, 30 1000 MHz and 1 GHz to 5th harmonic of
the highest fundamental frequency (6.75 GHz), and is specified to be Class B with > 6 dB margin.
Immunity
The electromagnetic immunity is tested without a front panel or enclosure. The module specification is maintained
with an applied field of 10 V/m for frequencies between 10 kHz and 10 GHz, according to IEC 6100043 and GR
1089CORE.
Handling instructions
Cleaning the Optical Interface
A protective connector plug is supplied with each module. This plug should remain in place whenever a fiber cable
is not inserted. This will keep the optical port free from dust or other contaminants, which may potentially degrade
the optical signal. Before reattaching the connector plug to the module, visually inspect the plug and remove any
contamination. If the module’s optical port becomes contaminated, it can be cleaned with high-pressure nitrogen
(the use of fluids, or physical contact, is not advised due to potential for damage).
Before a fiber cable connector is attached to the module, it is recommended to clean the fiber cable connector
using an optical connector cleaner, or according to the cable manufacturer's instructions. It is also recommended to
clean the optical port of the module with high-pressure nitrogen.
Connectors
For optimum performance, it is recommended that the number of insertions is limited to 50 for the electrical
MegArray connector and 200 for the optical MPO/MTP connector.
ESD handling
When handling the modules, precautions for ESD sensitive devices should be taken. These include use of ESD
protected work areas with wrist straps, controlled work-benches, floors etc.
ZL60301 Data Sheet
17
Zarlink Semiconductor Inc.
Link Reach
The following table lists the minimum reach distance of the pluggable parallel fiber optic transceiver for different
multi-mode fiber (MMF) types and bandwidths assuming worst case parameters. Each case allows for a maximum
of 2 dB per channel connection loss for patch cables and other connectors.
Link Model Parameters
The link reaches above have been calculated using the following link model parameters and Gigabit Ethernet link
model version 2.3.5 (filename: 5pmd047.xls).
Fiber Type
[core / cladding µm]
Modal Bandwidth
@ 850 nm
[MHz*km]
Reach Distance
@ 1 Gbps
[m]
Reach Distance
@ 2.5 Gbps
[m]
Reach Distance
@ 2.7 Gbps
[m]
62.5/125 MMF 200 350 135 115
62.5/125 or 50/125 MMF 400 650 260 220
50/125 MMF 500 750 300 270
Table 4 - Link Reach for Different Fiber Types and Data Rates
Parameter Symbol Value Unit
Mode partition noise k-factor k 0.3
Modal noise MN 0.3 dB
Dispersion slope parameter SO0.11 ps/nm2*km
Wavelength of zero dispersion UO1320 nm
Attenuation coefficient at 850 nm αdB 3.5 dB/km
Conversion factor C1 480 ns.MHz
Q-factor [BER 10-12] Q 7.04
TP4 eye opening 0.3 UI
DCD allocation at TP3 DCD DJ 0.08 UI
RMS baseline wander S.D. σBLW 0.025
RIN coefficient kRIN 0.70
Conversion factor c_rx 329 ns.MHz
ZL60301 Data Sheet
18
Zarlink Semiconductor Inc.
Electrical Interface - Application Examples
Figure 12 - Recommended Differential CML Input Interface
Figure 13 - Recommended Differential CML Output Interface
Z
OUT
=100
Differential
Recommended CML output
Z
0
=100
Differential Z
IN
=100
Differential
Transmitter CML input
100nF
100nF
Host PCB
Receiver CML output
Z
0
=100
Differential Z
TERM
=100
Differential
Recommended CML input
100nF
100nF
Host PCB
Z
L
FRONT VIEW ( 2 : 1 )
© Zarlink Semiconductor 2002. All rights reserved.
ISSUE
ACN
DATE
APPRD.
Previous package codes
Title
Drawing type
Package code
Projection Method
JS004296
MJ
27,64
36,87
4,3
7,55
3,26
31,75
7,48
18,16
1,145
13,72
17,5
AC
B
A10 A1 0,58n`0,05 jn0,05 AB-C
n3,63
jn0,15mA
2-56 UNC-2B
3,50 Deep MIN
jn0,15mAB-C
jn0,15mAB-C
14,4
jn0,15mAB-C
NOTES:-
1. All dimensions in mm.
2. Tolerancing per ASME Y14.5M-1994.
1
JS004296R1A
12-JUN-03
TD/BE MD/MA
24-JAN-04
JS004296 rev.2
23
JS004296 rev.3
24-JAN-05
MD/MA
Package Drawing - Module Layout
12,23
12,5
2-56 UNC-2B
n1,3
n2,5
0,98
0,76
30,23
© Zarlink Semiconductor 2002. All rights reserved.
ISSUE
ACN
DATE
APPRD.
Previous package codes
Title
Drawing type
Package code
Projection Method
JS004296
MJ
A1
A10
K1
K10
14,4
17,5
1,145
13,72
5,15
`
0,2518,16
30,23
31,75
35,31
`
0,75
A
BC
jn0,1 AB-C
jn0,1 AB-C
jn0,1 AB-C
jn0,05 AB-C
jn0,1 A
jn0,1 AB-C
(n2,69 `0,12 Hole)
n1,70 `0,12 Holes
n3,00 MIN pads, Keep Out
n0,58 `0,05 Pads
n2,69 `0,12 Hole
n4,30 MIN pads (3x), Keep Out
NOTES:-
1. All dimensions in mm.
2. Tolerancing per ASME Y14.5M-1994.
Max product outline
Component keep-out area.
1
JS004296R1A
12-JUN-03
TD/BE MD/MA
24-JAN-05
JS004296 rev.2
2
Package Drawing,
Host Circuit Board Footprint Layout
3
JS004296 rev.3
14-FEB-05
MD/MA
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system
conforms to the I2C Standard Specification as defined by Philips.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE
For more information about all Zarlink products
visit our Web Site at